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Let F n be the Farey series of order n ≥ 1. We obtain sharp effective estimates of the Farey sums

for 1-periodic functions f satisfying weak local regularity assumption of Dini's type at rational points of ]0, 1[. We also prove an unconditional lower bound for Farey sums.

Introduction

Let F n = j m , 1 ≤ j ≤ m ≤ n, (j, m) = 1 be the Farey series of order n ≥ 1. Let also f : Q ∩ [0, 1] → C arbitrary and 0 < σ ≤ 1. In this work we study the Farey sums

F n (f ) = κ λ ∈Fn f κ λ , F n,σ (f ) = κ λ ∈Fn 1 κ σ λ σ f κ λ n = 1, 2, . . . . (1) 
As F n,0 (f ) = F n (f ), the second sums generalize the first. We refer to [START_REF] Apostol | Introduction to analytic number theory[END_REF] and [START_REF] Hardy | An introduction to the theory of numbers[END_REF] for a background. It is well-known [START_REF] Mikolás | Farey series and their connection with the prime problem (I)[END_REF] that the Farey fractions are uniformly distributed (mod 1), whence by the Weyl criterion, for any Riemann integrable function on [0, 1],

F n (f ) Φ(n) ∼ 1 0 f (x)dx, n → ∞. (2) 
Here Φ(n) = #(F n ) and Φ(n) = n d=1 ϕ(d) ∼ 3 π 2 n 2 , ϕ(d) being Euler's totient function. The limit in [START_REF] Bary | A Treatise on Trigonometric Series Vol I&II[END_REF] actually holds true [START_REF] Mikolás | Farey series and their connection with the prime problem (I)[END_REF]Th. 2]) for any function f defined on rational points of [0, 1], whose Riemann sums are converging. The problem of estimating the error term

E n (f ) = F n (f ) -Φ(n) 1 0 f (x)dx, (3) 
is connected with the Riemann Hypothesis, and was studied in [START_REF] Mikolás | Farey series and their connection with the prime problem (I)[END_REF][START_REF] Mikolás | Farey series and their connection with the prime problem (II)[END_REF] and in [START_REF] Codecà | On the Uniform Distribution (mod 1) of the Farey Fractions and p Spaces[END_REF], [START_REF] Yoshimoto | Abelian Theorems, Farey Series and the Riemann Hypothesis[END_REF], [START_REF] Kanemitsu | Farey series and the Riemann hypothesis[END_REF] notably. Farey sums and Riemann sums are linked by the formula ([11, Lemma 2]),

F n (f ) = d≤n D f (d) M n d = d≤n µ * D f (d), D f ( ) = 1≤k≤ f k , (4) 
where * stands for the Dirichlet convolution product. The analogous formula for the Farey sums F n,σ (f ) is

F n,σ (f ) = n d=1 1 d 2σ µ * D fσ (d) = n d=1 D fσ (d) d 2σ λ≤ n d µ(λ) λ 2σ . (5) 
One notes that Φ(n) = n d=1 dM ( n d ) where M (x) = λ≤x µ(λ), µ(n) being the Möbius function, and that M (n) is the Farey sum

M (n) = κ λ ∈Fn cos 2π( κ λ ). ( 6 
)
By a result of Littlewood [START_REF] Titchmarsh | The theory of the Riemann-Zeta function, Second Edition[END_REF], the Riemann Hypothesis is equivalent to the assertion

M (x) = O ε x 1 2 +ε . (7) 
The simplest example of a smooth periodic function f (x) = cos 2πx, thus shows that the problem of estimating E n (f ) (= F n (f ) here) is out of reach, advances in this domain are therefore difficult. Farey sums much differ at this regard from Riemann sums R f ( ) = 1 D f ( ), since according to a result of Wintner [17, § 12], a continuous 1-periodic function is analytic if and only if there exists q, 0 < q < 1, such that

R f ( ) = 1 0 f (t)dt + O(q ). (8) 
A rate of convergence can be assigned, and the convergence of Riemann sums turns up the more rapid, the smoother f is. If f is only Lebesgue integrable, the corresponding convergence problems of Riemann sums, and by extension Riemann equidistant sums, Farey sums, are another attracting and difficult matter. We refer to [START_REF] Weber | Dynamical Systems and Processes[END_REF], Ch. XI. For the case considered (f (x) = cos 2πx, F n,σ = F n,σ (f )), we prove that

F n,σ = n 2(1-σ) 2(1 -σ)ζ(2) 1 0 cos 2πt t σ dt + O σ n 1-σ (0 < σ < 1). (9) 
In comparison with [START_REF] Grönwall | Some asymptotic expressions in the theory of numbers[END_REF] one knows ([11, Lemma 8]) that for τ ≥ 1/2, RH is also equivalent to

λ≤n µ(λ) λ τ = O ε n 1 2 +ε . ( 10 
)
Further the Dirichlet series associated with µ * D fσ being the product

1 ζ(s) ∞ k=1 D fσ (k) k s ,
F n,σ (f ) can be precisely estimated by using Perron's formula, once estimates of D fσ (k) are at disposal, see [START_REF] Mikolás | Farey series and their connection with the prime problem (I)[END_REF].

