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' ' sup N ≥1 ˛N X n=1 ane iλnt ˛' ' S 2 ≤ C " X n≥1 `X k : n≤λ k ≤n+1 |a k | ´2" 1/2
where C > 0 is a universal constant. Moreover, the series P n≥1 ane itλn converges for λa.e. t ∈ R. We give a simple and direct proof. This contains as a special case, Hedenmalm and Saksman result for Dirichlet series. We also obtain maximal inequalities for corresponding series of dilates. Let (λn) n≥1 , (µn) n≥1 be non-decreasing sequences of real numbers greater than 1. We prove the following interpolation theorem. Let 1 ≤ p, q ≤ 2 be such that 1/p + 1/q = 3/2. There exists C > 0 such that for any sequence (αn) n≥1 and (βn) n≥1 of complex numbers such that P n≥1 `Pk : n≤λ k <n+1 |α k | ´p < ∞ and P n≥1 `Pk : n≤µ k <n+1 |β k | ´q < ∞, we have

' ' ' sup N ≥1 ˛N X n=1 αnD(λnt) ˛' ' ' S 2 ≤ C " X n≥1 `X k : n≤λ k <n+1 |α k | ´p" 1/p " X n≥1 `X k : n≤µ k <n+1 |β k | ´q" 1/q
where D(t) = P n≥1 βne iµnt is defined in S 2 . Moreover, the series P n≥1 αnD(λnt) converges in S 2 and for λ-a.e. t ∈ R. We further show that if {λ k , k ≥ 1} satisfies the following condition

X k = , k = (k, ) =(k , ) `1 -|(λ k -λ ) -(λ k -λ )| ´2 + < ∞,
then the series P k a k e iλ k t converges on a set of positive Lebesgue measure, only if the series P ∞ k=1 |a k | 2 converges. The above condition is in particular fulfilled when {λ k , k ≥ 1} is a Sidon sequence.

Introduction.

We study almost everywhere convergence properties of almost periodic Fourier series in the Stepanov space S 2 and of corresponding series of dilates. This space is defined as the sub-space of functions f of L 2 loc (R) verifying the following analogue of Bohr almost periodicity property: For all ε > 0, there exists K ε > 0 such that for any x 0 ∈ R, there exists τ ∈ [x 0 , x 0 + K ε ] such that f (. + τ ) -f (.) S 2 ≤ ε. The Stepanov norm in S 2 is defined by

f S 2 = sup x∈R x+1 x |f (t)| 2 dt 1/2 .
Recall some basic facts. By the fundamental theorem on almost periodic functions see [4, p. 88], the Stepanov space S 2 coincides with the closure of the set of generalized trigonometric polynomials { n k=1 a k e iλ k t : α k ∈ C, λ k ∈ R} with respect to this norm. It is clear by considering for instance f = χ [0,1] that the space {f ∈ L 2 loc (R) : f S 2 < ∞} is strictly larger than S 2 . Introduce also the Besicovitch semi-norm of order 2 of f ∈ L 2 loc (R)

(1.1) f B 2 = lim sup T →∞ 1 2T T -T |f (t)| 2 dt 1/2 .
For every λ ∈ R and every f ∈ L 1 loc (R) define the Fourier coefficient f (λ) of exponent λ of f by

(1.2) f (λ) = lim T →∞ 1 2T T -T f (x)e -iλx dx ,
whenever the limit exists. It is easily seen, by approximating by generalized trigonometric polynomials in the Stepanov norm, that the above limit exists for every f ∈ S 2 and every λ ∈ R. Moreover, for any finite family λ 1 , . . . , λ n ∈ R, we have by Parseval equation in B 2 ([5, p. 109]),

n k=1 | f (λ k )| 2 ≤ f 2 B 2 ≤ f 2 S 2 .
In particular, for f ∈ S 2 , Λ := {λ ∈ R : f (λ) = 0} is countable. We shall call Λ the (set of) Fourier exponents of f . Let f ∈ S 2 with set of Fourier exponents Λ. We have

(1.3) λ∈Λ | f (λ)| 2 ≤ f 2 B 2 ≤ f 2 S 2 .
We then define formally the Fourier series of f ∈ S 2 as

λ∈Λ f (λ)e iλ• .
Notice that the set Λ ∩ [-A, A] may be infinite for a given A > 0.

In this paper we are interested in the convergence of the Fourier series of f (to f ) either in the Stepanov sense or in the almost everywhere sense, and the same sort of consideration will motivate us in the study of associated series of dilates. This second question is actually our main objective. See Section 3.

Concerning convergence of the Fourier series, it is necessary to recall Bredihina's extension to S 2 of Kolmogorov's theorem asserting that if s n (x) are the partial sums of the Fourier series of a function f ∈ L 2 (T), then s mn (x) converges almost everywhere to f provided that m n+1 /m n ≥ q > 1. Bredihina showed in [START_REF] Bredihina | Concerning A. N. Kolmogorov's theorem on lacunary partial sums of Fourier series[END_REF] that the Fourier series of a function in S 2 with α-separated frequencies (α > 0), namely |λ k -λ | ≥ α > 0 for all k, , k = , converges almost everywhere along any exponentially increasing subsequence. That is, for every ρ > 1, the sequence { 1≤k≤ρ n f (λ k )e iλ k t , n ≥ 1} converges for λ-almost every t ∈ R. The corresponding maximal inequality has been recently obtained by Bailey [6] who also considered Stepanov spaces of higher order.

