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Abstract—Skin cancer automated diagnosis tools play a vital 
role in timely screening, helping dermatologists focus on melanoma 
cases. Best arts on automated melanoma screening use deep 
learning-based approaches, especially deep convolutional neural 
networks (CNN) to improve performances. Because of the large 
number of parameters that could be involved during training in 
CNN many training samples are needed to avoid overfitting 
problem. Gabor filtering can efficiently extract spatial information 
including edges and textures, which may reduce the features 
extraction burden to CNN. In this paper, we proposed a Gabor 
Convolutional Network (GCN) model to improve the performance 
of automated diagnosis of skin cancer systems. The model combines 
a CNN model and Gabor filtering and serves three functions: 
generation of Gabor filter banks, CNN construction and filter
injection. We performed experiments with dermoscopic images 
and results were interpreted according to classification accuracy. 
The results we have obtained show that our GCN offers the best 
classification accuracy with a value of 96.39% against 94.02% for 
the CNN model. 

Keywords— Skin cancer, CNN, GCN, Gabor filtering, 
dermoscopic images. 

I. INTRODUCTION 

The human skin is the outer covering of the body and is the 
largest organ of the integumentary system. Skin has mesodermal 
cells, pigmentation, such as melanin provided by melanocytes, 
which absorb some of the potentially dangerous ultraviolet 
radiation (UV) in sunlight. It also contains DNA repair enzymes 
that help reverse UV damage, such that people lacking the genes 
for these enzymes and people overexposed to UV suffer high 
rates of skin cancer. There are three major types of skin cancers: 
basal cell carcinoma (BCC), squamous cell carcinoma (SCC) 
and melanoma. The first two skin cancers are grouped together 
as non-melanoma skin cancers [1]. The incidence of both non-
melanoma and melanoma skin cancers has been increasing over 
the past decades. Every year in America, non-melanoma skin 
cancer affects more than 3 million people. Melanoma rates in 
the United States doubled from 1982 to 2011 and have continued 
to increase [2] . 

Skin cancer including melanoma and non-melanoma is 
highly curable if diagnosed in its early stage (Fig.1). However, 
early diagnosis is very challenging as melanomas are easily 
confused with benign skin lesions (Fig.2). 

The first and most common procedure performed daily by 
dermatologists is visual evaluation of lesions. In this context, 
dermatologists rely primarily on aspects of a skin lesion to 

determine whether it is benign or malignant. Visual evaluation 
is based on the distribution, size, shape, border, symmetry and 
colour of lesion. Diagnosis based on colour are subjective as 
colour perception depends on the human visual response to the 
light and light interaction with skin [3].  

To improve diagnosis, dermoscopy method also termed 
epiluminescence microscopy (ELM) was introduced. 
Dermoscopy has opened a new dimension in the examination of 
pigmented skin lesions and, especially, in the identification of 
the early phase of cutaneous malignant melanoma [4].
Dermoscopy is a non-invasive method that allows the in vivo 
evaluation of colours and microstructures of the epidermis, the 
dermoepidermal junction, and the papillary dermis that are not 
visible to the naked eye [5]. It has also been revealed that 
dermoscopy in the hands of inexperienced dermatologists may 
cause a reduction in diagnostic accuracy. This implies a need to 
develop more reliable and robust system for the diagnosis of 
skin cancer.  

Efforts have been done to develop Computer Assisted 
Diagnostic (CAD) for melanoma diagnose based on skin lesion 
images. CAD systems use artificial intelligence to analyze 
lesion data and reach a diagnosis of skin cancer. Automated 
tools help experts and non-expert focus on patients or at-risk 
injuries. CAD systems can be based on traditional Machine 
Learning techniques (classical image processing techniques) or 
Convolutional Neural Networks (CNNs). Classical image 
processing techniques consist of image pre-processing (hair, and 
occlusions removal), image segmentation, features extractions 
(hand-crafted local and global features) and classification (non-
linear classification algorithms) [6]. With CNNs, no need to 
extract manually features, the network takes directly the whole 
picture as input, learns features automatically [7] and performs 
classification task.  

In this paper, we work on a GCN (Gabor-CNN) 
dermoscopic image analysis system that aids dermatologists to 
more appropriately triage high-risk lesions. The objective of this 
study is to apply new trends of CNNs on dermoscopic images to 
accurately classify skin lesions. 

