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We study the number of solutions N (B, F ) of the diophantine equation

is a factor closed set. We study more particularly the case when

Introduction-Results.

The number of solutions N (B) of the diophantine equation n 1 n 2 = n 3 n 4 with unknowns verifying 1 ≤ n i ≤ B, 1 ≤ i ≤ 4 was studied in Shi [START_REF] Shi | On the equation x 1 x 2 = x 3 x 4 and mean value of character sums[END_REF], where the following very precise estimate (see Theorem 1), improving upon previous similar estimate by Ayyad, Cochrane and Zheng [START_REF] Ayyad | The Congruence x 1 x 2 = x 3 x 4 (mod p), the Equation x 1 x 2 = x 3 x 4 , and Mean Values of Character Sums[END_REF] 

π 2 ζ (2), γ 2 = 3 2 -γ 0 -π 2 12
, γ 0 being Euler's constant. The proof connects the evaluation of N (B) with the error term in the Dirichlet divisor problem, and only involves elementary arithmetic. Some more simplifications were provided by Liu and Zhai [START_REF] Liu | The equation n 1 n 2 = n 3 n 4 , the gcd-sum function and the mean values of certain character sums[END_REF].

In this work, we study the following variant of the initial equation. Let F be a finite set of integers. We assume that F is factor closed, in short F is an FC set. By this we mean that d|k ⇒ d ∈ F , for all k ∈ F ; in particular 1 ∈ F . By definition, this notion extends to sets F formed with not necessarily distinct elements, for instance the set M k (B), B ≥ 1, of all possible products m 1 . . . m k obtained by taking 1 ≤ m i ≤ B, 1 ≤ i ≤ k. We refer to Haukkanen, Wang and Sillanpää [START_REF] Haukkanen | On Smith's determinant[END_REF] (see also references therein) concerning this notion and extensions, also Weber [START_REF] Weber | An arithmetical approach to the convergence problem of series of dilated functions and its connection with the Riemann Zeta function[END_REF]. Typical examples of FC sets are naturally intervals [1, B], the set of divisors of an integer, the set of squarefree integers less than B, the multiplicative semi-group generated by a given set of integers, the trace F ∩ [1, B] of an FC set F .

Let N (B, F ) denote the number of integers solutions of the restricted equation

n 1 n 2 = n 3 n 4 , (1.2)
where the unknowns satisfy 1

≤ n 1 ≤ B, 1 ≤ n 3 ≤ B, n 2 , n 4 ∈ F .
It is of interest to observe that the initial equation is just a particular case of equation (1.2). This can be generalized. Let k ≥ 1 and let N k (B) denote the number of solutions of the equation

(1.3) n 1 . . . n k+1 = n k+2 . . . n 2(k+1) , with unknowns verifying 1 ≤ n i ≤ B, 1 ≤ i ≤ 2(k + 1). One sees that solving equation (1.2) amounts to solving equation (1.3) with F = M k (B).
We also consider equation (1.2) with the constraint that all unknowns must belong to F , and denote by N (F, F ) the corresponding number of solutions.

We use the approach developed in [START_REF] Shi | On the equation x 1 x 2 = x 3 x 4 and mean value of character sums[END_REF] to establish the following results. Given two numbers n and m, let n ∨ m = max(n, m). Proposition 1.1. For any FC set F and any integer B ≥ 1, we have

N (B, F ) = n,m∈F gcd(n,m)=1 µ,ν∈F ν µ = m n 1 B n ∨ m . If F ⊂ [1, B], then N (B, F ) ≤ 2B 2 n∈F n =1 1 n + B 2 , N (B, F ) ≥ µ,ν∈F gcd(µ, ν), N (F, F ) = n,m∈F gcd(n,m)=1 n 2 ,n 4 ∈F n 4 n 2 = m n 1 2 . Remark 1.2. For the case F = [1, B], we recover that N (B) ≤ CB 2 log B. We also recall that ([8, Exercise 59]) 1≤µ,ν≤B gcd(µ, ν) = 6 π 2 B 2 log B + O(B 2 ). (1.4) We deduce Theorem 1.3. Suppose that F = {m 1 m 2 : 1 ≤ m 1 , m 2 ≤ [B α ]} with α ∈ [0, 1/2] . We have N (B, F ) ≤ 1 + 12 π 2 + 2 B α <m≤B 2α m∈F 1 m B 1+2α .
Let us consider the following typical example of a FC set. Let (1.5)