Remark 1.1. For a short proof of Kolmogorov's Theorem see Marcinkiewicz [START_REF] Marcinkiewicz | A new proof on a theorem on Fourier series[END_REF], who showed that this follows from Fejer's Theorem ([28, Th. 3.4-(III)]) and the classical fact that if a series u n with partial sums s n has infinitely many lacunary gaps and is summable (C, 1) to sum s, then s n → s. See Theorem 1.27 in Chapter III of [START_REF] Zygmund | Trigonometric series, Third Ed. Vol. 1&2 combined[END_REF].

In view of Carleson's theorem, a natural question is whether the "full" series converges for any f ∈ S 2 .

That question has been addressed in the very specific situation of Dirichlet series by Hedenmalm and Saksman [START_REF] Hedenmalm | Carleson's convergence theorem for Dirichlet series[END_REF]. A simplified proof may be found in Konyagin and Queffélec [START_REF] Konyagin | The translation 1[END_REF] (see also below). They proved the following. Let λ denote here and throughout the Lebesgue measure on the real line.

Theorem 1.2. Let (a n ) n≥1 be complex numbers such that n≥1 n|a n | 2 < ∞. Then the series n≥1 a n n it converges λ-almost everywhere.

Their condition is optimal when (a n ) n≥1 is non-increasing. However, if (a n ) n≥1 is supported say on {2 n : n ≥ N } the corresponding series is a standard (periodic) trigonometric series and in that case, the optimality is lost, since the condition is much stronger than Carleson's condition.

On the other hand, it follows from Wiener [START_REF] Wiener | On the representation of functions by trigonometrical integrals[END_REF] that the series n≥1 a n n it converges in S 2 provided that (1.4)

n≥0 2 n+1 -1 k=2 n |a k | 2 < ∞ .
More precisely, the sequence of partial sums converges in S 2 to a limit f ∈ S 2 . If a n > 0 for every n, the converse is also true, see Tornehave [START_REF] Tornehave | On the Fourier series of Stepanov almost periodic functions[END_REF].

Our first goal (see the next section) is to prove that (1.4) is sufficient for λ-a.e. convergence and to provide the corresponding maximal inequality. Moreover, it will turn out that the problem of the λ-almost everywhere convergence of series n≥1 a n e iλnt can be reduced to the study of Dirichlet series.

In doing so, we obtain a Carleson-type theorem for almost periodic series and make the link with the study of almost everywhere convergence of the Fourier series associated with Stepanov's almost periodic functions.

Then, in Section 3, we consider associated series of dilates and obtain a sufficient condition for almost everywhere convergence. We further prove an interpolation theorem. Finally, in Section 4, we obtain a general necessary condition for the convergence almost everywhere of series of functions. The condition involves correlations of order 4. As an application, we show for instance that if {λ k , k ≥ 1} is a Sidon sequence, and the series k a k e iλ k t converges on a set of positive λ-measure, then the series

∞ k=1 |a k | 2 converges.

Almost everywhere convergence of almost periodic Fourier series

We start with the proof by Konyagin and Queffélec of Hedenmalm and Saksman's result, to which we add a maximal inequality. Proposition 2.1. There exists C > 0 such that for any sequence (a n ) n≥1 of complex numbers such that n≥1 n|a n | 2 < ∞,

(2.1) sup n≥1 | n k=1 a k k i• | S 2 ≤ C n≥1 n|a n | 2 1/2 .
Before giving the proof, it is necessary to recall some classical but important facts. Let g ∈ L p (T), 1 < p < ∞. Consider the maximal operator

T * g(x) = ∞ sup L=0 |k|≤L g(k)e 2iπkx .
For f ∈ L p (R) consider analogously the maximal operator

C * f (x) = sup T >0 T -T f (t)e ixt dt .
An operator U on L p is said strong (p, p) if U f p ≤ C ϕ f p for all f ∈ L p . The fact that strong (p, p), 1 < p < ∞, for T * is equivalent to strong (p, p) for C * follows from known elementary arguments (see [3, p. 166]). We refer to [14, Theorem 1] concerning the deep fact that T * is strong (p, p), 1 < p < ∞ and we shall call it "the Carleson-Hunt theorem" when p = 2. We will freely use the fact the C * is consequently strong (p, p), 1 < p < ∞.

Proof. We first notice that it is enough to prove that

(2.2) sup n≥1 | n k=1 a k k i• | L 2 [0,1] ≤ C n≥1 n|a n | 2 1/2 .
Indeed, then the desired result follows from the fact that

n k=1 a k k i(t+x) = n k=1 (a k k ix )k it ,
since we may apply the above estimate to the sequence (a n n ix ) n≥1 whose modulus are the same as the ones of the sequence (a n ) n≥1 . Let us prove (2.2). Define h ∈ L 2 (R) by setting h ≡ 0 on (-∞, 1) and for every n ∈ N, h(x) = a n whenever x ∈ [n, n + 1).

Let N ≥ 1. We have

N n=1 a n n it = N n=1 a n n+1 n e it log n -e it log x dx + N +1 1 h(x)e it log x dx = N n=1 a n n+1 n e it log n -e it log x dx + log(N +1) 0 e x h(e x )e itx dx . Now, for every x ∈ [n, n + 1), e it log n -e it log x ≤ t n .
Hence,

n≥1 a n n+1 n e it log n -e it log x dx ≤ t n≥1 n|a n | 2 1/2 n≥1 1 n 3 1/2
.

On another hand,

+∞ 0

e 2x |h| 2 (e x )dx = +∞ 1 u|h| 2 (u)du ≤ n≥1 (n + 1)|a n | 2 < ∞. Hence, since C * is strong (2 -2), sup N ≥1 log(N +1) 0 e x h(e x )e itx dx 2 2,dt ≤ C +∞ 0 e 2x |h| 2 (e x )dx .