The paper is organized as follows: a review of previous 
related works is presented in section 1, the proposed model for 
skin cancer classification in Section 2. Into Section 3, 
experimental results and discussion are reported in detail and 
finally Section 4 draws the conclusion. 
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Figure 1: Skin cancer stages and survival probability [1]       Figure 2: Sample images created from ISIC 2019 dataset

Figure 3: Framework of the Gabor filtering and CNN (GCN)

II. RELATED WORKS 

There is a vast literature on automated screening for 
melanoma but until 2015, the literature is mostly based on 
classical image processing techniques [8]. With the success of 
Deep Learning techniques in Computer Vision, melanoma 
screening research are more and more based on Deep Learning 
models.  

CNNs are used to classify skin lesions in two fundamentally 
different ways. 

On the one hand, a network pre-trained on another large 
dataset, such as ImageNet [9], can be used as a feature extractor.
In this case, classification is performed by another classifier, 
such as k-nearest neighbours, support vector machines, or
artificial neural Networks.

Reference [10] used a dataset of 399 images, collected from
DermIS [11]. The data was classified into two classes: benign 
nevi and malignant melanoma. Features were automatically 
extracted from the last three layer of the CNN named AlexNet 
and k nearest neighbours classifier (kNN) was used. The 
performance of the classifier is calculated in terms of sensitivity 
(%) =85.71±2.1, specificity (%) =82.48±6.8 and accuracy (%) = 
83.95±3.3. Reference [12] proposed an approach that combines 
deep learning, sparse coding, and support vector machine 
(SVM) learning algorithms for melanoma recognition in 
dermoscopic images. The dataset was obtained from the
International Skin Imaging Collaboration, containing 2,624 
images. The approach is compared to the prior state-of-art 
method on the same dataset. Two-fold cross-validation was 
performed 20 times for evaluation (40 total experiments), and
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TABLE 1 : PROPOSED MODEL SUMMURY

Layer (type)         Output Shape          Parameters
conv2d (Conv2D) (None, 224, 224, 96) 34944

avg_pooling2d 
(MaxPooling2D)

(None, 112, 112, 96) 0

conv2d_1 (Conv2D)       (None, 112, 112, 256) 614656   
batch_normalization (BatchNo (None, 112, 112, 256) 1024  

max_pooling2d_1 
(MaxPooling2

(None, 56, 56, 256)      0

batch_normalization_1 (Batch (None, 56, 56, 256) 1024
conv2d_2 (Conv2D) (None, 56, 56, 384)      885120    
conv2d_3 (Conv2D)            (None, 56, 56, 384) 1327488   
conv2d_4 (Conv2D) (None, 56, 56, 256) 884992    
max_pooling2d_2 

(MaxPooling2
(None, 28, 28, 256)      0

flatten (Flatten)            (None, 200704)         0
dense (Dense)                (None, 512)            102760960

dense_1 (Dense)              (None, 1)              513

two discrimination tasks are examined: 1) melanoma vs. all non-
melanoma lesions, and 2) melanoma vs. atypical lesions only. 
The presented approach achieves an accuracy of 93.1% (94.9% 
sensitivity, and 92.8% specificity) for the first task, and 73.9% 
accuracy (73.8% sensitivity, and 74.3% specificity) for the 
second task. 

On the other hand, a CNN can directly learn the relationship 
between the raw pixel data and the class labels through end-to-
end learning. In contrast with the classical workflow typically 
applied in machine learning, feature extraction becomes an
integral part of classification and is no longer considered as a 
separate, independent processing step. If the CNN is trained by 
end-to-end learning, the research can be additionally divided 
into two different approaches: learning the model from scratch 
or transfer learning [13].

Reference [14] have proposed a learning from scratch 
method based on Deep Residual Network. The dataset contain 
3,600 images from ISIC 2017. The training was performed by 
fine-tuned the ResNet model, pre-trained on ImageNet. 
Averaged area under curve (AUC) was used for evaluation of 
the three classification approaches (1) multi-class classification 
AUC= 90.60; (2) binary classification approach AUC= 91.30; 
and (3) the ensemble approach AUC= 91.50.
Reference [15] used the most extensive dataset of 
129,450 clinical images, including 3,374 dermoscopy images.
They used transfer learning from a pre-trained Inception v3 
model, removed the decision layer and added a new decision 
layer with 757 classes independent set of diseases. After fine 
tuning the model, they compared the specificity and sensitivity 
of over 20 human specialists with their model’s, concluding that
the deep architecture employed outperforms the specialists, on 
average.

