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DISTRIBUTION FUNCTIONS FOR SUBSEQUENCES OF GENERALISED VAN DER CORPUT SEQUENCES

For an integer b > 1 let (φ b (n)) n≥0 denote the Van der Corput sequence base b in [0, 1). Answering a question of O. Strauch, C. Aisleitner and M.

Hofer showed the distribution function of (φ b (n), φ b (n + 1), . . . , φ b (n + s -1)) n≥0 on [0, 1) s exists and is a copula. The first and third authors then showed this phenomenon extends to a broad class of subsequences of the Van der Corput sequences. In this paper we extend this paper still further and show this phenomenon is also true for more general numeration systems based on the beta expansion of W. Parry and A. Renyi.

Introduction

For an integer b > 1 we define the Kakutani -Von Neumann odometer T b : [0, 1) → [0, 1) by

T b (x) = x -1 + b -k + b -k-1 for x ∈ [1 -b -k , 1 -b -k-1 ).
(k = 0, 1, . . .)

The name arises from the fact that T b is a 'Euclidean model' for the map τ (x) =

x + 1 on the ring of b-adic integers. The sequence (T n b (0)) n≥0 is called the base b Van der Corput sequence and the sequence (T n b (x)) n≥0 for arbitrary x is called the generalised Van der Corput sequence. If {b 1 , . . . , b s } are pairwise coprime and greater than one. We call (T n b1 ((0), . . . , T n bs (0)) n≥0 the Halton sequence. All three of these sequences are examples of low discrepancy sequences valuable in numerical integration. Henceforth we will write φ b (n) = T n b (0) (n ≥ 0). For a real number y let {y} denote its fractional part. Following I. Niven, [KN p. 305] we say a sequence of integers (k n ) n≥0 is uniformly distributed on Z if for every integer m > 1 and every residue class j mod m for j ∈ [0, m -1), we have lim

N →∞ 1 N #{1 ≤ n ≤ N : k n ≡ j mod m} = 1 m .
We call a sequences of integers (k n ) n≥0 Hartmann uniformly distributed if for each irrational number α the sequence ({k n α}) n≥0 is uniformly distributed modulo one and the the sequence (k n ) n≥0 is uniformly distributed on Z [ [START_REF] Kuipers -H | NIEDERREITER: Uniform Distribution of Sequences[END_REF]p. 296,Ex. 5.11]. Note that if (k n ) n≥0 is Hartman uniformly distributed, and if we set

F (N, z) := 1 N N -1 n=0 z kn , (N = 1, 2, • • • ) we have F (N, 1) = 1 for all N ≥ 1 and if z = 1 we have lim N →∞ F (N, z) = 0.
The converse is also true. For more on Hartman uniform distibution see [KN].

A list of examples is given in section 3. More generally we say a sequence is Hartmann uniformly distributed on a locally compact abelian group G if it is uniformly distributed on the Bohr compactification of the the group.

Let (X, B, µ) be a probability space and let T : X → X be a measurable map, that is also measure-preserving. That is, given A ∈ B, we have µ(T -1 A) = µ(A), where T -1 A denotes the set {x ∈ X : T x ∈ A}. We call (X, B, µ, T ) a dynamical system. We say the dynamical system is ergodic if T -1 A = A for A ∈ B means that either µ(A) or µ(X\A) is 0.

We say (k n ) n≥0 is L p good universal if for each dynamical system (X, B, µ, T ) and for each f ∈ L p (X, β, µ) the limit lim

N →∞ 1 N N -1 n=0 f (T kn x), exists µ almost everywhere. Recall a function C : [0, 1] d → [0, 1] is called a copula if (i) for each s-tuple u in [0, 1] s we have C(u) = 0 if any one of the coordinates of u is 0; (ii) for each x ∈ [0, 1] we have C(1, 1, . . . , 1, x, 1, 1, . . . , 1) = x and (iii) for each B ⊆ [0, 1] s which is a product of intervals contained in [0, 1] we have B dC ≥ 0.
In [LN] a result is proved which implies the following.

Theorem A. Suppose that (k n ) n≥0 is Hartmann uniformly distribution and L pgood universal for some p ∈ [1, 2] on Z that (n 1 , . . . , n s ) is an s-tuple of nonnegative integers and that b > 1 is an integer. Then the asymptotic distribution function of the sequence

(φ b (k n + n 1 ), . . . , φ b (k n + n s )) n≥0
exists and is a copula.

In the case k n = n (n = 1, 2 . . .) with n i = i -1 (i = 1, 2, . . . s) this result appears in [AH] in response to a question of O. Strauch. The special case s = 2 of the result from [AH] appears in [FS]. The sequences (φ a (n)) n≥1 was introduced and studied for the first time in [F]. Conditions for subsequences of the Halton sequence (φ b1 (n), . . . , φ bs (n)) n≥0 to be uniformly distributed modulo one for pairwise coprime b 1 , . . . , b s appear in [HN]. See also [HKLP] for related results.

