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In modules involving mutualism, attractor of S 2 , or S 1 shape, a heteroclinc cycle and multistability dynamics
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The paper deals with three community modules involving mutualism; module A consists of two mutualistic prey species and one cooperative predator species, module B of one resource and two mutualistic consumers (where one consumer consume a resource by exchange of sevice for service with the other), and module C of one resource, its exploiters and a mutualistic species. Using the Generalised Hopf bifurcation and other analytic results it is shown that all the models admit an attractor of the shape of S 2 , or S 1 in the positive octant of their respective state spaces. In addition, module A contains a heteroclinic cycle (hc). The hc consists of the multiple interior equilibria, sink and a saddle point of the two prey-predator bistable subsystems and passing through the interior of the three species. Thus interior orbits converge to the extinction state through the hc. All modules exhibit bistability or tristability dynamics. Whenever feasible, we aslo derive the uniform persistent conditions of the three species of the modules.

Introduction

In ecological communities different species populations interact with each other via various types of interspecific interactions for the need of their coexistence or survival. For our understanding of community dynamics we analyse community modules with multiple interactions (such as antagonistic, competition, mutualism etc.) between different species with appropriate functional responses of interaction behaviors. The mutualism is ubiquitous in nature. So community modules involving mutualism demand a special attention for the study of community ecology. In effect, there are many papers exploring the role of mutualistic intraction on other type of interactions. In this paper we consider three community modules of three interacting species with mutualism interactions in common; Module A consists of two mutualistic prey species and one cooperative predator species, Module B of one resource and two mutualistic consumers where one consumer consume a resource by exchange of sevice for service with the other, and Module C of one resource, its exploiters and a mutualistic species. For mutualistic interactions, we use a type II functional response because this does not allow unrealistic unbounded population growth. Existence of multiple equilibira is almost common for nonlinear functional responses of species interactions, and they have influences on the convergences of the interior trajectories of a community. In our results, we analyse the dynamics of the flows of the modules in presence of multiple equilibria of the subsystems or of the systems. In Model A, we consider the interspecific cooperation behavior within predator populations that makes the prey-predator subsystem bistable. For such behavior the phase plane of the prey-predator system contains two interior equilibria, one is a sink and the other is a saddle point. The saddle point allows relatively high predator populations with cooperation to survive, whereas it drives small predator populaions to extinction without cooperation. This is the Allee effects among predators and the predator density of the saddle point is the Allee thresold values (see [START_REF] Alves | Hunting cooperation and allee effects in predators[END_REF]). In presence of multiple equilibria on the boundary the community module of two mutualstic prey species together with cooperative predator species exhibits interesting dynamics by which the three species can coexist under certain conditions. With the Module A The authors in [START_REF] Banerjee | Cooperative predation on mutualistic communities[END_REF] confirmed that both the mutualism and the hunting cooperation predation destabilise the system using bifurcation analysis as a major tools. In real ecosystems where mutualistic and cooperative predator interactions are found are also given in details in [START_REF] Alves | Hunting cooperation and allee effects in predators[END_REF][START_REF] Banerjee | Cooperative predation on mutualistic communities[END_REF]. Model B consists of one autotroph (resource) and two heterotroph species (consumers) and the mutualism between the two hetrotrophs is obligatory. In addition to their resources, the obligatory mutualistic populations need the presence of another population for their growth. Examples of such mutualism are given in [START_REF] Cropp | Obligate mutualism in a resource-based framework[END_REF][START_REF] Wang | Periodic oscillation and tristability in mutualism with two consumers[END_REF]. In a obligatory mutualism the authors (see [START_REF] Cropp | Obligate mutualism in a resource-based framework[END_REF]) used the Holling type II function for the mutualistic interaction and showed the coexistence or extinction of the two heterotrophs by numerical simulations. In the paper [START_REF] Wang | Periodic oscillation and tristability in mutualism with two consumers[END_REF] the authors analysed Model B with zero self-reguatory terms for heterotrophs and showed that the system exhibits bistability or tristability dynamics with periodic oscillations based mainly on numerical computations. They used the software MatLab to compute positive equilibria of the model. We use the Index theorem to get the existence of the two positive equilibria and their stability. Model C was studied by the authors in [START_REF] Mougi | Instability of a hybid module of antagonistic and mutualistic interactions[END_REF]. It was shown there that the unstable oscillations of the three species occur causing the instability of antagonism-mutualism interactions. Instability of the hybrid module C of antaginistic and mutualistic interactions happen in case the mutualism is facultative as well as obligatory. In case mutualism interaction is obligator, the mutualistic x 1 x 2 subsystem contains two interior equilibria. Examples of such hybrid modules in nature are given in [START_REF] Mougi | Instability of a hybid module of antagonistic and mutualistic interactions[END_REF].