F = m = p ε1 1 . . . p ε k k | ε j ∈ {0, 1}, 1 ≤ j ≤ k ,
where p 1 < . . . < p k are prime numbers. Recall that ω(n) = #{p prime : p|n} is the prime divisor function, and that ω(1) = 0.

Theorem 1.4. For any positive integer B and F C set of the type (1.5),

N (B, F ) ≤ C B2 k k i=1 1 + 1 4p i min B , 5 4 k + C 2 k k i=1 1 + 1 3p i min B 3 2 k , 2 k .
Here C is a universal constant. Also,

N (B, F ) ≥ 2 k B + 2 k B n∈F 1<n≤B 2 -ω(n) n . Further, if F ⊂ [1, B], N (B, F ) ≥ 2 k B + 2 k B k j=1 1 + 1 2p j .
In the course of the proof, we show a better but less explicit result (see (4.13)), from which it follows that when the p i are all large, then

N (B, F ) ∼ B2 k n,m∈F ∩[1,B] 1 2 ω(m) 2 ω(n) (n ∨ m) . (1.6) See Remark 4.1.
The paper is organized as follows. In the next section, some preparatory lemmas are established. In Sections 3 and 4 we prove Theorems 1.3 and 1.4 respectively. In Section 5.2, we conclude with a remark concerning equation (1.3), and give an elementary proof of an almost optimal upper bound of N k (B). We also suggest a possible extension of Theorem 1.4. Further, the solutions to the equation

Proof of

n 1 n = n 3 m in the unknowns 1 ≤ n 1 ≤ B, 1 ≤ n 3 ≤ B are trivially n 1 = λm, n 3 = λn, with 1 ≤ λ ≤ B n∨m if n ∨ m ≤ B,
and there is no solution otherwise.

Hence the number of solutions in the unknowns

n 1 , n 3 ∈ [1, B], n 2 , n 4 ∈ F verifying n1 n3 = n4 n2 = m n , is n 2 ,n 4 ∈F n 4 n 2 = m n 1 B n ∨ m . (2.1)
Note that when F = [1, B], this simplifies and one gets B n∨m 2 , which for n = m = 1 reduces to B 2 . Also (see [7, (4)]),

N (B) = 1≤n,m≤B gcd(n,m)=1 B n ∨ m 2 = B 2 + 2 1≤n<m≤B gcd(n,m)=1 B n ∨ m 2 .
In our case we get

N (B, F ) = n,m∈F gcd(n,m)=1 n 2 ,n 4 ∈F n 4 n 2 = m n 1 B n ∨ m . (2.2) If F ⊂ [1, B], we have the obvious bound n 2 ,n 4 ∈F n 4 n 2 = m n 1 ≤ B n ∨ m ,
and so,

N (B, F ) ≤ n,m∈F gcd(n,m)=1 B n ∨ m 2 = B 2 + 2 n,m∈F n<m gcd(n,m)=1 B m 2 . Plainly, n,m∈F n<m gcd(n,m)=1 B m 2 ≤ B 2 m∈F 1 m 2 n∈F n<m gcd(n,m)=1 1 ≤ B 2 m∈F φ(m) m 2 ≤ B 2 m∈F 1 m , since φ(m) ≤ m.
Hence the claimed bound. Further,