The first formula in (4) together with [START_REF] Grönwall | Some asymptotic expressions in the theory of numbers[END_REF] imply that

F n (f ) = O ε n 1 2 +ε d≤n |D f (d)| d 1 2 +ε , (11) 
for all f : [0, 1] → C, assuming the validity of the RH. Conversely we prove the following unconditional result, of very close order of magnitude.

Theorem 1 For for infinitely many n, there exists a trigonometrical polynomial f : [0, 1] → C such that

F n (f ) ≥ n 1 2 d≤n |D f (d)| d 1 2 . ( 12 
)
The proof combines a theorem of Pintz [START_REF] Pintz | Oscillatory properties of M (x) = n≤x µ(n), III[END_REF], which in particular implies that

M (x) = Ω x 1 2 , (13) 
and infinite Möbius inversion formula.

Mikolás' works [START_REF] Mikolás | Farey series and their connection with the prime problem (I)[END_REF][START_REF] Mikolás | Farey series and their connection with the prime problem (II)[END_REF] are central in the theory, notably by the ideas implemented. Essentially, the other convergence results for Farey sums stay more or less in the frame of study investigated by Mikolás. Some of these results were slightly extended by Yoshimoto [START_REF] Yoshimoto | Abelian Theorems, Farey Series and the Riemann Hypothesis[END_REF], who in particular investigated specific classes of functions related to Riemann sums, such as continuous functions f : (0, 1) → C satisfying the remarkable Kubert identities

f (x) = m s-1 m-1 k=0 f x+k m
for every m ∈ N and every x ∈ (0, 1), a variant form can be found in [START_REF] Carlitz | Some finite summation formulas of arithmetical character. II[END_REF]. In [START_REF] Codecà | On the Uniform Distribution (mod 1) of the Farey Fractions and p Spaces[END_REF], the results obtained concern the class C p of absolutely continuous functions on [0, 1] (equivalently, continuous functions f having a derivative f almost everywhere which is Lebesgue integrable) such that f ∈ L p [0, 1], where p ∈ (1, 2]. However it is assumed that for some α ∈ [1/2, 1), RH(α): the Riemann zeta function ζ(s) has no zero in the halfplane s > α, so that the results being conditional, are by definition ineffective.

In this work we study Farey sums (1) under minimal conditions. Our results are unconditional and expressed in terms of the Fourier coefficients of f .

Recall ([19, p. 9]) that every function defined almost everywhere in [0, 1], in particular every integrable function, has its Fourier series, and that Farey sums F n (f ), F n,σ (f ) are determined by the values taken by f on rational numbers.

Introduce the class C of functions f : [0, 1] → R such that: For all x ∈ Q∩]0, 1[ and some η > 0,

f (x -0) = f (x + 0) and η 0 |f (x+u)+f (x-u)-2f (x)| u du < ∞. (14) 
These functions are not necessarily absolutely continuous, in particular they may have a non integrable derivative on ]0, 1[, thus Euler-McLaurin formula does not apply. The class C defines a fairly wide setting, and one has the obvious inclusions:

C 1 ⊂ C 2 ⊂ C,
where

C 1 = f : [0, 1] → R : f (x) is differentiable for each x ∈ Q∩]0, 1[ C 2 = f : [0, 1] → R : f (x) satisfies a Lipschitz condition of order α > 0, in the neighbourhood of each x ∈ Q∩]0, 1[ . (15) 
Typical examples are the familiar functions in Fourier analysis, g(a, x) = sin(a log x) log x , 0 < x < 1, g(a, 1) = a, g(a, 0) = 0, (a = 0) . (16)

Letting g σ (a, x) = g(a, x)/x σ , 0 < σ < 1, one easily checks that g σ (a, .) ∈ L p [0, 1] if p < 1/σ, g σ (a, .) is not integrable, and as g σ (a, .) is unbounded in the neighbourhood of 0, its Fourier series does not converge absolutely; further g σ (a, .) ∈ C.

We clarify here that the approach used and most of the results obtained extend with no difficulty to classes of functions subject to sharper types of criteria such as the one of Jordan, Young, de la Vallée-Poussin, Lebesgue, see [2, Vol. I]. These ones being more elaborated we chosed to develop the present work in this simpler setting.

The paper is organized as follows. In the next two sections we respectively state and give the proofs of results concerning Farey sums F n (f ), F n,σ (f ), and further discuss our assumptions. Section 3 contains preparatory results which are interesting on their own. In Section 4, the proofs of Theorems 1 and 5 are given.