If the prey-predator subsytems are in bistability, Model A contains a heteroclinic cycle (hc). This hc consists of bounday equilibria of the two preypredator subsystems and in the process of its formation it passes through the interior of the positive octant of the three species system. Thus the inteorior obits converge to the boundary (the extinction state) through it. Destabilization of the module A occurs. We know the similar situation, whenever two prey species are in the competitive bistability subsystem, they cannot coexist with their predator populations of a three species system. But two prey species, while they are in bistable competition can occur as a subsystem of a permanent two prey-two predator system via the repelling conditions of the existing heteroclinic cycle on the boundary of the four species system ( see [START_REF] Sikder | Persistence of a Genalised Gauss-type two Prey-Predator Pair Linked by Competition Math[END_REF]).

For the modules, the existence of multiple equilibria of a subsystem or the system we use the Index theorem [START_REF] Hofbauer | The Theory of Evolution and Dynamical System[END_REF]. The existence of an attractor of the shape S 2 , or S 1 , in the interior of the positive octant of the state space is derived by the Generalized Hopf bifurcation and other analytic results [START_REF] Sanjurjo | Global topological properties of the Hopf bifurcation[END_REF][START_REF] Sanjurjo | On the fine structure of the global attractor of a uniformly persistent flow[END_REF]. In presence of multiple equilibria of the prey-predators subsystem of the Module A we show the existence of a heteroclinic cycle passing though the interior of the state space. Regarding uniform persistence we use the results of well known persistence theory. Whenever the uniform persistence does not hold, the modules exhibit bistability or tristability dynamics due to the presence of multiple equilibria on the boundary and attractors in the interior of the positive octant. Our results are purely analytic and we do not use any numerical simulations. For our results we require the following assumption for our modules, A, B and C (H1) The positive plane of the subsystems and the positive octant of the state space of modules contain hyperbolic equilibria (if they exist).

Module A : Two mutualistics prey and one cooperative predator

We consider the following differential equations of our module; where the predator (y) engages in group hunting while attacting either of the two prey species (x 1 and x 2 ) and the two prey species are in mutualistic relationship with one another:

x ′ i = x i r i (1 -x i K i ) -(p i + a i y)y + α j x j h j +x j y ′ = y [-d + e 1 (p 1 + a 1 y)x 1 + e 2 (p 2 + a 2 y)x 2 ] , (1) 
where x i (0), y i (0) ≥ 0; and for i = 1, j = 2 and for i = 2, j = 1.

For the predator population y, d is its per capita mortality rate, e i the conversion efficiency rate, p i the attack rate, a i the strength of cooperation exhibited while hunting prey x i . For the prey population x i , r i is its per capita growth rate, K i the carrying capacity, α i the maximum benifit received due to mutualism and h i the half saturation effect. Constants are all positive. The prey are with L-V logistic growths, the functional response of predators g(x, y) = (p + ay) (constant attact rate p plus a density dependent term) is linear and the mutualistic interaction is of type II functional responses.

Regarding the boundedness of the solutions of system (1), we state the following result the proof of which is not difficult, one may consult [START_REF] Banerjee | Cooperative predation on mutualistic communities[END_REF]. Lemma 0.1 All positive solutions of system (1) are uniformly bounded and remains in a compact region B ⊂ R + 3 .