N (F, F ) = n,m∈F gcd(n,m)=1 n 2 ,n 4 ∈F n 4 n 2 = m n 1 2 . (2.3) Next we prove the lower bound for N (B, F ) in Proposition 1.1. Let (ν, µ) ∈ F 2 and write µ = gcd(ν, µ)m, ν = gcd(ν, µ)n with gcd(n, m) = 1. Associate to (ν, µ) the set c(ν, µ) = (dm), ν, (dn), µ , 1 ≤ d ≤ gcd(ν, µ) . These quadruples provide gcd(ν, µ) solutions of the restricted equation (1.2), since obviously dmν = dnµ and d max(m, n) ≤ max(ν, µ) ≤ B. Naturally if (µ , ν ) ∈ F 2 and (µ , ν ) = (µ, ν), then c(ν , µ ) ∩ c(ν, µ) = ∅. Thus, N (B, F ) ≥ µ,ν∈F gcd(µ, ν). Remark 2.1. Let F as in (1.5). Then, (2.4) µ,ν∈F gcd(µ, ν) = 3 k k i=1 1 + 1 3 p i .
Further,

N (F, F ) = 6 k . (2.5) Indeed, let a ∈ F , n, m ∈ F with gcd(n, m) = a. Thus m = m 1 a, n = n 1 a with gcd(n 1 , m 1 ) = 1. Because of the choice of F , we moreover have that gcd(n 1 , a) = 1 = gcd(m 1 , a). Thus µ,ν∈F gcd(µ, ν) = a∈F a m 1 ∈F gcd(m 1 ,a)=1 n 1 ∈F gcd(n 1 ,a)=1 gcd(n 1 ,m 1 )=1 1 = a∈F a m 1 ∈F gcd(m 1 ,a)=1 2 k-ω(a)-ω(m1) = 2 k a∈F a2 -ω(a) k-ω(a) j=0 C j k-ω(a) 2 -j = 2 k a∈F a 2 -ω(a) 3 2 k-ω(a) = 3 k a∈F a 1 3 ω(a) = 3 k k i=1 1 + 1 3 p i . Further N (F, F ) = gcd(n,m)=1 n,m∈F n 2 ,n 4 ∈F n 4 n 2 = m n 1 2 = gcd(n,m)=1 n,m∈F 4 k-ω(m)-ω(n) = 5 k m∈F 5 -ω(m) = 6 k .
3. Proof of Theorem 1.3.

By (2.
2), we have

N (B, F ) = #(F ) B + 2 gcd(n,m)=1,n<m n,m∈F B m n 2 ,n 4 ∈F n 4 n 2 = m n 1 := #F B + 2B 0 .
We get

B 0 = 1<m≤B α m∈F + B α <m≤B 2α m∈F B m gcd(n,m)=1 n<m,n∈F n 2 ,n 4 ∈F n 4 n 2 = m n 1 := B 01 + B 02 .
Let us consider the first sum above, B 01 .

B 01 = 1<m≤B α B m gcd(n,m)=1,n<m B α ≤ B 1+α m≤B α φ(m) m = 6 π 2 B 1+2α + O B 1+α log B ,
where n≤x φ(n) n = 6 π 2 x + O(log x) is used. Now let us estimate B 02 . B 02 ≤ B α <m≤B 2α m∈F B m B 2α m n<m,(n,m)=1, n∈F 1 ≤ B 1+2α B α <m≤B 2α m∈F φ(m) m 2 ≤ B 1+2α B α <m≤B 2α m∈F 1 m .
Putting together the above estimates, we have Then n4 n2 = m n gives rise to solutions n 4 = λm, n 2 = λn. As λ, λm, λn ∈ F , it follows by definition of F that λ ∩ m = λ ∩ n = ∅. Otherwise, if for instance some p j verifies p j ∈ λ ∩ m , then p 2 j |λm = n 4 , which is impossible. Thus λ ⊂ {p 1 , . . . , p k } -m -n . Conversely any subset A of it provides a suitable λ with λ = A. And so we have

N (B, F ) ≤ 1 + 12 π 2 + 2 B α <m≤B 2α m∈F 1 m B 1+2α .
n 2 ,n 4 ∈F n 4 n 2 = m n 1 = 2 k-ω(m)-ω(n) .
for all n, m ∈ F with gcd(n, m) = 1.