We now describe the extention of this theorem proved in this paper. Let (G n ) n≥0 be an increasing sequence of positive integers with G 0 = 1. Then every natural number n can be written [x] denotes the integer part of x. This expansion (called the G-expansion) is unique and finite, provided that for every finite K > 0 that

n = ∞ k=0 g k (n)G k , where g k (n) ∈ {0, . . . , [G k+1 /G k ]} and
n = K-1 k=0 g k (n)G k < G K .
(2.1)

We call g k the k-digit of the G-expansion. The digits (g k ) k≥0 can be calculated using the greedy algorithm and G = (G k ) n≥0 is called an enumeration system. We denote by K G the subset of sequences satisfying (2.1). The elements of K G are called G-admissible. To extend the addition-by-1 map from N to K G we introduce

K 0 G = x ∈ K G : ∃M x , ∀j ≥ M x , j k=0 g k (n)G k < G j+1 -1 ⊆ K G . Put x j = j k=0 g k G k and set τ (x) = (g 0 (x j + 1) . . . g j (x j + 1)g j+1 (x)g j+2 (x) . . .),
for every x ∈ K 0 G and j ≥ M x . This definition does not depend on the choice of j ≥ M x and can be extended to K G \K 0 G by setting τ (x) = 0 = (0) ∞ . We have defined the G-odometer or G-adding machine .

In the sequel we restrict attention to enumeration systems where G = (G n ) n≥0 is a linear recurrence, i.e. we require in addition that for each positive integer n that

G n+d = a 0 G n+d-1 + • • • + a d-1 G n .
(2.2) To this linear recurrence we can associate the characteristic equation

x d = a 0 x d-1 + • • • + a d-1 .
We further confine attention to enumeration systems, with a characteristic equation having a Pisot-Vijayragahavan number (PV) as a root. Note that this is always the case when

a 0 ≥ a 1 ≥ • • • ≥ a d-1 ≥ 1. W.
Parry [P] showed that, under this hypothesis, the β-expansion of β is finite, i.e.

β = a 0 + a 1 β + • • • + a d-1 β d-1 , (2.3)
where

a 0 = [β].
To enumeration systems, whose characteristic root β is a PV-number satisfying (2.3), a sum M k=0 g k G k for finite M , is the expansion of an integer if and only if the digits of the G-expansion satisfy

(g k , g k-1 , . . . , g 0 , 0 ∞ ) < (a 0 , a 1 , . . . , a d-1 ) ∞ ,
for each k with < denoting the lexicographic order. Representations (g k , . . . , g 0 ) satisfying the condition are called admissible representations and thus belong to K G . Recall that we call a set of the form

Z = Z(n 1 , . . . , n k , a 1 , . . . , a k ) = {x ∈ K G : τ n1 (x) = a 1 , . . . , τ C n k (x) = a k } for n 1 , . . . , n k ∈ N with a 1 , . . . , a k ∈ K G and 0 ≤ k < ∞ a
cylinder sets of length k for the dynamical system (K G , τ ). For such a cylinder set Z let

F k,r = #{n < G k+r : (g 0 (n), g 1 (n) . . .) ∈ Z}.
We can define the measure µ on K G by

µ(Z) = F k,0 β d-1 + (F k,1 -a 0 F k,0 ) + . . . + (F k,d-1 -a 0 F k,d-2 -. . . -a d-2 F k,0 ) β k (β d-1 + β d-1 + . . . + 1)
.

We now turn to the definition of the Monna map φ β for non-integer bases β as follows. Let n = j≥0 g j (n)G j be the G-expansion of the positive integer n. Then set

φ β (n) = φ β   j≥0 g j (n)G j   = j≥0 g j (n)β -j .
Furthermore the restriction to K 0 G has a well defined inverse. In this context the β-adic Van der Corput sequence is given as (φ β ) n≥0 = (φ β (n)) n≥0 , where β is the characteristic root of the G-expansion.

By the nature of its construction, as shown in Proposition 1.1 below, we see that φ β (N) ⊂ [0, 1). Of course this implies nothing about its distribution. The following gives conditions for the density of φ β (N) [HIT]. Proposition 1.2 below is also proved in [HIT]. There is an extensive literature on this subject starting with [Ni]. See also [GHL] for further background.