The trivial equlibrium E 0 (0, 0, 0) and the axial equilibrium E 1 (K 1 , 0, 0), E 2 (0, K 2 , 0) always exist. It is evident from the Jacobian matrix that E 0 is unstable along both the x 1 and x 2 direction, but stable along the y direction. E i is unstable along the positive x j direction but stable (or unstable) along the y direction if -d + e i p i K i < 0 (or > 0 respectively). With the knowledge of the local stability of E 0 and E i we get the result of the existence of the prey-predator fixed points by the Index theorem (see [START_REF] Hofbauer | The Theory of Evolution and Dynamical System[END_REF]). Lemma 0.2 (a) Under assumption (H1), The positive plane of the x i y subsystem contains (i) a unique equilibrim

E iy = ( xi , 0, ȳ) if K i > d/e i p i holds and (ii) no or two equilibria E 1 iy = ( xi 1 , 0, ȳ1 ) and E 2 iy = ( xi 2 , 0, ŷ2 ) if K i < d/e i p i holds (b) The positive plane of the x 1 x 2 subsystem contains a unique equilibrium E 12 = ( x1 , x2 , 0). Proof : (a) For the x i y subsystem, y ′ = 0 gives xi = d e i (p i +a i ȳ) and x ′ = 0 gives a 2 i e i ȳ3 + 2a i p i e i ȳ2 + e i (p 2 i -r i a i )ȳ + r i (d/K i -e i p i ) = 0. ( 2 
) (i)If K i > d/e i p i , for i = 1, 2,
in the positive plane of the x i y subsystem the equilibrium E 1 is unstable in the y direction. So by Lemma (0.1) and the Index theorem (see [START_REF] Hofbauer | The Theory of Evolution and Dynamical System[END_REF]) for the ecological communities, a unique interior equilibrium E iy exists with the Poincare index (-1) 2 = +1, where the power 2 is the dimension of the stable manifold of E iy . If not, there exists two interior equilibria with the sum of indices is zero or (+2) and this contradicts the index theorem, as by this theorem the sum of poincare indices of saturated regular fixed points of an bounded ecological system is (-1) 2 = +1, where the power 2 is the dimension of the system. If there exists three interoir equilibria with the possibility that the sum of indices (+1) + (-1) + (+1) = (+1) which is impossible from equation (2). Since K i > d/e i p i , for i = 1, 2, by the Descarte's rule of sign equation ( 2) cannot have three positive roots. The equilibrium E iy can be either a sink or source. (ii)If K i < d/e i p i , tha axial equilibrium E i is stable or saturated along the y direction with index (+1). So by the Index theorem there exists either no interior equilibrium or two interior equilibria, E 1 iy and E 1 iy . There will be no other equilibrium as it evident from equation (2) (the constant term is negative). Of the two equilibria, one must be a saddle point and the other will be either a sink or a source.

(b) In the positive plane of the x 1 x 2 subsystem, E 1 and E 2 are always nonsaturated (see [START_REF] Sanjurjo | Global topological properties of the Hopf bifurcation[END_REF] ) along their own orthogonal directions. For the type II functional response of mutualism the interior solutions cannot move to infinity and hence converge to the unique equilibrium E 12 = ( x1 , x2 , 0) with index (+1). There will be no other equilibrium as the equation of x 1 or x 2 is quadratic and by the Index theorem. □ As above, whenever K i < d/e i p i , there exists E 1

iy and E 1 iy . For definiteness, we assume that E 2 iy is a saddle point. One branch of the unstable manifold of E 2 iy moves to E i and the other branch moves to E 1 iy . So if the predator density y < ȳ2 or y < ŷ2 , then the interior solutions of the positive x i y plane move to E i . The predator population collapses and the system (1) becomes two dimensional. Thus we assume that (H2) The predator density y > max{ȳ 2 , ŷ2 }, where ȳ2 or ŷ2 , denotes the y coordinate of E 2 iy , for i = 1, 2. We also assume that for i = 1, 2, (H3) The positive plane of the x i y subsystem contains no periodic solutions. Or (H4) The positive plane of the x i y subsystem contains hyperbolic periodic solutions.

For simplicity of the result we consider (H1). Without (H1), the consequences are given in Remark [START_REF] Alves | Hunting cooperation and allee effects in predators[END_REF]. When we consider the more general form of the functional response of the predators in place of linear form F i (y) = (p i +a i y) in the system (1), the hypothesis (H4) is important for rulling out of nongeneric cases of our result. We need one more assumption for our result. (H5) The omega limit set of any trajectories in the positive octant B of the system (1) is an equilibrium. In remark [START_REF] Sanjurjo | Global topological properties of the Hopf bifurcation[END_REF] we give sufficient condition so that we can verify the hypothesis (H5). Next we define, for given a function F : R 3 + → R, and any solution v to system (1),

F (v) = lim sup T →∞ 1 T T 0 F (v(t)dt.
Suppose that P : R 3 + → R, is a differential function vanishing on bdR 3 + and strictly positive in intR 3 + and ψ(x) = P ′ (x) P (x) .

and ψ(x) has a continuous extension to the boundary of R 3 + .