Inserting this into (4.1) we get,

N (B, F ) = n,m∈F gcd(n,m)=1 2 k-ω(m)-ω(n) B n ∨ m . (4.2)
First consider the lower bound. We have

N (B, F ) ≥ 2 k n∈F n≤B 2 -ω(n) B n .
Observe that for X = 0,

d∈F 1 d X -ω(d) = k j=1 1 + 1 Xp j . (4.3) Thus if F ⊂ [1, B], N (B, F ) ≥ 2 k B k j=1 1 + 1 2p j ,
which proves the lower bound.

Next consider the upper bound for N (B, F ). We have

N (B, F ) = B 2 k n,m∈F gcd(n,m)=1 (m∨n)≤B 1 2 ω(m) 2 ω(n) (n ∨ m) + 2 k O n,m∈F gcd(n,m)=1 (m∨n)≤B 1 2 ω(m) 2 ω(n) . (4.4) Put Y = n,m∈F gcd(n,m)=1 (m∨n)≤B 1 2 ω(m) 2 ω(n) (n ∨ m) , Y 0 = n,m∈F gcd(n,m)=1 (m∨n)≤B 1 2 ω(m) 2 ω(n) .
We thus start with the formula

N (B, F ) = B 2 k Y + 2 k O(Y 0 ). (4.5)
We note that

Y = 1 + 2 m∈F m≤B 1 m 2 ω(m) n∈F gcd(n,m)=1 n<m 1 2 ω(n) .
The presence of the order relation "< "on F , a set of squarefree numbers, in the summation index, makes that sum not easy to manipulate. We cannot bound Y directly and will thus proceed differently. We first note the relation

1 n ∨ m = 1 √ n 1 √ m n ∧ m n ∨ m 1/2 . (4.6) Now as e -|θ| = R e iθt dt π(t 2 +1) , it follows that n m s = R 1 n -ist m ist dt π(t 2 + 1) (m ≥ n). (4.7) Take s = 1/2. We get 1 n ∨ m = 1 √ n 1 √ m R 1 n -it/2 m it/2 dt π(t 2 + 1)
.

Recall that µ denotes the Möbius function and that

d|n µ(d) = δ(n) := 1 if n = 1, 0 if n = 1. (4.8)
Putting this together, we have

Y = n,m∈F gcd(n,m)=1 (m∨n)≤B 1 2 ω(n) √ n 1 2 ω(m) √ m R 1 n -it/2 m it/2 dt π(t 2 + 1) = d∈F µ(d) n,m∈F d|n,d|m (m∨n)≤B 1 2 ω(n) √ n 1 2 ω(m) √ m R 1 n -it/2 m it/2 dt π(t 2 + 1) = d∈F µ(d) R n∈F d|n n≤B 1 2 ω(n) √ n 1 n it/2 2 dt π(t 2 + 1) . (4.9)
By the very definition of F , if n ∈ F and d|n, then n = νd and ν ⊂ {p 1 , . . . , p k }d . Thus

n∈F d|n n≤B 1 2 ω(n) √ n 1 n it/2 = 1 2 ω(d) d (1+it)/2 ν∈F gcd(ν,d)=1 ν≤B/d 1 2 ω(ν) √ ν 1 ν it/2 . So that, Y = R ν∈F ν≤B 1 2 ω(ν) √ ν 1 ν it/2 2 dt π(t 2 + 1) + d∈F d =1 µ(d) 2 ω(d) d R ν∈F gcd(ν,d)=1 ν≤B/d 1 2 ω(ν) √ ν 1 ν it/2 2 dt π(t 2 + 1)
.

We notice that

R ν∈F ν≤B 1 2 ω(ν) √ ν 1 ν it/2 2 dt π(t 2 + 1) = n,m∈F ∩[1,B] 1 2 ω(m) 2 ω(n) (n ∨ m)
.