2 Farey sums and quadratic Farey sums.

We first prove explicit formulas of F n,σ (f ) or F n (f ), valid for all f such that f σ ∈ C. We next study these sums, mainly under two type of conditions on the complex Fourier coefficients of f σ where f σ (x) = f (x)

x σ , σ ≥ 0. We assume that: Either (i) the series ∈Z c fσ ( ) converges, or (ii) the series ∈Z |c fσ ( )| converges.

Recall some classical results on trigonometric series. Assumption (i) of course holds if (for instance) f σ (x) is differentiable at x = 0. By Bernstein's theorem [2, Vol. I, p. 216], assumption (ii) holds if f ∈ Lip(α) for α > 1/2. It is also implied by the absolute convergence of the Fourier series Furthermore assumption (ii) implies that f is bounded, since using for instance Riesz's criterion [2, Vol. II], p. 184, f can be represented in the form

σ f (x) = ν∈Z c f (ν)e ν (x
f (x) = 1 0 u(2π(x -t))v(2πt)dt, u, v ∈ L 2 [0, 1]. By applying Young's inequality u * v r ≤ u p v q , 1 ≤ p, q, r ≤ ∞, 1 r = 1 p + 1 q -1, with p = q = 2, r = ∞, we deduce that f ∞ < ∞.
In particular for g σ (x) := g σ (1, x), see ( 16), we note that

∈Z |c gσ ( )| = ∞. (18) 
Consider first the case when f is such that f σ ∈ C, and no additional condition is imposed.

Proposition 1 (i) Let f : [0, 1] → R and assume that f σ ∈ C. Then we have, F n,σ (f ) = f σ (1) -c fσ (0) + c fσ (0) d≤n 1 d 2σ-1 λ≤ n d µ(λ) λ 2σ + ∈Z * c fσ ( ) d≤n 1 d 2σ ε (d) λ≤ n d µ(λ) λ 2σ , where ε (d) = d -1 if d| , -1 if d | . ( 19 
) (ii) Let f : [0, 1] → R be such that f ∈ C. Then we have, E n (f ) = f (1) - 1 0 f (x)dx + ∈Z * c f ( ) d≤n ε (d)M n d .
In the next theorems, we derive precise estimates of F n,σ (f ) under the afore mentioned assumptions.

Theorem 2 (0 < σ < 1) Let f : [0, 1] → R be such that f σ ∈ C. (i) Assume that the series ∈Z c fσ ( ) is convergent. Then F n,σ (f ) = 1 0 f σ (x)dx 2(1 -σ)ζ(2) n 2(1-σ) + ∆ n,σ (f ),
where

∆ n,σ (f ) = O(n 1-2σ log n) + A(f σ ) + ∈Z * c fσ ( ) d≤n , d| 1 d 2σ-1 λ≤ n d µ(λ) λ 2σ ,
and the constant A(f σ ) is defined as follows,

A(f σ ) =                f σ (1) + ζ(2σ-1) ζ(2σ) 1 0 f σ (x)dx - ∈Z c fσ ( ) if 1 2 < σ < 1, f 1/2 (1) - ∈Z c f 1/2 ( ) if σ = 1 2 , f σ (1) - ∈Z c fσ ( ) if 0 < σ < 1 2 .
(ii) Assume that the series

∈Z * |c fσ ( )| is convergent. Then F n,σ (f ) = 1 0 f σ (x)dx 2(1 -σ)ζ(2) n 2(1-σ) + ∆ n,σ (f ),
where

∆ n,σ (f ) =          A(f σ ) + O n 1-2σ log n + ∈Z * |c fσ ( )| d≤n d| 1 d 2σ-1 , ( 1 2 < σ < 1), n 1-2σ O σ log n + ∈Z * |c fσ ( )| #{d ≤ n : d| } , (0 < σ ≤ 1 2 ).
Note that for the case σ = 1 2 , A(f σ ) can be absorbed in the term O(log n). In the series above, the summand of order tigthly depends on the arithmetical structure of the support of the Fourier coefficient sequence. The term in parenthesis can be close to n 2(1-σ) (for those such that d ≤ n ⇒ d| ), or close to 2 when the Fourier coefficients are supported by a sequence of numbers having few divisors, typically a sequence of primes. In this case we get for instance if σ = 1 2 ,

F n,1/2 (f ) = n ζ(2) + O(log n) 1 0 f 1/2 (x)dx + O(1), ( 20 
) if ∈Z * |c f 1/2 ( )| converges. Theorem 3 (σ = 1) Let f : [0, 1] → R be such that f 1 ∈ C. (i) Assume that the series ∈Z c f1 ( ) is convergent. Then, F n,1 (f ) = 1 0 f 1 (x)dx ζ(2) log n + ∈Z * c f1 ( ) d≤n d| 1 d λ≤ n d µ(λ) λ 2 + O(1). (ii) If the series ∈Z |c f1 ( )| is convergent, then F n,1 (f ) = 1 0 f 1 (x)dx ζ(2) log n + O ∈Z * |c f1 ( )| d≤n d| 1 d .
In particular, if the series