Proposition 1.1. Let a = (a 0 , . . . , a d-1 ) where a 0 , . . . , a d-1 ≥ 0 are the coefficients defining the enumeration system G, and assume the corresponding characteristic root β is finite as defined by (2.3). Furthermore assume that there is no b = (b 1 , . . . , b k-1 ) with k < d such that β is the characteristic root of the polynomial defined by b. Then φ β (N) ⊂ [0, 1) and φ β (N) is not contained in [0, x), for all x ∈ (0, 1) if and only if a can be written either as a = (a 0 , . . . , a 0 ) or as a = (a 0 , a 0 -1 . . . , a 0 -1, a 0 ) where a 0 > 0.

Proposition 1.2. For an enumeration system G of the form (2.2), let us assume that the coefficients of the linear recurrence are defined by a j = a where j = 0, . . . , (d -1), and a is a positive integer. Let β be the corresponding characteristic root. Then µ(Y ) = λ(φ β (Y )) for all cylinder sets Y.

In this paper we prove the following theorem.

Theorem 1.3. Let G be a unique finite enumeration systems Then if (k j ) j≥1 is Hartman uniformly distributed and L p -good universal for a specific p ∈ [1, ∞], the sequence (φ β (k j + n 1 ), . . . , φ β (k j + n s )) j≥1 has a distribution funtion on [0, 1) s .

Remarks: 1) An explicit construction of the distribution function in Theorem 1.3 will appear via the proof. 2) Let ρ denote a polynomial mapping Z to itself. In [LN] it is also show that if instead of being Hartman uniformly distributed, we assume that k i = ρ(i) or k i = ρ(p i ) (i = 1, 2, . . .) where p i is the i th rational prime, the distibution of the sequence (φ β (k j +n 1 ), . . . , φ β (k j +n s )) j≥1 also exists in the setting of Theorem A. The distribution function is not however known to be a copula. The proof of this result relies on harmonic analysis methods the group of b-adic integers. These are not available in the setting of Theorem 1.3 and the analogous statements are open in this context.

Proof of Theorem 1.3

A central tool of ours is the following lemma

[HJLN]. Lemma 2.1. Suppose (k i ) ∞
i=1 is Hartman uniformly distributed, and L p -good universal for p ∈ [1, 2] and that the dynamical system (X, B, µ, T ) is ergodic . Then T,f (x) exists and equals X f dµ µ almost everywhere.
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We have the following lemma, which in the case k n = n(n = 1, 2, . . .) is classical and due to J. C. Oxtoby [O]. A version of this Lemma appears in [LN]. The proof of this contains a significant gap. This gap is filled in [ILN].

Lemma 2.2. Suppose (k n ) n≥0 is Hartman uniformly distributed and L 2 -good universal. Let T be a continuous map of a compact metrizable space X. The following statements are equivalent: a) the transformation (X, B, T ) is uniquely ergodic; b) for each continuous function f defined on X there is a constant

C f inde- pendent of x such that lim N →∞ 1 N N -1 n=0 f (T kn x) = C f ; c) for each continuous function f defined on X there is a constant C f inde- pendent of x such that lim N →∞ 1 N N -1 n=0 f (T kn x) = C f ,
uniformly on X; and d) there is a T invariant measure µ on X, and whenever f is a continuous functions on X we have

lim N →∞ 1 N N -1 n=0 f (T kn x) = X f dµ,
pointwise on X, i.e. for all x ∈ X.

Proof of Theorem 1.3: Using the Proposition 1.2 and the definition of the Monna map, we get an isomorphism between the dynamical systems (K G , τ ) and the

Examples of Hartmann Uniformly distributed good universal sequences

The following is a list of constructions of Hartman uniformly distributed sequences. The first five are also examples of L p -good universal sequences for some p ≥ 1. The other examples appear in [N1].

1. The sequence (n) ∞ n=1 is L 1 -good universal. This is Birkhoff's pointwise ergodic theorem.

2. Denote by [y] the integer part of real number y. (Here e(x) = e 2πix for real x.) Suppose also for some decreasing function

Set k n = [g(n)] (n = 1, . . .) where g : [1, ∞) → [1, ∞)
c : [1, ∞) → [1, ∞) and some positive constant C > 0 that b M + A [a(M )] + M a(M ) A M ≤ Cc(M ).
Then, if we have

∞ s=1 c(θ s ) < ∞
for θ > 1 we say that k = (k n ) ∞ n=1 satisfies conditions H [N2]. Condition H sequences are all L p good universal for all p > 1. To prove a pointwise ergodic theorem an essential ingredient is bounding the associated maximal function. Condition H arises out of doing this using harmonic analysis.

Specific sequences of integers that satisfy conditions H include k n = [g(n)] (n = 1, 2, . . .) where I. g(n) = n ω if ω > 1 and ω / ∈ N. In fact there is a interval ω ∈ [1, a] for very small a where ([n ω ]) n≥1 is L 1 good universal [RZ].

