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A note on the rearrangement of functions in time and on the

parabolic Talenti inequality

Idriss Mazari∗

March 3, 2022

Abstract

Talenti inequalities are a central feature in the qualitative analysis of PDE constrained
optimal control as well as in calculus of variations. The classical parabolic Talenti inequality
states that if we consider the parabolic equation ∂u

∂t
− ∆u = f = f(t, x) then, replacing, for

any time t, f(t, ·) with its Schwarz rearrangement f#(t, ·) increases the concentration of the
solution in the following sense: letting v be the solution of ∂v

∂t
−∆v = f# in the ball, then the

solution u is less concentrated than v. This property can be rephrased in terms of the existence
of a maximal element for a certain order relationship. It is natural to try and rearrange the
source term not only in space but also in time, and thus to investigate the existence of such
a maximal element when we rearrange the function with respect to the two variables. In the
present paper we prove that this is not possible.

Keywords: Optimisation, Optimal Control of PDEs, Rearrangement of functions, Talenti In-
equality.
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1 Introduction and motivation

1.1 Scope of the paper and mathematical context

In this paper we want to address some qualitative questions related to the time-rearrangement of
functions in the context of optimal control and Talenti inequalities. Roughly speaking, it has been
known since the seminal paper [19] that the spatial rearrangement (i.e. the Schwarz rearrange-
ment) of source terms in elliptic equations improved ”concentration”-like properties. Before we
make this statement more precise let us note that this work of Talenti has sparked an immense in-
terest from the calculus of variations and optimisation community, leading to major developments,
whether in calculus of variations, in optimal control or in fine comparison relations for parabolic
and elliptic partial differential equations [1, 2, 3, 6, 5, 4, 7, 8, 9, 12, 11, 13, 15, 16, 17, 18, 21, 22].
For the time being we refer to the monograph [10] and to the survey of Talenti himself [20]. In
general these comparison principles are expressed in terms of concentration of solutions, using the
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order relation ≺ defined as follows: for a domain Ω, for any non-negative functions f , g ∈ L1(Ω),
we say that

f ≺ g if, and only if, for any V ∈ (0; Vol(Ω)), sup
E⊂Ω ,Vol(E)=V

ˆ
E

f 6 sup
E⊂Ω ,Vol(E)=V

ˆ
E

g. (1.1)

This relation can be expressed using the Schwarz rearrangement, see Definitions 1-2 below. The
content of any Talenti-type inequality is that if we consider a parabolic or an elliptic equation
of the form Lu = f then we can compare the solution u with a solution ũ of a related equation
L̃ũ = f̃ in the ball, where the tilde ·̃ simply means that certain coefficients of the equation were
symmetrised.

While most of the works we cited above deal with rearrangements in space (i.e. for certain
criteria is it better to have symmetric in space source terms/advection matrices?) it is interesting
to investigate the influence of time-rearrangement of functions: if we are working with a parabolic
equation, is there a good way to rearrange the source term both in time and space? In this paper,
we prove that the answer to this question is no and that rearranging source terms in time can not
yield as strong concentration results as rearranging source terms in space.

1.2 Rearrangement and order relation

To fix notations, let a dimension d ∈ IN\{0} and a radius R > 0 be fixed, and consider the ball
Ω := B(0;R) in IRd. We will use the notation C∞(Ω) to denote the set of infinitely differentiable
functions in Ω.

Definition 1. For any non-negative function g ∈ L2(Ω), there exists a unique radially symmetric,
non-negative, non-increasing function g# ∈ L2(Ω) that has the same distribution function as g i.e.

∀t > 0 ,Vol ({g > t}) = Vol
(
{g# > t}

)
.

g# is called the Schwarz rearrangement of g.

There are two famous inequalities that are related to the Schwarz rearrangement:

1. First, the Pólya-Szegö inequality, which states that, if f ∈W 1,2(Ω) is a non-negative function
, then f# ∈W 1,2(Ω) and, furthermore, that we haveˆ

Ω

∣∣∇f#
∣∣2 6

ˆ
Ω

|∇f |2. (1.2)

2. Second, the Hardy-Littlewood inequality: it states that, if f , g ∈ L1(Ω) are non-negative
functions then ˆ

Ω

fg 6
ˆ

Ω

f#g#. (1.3)

The Schwarz rearrangement allows to reformulate the comparison relation (1.1):

Definition 2. For any non-negative f, g ∈ L2(Ω), we say that g dominates f , and we write f ≺ g
if, and only if

∀r ∈ (0;R) ,

ˆ
B(0;r)

f# 6
ˆ
B(0;r)

g#.