∈Z |c f1 ( )|σ -1 ( ) is convergent, then F n,1 (f ) = 1 0 f 1 (x)dx ζ(2) log n + O(1).
Remark 1 We recall that by [START_REF] Grönwall | Some asymptotic expressions in the theory of numbers[END_REF], σ -1 ( ) = O(log log ), thus the above estimate holds true under the mild condition

∈Z |c f1 ( )| log log < ∞.
The following Theorem concerns Farey sums F n (f ) (case σ = 0) and provides a simple formula for the error term E n (f ) under minimal assumption, as well as a new estimate.

Theorem 4 Let f ∈ C. (i) If the series ∈Z c f ( ) is convergent, then E n (f ) = f (1) - ∈Z c f ( ) + ∈Z * c f ( ) d≤n d| dM n d . (ii) If the series ∈Z * |c f ( )|d( ) is convergent, where d( ) is the divisor func- tion, then E n (f ) = o(n). In addition if f (1) = ∈Z c f ( ), then n≥1 |E n (f )| n 2 < ∞.
Comments:

(1) According to a classical estimate of the divisor function, it follows from Theorem 4 [START_REF] Mikolás | Farey series and their connection with the prime problem (I)[END_REF].

-(i) that E n (f ) = o(n) if ∈Z * |c f ( )|e c log n/ log log n is convergent for some c > log 2. (2) If f is absolutely continuous, then E n (f ) = o(n). See Corollary p. 105 in
(3) As a consequence of (4) and of the fact that d≤n M n d = 1, we have

E n (f ) = d≤n D f (d) M n d , D f (n) = D f (n) -n 1 0 f (x)dx. ( 21 
)
By [2, Vol. I] p. 78) for absolutely continuous f , c f σ ( ) = i c fσ ( ), ∈ Z * , so that the link below between D f (n) and Fourier coefficients (c

f (m)) m of f , D f (n) = - 1 2π ∞ k=1 c f (kn) k , (f (0) = f (1)) (22) 
is straightforward (Euler-MacLaurin sum formula is unnecessary).

(4) Although not related with our results, it is interesting to compare assumption f ∈ C p with ours. This one in fact implies that

∈Z * |c f ( )| ε < ∞, (ε < 1 -1/p) (23) 
which is much more stronger than our assumptions. Indeed, by Hausdorff-Young's theorem,

∈Z * |c f ( )| ε = ∈Z * |c f ( )| -(1-ε) ≤ ∈Z * |c f ( )| q 1/q ∈Z * | | -p(1-ε) 1/p ≤ C f p ∈Z * | | -p(1-ε) 1/p < ∞ .
(5) Assume that RH(α) holds. Let f ∈ C such that the series

∈Z |c f ( )|σ 1-α ( ) (24) 
converges for some α > α. This condition tightly depends on the aritmetical structure of the support of the Fourier coefficients of f . Then we have,

E n (f ) = O(n α ). (25) 
Indeed, as RH(α) implies M (x) = O ε (x α+ε ), we have

d≤n d| d M n d ≤ C α n α d≤n d| d 1-α ≤ C α n α σ 1-α ( ).
Thus

∈Z * |c f ( )| d≤n d| dM n d ≤ C α n α ∈Z * |c f ( )|σ 1-α ( ) ≤ C α n α , which by Theorem 4 implies that E n (f ) = O α (n α ).
In the next Theorem we provide a sharp estimate of the quadratic Farey sum

F n,σ = F n,σ (h), h(x) = cos 2πx, recalling that F n (h) = M (n). Theorem 5 Let 0 < σ < 1. Then F n,σ = n 2(1-σ) 2(1 -σ)ζ(2) 1 0 cos 2πt t σ dt + O σ n 1-σ .
Before doing the proofs, let us give one more example, after example (6), of Farey sums.

Example 1 Let ζ h (n) = n h with summatory function M ζ h (x). Let J s (n) = ζ s * µ(n) = d|n d s µ(n/d) be Euler's generalized totient function. Let f (x) = c(a) ∈Z * | | -a e (x), 1 < a < 2, where c(a) = ∈Z * | | -a -1 . Then F n (f ) = k≤n J 1-a (k). ( 26 
)
Thus the summatory function of J 1-a (n) is a Farey sum. Indeed, first note that f (1) = f (0) = 1, and so by Theorem 4,

E n (f ) = F n (f ) = ∈Z * c f ( ) d≤n d| dM n d = c(a) ∈Z * | | -a d≤n d| d λ≤n/d µ(λ) = c(a) λ≤n µ(λ) d≤n/λ d ∈Z * d| | | -a = λ≤n µ(λ) d≤n/λ d 1-a .
By well-known formula for partial sums of a Dirichlet product ([1, Th. 3.10]),

k≤n µ(k) d≤n/k d 1-a = k≤n µ(k)M ζ1-a ( n k ) = k≤n µ * ζ 1-a (k) = k≤n J 1-a (k), whence (26) 
.