Hence (2.1) follows.

We now derive an improved version of Proposition 2.1.

Theorem 2.2.

There exists C > 0, such that for every sequence (a n ) n≥1 of complex numbers satisfying (1.4),

(2.3) sup n≥1 | n k=1 a k k i• | S 2 ≤ C n≥0 ( 2 n+1 -1 k=2 n |a k |) 2 1/2 .
Moreover, n≥1 a n n it converges for λ-a.e. t ∈ R.

Remarks 2.3. The proof of Theorem 2.2 makes use of Carleson-Hunt's theorem (T * is strong (2-2)) and of Proposition 2.1. The latter was proved using that C * is strong (2-2), which is equivalent to Carleson-Hunt's theorem. On the other hand, given any sequence (b n ) n≥1 ∈ 2 , applying Theorem 2.2 with (a n ) n≥1 such that a 2 k = b k and a n = 0 otherwise, we see that Theorem 2.2 implies Carleson-Hunt's theorem, hence is equivalent to it. We shall see below that Theorem 2.2 allows to treat almost everywhere convergence of series n≥1 b n e itλn for non-decreasing sequences (λ n ) n≥1 . Notice that Theorem 2.2 corresponds to the case where λ n = log n. For more on Carleson-Hunt's theorem we refer to Lacey [START_REF] Lacey | Carleson's theorem, proof, complements, variations[END_REF]. See also Jørsboe and Mejlbro [START_REF] Jørsboe | The Carleson-Hunt Theorem on Fourier series[END_REF].

Proof. As in the previous proof, it is enough to prove a maximal inequality in L 2 ([0, 1]). We shall first work along the subsequence (2 n -1) n≥1 .

Let n ≥ 1 and define S k,n :=

k =2 n a k for every 2 n ≤ k ≤ 2 n+1 -1 and S 2 n -1,n = 0. In particular, for every 2 n ≤ k ≤ 2 n+1 -1, |S k,n | ≤ 2 n+1 -1 j=2 n |a j | ,
a fact that should be used freely in the sequel.

By Abel summation by part, we have

2 n+1 -1 k=2 n a k k it = 2 n+1 -1 k=2 n (S k,n -S k-1,n )k it = 2 n+1 -1 k=2 n S k,n (k it -(k + 1) it ) + 2 (n+1)it S 2 n+1 -1,n .
Since 2 (n+1)it = e i(n+1)t log 2 and by our assumption

n≥1 |S 2 n+1 -1,n | 2 < ∞, it follows from Carleson's theorem that sup N ≥1 N n=1 S 2 n+1 -1,n 2 (n+1)it L 2 ([0,1],dt) ≤ C n≥1 |S 2 n+1 -1,n | 2 1/2 .
Hence, we are back to control the L 2 -norm of sup

N ≥1 N n=1 2 n+1 -1 k=2 n S k,n (k it -(k + 1) it ) .
But we have,

k it -(k + 1) it = e it log k -e it log(k+1) = e it log k (1 -e it log(1+1/k) + it k ) - it k e it log k = u k (t) - it k e it log k . Now there exists C > 0 such that |u k (t)| ≤ C(t+t 2 ) k 2
. Hence,

n≥1 2 n+1 -1 k=2 n |S k,n | |u k (t)| ≤ C(t + t 2 ) n≥1 2 n+1 -1 k=2 n |a k | 2 n ≤ C(t + t 2 ) n≥1 2 n+1 -1 k=2 n |a k | 2 1/2 . It remains to control sup N ≥1 N n=1 2 n+1 -1 k=2 n S k,n k e it log k .
But we are exactly in the situation of Proposition 2.1. Hence sup

N ≥1 N n=1 2 n+1 -1 k=2 n S k,n k e it log k L 2 ([0,1],dt) ≤ C n≥1 2 n+1 -1 k=2 n k |S k,n | 2 k 2 1/2 ≤ n≥1 2 n+1 -1 k=2 n |a k | 2 1/2 < ∞. Let n ≥ 1 and 2 n ≤ ≤ 2 n+1 -1. We have k=1 a n k it - 2 n -1 k=1 a n k it ≤ 2 n+1 -1 k=2 n |a k | . Hence, sup N ≥1 N n=1
a n e it log n ≤ sup

N ≥1 2 N -1 n=1 a n e it log n + n≥1 2 n+1 -1 k=2 n |a k | 2 1/2 . So, (2.
3) is proved. The λ-almost everywhere convergence may be proved by a standard procedure thanks to the maximal inequality. Alternatively, following all the steps of the proof of the maximal inequality allows to give a more direct proof.

As a corollary we deduce Theorem 2.4. Let (λ n ) n≥1 be an increasing sequence of positive real numbers tending to ∞. Let (a n ) n≥1 be such that (2.4)

n≥1 k : n≤λ k ≤n+1 |a k | 2 < ∞ .
There exists a universal constant C > 0 such that

(2.5) sup N ≥1 N n=1 a n e iλnt S 2 ≤ C n≥1 k : n≤λ k ≤n+1 |a k | 2 1/2
Moreover, the series n≥1 a n e itλn converges for λ-a.e. t ∈ R.

Proof 

= v k . Then, set b n := : u =v k a . If there is no k ≥ 1 such that n = v k , set b n := 0. We first control sup N ≥1 N n=1
b n e it log 2 n , where log 2 stands for the logarithm in base 2.