It is easily checked that this definition is equivalent to (1.1) since one can check that, by equi-
measurability of f and of its Schwarz rearrangement, and since f# is radially non-increasing, there
holds

∀V ∈ (0; Vol(Ω)) , sup
E⊂Ω ,Vol(V )

ˆ
Ω

f =

ˆ
B(0;rV )

f# with Vol(B(0; rV )) = V.
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1.3 Parabolic model, problem under scrutiny and main result

The model under scrutiny in this paper is a linear heat equation: for any f ∈ L∞((0;T )× Ω), we
let uf be the only solution of the linear heat equation

∂uf
∂t −∆uf = f in (0;T )× Ω ,

uf (t, ·) = 0 on (0;T )× ∂Ω ,

uf (0, ·) = 0 in Ω.

(1.4)

The classical isoperimetric parabolic inequality [17, 22] asserts the following: denoting, for a given
f = f(t, x) the spatially rearranged function f# as

f# : (0;T )× Ω 3 (t, x) 7→ (f(t, ·))#(x)

we have
∀t ∈ [0;T ] , uf (t, ·) ≺ uf#(t, ·).

This quite naturally leads to the question: can such estimates be reached when we rearrange f
not only in space, but also in time? Note that this Talenti inequality implies the existence of a
maximal element for the order relation ≺ in the following sense: let δ : [0;T ] → (0; Vol(Ω)) be a
function that models a time-dependent volume constraint and consider the set

Fδ :=

{
f ∈ L∞((0;T )× Ω) : 0 6 f 6 1 a.e., and for a.e. t ∈ [0;T ] ,

ˆ
Ω

f(t, ·) = δt

}
.

Let fδ be defined as

fδ : (t, x) 7→ 1B(0;rδ(t))(x) where rδ(t) is chosen so that Vol(B(0; rδ(t))) = δ(t).

If we define
Hδ(T ) := {uf (T, ·) , f ∈ Fδ} ⊂ L2(Ω)

then the parabolic Talenti inequality implies that, for any T > 0, ufδ is a ≺-maximal element in
Hδ.

Our question here is the following: can we obtain maximal elements in a wider class of source
terms where, unlike in the definition of Fδ, we do not impose, for every time, a volume constraint?
Let us thus introduce, for a given volume constraint V0 ∈ (0; Vol((0;T )× Ω)), the class of admissible
controls

F :=

{
f ∈ L∞((0;T )× Ω) , 0 6 f 6 1 a.e.,

¨
(0;T )×Ω

f = V0

}
. (Adm)

Our question is then: defining, for any T > 0,

H(T ) := {uf (T, ·) , f ∈ F} ,

does there exist a ≺-maximal element in H(T )? In other words, does there exists a f∗ ∈ F such
that:

∀f ∈ F , uf (T, ·) ≺ uf∗(T, ·)? (1.5)

Here, the answer is no:

Theorem I. There exists no f∗ ∈ F such that (1.5) holds.
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2 Proof of theorem I

Strategy of proof and auxiliary problems To prove the result we will argue by contradiction
and assume that there exists f∗ ∈ F such that (1.5) holds for a certain time horizon T > 0. By

the parabolic Talenti inequality, we may assume that f∗ = (f∗)# so that uf∗ = u#
f∗ . By definition

of f∗ we know that, for any f ∈ F and any r ∈ [0, R],

ˆ r

0

ξd−1u#
f (t, ξ)dξ 6

ˆ r

0

ξd−1uf∗(t, ξ)dξ.

In particular, for any r ∈ [0;R], f∗ is a solution of the optimisation problem

max
f∈F

(
max

E⊂Ω ,Vol(E)=ωdrd

ˆ
E

uf

)
, (P (r))

where ωd = Vol(B(0, 1)).
To prove Theorem I, it suffices to show that no f∗ ∈ F can solve (P (r)) for all r ∈ [0;R].