3 Proofs of Proposition 1 and Theorems 2, 3, 4.

We first establish some auxiliary lemmas and intermediate results.

3.1 Preliminary results.

Proposition 2 Let f ∈ C. Then, (i) D f (d) = f (1) + ∈Z c f ( )ε (d), recalling that ε (d) = d -1 if d| , and ε (d) = -1 if d | , by (19). 
(ii) If the series ∈Z c f ( ) converges, then 

D f (d) = f (1) + d ∈Z d| c f ( ) - ∈Z c f ( ). Proof Since f ∈ C,
(x) = ν∈Z c f (ν)e 2iπνx ,
converges to f (x) (i.e. the partials sums are converging to f (x)) for any x ∈ Q∩]0, 1[. Thus

f κ d = ∈Z c f ( )e 2iπ κ d , κ = 1, 2, . . . , d -1 (27) whence d-1 κ=1 f κ d = d-1 κ=1 ∈Z c f ( )e 2iπ κ d = ∈Z c f ( ) d-1 κ=1 e 2iπ κ d ,
permutation between finitely many convergent series being permitted. As

d-1 κ=1 e 2iπ κ d = ε (d), we get D f (d) = f (1) + ∈Z c f ( )ε (d),
Further if the series ∈Z c f ( ) converges, we can write

D f (d) = f (1) + ∈Z c f ( )(ε (d) + 1) - ∈Z c f ( ) = f (1) + d ∈Z d| c f ( ) - ∈Z c f ( ),
which completes the proof.

Corollary 1 Let f ∈ C. Assume that the series A = ∈Z |c f ( )|d( ) con- verges. Then, ∞ d=1 1 d Df (d) -f (1) + ∈Z c f ( ) ≤ A. Proof By Proposition 2-(ii), since c f (0) = 1 0 f (x)dx, D f (d) = f (1) + d 1 0 f (x)dx + d ∈Z * d| c f ( ) - ∈Z c f ( ), By (21), Df (d) = f (1) + d ∈Z * d| c f ( ) - ∈Z c f ( ). Thus ∞ d=1 1 d Df (d) -f (1) + ∈Z c f ( ) = ∞ d=1 ∈Z * d| c f ( ) ≤ ∈Z * |c f ( )| d| 1 = A, as claimed. Lemma 1 Let f : Q → R be arbitrary and σ ∈ C. Then, F n,σ (f ) = n d=1 1 d 2σ µ * D fσ (d) = d≤n D fσ (d) d 2σ λ≤ n d µ(λ) λ 2σ .
Proof (Proof of Lemma 1) We recall that

d|n µ(d) = δ(n) where δ(n) = 1 if n = 1, 0 unless. ( 28 
)
Then

F n,σ (f ) = k ∈Fn 1 k σ σ f k = 1≤k≤ ≤n (k, )=1 1 k σ σ f k = n =1 1 σ k=1 δ (k, ) 1 k σ f k = n =1 1 σ k=1 u|(k, ) µ(u) 1 k σ f k = n =1 1 σ u| µ(u) k=1 u|k 1 k σ f k .
We write k = κu with κ ≤ u , and get

= n =1 1 σ u| µ(u) u σ 1≤κ≤ u 1 κ σ f uκ .
Now we write the divisors u of under the form u = d , d running along all divisors of , and continue as follows

= n =1 1 σ d| µ( d ) ( d ) σ 1≤κ≤d 1 κ σ f κ d = n =1 1 2σ d| µ d 1≤κ≤d 1 ( κ d ) σ f κ d = n =1 1 2σ d| µ d D fσ (d) = n =1 1 2σ µ * D fσ ( ) = d≤n D fσ (d) ≤n d| µ( d ) 1 2σ .
Writing = λd with λ ≤ n d in the last sum, finally gives

F n,σ (f ) = n =1 1 2σ µ * D fσ ( ) = d≤n D fσ (d) d 2σ λ≤ n d µ(λ) λ 2σ .
We also need the following lemma.

Lemma 2 We have the following estimates:

(a) ( 1 2 < σ < 1) d≤n 1 d 2σ-1 λ≤ n d µ(λ) λ 2σ = n 2(1-σ) 2(1 -σ)ζ(2) + ζ(2σ -1) ζ(2σ) + O n 1-2σ log n , recalling that ζ(s) = lim x→∞ n≤x 1 n s -x 1-s 1-s , 0 < s < 1. (b) (0 < σ < 1 2 ) d≤n 1 d 2σ-1 λ≤ n d µ(λ) λ 2σ = n 2(1-σ) 2(1 -σ)ζ(2) + O n 1-2σ log n . (c) If σ = 1 2 , then (c•1) d≤n λ≤ n d µ(λ) λ = n ζ(2) + O(log n), (c•2) d≤n 1 d λ≤ n d µ(λ) λ ≤ B, n ≥ 1,
where B is an absolute constant.