II. g(n) = e log γ n for γ ∈ (1, 3 2 ). III. g(n) = P (n) = b k n k +. . .+b 1 n+b 0 for b k , . . . , b 1 not all rational multiples of the same real number.

IV. Hardy Fields: By a Hardy Field we mean a closed subfield (under differentiation), of the ring of germs at +∞ of continuous real valued functions with addition and multiplication taken to be pointwise.

Let L denote the union of all Hardy fields. If

(k n ) ∞ n=1 = ([a(n)]) ∞ n=1
, where a satisfies the following conditions:

a ∈ L; for some k ∈ Z, k ≥ 2 lim x→∞ a(x) x k-1 = ∞ and lim x→∞ a(x) x k = 0; then (k n ) ∞
n=1 satisfies condition H. This example is observed in [BKQW]. 3. A random L p example for p > 1: (i) Suppose S = (n k ) ∞ n=1 ⊆ N is a strictly increasing sequence of natural numbers. By identifying S with its characteristic function I S , we may view it as a point in Λ = {0, 1} N , the set of maps from N to {0, 1}. We may endow Λ with a probability measure by viewing it as a Cartesian product Λ = ∞ n=1 X n where for each natural number n we have X n = {0, 1}, and specify the probability π n on X n by π n ({1}) = q n , with 0 ≤ q n ≤ 1 and π n ({0}) = 1 -q n such that lim n→∞ q n n = ∞. The desired probability measure on Λ is the corresponding product measure π = n= is zero density . This example is an immediate consequence of A. A. Templeman's semigroup ergodic theorem [T, p218] . See also [BeL] where this observation is first published.. 5. Random perturbation of L 2 good sequences: Suppose (k n ) n≥1 is a L 2good universal sequence of integers that is also Hartman uniformly distributed. Suppose θ = {θ n , n ≥ 1} denotes a sequence of N-valued independent, identically distributed random variables with basic probability space (Ω, A, P), and a Pcomplete σ-field A. We assume that there exist 0 < α < 1 and B > 1/α, such that k n = O(e n α ),

and if E denotes expectation with respect to the basic probability space (Ω, A, P)

we have

E log B + |θ 1 | < ∞.
Then (k n +θ n (ω)) n≥1 is L 2 -good universal and Hartman uniformly distributed [NW].

  is a differentiable function whose derivation increases with its argument. Let A n denote the cardinality of the set {n : k n ≤ n}, and suppose for some function a : [1, ∞) → [1, ∞) increasing to infinity as its argument does, that we setb M = sup {z}∈[ 1 a(M ) ,12 ) n:an≤M e(zk n ) .

∞

  n=1 π n . The underlying σ-algebra β is that generated by the "cylinders"{λ = (λ n ) ∞ n=1 ∈ Λ : λ i1 = α i1 , . . . , λ ir = α ir } for all possible choices of i 1 , . . . , i r and α i1 , . . . , α ir . Let (k n ) ∞ n=1 bealmost any point in Λ with respect to the measure π [Bo1]. 4. Block L 1 good universal sequences: If (k n ) n≥1 = ∪ ∞ k=1 [d k , d k + e k ] ordered by absolute value for disjoint ([d k , d k + e k ]) k≥1 with d k-1 = O(e k ) as k tends to infinity. Note that if d k-1 = o(e k ) the sequence (k n ) ∞
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dynamical system ([0, 1), T ) with T : [0, 1) → [0, 1) given by

In [HIT] it is proved that the dynamical system ((K G , τ ) is uniquely ergodic, and since it is also isomorphic to ([0, 1), T ), then ([0, 1), T ) is again uniquely ergodic. Moreover, since (k j ) j≥1 is Hartman uniformly distributed and L 2 -good universal, by Lemma 2.2. Following [AH] for t ∈ [0, 1) define γ(t) = (T n1 (t), . . . , T ns (t)) ∈ [0, 1) s , and Γ := {γ(t) : t ∈ [0, 1)}. The measure preserved by T which we denote by β on [0, 1) is the push down of the unique ergodic measure of the dynamical system (K G , τ ) on to [0, 1). Notice β induces a measure on Γ by setting ν(A) = β ({t : γ(t) ∈ A}) for A ⊂ Γ. Furthermore, ν induces a measure µ on [0, 1) s by embedding Γ in [0, 1) s and for every Jordan-measurable B ⊆ [0, 1) s setting µ(B) = ν(B ∩ Γ).

We define the emperical measure of the first N points by

We have lim

where proj 1 denotes the projection onto the first coordinate of [0, 1) s . Using the fact that (T kn (0)) n≥0 is asymptotically distribution modulo one with respect to β and the fact that t → T a (t) is bijective this is

. This µ is the required distribution function.