Researcher’s results show that deeper models outperform 
shallower models [8], [10] and [15] but there is no literature 

TABLE 2 : ACCURACY OF GCN AND CNN ON HALF DATASET

Train Test
Epoch GCN CNN GCN CNN

1 0.7525 0.6564 0.6432 0.5113
2 0.8041 0.768 0.8047 0.8359
3 0.9102 0.8931 0.8828 0.5182
4 0.8911 0.8936 0.8724 0.849
5 0.9199 0.9052 0.7969 0.7734
6 0.9162 0.9162 0.9062 0.8776
7 0.9272 0.9118 0.8385 0. 7109
8 0.9173 0.9019 0.9115 0.9001
9 0.9118 0.9184 0.9219 0. 8802

10 0.9609 0.9035 0.8906 0.8698
11 0.9449 0.9283 0.9036 0.9193
12 0.9443 0.9328 0.9062 0.8776
13 0.9639 0.9052 0.9479 0.875
14 0.9544 0.9512 0.8984 0.8229
15 0.9702 0.9305 0.9479 0.8672

TABLE 3 : ACCURACY OF GCN AND CNN ON FULL DATASET

Train Test
Epoch GCN CNN GCN CNN 

1 0.8045 0.6698 0.6787 0.5996
2 0.9122 0.8624 0.7900 0.6074
3 0.9102 0.8833 0.9053 0.6289
4 0.9106 0.9016 0.7607 0.6582
5 0.9209 0.9048 0.9160 0.7471
6 0.9178 0.9117 0.8936 0.7305
7 0.9454 0.9255 0.9062 0.8027
8 0.9570 0.9372 0.9395 0.9043
9 0.9566 0.9199 0.8926 0.8672

10 0.9540 0.9471 0.9502 0.8984
11 0.9515 0.9351 0.9590 0.9258
12 0.9741 0.9663 0.9473 0.9072
13 0.9898 0.9395 0.9531 0.9180
14 0.9614 0.9699 0.9551 0.9365
15 0.9811 0.9571 0.9639 0.9402

indicating the depth required for an accurate diagnostic deep 
network for skin cancer.

CNNs are more and more essential in images classification, 
but their use for medical images is difficult because these 
models require very large training sets (tens of thousands to 
millions of images) [16]. To get around this difficulty, current 
literature employs transfert learning, a technique where a model 
formed for a source task is partially "recycled" for a new target 
task. According to [13], the source data type affect the learning 
accuracy obtained from the new network.

The combination of CNN and Gabors filter bank is a new 
method in image classification with deep learning. Named 
GCNN (Gabor CNN) or GCN (Gabor Convolutional Network) 
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or CNN gabor-type filters, this method consists of initializing 
CNN filters with a Gabor filters bank. [17] and [18] build GCN 
for general classification task on MNIST, CIFAR10 and 
CIFAR100 datasets and by experiments, they observed accuracy 
perfomance, training time reduction and optimization of 
memory use. Reference [19] used a GCN to enhance the 
resistance of deep learned features to the orientation and scale 
changes in object recognition task. Their experimental results 
demonstrated GCN's ability to recognize objects when changes 
in scale and rotation occur frequently. GCN are also used in [20]
for object recognition in natural scene. The GCN were used for 
strengthening the learning of texture information. Through 
experiments, their approach achieved the recognition rate of 
81.53%, yielding a 1.26% promotion in the average accuracy 
rate compared with the results obtained using the convolutional 
neural network model alone on the ImageNet10 dataset.

In the next section, we proposed an adapted GCN model for 
accurate skin cancer classification.