(d) If σ = 1, then (d•1) d≤n 1 d λ≤ n d µ(λ) λ 2 = log n ζ(2) + O(1), (d•2) d≤n 1 d 2 λ≤ n d µ(λ) λ 2 = O(1)
.

(e) For all σ > 0,

d≤n 1 d 2σ λ≤ n d µ(λ) λ 2σ = 1.
Proof We quote the estimates ([1, Th. 3.2]),

1≤ ≤m

1-2σ =                m(m+1) 2 if σ = 0, m 2(1-σ) 2(1-σ) + O(m 1-2σ ) if 0 < σ < 1/2, m if σ = 1/2, m 2(1-σ) 2(1-σ) + ζ(2σ -1) + O m 1-2σ if 1 2 < σ < 1, log m + γ + O( 1 m ) if σ = 1, ( 29 
)
where γ is Euler's constant (a) We get with (29),

d≤n 1 d 2σ-1 λ≤ n d µ(λ) λ 2σ = λ≤n µ(λ) λ 2σ d≤ n λ 1 d 2σ-1 = λ≤n µ(λ) λ 2σ 1 2(1 -σ) n λ 2(1-σ) + ζ(2σ -1) + O n λ 1-2σ = n 2(1-σ) 2(1 -σ) λ≤n µ(λ) λ 2 + ζ(2σ -1) λ≤n µ(λ) λ 2σ +O n 1-2σ λ≤n 1 λ = n 2(1-σ) 2(1 -σ) 1 ζ(2) + O n -1 + ζ(2σ -1) 1 ζ(2σ) + O n 1-2σ +O n 1-2σ log n = n 2(1-σ) 2(1 -σ)ζ(2) + ζ(2σ -1) ζ(2σ) + O n 1-2σ log n .
(b) One similarly gets

d≤n 1 d 2σ-1 λ≤ n d µ(λ) λ 2σ = λ≤n µ(λ) λ 2σ d≤ n λ 1 d 2σ-1 = λ≤n µ(λ) λ 2σ 1 2(1 -σ) n λ 2(1-σ) + O n λ 1-2σ = n 2(1-σ) 2(1 -σ) λ≤n µ(λ) λ 2 + O n 1-2σ λ≤n 1 λ = n 2(1-σ) 2(1 -σ)ζ(2) + O n 1-2σ log n . (c) For (c•1), see Exercise 4-(b) in [1, Ch. 3]. As to (c•2), this is Rubel's estimate ([3, Prob. 8.20]). (d) We have d≤n 1 d λ≤ n d µ(λ) λ 2 = d≤n 1 d 1 ζ(2) + O( d n ) = log n ζ(2) + O(1),
and obviously,

d≤n 1 d 2 λ≤ n d µ(λ) λ 2 = O(1)
.

(e) The function

F : (d, λ) ∈ N 2 : d ≤ n, λ ≤ n d → (d, ν) : ν ≤ n, d|ν , F (d, λ) := (d, λd), is bijective, thus ν≤n 1 ν 2σ d|ν µ ν d = ν≤n 1 ν 2σ δ|ν µ(δ) = 1,
by formula (28).

Proof (Proof of Proposition 1) (i) Using Lemmas 1 and 2, and recalling (3), we have

F n,σ (f ) = d≤n D fσ (d) d 2σ λ≤ n d µ(λ) λ 2σ = f σ (1) d≤n 1 d 2σ λ≤ n d µ(λ) λ 2σ + d≤n 1 d 2σ d-1 κ=1 f σ κ d λ≤ n d µ(λ) λ 2σ = f σ (1) + d≤n 1 d 2σ d-1 κ=1 f σ κ d λ≤ n d µ(λ) λ 2σ .
As f σ ∈ C, by Proposition 2,

d-1 κ=1 f σ κ d = D fσ (d) -f σ (1) = (d -1)c fσ (0) + ∈Z * c fσ ( )ε (d).
Thus,

F n,σ (f ) = f σ (1) + c fσ (0) d≤n d -1 d 2σ λ≤ n d µ(λ) λ 2σ + d≤n 1 d 2σ ∈Z * c fσ ( )ε (d) λ≤ n d µ(λ) λ 2σ = f σ (1) + c fσ (0) d≤n d -1 d 2σ λ≤ n d µ(λ) λ 2σ + ∈Z * c fσ ( ) d≤n 1 d 2σ ε (d) λ≤ n d µ(λ) λ 2σ
since only a finite number of convergent series is involved.