Theorem 0.1 (a) Suppose that (H1)-(H3), (H5) and K i < d/e i p i , for i = 1, 2, hold. Suppose that the following conditions hold

(i) (p 1 + a 1 ŷ1 )ŷ 1 - α 2 x2 1 h 2 + x2 1 < r 1 < (p 1 + a 1 ŷ2 )ŷ 2 - α 2 x2 2 h 2 + x2 2 (3) (ii) (p 2 + a 2 ȳ1 )ȳ 1 - α 1 x1 1 h 1 + x1 1 < r 2 < (p 2 + a 2 ȳ2 )ȳ 2 - α 1 x1 2 h 1 + x1 2 (4) (iii) e 1 p 1 d x1 + e 2 p 2 d x2 > 1. ( 5 
)
Then there exists a heteroclinic cycle (hc) connecting the equilibria of ( 6) and passing through the intB of the system (1)

E 2 1y -→ E 1 1y -→ E 2 2y -→ E 1 2y -→ E 2 1y . (6) 
(b) Under (H1) and (H4), system (1) is permanent or coexists if either (i) or (ii) holds (i) d is sufficiently small. r i and α i are large enough in comparison to p i and a i . (ii) d, p i and a i are sufficiently small. (c) Whenever the system (1) is uniform persistent, there exists an attractor of the shape S 2 and a repeller of the shape S 1 in intB. (d) Under the boundedness condition, if the three-species equilibrium E exists uniquely and undergoes hopf bifurcation from sink to repeller, then there exists an attractor of the shape of S 2 in intB and the system (1) exhibits tristability dynamics.

Proof: (a) The positive plane of the x i y subsystem consists of two equilibria, one is a sink or source and the other is a saddle point. For definiteness, we consider E 2 iy is a saddle point and E 1 iy is sink (it may also be source but we state the result in that case in remark 2). Since E 2 iy is a saddle point, its unstable manifolds move to E 1 iy and E i , for i == 1, 2. For the condition in (H2), there exists the heteroclinic orbit E 2 iy -→ E 1 iy in the positive x i y plane. The condition (3) and (4) mean that E 1 1y is unstable along the x 2 direction and E 2 2y is stable along the x 1 direction. Their unstable and stable manifolds can intersect transversally in the interior of B if (H5) holds. By the condition (5) E 12 is unstable along its orthogonal direction. So the unstable manifold of E 1 iy cannot converge to E 12 . Thus the heteroclinic orbit E 1 1y -→ E 2 2y , exists in intB. Similarly by conditions (3) and ( 4), E 1 2y is unstable along the x 1 direction and E 2 1y is stable along the x 2 direction and the heteroclinic orbit E 1 2y -→ E 2 1y , exists in intB. Thus we get the heteroclinic cycle (6) for B..

(b) E 0 is always nonsaturated. Since d is sufficiently small, K i > d/e i p i , for i = 1, 2, always hold and E 1 , E 2 and E 12 are nonsaturated. By Lemma (01), unique E 1y (or E 2y ) exists and it is also nonsaturated. If there are periodic orbits around E 1y (or E 2y ) and (H4) hold, at orbits of the form v(t) = (x 1 (t), 0, y(t)) or v(t) = (0, x 2 (t), y(t)), with x i (0) > 0, i = 1, 2 and y(0) > 0, we get sup

T →∞ T 0 ψ(v(t)dt ≥ 0 lim sup T →∞ 1 T T 0 ψ(v(t)dt ≥ r 2 -p 1 y -a 1 y2 > 0.
Thus under condition (i) or (ii) ψ is positive for all boundary limit sets. The result follows by Theorem 4 [START_REF] Schreiber | Generalist and specialist predators that mediate permanence in ecological communities[END_REF].