By Theorem 2.2, we have sup

N ≥1 | N n=1 b n e i log 2 n• | 2 S 2 ≤ C n≥0 2 n+1 -1 k=2 n |b k | 2 = n≥0 : 2 n ≤u ≤2 n+1 -1 |b | 2 . Now, if 2 n ≤ u ≤ 2 n+1 -1, then n ≤ λ ≤ n + 1
and our first step is proved. Let q ≥ p be integers. There exist integers q ≥ p such that v p = u p and v q = u q . We have

q k=p a k e itλ k - v q k=v p b k e it log 2 u k ≤ k : u k =up |a k | + k : u k =uq |a k | + q =p k : u k =v |a k | |e itλ k -e it log 2 u k | Clearly, it suffices to control n≥0 : 2 n ≤v ≤2 n+1 -1 k : u k =v |a k | |e itλ k -e it log 2 u k | . Now, for 2 n ≤ v ≤ 2 n+1 -1 and u k = v , using that u k ≤ 2 λ k ≤ u k + 1, we see that | log 2 (2 λ k ) - log 2 u k | ≤ C u k and that |e itλ k -e it log 2 u k | = |e it log 2 (2 λ k ) -e it log 2 u k | ≤ C|t| u k ≤ C|t| 2 n . Hence, using Cauchy-Schwarz, n≥0 : 2 n ≤v ≤2 n+1 -1 k : u k =v |a k | |e itλ k -e it log u k | ≤ Ct n≥0 2 -n k : 2 n ≤u k ≤2 n+1 -1 |a k | ≤ Ct n≥0 k : 2 n ≤u k ≤2 n+1 -1 |a k | 2 1/2
, which converges by our assumption.

We shall now derive an almost everywhere convergence result concerning the Fourier series of an almost periodic function in S 2 . We shall first recall known results about norm convergence.

Let (λ n ) n≥1 be a (non-necessarily increasing) of positive real numbers. As already mentionned (in the case of Dirichlet series), by Wiener [START_REF] Wiener | On the representation of functions by trigonometrical integrals[END_REF], see also Tornehave [25] if

(2.6) n≥0 k≥1 :n≤λ k <n+1 |a k | 2 < ∞ ,
then n≥1 a n e iλnt is the Fourier series of an element of f ∈ S 2 .

On the other hand if f ∈ S 2 admits a sequence of positive real numbers (λ n ) n≥1 as frequencies and such that f (λ n ) ≥ 0 for every n ≥ 1, then (Tornehave [START_REF] Tornehave | On the Fourier series of Stepanov almost periodic functions[END_REF])

n≥0 k≥1 :n≤λ k <n+1 | f (λ k )| 2 ≤ C f 2 S 2 .
Hence, (2.6) holds.

Condition (2.6) is thus optimal for deciding whether n≥1 a n e iλnt is the Fourier series of an element of S 2 or not. One can not however expect that it is always necessary, so we should provide a counterexample in Proposition 2.7 below.

Let f ∈ S 2 be such that Λ ⊂ [0, +∞) (that restriction may be obviously removed). Assume that Λ is α-separated for some α > 0 and write Λ :

= {λ 1 < λ 2 . . .}. Then, α C n≥0 ( k≥1 :n≤λ k <n+1 | f (λ k )|) 2 ≤ n≥1 | f (λ n )| 2 ≤ f 2 S 2 ≤ C n≥0 ( k≥1 :n≤λ k <n+1 | f (λ k )|) 2 .
In particular, we have the following direct consequence of Theorem 2.2.

Corollary 2.5. Let f ∈ S 2 be such that Λ ⊂ [0, +∞). Assume that Λ is α-separated for some α > 0. There exists C > 0, independent of f and α such that

sup N ≥1 N n=1 f (λ n )e iλn• S 2 ≤ C f S 2 α .
Moreover, the series n≥1 f (λ n )e iλn• converges for λ-almost every t ∈ R.

We now give an example of Fourier series converging in S 2 while (2.6) does not hold. Let us first recall the following result of Halasz, see Queffélec [START_REF] Queffélec | Harmonic analysis: study group on translation-invariant Banach spaces[END_REF]. Lemma 2.6. There exists C > 0 such that for every iid Rademacher variables

(ε n ) n≥1 (2.7) E (sup t∈R | n k=1 ε k k it |) ≤ C n log(n + 1)
.

Proposition 2.7. Let (ε n ) n≥1 be iid Rademacher variables on (Ω, F, P). For P-almost all ω ∈ Ω,

n≥1 εn(ω)n it n √ log(n+1)
converges in S 2 , while (2.4) is not satisfied (with

a n = εn(ω) n √ log(n+1)
).

Proof. For every n ≥ 1, every 2 n ≤ k ≤ 2 n+1 and every ω ∈ Ω, we have

k =2 n ε (ω) it log( + 1) S 2 ≤ k =2 n 1 log( + 1) ≤ 2 √ n -→ n→+∞ 0 .
Hence, it suffices to prove that for P-almost every ω ∈ Ω, (

2 N n=1 εn(ω)n it n √ log(n+1) ) N ≥1 converges in S 2 .
Let S n (t) := n k=1 ε k k it (S 0 (t) = 0) and u n := (n log(n + 1)) -1 . We have

2 N n=1 ε n (ω)n it n log(n + 1) = 2 N n=1 (S n (t) -S n-1 (t))u n = 2 N n=1 S n (t)(u n -u n+1 ) + S 2 N (t)u 2 N +1 .
It follows from (2.7) that

E n≥1 sup t∈R S n (t)(u n -u n+1 ) < ∞ , E n≥1 sup t∈R S 2 N (t)u 2 N +1 < ∞ ,
and the result follows.