(ii) It is easy to observe with (i) (applied with σ = 0 and thus f σ = f ) that we also have (recalling that Φ(n) = d≤n dM n d ),

F n (f ) = f (1) + Φ(n) -1 1 0 f (x)dx + ∈Z * c f ( ) d≤n ε (d)M n d ,
where ε (d) is defined in [START_REF] Zygmund | Trigonometric series[END_REF]. Applying this to f = f -

1 0 f (x)dx in place of f gives (c f ( ) = c f ( ), = 0 and c f (0) = 0). E n (f ) = F n (f ) -Φ(n) 1 0 f (x)dx = f (1) - 1 0 f (x)dx + ∈Z * c f ( ) d≤n ε (d)M n d .

Proof of Theorem 2

By Proposition 1 and Lemma 2,

F n,σ (f ) = f σ (1) -c fσ (0) + c fσ (0) d≤n 1 d 2σ-1 λ≤ n d µ(λ) λ 2σ + ∈Z * c fσ ( ) d≤n 1 d 2σ ε (d) λ≤ n d µ(λ) λ 2σ .

Since the series

∈Z c fσ ( ) is convergent, we note that

∈Z * c fσ ( ) d≤n 1 d 2σ ε (d) λ≤ n d µ(λ) λ 2σ = ∈Z * c fσ ( ) d≤n d| 1 d 2σ-1 λ≤ n d µ(λ) λ 2σ - ∈Z * c fσ ( ) . So that F n,σ (f ) = f σ (1) + c fσ (0) d≤n 1 d 2σ-1 λ≤ n d µ(λ) λ 2σ + ∈Z * c fσ ( ) d≤n d| 1 d 2σ-1 λ≤ n d µ(λ) λ 2σ - ∈Z c fσ ( ) , (30) 
where we absorbed c fσ (0) in the last sum.

(a) ( 1 2 < σ < 1) (i) By applying Lemma 2, we obtain 30) and Lemma 2 it follows that

F n,σ (f ) = f σ (1) + c fσ (0) n 2(1-σ) 2(1 -σ)ζ(2) + ζ(2σ -1) ζ(2σ) + O(n 1-2σ log n) + ∈Z * c fσ ( ) d≤n d| 1 d 2σ-1 λ≤ n d µ(λ) λ 2σ - ∈Z c fσ ( ) = 1 0 f σ (x)dx 2(1 -σ)ζ(2) n 2(1-σ) + ∈Z * c fσ ( ) d≤n d| 1 d 2σ-1 λ≤ n d µ(λ) λ 2σ + 1 0 f σ (x)dx O(n 1-2σ log n) + A(f σ ), recalling that A(f σ ) = f σ (1) + 1 0 f σ (x)dx ζ(2σ-1) ζ(2σ) - ∈Z c fσ ( ). (ii) If the series ∈Z |c fσ ( )| is convergent, then as d≤n d| 1 d 2σ-1 λ≤ n d µ(λ) λ 2σ = d≤n d| 1 d 2σ-1 1 ζ(2σ) + O n d 1-2σ = 1 ζ(2σ) d≤n d| 1 d 2σ-1 + O n 1-2σ #{d ≤ n : d| } , we get F n,σ (f ) = f σ (1) + c fσ (0) n 2(1-σ) 2(1 -σ)ζ(2) + ζ(2σ -1) ζ(2σ) + O(n 1-2σ log n) - ∈Z c fσ ( ) + 1 ζ(2σ) ∈Z * c fσ ( ) d≤n d| 1 d 2σ-1 +O n 1-2σ ∈Z * |c fσ ( )|#{d ≤ n : d| } = 1 0 f σ (x)dx 2(1 -σ)ζ(2) n 2(1-σ) + 1 ζ(2σ) ∈Z * c fσ ( ) d≤n d| 1 d 2σ-1 + 1 0 f σ (x)dx O(n 1-2σ log n) +O σ n 1-2σ ∈Z * |c fσ ( )| #{d ≤ n : d| } + A(f σ ). (b) (0 < σ < 1 2 ) (i) From (
F n,σ (f ) = f σ (1) + c fσ (0) d≤n 1 d 2σ-1 λ≤ n d µ(λ) λ 2σ + ∈Z * c fσ ( ) d≤n d| 1 d 2σ-1 λ≤ n d µ(λ) λ 2σ - ∈Z c fσ ( ) = f σ (1) + c fσ (0) n 2(1-σ) 2(1 -σ)ζ(2) + O n 1-2σ log n + O n 1-2σ + ∈Z * c fσ ( ) d≤n d| 1 d 2σ-1 λ≤ n d µ(λ) λ 2σ - ∈Z c fσ ( ) = c fσ (0) n 2(1-σ) 2(1 -σ)ζ(2) + ∈Z * c fσ ( ) d≤n d| 1 d 2σ-1 λ≤ n d µ(λ) λ 2σ + A(f σ ) + O n 1-2σ log n .
(ii) Assume now the series ∈Z |c fσ ( )| is convergent. By Theorem 8.17 of [START_REF] Bateman | Analytic number theory-An introductory course[END_REF], there exists a positive number c such that