By Lemma 2.4 in [START_REF] Weber | Cauchy means of Dirichlet polynomials[END_REF],

R N n=1 x n n ist 2 dt π(t 2 + 1) = N j=1 (j 2s -(j -1) 2s ) N µ=j x µ µ s 2
for any real s ≥ 0. In our case s = 1/2. Now by Lemma 2.5 in [START_REF] Weber | Cauchy means of Dirichlet polynomials[END_REF],

N j=1 (j 2s -(j -1) 2s ) N µ=j x µ µ s 2 ≤      C s N µ=1 |x µ | 2 µ 3/2-2s if 0 < s < 1/4, C N µ=1 |x µ | 2 µ log µ if s = 1/4, C s N µ=1 |x µ | 2 µ if s > 1/4,
for any s > 0 and complex numbers x j , j = 1, . . . , N . Therefore, -If d = 1, we have

R ν∈F ν≤B 1 2 ω(ν) √ ν 1 ν it/2 2 dt π(t 2 + 1) ≤ C ν∈F ν≤B 1 2 2ω(ν) ν ν = ν∈F ν≤B 1 4 ω(ν) .
We note that ν∈F ν≤B

1 4 ω(ν) ≤ B ν∈F 1 ν 4 ω(ν) = B p i 1 ,...,p ir 1≤r≤k 1 p i1 . . . p ir 4 k = B k i=1 1 + 1 4p i Further, ν∈F 1 4 ω(ν) = k y=0 ν∈F,ω(ν)=y 4 -y = k y=0 C y k 4 -y = 5 4 k . Thus R ν∈F ν≤B 1 2 ω(ν) √ ν 1 ν it/2 2 dt π(t 2 + 1) ≤ min B r i=1 1 + 1 4p i , 5 4 k . (4.10) -If d > 1, d ∈ F , then similarly, R n∈F d|n n≤B 1 2 ω(n) √ n 1 n it/2 2 dt π(t 2 + 1) = 1 2 2ω(d) d R ν∈F gcd(ν,d)=1 ν≤B/d 1 2 ω(ν) √ ν 1 ν it/2 2 dt π(t 2 + 1) ≤ C 2 2ω(d) d ν∈F gcd(ν,d)=1 ν≤B/d 1 2 2ω(ν) ν • ν = C 2 2ω(d) d ν∈F gcd(ν,d)=1 ν≤B/d 1 4 ω(ν) .
We also note that

ν∈F gcd(ν,d)=1 ν≤B/d 1 4 ω(ν) ≤ B d ν∈F gcd(ν,d)=1 1 ν4 ω(ν) = B d 1≤i≤k p i | d 1 + 1 4p i . Next, ν∈F gcd(ν,d)=1 1 4 ω(ν) = k-ω(d) y=0 ν∈F,ω(ν)=y 4 -y = k-ω(d) y=0 C y k-ω(d) 4 -y = 5 4 k-ω(d) = 5 4 k 4 5 ω(d) 
.

Therefore,

R n∈F d|n ν≤B 1 2 ω(n) √ n 1 n it/2 2 dt π(t 2 + 1) ≤ C 4 ω(d) d min B d 1≤i≤k p i | d 1 + 1 4p i , 5 4 k 4 5 ω(d) 
.

Consequently,

d∈F d =1 |µ(d)| R n∈F d|n n≤B 1 2 ω(n) √ n 1 n it/2 2 dt π(t 2 + 1) ≤ d∈F d =1 C 4 ω(d) d min B d 1≤i≤k p i | d 1 + 1 4p i , 5 4 k 4 5 ω(d) 
.

On the one hand,

d∈F d =1 1 4 ω(d) d 5 4 k 4 5 ω(d) = 5 4 k d∈F d =1 1 5 ω(d) d ≤ 5 4 k k i=1 1 + 1 5p i .
On the other hand, using the definition of F ,

B d∈F d =1 1 4 ω(d) d 2 1≤i≤k p i | d 1 + 1 4p i = C B k i=1 1 + 1 4p i d∈F d =1 C 4 ω(d) d 2 1≤i≤k p i | d (1 + 1/4p i ) = C B k i=1 1 + 1 4p i d∈F d =1 1≤i≤k p i | d 1 (4p 2 i + 4p i ) = C B k i=1 1 + 1 4p i k i=1 1 + 1 (4p 2 i + 4p i ) -1 = C B k i=1 1 + 1 4p i ε(F ),
where we put