3. Convergence almost everywhere of associated series of dilates.

Theorem 3.1. Let (λ n ) n≥1 and (µ n ) n≥1 be non-decreasing sequences of real numbers greater than 1. Let (α n ) n≥1 be a sequence of complex numbers such that

n≥1 k : n≤λ k <n+1 |α k | 2 < ∞. Let (β n ) n≥1 ∈ 1 .
Then, D(t) := n≥1 β n e iµnt defines a continuous function on R (and in S 2 ) and there exists a universal constant C > 0 such that

(3.1) sup N ≥1 N n=1 α n D(λ n t) S 2 ≤ C n≥1 |β n | n≥1 k : n≤λ k <n+1 |α k | 2 1/2 .
Moreover, the series n≥1 α n D(λ n t) converges in S 2 and for λ-a.e. t ∈ R.

Proof. Let x ∈ R. The fact that D is a continuous function in S 2 follows easily from the fact that (β n ) n≥1 ∈ 1 . We also have, for every N ≥ 1,

N n=1 α n D(λ n t) ≤ k≥1 |β k | N n=1
α n e itλnµ k .

By Theorem 2.4, we have

x+1 x sup N ≥1 N n=1 α n e itλnµ k 2 dt = 1 µ k µ k (x+1) µ k x sup N ≥1 N n=1
α n e itλn 2 dt

≤ [µ k ] + 1 µ k sup N ≥1 N n=1
α n e itλn 2 S 2 , and (3.1) follows.

The convergence almost everywhere and in S 2 follows by standard arguments.

We also have the following obvious corollary of Theorem 2.4, whose proof is left to the reader.

Proposition 3.2. Let (λ n ) n≥1 and (µ n ) n≥1 be non-decreasing sequences of real numbers greater than 1. Let (β n ) n≥1 be a sequence of complex numbers such that

n≥1 k : n≤µ k <n+1 |β k | 2 < ∞.
Let (α n ) n≥1 ∈ 1 . Then, D(t) := n≥1 β n e iµnt converges in S 2 and there exists a universal constant C > 0 such that

(3.2) sup N ≥1 N n=1 α n D(λ n t) S 2 ≤ C n≥1 |α n | n≥1 k : n≤µ k <n+1 |β k | 2 1/2 .
Moreover, the series n≥1 α n D(λ n t) converges in S 2 and for λ-a.e. t ∈ R.

Theorem 3.3. Let (λ n ) n≥1 and (µ n ) n≥1 be non-decreasing sequences of real numbers greater than 1. Let 1 ≤ p, q ≤ 2 be such that 1/p + 1/q = 3/2. There exists C > 0 such that for any sequence (α n ) n≥1 and (β n ) n≥1 of complex numbers such that

(3.3) n≥1 k : n≤λ k <n+1 |α k | p < ∞ and n≥1 k : n≤µ k <n+1 β k | q < ∞ ,
we have

(3.4) sup N ≥1 N n=1 α n D(λ n t) S 2 ≤ C n≥1 k : n≤λ k <n+1 |α k | p 1/p n≥1 k : n≤µ k <n+1 |β k | q 1/q
where D(t) := n≥1 β n e iµnt is defined in S 2 . Moreover, the series n≥1 α n D(λ n t) converges in S 2 and for λ-a.e. t ∈ R.

Before doing the proof let us mention the following immediate corollaries. We first apply Theorem 3.3 with the choice µ n = log n, n ≥ 1 and

λ k = k, k ≥ 1. Corollary 3.4. Assume that k≥1 |α k | p < ∞ and n≥1 k : 2 n ≤k<2 n+1 β k | q < ∞ ,
for some 1 ≤ p, q ≤ 2 such that 1/p + 1/q = 3/2. Let D(t) := n≥1 β n n it . Then the series

k≥1 α k D(kt) converges in S 2 and for λ-a.e. t ∈ R. Example 3.5. Let 1/2 < α ≤ 1. Choose 1/α < p ≤ 2 and q = 2p/(3p -2) (1 ≤ q < 2). Let D(t) = n≥1 β n n it and assume that (3.5) n≥1 k : 2 n ≤k<2 n+1 β k | q < ∞ .
Then the series

(3.6) k≥1 D(kt) k α
converges almost everywhere. This extends to Dirichlet series Hartman and Wintner result [START_REF] Hartman | On certain Fourier series involving sums of divisors, Trudy Tbilissi Mat[END_REF] showing that the series Φ α

(x) = ∞ k=1 ψ(kx) k α converges almost everywhere. Here ψ(x) = x -[x] - 1/2 = ∞ j=1 sin 2πjx j
, and [x] is the integer part of x. That result is also a special case of (3.6): take β n = 1/j if n = 2 j , j ≥ 1 and β n = 0 elsewhere. Remark 3.6. To our knowledge [START_REF] Hartman | On certain Fourier series involving sums of divisors, Trudy Tbilissi Mat[END_REF] contains, among other results on Φ α , the first convergence result for the series of dilates ∞ k=1 α k ψ(kx). Then, we apply Theorem 3.3 with the choice µ n = n, n ≥ 1 and