III. PROPOSED GCN MODEL 

The framework of our proposed method is shown in Fig. 3. 
The first step is the generation of Gabor filters bank. Gabor filter 
bank is a set of linear filter constructed to respond the edges and 
textures of varying frequencies and orientations.  Such a 
designed Gabor filter bank exhibits a vision system similar to 
human visual perception [21]. Hence, Gabor filters are 
successful for classification tasks which are usual for human 
vision. Gabor function formula is as follows: ( , , , , , , Ψ) =   ( )                       (1) 

where  is the standard deviation of the Gaussian function,  is 
the  filter  orientation,  is the  wavelength  of  the  sinusoidal 
factor,  is the spatial aspect factor and Ψ is the phase offset 
[17].

On the second step, we build the model. The model 
architecture is presented in Table 1. This model consists of five 
convolution blocks activated by a ReLU activation function, one 
average pooling layer, two max pooling layers, two batch 
normalization layers and one fully connected layer. The model 
output is activated by the sigmoid activation function. The 
strengths of the model are: overlap pooling to reduce the size of 
network and batch normalization to accelerate deep network 
training by reducing internal covariate shift. 

The third step consist of initialization of the first 
convolution layer of the model with Gabor filters initialization. 
It is used to extract robust and discriminant features for the 
subsequent step. The first layer of the model is the most 
important layer in the architecture as we changed the 
initialization of this layer from the default Xavier uniform 
distribution to our Gabor filters initialization. During training 
the layers of the model and parameters are updated through 
optimization algorithm (Stochastic Gradient Descent) and back 
propagated through loss function (Categorical Cross Entropy). 

IV. EXPERIMENTAL RESULTS 

Data description 

For the experiments we use a dermoscopic dataset to validate 
the performance of the proposed method. The dataset is 
available for free on the International Skin Imaging 
Collaboration (ISIC 2019) image archive [22]. The image 
archive contained 33,569 dermoscopic images organized into 9 
classes: actinic Keratosis, basal Cell Carcinoma, benign 
Keratosis, dermato fibroma, melanocytic Nevus, melanoma, 
squamous Cell Carcinoma, vascular Lesion [22] [23] [24]. We 
reorganized the dataset into 2 classes: melanoma with 4,523 
images and non-melanoma (all dataset images except melanoma 
images) with 20,785 and remove images whose outlines are not 
visible. 80% of images were used for training and 20% for test. 

Results and discussions 

We performed experiments on Gabor initialized models 
(GCN) and default initialized models (CNN) in 15 epochs. The 
models were compiled with the ADAM optimizer and a learning 
rate of 0.01. 

The Table 2 detail the performance of the GCN and CNN 
models. The dataset has been split in two. 

In Table 3, the performance of the GCN and CNN models 
are listed in detail. The models were compiled with the complete 
dataset. 

In both tables, Gabor initialized model have about 9.61% 
(Table 2) and 13.47% (Table 3) improvement in early stages of 
the training. On test set, Gabor initialized model have a 
significant improvement against the CNN model and this gap 
continues in later phase of training. In the end, both model 
almost converges with CNN model achieve good performance 
but, by injected Gabor filters, the accuracy value increase.  

Literature on [17] and [25] proof that texture features 
contains relevant information for melanoma and non-melanoma 
classification. So by using Gabor filtering, important features 
are captured. Obtained results confirm that, on the one hand, 
texture analysis is important to distinguish melanomas from 
non-melanomas. On the other hand, the CNN model perform the 
classification task. According to literature [14], [13], [24] and 
[15], deep learning methods in general perform the classification 
task but the accuracy depend on the training set [17]. This work 
shows that Gabor's filtering can alleviate the CNN dependence 
on the size of the training dataset. 

V. CONCLUSION 

In this paper, we propose a method that combines Gabor 
filtering and CNN model for skin cancer diagnosis. CNN is a 
powerful feature extraction method, but it requires a large 
number of learning samples to avoid overfitting. To reduce CNN 
overfitting, Gabor filtering has been used to efficiently extract 
spatial information, including edges and textures. We generate 
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a Gabor convolutional filter bank and used it to replace the 
random filter cores in the first convolutional layer. In order to 
evaluate the usefulness and performance of proposed model, 
experimentations are performed on a dermoscopic dataset ISIC 
2019. The results obtained by the proposed method outperforms 
the create CNN model results even in case where the number of 
training samples is limited.

This study should be extended to various deep networks, 
multispectral images in order to test the generalization ability of 
the proposed method. 
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