(c) Let there exist only an attractor K 1 of the shape S 2 in intB in between bdB and E. Then for the restriction of the flow of (1) to B, an attractorrepeller decomposition of intB violates. Thus, if there exists an attractor of the shape of S 2 , by Theorem 7 [START_REF] Sanjurjo | On the fine structure of the global attractor of a uniformly persistent flow[END_REF] there must exist a repeller of the shape S 2 in between K 1 and E. System (1) exhibits bistability dynamics, some interior orbits converge to K 1 and some others converge to E depending on their initializations without driving any species to the extinction states.. (d) Keeping all parameters involving for the existence of equilibrium E fixed except one, say λ, we get a family of flows depending on λ. Now consider E is a sink (with index (-1)) for some value of λ 0 and E becomes source (with index (+1)) of the flow for every λ > 0 ( i.e, E undergoes hopf bifurcation), Then for 0 < λ ≤ λ 0 , there exists an attractor K λ of the shape of S 2 into the region of attraction of E, by Theorem 1 of [START_REF] Sanjurjo | Global topological properties of the Hopf bifurcation[END_REF]. Moreover, as sink E with index (-1) becomes source with index (+1), by the Index theorem there exists two saturated boundary equilibria E 12 and E 1y or E 2y . (There are no other equilibria who can be saturated. The sum of indices of fixed points is (-1). Ind(E 1y = -1) and Ind(E 12 = -1).) In other words, interior solutions may converge to E 12 and E 1y and K λ depending on their intialization regions. Thus tristability dynamics of (1) happens. □ Remark 1 In hypothsis (H1) we consider equilibrium is hyperbolic. If the equilibrium is not hyperbolic but regular, then the equilibrium can be a center and in that case there may exists homoclinic orbits due to presence of the saddle point in the positive plane of the x i y subsystem and in such situation the hc (6) may not exist.

Remark 2 Suppose that E 1

iy is a source or sink and the positive plane of the x i y subsystem contains periodic orbits. Then there may exist periodic orbits around E 1 iy and with appropriate conditions the hc (6) exists replacing the E 1 iy by the Morse set M 1 iy , where the Morse set M 1 iy denote the set containing a finite number of limit cycles or a unique limit cycle around E 1 iy . Remark 3 The hc (6) sits in R 3 + and divide B into two bounded complementary regions.There may exists some interior solutions above the hc or below the hc which converge to it. We do not know the repelling or attracting condition of the hc.

Biologically the appearance of the h. c ( 6) means: at the state E 2 iy (where the prey population x i is high and the predator population y is low) the predator y starts to seek and gets hunting cooperation from others of their populations. The predator y increases and whenever y > ȳ, The state E 2 iy moves to E 1 iy . In the mean time, the mutualistic prey x 2 with the benefit of mutualism from the other associate prey x 1 avoid predation and increases towards its maximium. With the hunting cooperation the predator population is high with the low population of prey x 1 , at E 1 1y . As prey x 1 becomes low, to avoid extinction the predator switches and attacks the more abundant x 2 prey. Getting hunting help the predators again increases to higher density and the state moves to E 1 2y . In absence of predation and with certain degree of mutualism the almost extinct prey x 1 gets easy chances to increase to a highest amount, and so on in alternation. Thus two of the three species always survive with the escape place or time for the third to grow in alternation.

Remark 4

The existence of only one interior equilibrium in intB, for the case that α 1 = α 2 = α, e 1 = e 2 = e, and p 1 = p 2 = p, is as follows: From y ′ = 0 we get

(p + ay) = d e(x 1 + x 2 ) (7) 
The isoclines

x ′ 1 = x ′ 2 = 0, imply that r i (1 - x i K i ) + α j x j h j + x j = (p i + a i y)y, i = 1, 2.
That is, r 1 (1 -

x 1 K 1 ) + αx 2 h 2 + x 2 = r 2 (1 - x 2 K 2 ) + αx 1 h 1 + x 1 ( 8 
)
The l.h.s of equation ( 8) is a hyperbola passing the x 1 axis at (K 1 , 0) and the x 2 axis at (-h 2 r 1 r 1 +α 2 , 0) and the curve is concave downward with respect to x 2 axis as

d 2 x 1 dx 2 2 = - 2k 1 h 2 α 2 r 1 (h 2 + x 2 ) 3 < 0.
Similarly, the r.h.s of ( 8) is a hyperbola. It passes through (0, K 2 ) and = (0, -h 1 r 2 r 2 +α 1 ) and is concave dodnward with respect to the x 1 axis. Thus in the positive x 1 x 2 plane there exists an unique intersecting point (x 1 * , x 2 * ). With this point we obtain the value of y * from [START_REF] Sanjurjo | On the fine structure of the global attractor of a uniformly persistent flow[END_REF]. It follows that the system contains an unique interior fixed point in intB.