λ k = k, k ≥ 1. Corollary 3.7. Assume that k≥1 |α k | p < ∞ and j≥1 |b j | q < ∞ ,
for some 1 ≤ p, q ≤ 2 such that 1/p + 1/q = 3/2. Let D(t) = ≥1 b e i t . Then the series k≥1 α k D(kt) converges in S 2 and for λ-a.e. t ∈ R. Remark 3.8. Suppose that b j = O(1/j α ) for some 1/2 < α ≤ 1. Assume that

k≥1 |α k | p < ∞,
for some 1 ≤ p < 2/(3-2α). Then j≥1 |b j | q < ∞ for q such that 1/p+1/q = 3/2 and we have 1 ≤ p, q ≤ 2. We deduce from Corollary 3.7 that the series k≥1 α k D(kt) converges in S 2 and for λ-a.e. Theorem 2]. See also [START_REF] Weber | An arithmetical approach to the convergence problem of series of dilated functions and its connection with the Riemann Zeta function[END_REF]Theorem 3.1] for conditions of individual type, i.e. depending on the support of the coefficient sequence. When α = 1, the optimal sufficient coefficient condition, namely that ∞ k=1 |α k | 2 (log log k) 2+ε converges for some ε > 0 suffices for the convergence almost everywhere, has been recently obtained by Lewko and Radziwill [20,Corollary 3].

t ∈ R. When 1/2 < α < 1, the nearly optimal sufficient condition k≥1 |c k | 2 exp K(log k) 1-α (log log k) α < ∞ in which K = K(α) has been recently established in [2,
These results are clearly better. However, we note that our results are, even in the trigonometrical case, independent from these ones, and concern a larger class of trigonometrical series D(t).

Proof of Theorem 3.3. Clearly, we only need to prove (3.4). Let (α n ) n≥1 and (β n ) n≥1 be in 1 (N), fixed for all the proof. Let D(t) := n≥1 β n e iµnt . It is enough to prove that for every N ≥ 1,

N sup m=1 m n=1 α n D(λ n t) S 2 ≤ C n≥1 k : n≤λ k <n+1 |α k | p 1/p n≥1 k : n≤µ k <n+1 |β k | q 1/q
, for a constant C > 0 not depending on N , (α n ) n≥1 and (β n ) n≥1 . We shall do that by interpolating (3.1) and (3.2). Define Banach spaces as follows

X 1 := (a n ) n≥1 ∈ C N : (a n ) n≥1 X1 := n≥1 k : n≤λ k <n+1 |a k | < ∞ , X 2 := (a n ) n≥1 ∈ C N : (a n ) n≥1 X2 := n≥1 k : n≤λ k <n+1 |a k | 2 1/2 < ∞ , Y 1 := (b n ) n≥1 ∈ C N : (b n ) n≥1 Y1 := n≥1 k : n≤µ k <n+1 |b k | < ∞ , Y 2 := (b n ) n≥1 ∈ C N : (b n ) n≥1 Y1 := n≥1 k : n≤µ k <n+1 |b k | 2 1/2 < ∞ .
For every t ∈ R, let

J(t) := min j ∈ N : 1 ≤ j ≤ N, | j n=1 α n D(λ n t)| = N sup m=1 | m n=1 α n D(λ n t)| .
Define a linear operator T on (

X 1 + X 2 ) × (Y 2 + Y 1 ) by setting T ((a n ) n≥1 , (b n ) n≥1 ) := N k=1 1 {k≤J(t)} a k ≥1 b e iλ k µ t .
By Propositions 3.1 and 3.2, T is continuous from

X 1 × Y 2 to S 2 and from X 2 × Y 1 to S 2 .
It follows from paragraph 10.1 of Calderón [START_REF] Calderón | Intermediate spaces and interpolation, the complex method[END_REF] that for every s ∈ [0, 1] there exists C s such that, with the notations of [START_REF] Calderón | Intermediate spaces and interpolation, the complex method[END_REF] T

((a n ) n≥1 , (b n ) n≥1 ) S 2 ≤ C s (a n ) n≥1 [X1,X2]s (b n ) n≥1 [Y2,Y1]s , where (a n ) n≥1 [X1,X2]s = inf{ f F : f ∈ F, f (s) = (a n ) n≥1 } ,
and F is the Banach space of continuous functions f from {z ∈ C : 0

≤ Re z ≤ 1} to X 1 + X 2 , analytic on {z ∈ C : 0 < Re z < 1} such that for every t ∈ R, f (it) ∈ X 1 and f (1 + it) ∈ X 2 with lim |t|→+∞ f (it) = lim |t|→+∞ f (1 + it) = 0, endowed with the norm f F := max sup t∈R f (it) X1 , sup t∈R f (1 + it) X2 .
The norm (b n ) n≥1 [Y2,Y1]s is defined similarly.

We shall now give an upper bound for (a n ) n≥1 [X1,X2]s . By homogeneity, we may assume that

n≥1 n≤λ k <n+1 |a k | 2/(2-s) = 1 .
Let ε > 0. Define an element f ε of F by setting for every z ∈ C such that 0 ≤ Re z ≤ 1, f (z) = (c n (z)) n≥1 where, for every n ≥ 1 and every k ≥ 1 such that n ≤ λ k < n + 1,

c k (z) = e ε(z 2 -s 2 ) a k n≤λ <n+1 |a | (2-z)/(2-s)-1 , if n≤λ <n+1 |a | = 0 and c k (z) = 0 otherwise.
The introduction of ε here is a standard trick to ensure the assumptions lim

|t|→+∞ f ε (it) = lim |t|→+∞ f ε (1 + it) = 0. Notice that f ε (s) = (a n ) n≥1 . For every t ∈ R, f ε (it) X1 ≤ n≥1 n≤λ k <n+1 |a k | 2/(2-s) = 1 .
Similarly, for every t ∈ R,

f ε (1 + it) X2 ≤ e ε n≥1 ( n≤λ k <n+1 |a k |) 2/(2-s) = e ε .
Letting ε → 0, we infer that

(a n ) n≥1 [X1,X2]s ≤ 1 = n≥1 ( n≤λ k <n+1 |a k |) 2/(2-s) 2-s 2 .
Similarly, one can prove that

(b n ) n≥1 [X1,X2]s ≤ n≥1 ( n≤λ k <n+1 |b k |) 2/(1+s) 1+s 2 
.