(4.11) ε(F ) = k i=1 1 + 1 4p i (p i + 1) -1. 
Thus

d∈F d =1 |µ(d)| R n∈F d|n n≤B 1 2 ω(n) √ n 1 n it/2 2 dt π(t 2 + 1) ≤ C min B k i=1 1 + 1 4p i ε(F ), 5 4 
k k i=1 1 + 1 5p i , whence, Y - n,m∈F ∩[1,B] 1 2 ω(m) 2 ω(n) (n ∨ m) ≤ C k i=1 1 + 1 4p i min B ε(F ), 5 4 k . 
Using now (4.10) we obtain the bound,

Y ≤ min B k i=1 1 + 1 4p i , 5 4 k + C k i=1 1 + 1 4p i min B ε(F ), 5 4 k ≤ C k i=1 1 + 1 4p i min B , 5 4 k , since ε(F ) ≤ C uniformly in F . Now plainly, (n,m)=1 n,m∈F 1 2 ω(m)+ω(n) = m∈F 1 2 ω(m) n∈F (n,m)=1 1 2 ω(n) = m∈F 1 2 ω(m) 3 2 k-ω(m) = 3 2 k m∈F 1 3 ω(m) = 3 2 k 4 3 k = 2 k . (4.12) Also n,m∈F gcd(n,m)=1 (m∨n)≤B 1 2 ω(m) 2 ω(n) ≤ B n,m∈F gcd(n,m)=1 1 m2 ω(m) 2 ω(n) = B m∈F 1 m2 ω(m) n∈F (n,m)=1 1 2 ω(n) = B m∈F 1 m2 ω(m) 3 2 k-ω(m) = B 3 2 k m∈F 1 m3 ω(m) = B 3 2 k k i=1 1 + 1 3p i . Thus Y 0 ≤ min B 3 2 k k i=1 1 + 1 3p i , 2 k .
As by (4.1), N (B,

F ) = B2 k Y + 2 k O(Y 0 ), we get, N (B, F ) -B2 k n,m∈F ∩[1,B] 1 2 ω(m) 2 ω(n) (n ∨ m) ≤ 2 k O min B k i=1 1 + 1 4p i (1 + ε(F )) , 5 4 k + C B2 k k i=1 1 + 1 4p i min B ε(F ), 5 4 k . (4.13) Indeed, N (B, F ) -B2 k n,m∈F ∩[1,B] 1 2 ω(m) 2 ω(n) (n ∨ m) ≤ N (B, F ) -B2 k Y + B2 k Y - n,m∈F ∩[1,B] 1 2 ω(m) 2 ω(n) (n ∨ m) ≤ 2 k O(Y 0 ) + CB2 k k i=1 1 + 1 4p i min B ε(F ), 5 4 k ≤ 2 k O min B 3 2 k k i=1 1 + 1 3p i , 2 k +CB2 k k i=1 1 + 1 4p i min B ε(F ), 5 4 k . 
Also

N (B, F ) ≤ B2 k min B r i=1 1 + 1 4p i , 5 4 k + + 2 k O min B 3 2 k k i=1 1 + 1 3p i , 2 k + C B2 k k i=1 1 + 1 4p i min B ε(F ), 5 4 k ≤ C B2 k k i=1 1 + 1 4p i min B , 5 4 k + + C 2 k k i=1 1 + 1 3p i min B 3 2 k , 2 k . (4.14)
Remark 4.1. When the p i are all large, then ε(F ) becomes small and we see with (4.13) that

N (B, F ) ∼ B2 k n,m∈F ∩[1,B] 1 2 ω(m) 2 ω(n) (n ∨ m) . (4.15) Remark 4.2. By Weierstrass' inequality, if 0 < a k < 1 and n k=1 a k < 1, then 1 + n k=1 a k < n k=1 1 + a k < 1 1 - n k=1 a k . See Mitrinović [5, 3.2.37(3)]. Thus if k i=1 1 p 2 i +pi ≤ 2, ε(F ) = k i=1 1 + 1 (4p 2 i + 4p i ) -1 ≤ k i=1 1 (4p 2 i +4pi) 1 - k i=1 1 (4p 2 i +4pi) ≤ 2 k i=1 1 p 2 i + p i .
5. Concluding Remarks.