Remark 5 If the external eigenvalues of E 12 and E 1y (or E 2y ) are negative, then the Poincare index of (ind(E 12 )) is (-1) 3 = -1 and ind(E 12 ) is (-1) 3 = -1. By the Index theorm ind(E) is (+1). This means E has no or two dimnensional manifolds. The interior orbits of B initiating on the respective stable manifolds converge to either E 12 , or E 1y (when E has no stable manifold) , i.e, bistability occurs, or to E 12 , or E 1y , or E, i.e, tristability occurs (when E has two dimensional stable manifold). These results were reported by the authors [START_REF] Banerjee | Cooperative predation on mutualistic communities[END_REF] in their phase diagrams, Figures 9E and 9F by numerical simulation.

Remark 6

We consider every solution v(t) = (x 1 (t), 0, y(t)) of system (1) with

x 1 (0), y(t) > 0. If lim t→∞ v(t) = ( x1 2 , 0, ȳ2 ),
the hypothsis (H5) will be satisfied. Since solutions of system (1) are uniformly bounded along the solution v(t),

0 ≥ lim sup T →∞ 1 T y(t) y(0) = lim sup T →∞ 1 T T 0 [-d + e 1 (p 1 + a 1 y)x 1 ] dt ≥ -d + e 1 (p 1 + a 1 ȳ) x1 [ since y > ȳ2 or y > ȳ] = -e 1 (p 1 + a 1 ȳ) x1 + e 1 (p 1 + a 1 ȳ) x1
That is,

e 1 (p 1 + a 1 ȳ)( x1 -x1 ) ≤ 0 (9) 
Similarly, along the solution v(t),

0 ≥ lim sup T →∞ 1 T x 1 (t) x 1 (0) = lim sup T →∞ 1 T T 0 r 1 (1 - x 1 K 1 ) -(p 1 + a 1 y)y dt = r 1 - r 1 K 1 x1 -(p 1 + a 1 y)y ] = r 1 K 1 ( x1 -x1 ) + p 1 (ȳ -y) + a 1 (ȳ 2 -y2 ) That is, p 1 (ȳ -y) + a 1 (ȳ 2 -y2 ) ≤ r 1 K 1 ( x1 -x1 ) ≤ 0. (10) 
Now,

lim sup T →∞ 1 T x 2 (t) x 2 (0) = lim sup T →∞ 1 T T 0 r 2 -(p 2 + a 2 y)y + α 1 x 1 h 1 + x 1 dt = r 2 -(p 2 + a 2 y)y + α 1 /h 1 x1 (11) 
If ( 11) is strictly negative using ( 9) and ( 10), then

lim t→∞ x 2 (t) = 0
That is, if [START_REF] Wright | A simple stable model of mutualism incorporating handling time[END_REF] is strictly negative for values of x1 and y satisfying ( 9) and [START_REF] Wang | Periodic oscillation and tristability in mutualism with two consumers[END_REF], then the interior solutions of (1) converges to ( x1 2 , 0, ȳ2 , ). Similarly one can get convergence of interior solutions to (0, x2 1 , ỹ1 ).

Module B : One resource and two mutualistic consumsers

We consider the follwing equations

x ′ 1 = x 1 [r 1 -b 11 -b 12 x 2 -b 13 x 3 ] x ′ 2 = x 2 -d 1 + b 21 x 3 h 3 +x 3 x 1 -b 22 x 2 x ′ 3 = x 3 -d 2 + b 31 x 2 h 2 +x 2 x 1 -b 33x 3 , (12) 
for modelling the dynamics of two heterotrophs, x 2 and x 3 , which feed on a common resource, the autotroph x 1 . Obligate mutualist population x 2 requires the presence of another population x 3 for its growth, in addition to their resource(s) x 1 and thus for the growth of the consumer x 2 , the mutualistic interaction is b 21