Proof of Theorem I Following the discussion above we prove the following result:

Lemma 3. Let f∗ ∈ F be such that, for any r ∈ (0, R), f∗ is a solution of (P (r)). Then, for any
radially symmetric, non-increasing, non-negative function ϕ ∈ C∞(Ω), f∗ is a solution of

max
f∈F

ˆ
Ω

uf (T, ·)ϕ.

Proof of lemma 3. Let us fix ϕ in the conditions of the lemma. We can approximate ϕ by an
increasing sequence of radially symmetric step-functions {φk}k∈IN as follows: define, for an integer
k > 1,

rk,j :=
j

k
R (j = 0, . . . , k) , αk,j := ϕ(rk,j+1) (j = 0, . . . , k − 1)

and set

φk :=

k−1∑
j=0

αk,j1B(0;rk,j+1)\B(0;rk,j).

However, from this decomposition it appears that we may rewrite φk as

φk =

k∑
j=1

βk,j1B(0;rk,j) where, for any j ∈ {0, . . . , k}, βk,j > 0.

Indeed it suffices to define the coefficients βk,j as

βk,k := αk,k−1 and, for any j ∈ {1, . . . , k − 1}, βk,j := αk,j−1 − αk,j > 0

where the last inequality comes from the fact that ϕ is non-increasing. Consequently, for any
k ∈ IN and any j 6 k,

βk,j

ˆ
B(0,rk,j)

uf (T, ·) 6 βk,j

ˆ
B(0,rk,j)

uf∗(T, ·)

by the definition of f∗. Passing to the limit k →∞ yields the result.
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We single out the following optimisation problem defined for any ϕ ∈ C∞(Ω):

max
f∈F

ˆ
Ω

uf (T, ·)ϕ. (Pϕ)

To prove Theorem I, we will need to characterise the optimisers of (Pϕ) in certain cases. Such
a characterisation can be obtained by studying the optimality conditions for (Pϕ) which is what
we now set out to do.

Optimality conditions for (Pϕ):
Define pϕ as the unique solution of the backward heat equation

∂pϕ
∂t + ∆pϕ = 0 in (0;T )× Ω ,

pϕ(t, ·) = 0 on [0;T ]× ∂Ω ,

pϕ(T, ·) = ϕ in Ω ,

(2.1)

Multiplying (1.4) by pϕ and integrating by parts we obtain

∀f ∈ F ,
ˆ

Ω

uf (T, ·)ϕ =

¨
(0;T )×Ω

fpϕ. (2.2)

The function pϕ encodes the optimality conditions for (Pϕ). To further characterise optimisers
we need some information on the level sets of the function pϕ. Such information is given in the
following lemma:

Lemma 4. Assume ϕ ∈ C∞(Ω) ∩W 1,2
0 (Ω), ϕ = ϕ#, ϕ > 0 and ϕ is not constant. Then, for any

t ∈ [0;T ) and for any τ ∈
(
0; ‖ϕ‖L∞(Ω)

)
the level set {pϕ(t, ·) = τ} is a (d−1)-dimensional sphere.

Proof of Lemma 4. Since ϕ ∈ C∞(Ω), standard parabolic estimates imply that pφ ∈ C∞((0;T )× Ω).
Since ϕ is radially symmetric, so is pϕ. By the maximum principle, for any t ∈ [0;T ],

∂pϕ
∂ν

(t, ·) 6 0 on ∂Ω.

Let qϕ :=
∂pϕ
∂r . We already know that

∀t ∈ [0;T ] , qϕ(t, ·) 6 0 on ∂Ω.

Furthermore, at t = T , since ϕ is not constant and radially symmetric, non-increasing,

qϕ(T, ·) 6 0 , qϕ(T, ·) 6= 0.

Differentiating (2.1) with respect to r we get the following equation
∂qϕ
∂t + ∆qϕ = 0 in (0;T )× Ω ,

qϕ 6 0 on [0;T ]× ∂Ω ,

qϕ(T, ·) 6 0 , qϕ(T, ·) 6= 0 in Ω.

By the strong maximum principle it follows that

∀t < T , qϕ(t, ·) < 0 in Ω.

Thus, for any t ∈ [0;T ), pϕ(t, ·) is radially decreasing. In particular, its level sets have zero
Lebesgue measure and coincide with spheres.
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Figure 1: In blue, the graph of ϕ. In red, the graph of ψ.