5.1. A remark concerning Equation 1.3. Granville and Soundarajan (unpublished) proved using contour integral representation the following estimate (5.1)

N k (B) ∼ c(k)B k+1 (log B) k 2 ,
where the constant c(k) depends on k only. We show here that the following almost optimal upper bound (5.2)

N k (B) k B k+1 log B k 2 +2k-2 , (k ≥ 1),
can be proved quite elementarily. It is an interesting question to know whether the approach we propose can be used to remove the extra term 2k -2. Let d k (n) denote the Piltz divisor function counting the number of ways to write n as a product of k factors. We will use the fact that d k is sub-multiplicative:

d k (nm) ≤ d k (n)d k (m)
, for all n, m ≥ 1. This follows from the formula ([6], p. 40)

d k (n) = p C vp(n) vp(n)+k-1 = p k-1 j=1 v p (n) + j j ,
where v p (n) is the p-valuation of n, i.e. p vp(n) ||n and v p (1) ≡ 0.

Proof of (5.2). Applying Lemma 1.1 with

F = M k (B) gives, N k (B) = gcd(n,m)=1 1≤n,m≤B B n ∨ m m 1 ,m 2 ∈M k (B) m 2 m 1 = n m 1 . Thus N k (B) = B#(M k (B)) + 2 gcd(n,m)=1 1≤n<m≤B B m m 1 ,m 2 ∈M k (B) m 2 m 1 = n m 1 := B#(M k (B)) + 2B k .
We note that m2 m1 = n m for some m 1 , m 2 ∈ M k (B), means that mm 2 = c = nm 1 , nm|c and nm ≤ c ≤ nB k . Thus 3 can probably still be used. This will be investigated elsewhere.

1 )

 1 Let m ∈ F . Given an integer a ≥ 2, we define a = {p : p|a}. Recall that ω(n) denotes the prime divisor function, and ω(1) = 0. Consider for n, m ∈ F with gcd(n, m) = 1, the sum n 2 ,n 4 ∈F n

m 1 ,m 2 1 =k 2 1 ,

 12121 ∈M k (B) nm 1,1 ...m 1,k =mm 2,1 ...m 2,k 1≤m 1,i ,m 2,j ≤B 1≤ijn)d k (jm) ≤ d k (n)d k (m) -1 d k (n)d k (m),(5.4) where we have used sub-multiplicativity of d k and the estimate m≤x d2 k (m) = (C k + o(1))x log k 2 -1 x. See [3, (9.33)] for instance. Thus B k k B k+1 log B k 2 -1 2≤m≤B n<m gcd(n,m)=1 d k (n)d k (m) since m≤x d k (m) ∼ C k x(log x) k-1, (see notably Theorem 14.9 in[START_REF] Ivić | The Riemann Zeta-function, Theory and Applications Dover Pub[END_REF]), and furtherthat n≤x d k (n) n ∼ C k (log x) k. This along with (5.5) impliesB k k B k+1 log B k 2 +2k-2 . (5.6) By combining and since # M k (B) = B k , N k (B) k B k+1 log B k 2 +2k-2 .5.2. Problem. Consider Equation (1.2) with F = {n ≤ B : n squarefree}. For the study of this very interesting case, part of the proof of Theorem 1.

  Proposition 1.1. Equation (1.2) means that n 1 n = n 3 m, where n 2 = dn, n 4 = dm, d = gcd(n 2 , n 4 ) and gcd(n, m) = 1. Since F is factor closed, we necessarily have that n, m ∈ F . Now given n, m ∈ F fixed such that gcd(n, m) = 1, the number of integers n 2 , n 4 ∈ F such that n 2 = dn, n 4 = dm for some d ≥ 1, is obviously equal to

	1.
	n 2 ,n 4 ∈F n 4 n 2 = m n
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