x 3 h 3 +x 3 x 1
, where h 3 is the degree of obligation on x 3 . (See [START_REF] Cropp | Obligate mutualism in a resource-based framework[END_REF]). Similar explanation is for the growth of x 3 . Solutions of system (12) are uniformly bounded and remain into a positive compact region B of the x 1 x 2 x 3 phase space. The origin E 0 (0, 0, 0) is stable along the x 3 direction and unstable along the remaining directions. The only axial equilibrium on the x 1 axis E 1 (r 1 /b 11 , 0, 0) is asymptotically stable in B as its eigenvalues are r 1 , -d 1 -b 22 , -d 2 -b 33 . (See [START_REF] Wang | Periodic oscillation and tristability in mutualism with two consumers[END_REF]). Theorem 0.2 (a) System (12) admits two interior equilibria Ê and Ẽ in intB and exhibits bistability or tristability dynamics. (b) If the interior equilibrium with index (-1) undergoes hopf bifurcation, there exists an attractor in intB with the shape of S 1 and bistability occurs.

Proof (a) E 0 is nonsaturated. E 1 is saturated and its index (-1). There are no other feasible boundary equilibria. So by the Index theorem there exists either no interior equilibrium or two interior equilibria Ê and Ẽ in intB. There cannot be more than three interior equilibria as the equation of x 1 is of third degree. If there are three interior equilibria, then the sum of their indices will be either (-1) + (-1) + (+1) or (-1) + (+1) + (+1) and the sum of indices of all saturated equilibria is either zero or two violating the Index theorem (considering the index of E 1 ). The Poincare index of one of the existing interior equilibria Ê and Ẽ in intB is (+1) and the other is (-1). For definiteness we assume that Ê is with index (-1) and the index of Ẽ is (+1). The index of Ê is (-1) means it has either three dimenional stable manifolds ( i.e, Ê is sink ) or one dimensional stable manifold. On the other hand, the index of Ẽ is (+1) means that it has no stable manifold (i.e, Ẽ is source) or it has two dimentional stable manifolds. Whenever Ê is a sink and Ẽ is source bistability dynamics appears; depending on initial conditions one solution can converge to Ê and and the other can converge to E 1 . If Ê is not sink and and Ẽ is not source then tristability dynamis occurs. Interior orbits initiating on the respective stable manifold(s) can converge either to E 1 , or Ê, or Ẽ. (b) Fix all the parameters, except one, say µ, then we get a family of flows depending on µ. Now consider an interior equilibrium (say, Ê) with index (-1), which is a sink for some parameter value µ 0 . Due to hopf bifurcation for µ > 0, Ê is a repeller of the restricted flow on the two dimensional manifold B 0 of B and Ê is the maximal invariant invariant set of the restricted flow inside U is contained in B 0 , where U is some neighborhood of Ê. Then by Theorem 1 of [START_REF] Sanjurjo | Global topological properties of the Hopf bifurcation[END_REF], there exists a attractor K µ for 0 < µ ≤ µ, in U with the shape of S 1 . In this case the index of Ê remains the same, as it has one dimensional stable and two dimensional unstable manifold and the sum of indices of the saturated fised points remains the same. Tristability of the system (13) occurs. Interior solutions can move either to Ẽ, E 1 , or K µ .

Module C : Resource-exploiter-mutualistic species

The three different types of interactions involved in a three sprcies module C of a resouce x 1 , its exploiters x 2 and its mutualistic y species are given by the following equations

x ′ 1 = x 1 r 1 -ϵ 1 x 1 + α 2 x 2 h 2 +x 2 x ′ 2 = x 2 r 2 -ϵ 2 x 2 + α 1 x 1 h 1 +x 1 y ′ = y [-d + gax 1 ] , (13) 
For the resouce x 1 (resp. the mutualistic x 2 ), r 1 (r 2 ) is the per capita growth rate, ϵ 1 (ϵ 2 ) the strength of self-regulation. g the conversion efficiency. The other parameters are similiar as those of Model A (see [START_REF] Mougi | Instability of a hybid module of antagonistic and mutualistic interactions[END_REF][START_REF] Wright | A simple stable model of mutualism incorporating handling time[END_REF]). For Model C, there are two cases: CASE (i) If r i > 0, i = 1, 2, the mutualistic relations between x 1 and x 2 are facultative. The trivial equilibrium E 0 , one species equilibrium E 1 and E 2 exist. The two species equilibrium E 12 (resp. E 1y ) exists and is globally stable in the positive subsystem x 1 x 2 (resp. x 1 y ). CASE (ii) If r i < 0, i = 1, 2, the mutualistic relations between x 1 and x 2 are obligatory. The trivial equilibrium E 0 exists but one species equilibrium E 1 and E 2 do not exist. The equilibrium E 1y does not exist. In the subsystem x 1 x 2 there exist two equilibria Ê1y , with index (-1), ie., a saddle point and Ẽ1y , with index (+1), i.e, a sink. This also follows from the Index theorem, as E 0 is sink and the solutions of the system (13) are uniformly bounded.