Now let us turn back to the optimality conditions for (Pϕ): let fϕ be a solution of (Pϕ). From
the bathtub principle [14, Theorem 1.14] and the fact that pϕ only has level sets of measure zero,
it follows that there exists a Lagrange multiplier cϕ ∈ IR such that, up to negligible sets,

1. {(t, x) ∈ (0;T )× Ω : fϕ(t, x) = 1} = {(t, x) ∈ (0;T )× Ω : pϕ(t, x) > cϕ},

2. {(t, x) ∈ (0;T )× Ω : fϕ(t, x) = 0} = {(t, x) ∈ (0;T )× Ω : pϕ(t, x) < cϕ},

3. {(t, x) ∈ (0;T )× Ω : 0 < fϕ(t, x) < 1} has Lebesgue measure zero.

The constant cϕ appearing is dubbed the Lagrange multiplier associated with ϕ. We emphasise
that it is a constant that depends neither on space nor on time. These conditions define fϕ
univocally. Furthermore, as the (time-space) dependent level-set satisfies Vol({fϕ = 1}) ∈ (0;V0)
the maximum principle implies

0 < cϕ < ‖pϕ‖L∞((0;T )×Ω) 6 ‖ϕ‖L∞(Ω). (2.3)

The following lemma essentially contains the proof of Theorem I:

Lemma 5. There exist two radially symmetric, decreasing and non-negative functions ϕ ,ψ ∈
C∞(Ω) such that (Pϕ) and (Pψ) do not have the same solutions.

Proof of Lemma 5. Construction of ϕ ,ψ such that fϕ 6= fψ Let ϕ be a cut-off function; in
other words, ϕ satisfies:

• ϕ ∈ C∞(Ω, IR+) is a radially symmetric, non-increasing function.

• ϕ ≡ 1 on B(0, R/8) and is radially decreasing on B(0, R/4)\B(0, R/8).

• ϕ ≡ 0 on B(0, R)\B(0, R/4).

Similarly we pick ψ that satisfies

• ψ ∈ C∞(Ω, IR+) is a radially symmetric, non-increasing function.

• ψ ≡ 1 on B(0, R/2) and is radially decreasing on B(0, R/2)\B(0, 3R/4).

• ψ ≡ 0 on B(0, R)\B(0, 3R/4).

We claim that for this ψ and this ϕ we have fϕ 6= fψ.
To see why fϕ 6= fψ, let cϕ , cψ be the Lagrange multipliers associated, respectively, with ϕ and

ψ. Recall that (2.3) gives

0 < cϕ , cψ < max
(
‖ϕ‖L∞(Ω), ‖ψ‖L∞(Ω)

)
= 1.

Define, for any r > 0, S(0; r) as the (d − 1)-dimensional sphere or radius r (i.e. S(0; r) = {x ∈
IRd, ‖x‖ = r}) and let, for any t ∈ (0;T ), rϕ(t) (resp. rψ(t)) be such that

{pϕ(t, ·) = cϕ} = S(0, rϕ(t)) (resp. {pψ(t, ·) = cψ} = S(0, rψ(t))).
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As cϕ , cψ > 0 we have
sup
t∈[0;T ]

rϕ(t) , rψ(t) < R.

As we also have
cϕ , cψ < 1

we deduce
inf

t∈[0;T ]
rϕ(0) , rψ(0) > 0.

Since, by parabolic regularity, pϕ and pψ are C∞ and radially decreasing in the sense that
∂rpψ , ∂rpϕ < 0 in (0;T )× Ω, rϕ and rψ are continuous1 in [0;T ].

Finally, since ϕ = 0 on B(0, R)\B(0, R/4) we have rϕ(T ) < R/4. Similarly, since ψ ≡ 1 on
B(0, R/2) we have rψ(T ) > R/2. Consequently, rϕ 6= rψ in a neighbourhood of T . But now recall
that from the optimality conditions of (Pϕ)-(Pψ), we have

fϕ(t, x) = 1B(0;rϕ(t))(x) , fψ(t, x) = 1B(0;rψ(t))(x).

As rϕ 6= rψ in a neighbourhood of T , fϕ 6= fψ. This concludes the proof of the Theorem.
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