Taking s = 2(1 -1/p), yields the desired result.

4.

A necessary condition for convergence almost everywhere.

Hartman [START_REF] Hartman | The divergence of non-harmonic gap series[END_REF] has proved the following result Theorem 4.1. Assume that

λ k λ k-1 ≥ q > 1, k ≥ 1. (4.1)
Assume that the series ∞ k=1 a k e iλ k t converges for almost all real t. Then the series

∞ k=1 |a k | 2 converges.
The proof is similar to the one of Zygmund [28, Proof of Lemma 6.5, Ch. V] (see also p. 120-122 of the 1935's Edition).

Remark 4.2. The converse of Theorem 4.1 is due to Kac [START_REF] Kac | The convergence and divergence of non-harmonic gap series[END_REF]. If ∞ k=1 |a k | 2 converges, then the series ∞ k=1 a k e iλ k t with (λ k ) k≥1 verifying (4.1), converges for almost all real t. Kac's proof is a modification of Marcinkiewicz's. See Remark 1.1. In place of Fejer's theorem, another summation method is used. See Theorem 13 and pages 84-85 in [START_REF] Titchmarsh | Introduction to the theory of Fourier integrals[END_REF], and Theorem 21 in [START_REF] Hardy | The general theory of Dirichlet series[END_REF]. We give an application. Recall that a Sidon sequence is a set of integers with the property that the pairwise sums of elements are all distinct.

M := k = , k = (k, ) =(k , ) 1 -|(λ k -λ ) -(λ k -λ )| 2 + < ∞.
As a corollary we get Corollary 4.5. Let {λ k , k ≥ 1} be a Sidon sequence. Assume that (4.3) is satisfied. Then the series ∞ k=1 |a k | 2 converges. Remark 4.6. In contrast with Hadamard gap sequences, Sidon sequences may grow at most polynomially. See [START_REF] Ruzsa | An almost polynomial Sidon sequence[END_REF] where it is for instance proved that the sequence {n 5 + [ξn 4 ], n ≥ n 0 } is for some real number ξ ∈ [0, 1] and n 0 large, a Sidon sequence. 

M := k = , k = (k, ) =(k , ) g k g , g k g τ 2 < ∞. (4.4) Assume that τ k a k g k (t) converges > 0. (4.5) Then the series ∞ k=1 |a k | 2 converges.
Proof of Theorem 4.8. We use Hartman's method and the below classical generalization of Bessel's inequality. Lemma 4.9. (Bellman-Boas' inequality) Let x, y 1 , . . . , y n be elements of an inner product space (H, ., . ), then

n i=1 | x, y i | 2 ≤ x 2 max 1≤i≤n y i 2 + 1≤i =j≤n | y i , y j | 2 1/2 .
See [START_REF] Bellman | Almost orthogonal series[END_REF] for instance. As

t : k a k g k (t) converges = ε>0 V u>v>V t : u k=v a k g k (t) ≤ ε ,
by assumption it follows that for any ε > 0, there exists an integer V such that if

A := u>v>V u k=v a k g k (t) ≤ ε , then τ (A) > 0. (4.6)
Assume the series k≥1 |a k | 2 is divergent. We are going to prove that this will contradict (4.6).

By squaring out,

A m k=n a k g k (t) 2 τ (dt) = τ (A) m k=n |a k | 2 + m k, =n k = a k a A g k (t)g (t)τ (dt). (4.7) By using Cauchy-Schwarz's inequality, m k, =n k = a k a A g k (t)g (t)τ (dt) ≤ m k, =n k = |a k | 2 |a | 2 1/2 m k, =n k = A g k (t)g (t)τ (dt) 2 1/2 .
Applying Lemma 4.9 to the system of vectors of L 2 τ (R), χ(A), g k (t)g (t), n ≤ k, ≤ m, gives in view of the assumption made,

m k, =n k = A g k (t)g (t)τ (dt) 2 ≤ τ (A) 2 K 2 + (k, ) =(k , ) n≤k = ≤m n≤k = ≤m g k g , g k g τ 2 1/2 ≤ τ (A) 2 K 2 + M 1/2 .
Letting n, m tend to infinity, it follows that the series k = A g k (t)g (t)τ (dt) 2 converges. Consequently, for all m > n, n sufficiently large (n > N , N depending on A) we have

m k, =n k = A g k (t)g (t)τ (dt) 2 ≤ τ (A) 2 /4.
There is no loss to assume N > V , which we do. Therefore

m k, =n k = a k a A g k (t)g (t)τ (dt) ≤ m k, =n k = |a k | 2 |a | 2 1/2 τ (A) 2 .
This along with (4.7) implies where for the last inequality we have used the fact that N > V and the definition of A.

We are now free to let m tend to infinity in (4.9), which we do. We deduce that necessarily τ (A) = 0. Hence a contradiction with (4.6).

This achieves the proof.