Theorem 0.3 (a) If r i > 0, i = 1, 2, and d is sufficiently small, system (13) is uniformly persistent ( UP). If the interior equilibrium E undergoes hopf bifurcation, then there exists a attractor of the shape S 2 or S 1 in intB. (b) If r i < 0, i = 1, 2, and Ê12 is saturated, bistability dynamics occurs. If the interior equilibrium E undergoes hopf bifurcation, there exists a attractor in intB with the shape of S 2 or S 1 and tristability occurs.

Proof. (a) For the given conditions, the boundary equlibria are nonsaturated and ψ is positive at all the boundary equilibrium for sufficiently small d. Thus system (13) is UP. As system is UP, there exists a interior equilibrium E in intB. From the equations of the isoclines E is unique and its index is (-1). This means E has one or three stable manifolds. Now if E is sink and undergoes hopf bifurcation, we get an attractor K λ of the shape S 2 in intB as the process of Theorem (01). If E has one dimensional stable manifold and undergoes hopf bifucation, there exists an attractor K µ of the shape of S 1 in intB, as the process of Theorem (02). (b) Under the given conditions, there exists two interior equilibria Ê1y , with index (-1), ie., a saddle point and Ẽ1y , with index (+1), i. e, a sink in the positive plane of the x 1 x 2 subsystem. Since Ê1y , is saturated, it has two dimentional stable manifolds. By the Index theorem there exists an unique interior equilibrium E with index (-1). ( index of E 0 is (-1) 3 = -1, index of Ê1y , is (-1) 2 = +1 and index of E is (-1) 3 = -1 or (-1) 1 = -1) Now if E undergoes hopf bifurcation, then there exists an attractor K λ of the shape of S 2 in intB, or an attractor K µ of the shape of S 1 in intB, as above. Since in this case UP does not hold, system (13) exhibits tristability dynamics. Interior solutions can converge either to E 0 , or Ê1y , or K λ (or K µ ).

Discussion

The authors [START_REF] Banerjee | Cooperative predation on mutualistic communities[END_REF][START_REF] Mougi | Instability of a hybid module of antagonistic and mutualistic interactions[END_REF][START_REF] Wang | Periodic oscillation and tristability in mutualism with two consumers[END_REF] showed by their modules periodic oscillations in intB mainly with numerical simulations. The present study shows that all modules admit attractor(s) of the shape of S 2 , or S 1 , in intB using mainly the Index theorem and the Generalised Hopf bifurcation result and the result of [START_REF] Sanjurjo | On the fine structure of the global attractor of a uniformly persistent flow[END_REF]. We are also able to show the existence of multiple equilibria for the two, three species system by the Index theorem. Saturated multiple boundary equilibria and the attractors of the shape of S 2 , or S 1 , in intB help us to derive that the modules exhibit bistability or tristability dynamics without any numerical computations. Module A contains a heteroclinic cycle and this hc passes through the intB. In contrast, the hc(s) for systems in [START_REF] Hofbauer | The Theory of Evolution and Dynamical System[END_REF][START_REF] Sikder | Persistence of a Genalised Gauss-type two Prey-Predator Pair Linked by Competition Math[END_REF] lies on the boundary of the state space. In that respect, the hc of module A is different. Mutualism among prey populations and cooperation within predators while they are engaged in foraging prey may have stabilizing effect to the community dynamics. Moreover whenever module A is UP, it can exhibit bistability dynamics in intB. Interior orbits can converge either to an attractor or the interior equilibrium without driving any species to the extinction state. Destablilization of the system may also prevails, though the constituent species member of the system gets cooperation helps from their own populations. In that case, interior solutions either converge to the boundary equilibria or to an attractor in intB, causing bistability or tristability dynamics of the system. In module B, the obligatory heterotrophs in presence of their resources cannot stabilise the system. Mutualism also does not help the other types of interactions in a module C of three species to ensure their coexistence, except it is facultative.