Proof of Theorem 4. Final note. While finishing this paper, we discovered that Theorem 2.4 was proved by Guniya [START_REF] Guniya | Remarks on the convergence of Fourier series of almost-periodic Stepanov functions, (Russian) Trudy Tbiliss[END_REF] using a completely different method from ours. Guniya's proof makes use of Wiener's result [START_REF] Wiener | On the representation of functions by trigonometrical integrals[END_REF] (previously mentionned) and does not seem to provide directly a maximal inequality. Our proof is somewhat more elementary. Moreover it allows to recover Wiener's result and provides at the same time a maximal inequality. It seems that Guniya's paper has been completely overlooked among the mathematical community. We observe in particular that Theorem 2.4 notably includes obviously Hedenmalm and Saksman result [START_REF] Hedenmalm | Carleson's convergence theorem for Dirichlet series[END_REF] published nearly twenty years after [START_REF] Guniya | Remarks on the convergence of Fourier series of almost-periodic Stepanov functions, (Russian) Trudy Tbiliss[END_REF].

We now briefly explain Guniya's approach (see Theorem 1.2, (8) and Lemmas after and paragraph 2.10). The proof follows from the combination of several different results proved in the paper, and is based on Riemann theory of trigonometric series [START_REF] Zygmund | Trigonometric series, Third Ed. Vol. 1&2 combined[END_REF]. Assume that the coefficients are positive. Then the series n c n e iλnx converges in S 2 to some f . Let I, J be two intervals with |I| < 2π, |J| = 2π and I ⊆ J. Let F be represented by the term by term integrated Fourier series of f , and let L be a bump function of class C 5 equal to 1 on I and to 0 on J\I where I ⊂ I ⊆ J. Then by a theorem due to Zygmund (see [START_REF] Zygmund | Trigonometric series, Third Ed. Vol. 1&2 combined[END_REF]Theorem 9.19]), the partial sums of the Fourier series of f are uniformly equiconvergent on I with the partial sum of a trigonometric series m a m e imx . Next, if F L admits a second order derivative in the sense of distributions, say g, then the above trigonometric series is the one of g. And the a.e. convergence on I follows from Carleson's theorem. lt remains to prove that under condition 2.4, F has indeed second order Schwarz derivatives, controlled by the L 2 norm of f , which should follow from Theorem 2.2 in [START_REF] Guniya | Remarks on the convergence of Fourier series of almost-periodic Stepanov functions, (Russian) Trudy Tbiliss[END_REF].

Theorem 4 .

 4 1 can be extended in the following way.

Theorem 4 . 3 .

 43 Let {λ k , k ≥ 1} be a increasing sequence of positive reals satisfying the following condition

3 )

 3 iλ k t converges > 0. (4.Then the series ∞ k=1 |a k | 2 converges. Remark 4.4. By considering integers k such that n ≤ λ k < n + 1/2, next those such that n + 1/2 ≤ λ k ≤ n + 1, we observe that condition 4.2 implies that sup n # k : n ≤ λ k < n + 1 < ∞.

  Proof of Corollary 4.5. Let (k, ) = (k , ) with k = and k = . As the equation λ k -λ = λ k -λ means λ k + λ = λ + λ k , the fact that {λ k , k ≥ 1} is a Sidon sequence implies that the only possible solutions are k = k , = or k = , = k . The last one is impossible by assumption, and the first would mean that (k, ) = (k , ) which is excluded. Consequently, λ k -λ = λ k -λ . Hence the sum in (4.2) is always zero. Remark 4.7. It follows from Hartman's proof that under condition (4.1), the sequence of differences λ k -λ , k = is a finite union of subsequences such that the difference of any two numbers of the same subsequence exceeds 1. These subsequences fulfill assumption (4.2) of Theorem 4.3, and thus Theorem 4.1 follows from Theorem 4.3. Theorem 4.3 is a consequence of the following general necessary condition for almost everywhere convergence of series of functions. Theorem 4.8. Let (X, B, τ ) be a probability space. Let {g k , k ≥ 1} ⊂ L 4 (τ ) be a sequence of functions with g k 2,τ = 1, g k 4,τ ≤ K and satisfying the following condition

a k g k (t) 2 τ

 2 (dt) ≤ ε 2 τ (A), (4.9)

3 .

 3 Choose τ (dt) as the density function on the real line associated to τ(t) = 1-cos t πt 2 . Then R τ (dt) = 1, R e ixt τ (dt) = 1 -|x| + .Since τ is absolutely continuous with respect to the Lebesgue measure, (4.3) holds with τ in place of λ. Next choose g k (t) = e iλ k t . We haveg k g , g k g τ = 1 -|(λ k -λ ) -(λ k -λ )| + .Condition (4.4) is thus fulfilled. Theorem 4.8 applies and we deduce that the series ∞ k=1 |a k | 2 converges.

.

  POINTWISE CONVERGENCE OF ALMOST PERIODIC FOURIER SERIES AND ASSOCIATED SERIES OF DILATESCHRISTOPHE CUNY AND MICHEL WEBERAbstract. Let S 2 be the Stepanov space with norm f S 2 = sup x∈R Let (an) n≥1 be satisfying Wiener's condition:P n≥1 `Pk : n≤λ k ≤n+1 |a k | ´2 < ∞.We establish the following maximal inequality

	`R x+1 x	|f (t)| 2 dt ´1/2 . Let
	λn ↑ ∞.	

  . Write u n :=[2 λn ]. Hence (u n ) n≥1 is a non-decreasing sequence of integers. That sequence may overlap from time to time. So let (v k ) k≥1 be a strictly increasing sequence of integers with same range as (u n ) n≥1 .Define a sequence (b n ) n≥1 as follows. Let n ≥ 1 be such that there exists k ≥ 1 such that n
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