M (x) = O(xe -c √ log x ). (31) 
By using Abel summation we deduce that

λ≤x µ(λ) λ 2σ = O σ (x 1-2σ e -c √ log x ), (0 < σ < 1 2 ). (32) 
Then

d≤n d| 1 d 2σ-1 λ≤ n d µ(λ) λ 2σ = O σ d≤n d| 1 d 2σ-1 n d 1-2σ e -c √ log( n d ) = O σ n 1-2σ #{d ≤ n : d| } .
And so,

F n,σ (f ) = c fσ (0) n 2(1-σ) 2(1 -σ)ζ(2) + n 1-2σ O log n + ∈Z * |c fσ ( )|#{d ≤ n : d| } + A(f σ ). (c) (σ = 1 2 ) (i) Assume that the series ∈Z c f 1/2 ( ) is convergent. By (30), F n,1/2 (f ) = f 1/2 (1) + c f 1/2 (0) d≤n λ≤ n d µ(λ) λ + ∈Z * c f 1/2 ( ) d≤n d| λ≤ n d µ(λ) λ - ∈Z c f 1/2 ( ) . (33) 
By Lemma 2 we first get

d≤n λ≤ n d µ(λ) λ = n ζ(2) + O(log n), next F n,1/2 (f ) = f 1/2 (1) + c f 1/2 (0) n ζ(2) + O(log n) + ∈Z * c f 1/2 ( ) d≤n d| λ≤ n d µ(λ) λ - ∈Z c f 1/2 ( ) = 1 0 f 1/2 (x)dx n ζ(2) + ∈Z * c f 1/2 ( ) d≤n d| λ≤ n d µ(λ) λ +A(f σ ) + O c f 1/2 (0). (log n) .
(ii) By Theorem 3.13 in [START_REF] Apostol | Introduction to analytic number theory[END_REF],

λ≤x µ(λ) λ ≤ 1, ( 34 
) if x ≥ 1. Thus ∈Z * |c f 1/2 ( )| d≤n d| λ≤ n d µ(λ) λ ≤ ∈Z * |c f 1/2 ( )| # d ≤ n : d| ,
the series ∈Z * |c f 1/2 ( )| converging by assumption. We therefore get

F n,1/2 (f ) = 1 0 f 1/2 (x)dx n ζ(2) + O ∈Z * |c f 1/2 ( )| # d ≤ n : d| +A(f σ ) + O c f 1/2 (0). (log n) .
This achieves the proof.

Proof of Theorem 3

If the series ∈Z c f ( ) converges, it follows from (30) and Lemma 2 that

F n,1 (f ) = f 1 (1) + c f1 (0) d≤n 1 d λ≤ n d µ(λ) λ 2 -c f1 (0) + ∈Z * c f1 ( ) d≤n d| 1 d λ≤ n d µ(λ) λ 2 - ∈Z * c f1 ( ) = f 1 (1) -c f1 (0) log n ζ(2) + O(1)
+ ∈Z * c f1 ( ) d≤n d| 1 d λ≤ n d µ(λ) λ 2 - ∈Z c f1 ( ) . (35) 
And if the series ∈Z |c f ( )| converges, then and by assumption the series ∈Z c f ( ) is convergent, we get using Proposition 1-(ii) and the estimate d≤n M n d = 1 by Theorem 3.12 in [START_REF] Apostol | Introduction to analytic number theory[END_REF],

E n (f ) = f (1) - 1 0 f (x)dx + ∈Z * c f ( ) d≤n d| dM n d - ∈Z * c f ( ) d≤n M n d = f (1) - ∈Z c f ( ) + ∈Z * c f ( ) d≤n d| dM n d .
(ii) As M (x) = o(x), we deduce from (i) and the assumption made that

E n (f ) = f (1) - ∈Z c f ( ) + o n ∈Z * |c f ( )|d( ) = o(n). Now if further f (1) = ∈Z c f ( ), Corollary 1 reads ∞ d=1 1 d Df (d) ≤ A, (37) 
recalling that Df (d) = D f (d)-d 1 0 f (x)dx. By (21), E n (f ) = d≤n Df (d) M n d . Let (n) = n 2 . Then by using (31), n≥1 |E n (f )| (n) ≤ n≥1 1 (n) d≤n | Df (d)| M n d = n≥1 1 n d≤n | Df (d)| d e -c √ log n d = d≥1 | Df (d)| d n≥d 1 n e -c √ log n d = d≥1 | Df (d)| d 1 + ∞ d 1 t e -c √ log t d dt = d≥1 | Df (d)| d 1 + ∞ 1 1 u e -c √ log u du < ∞.
4 Proof of Theorems 1 and 5.

Proof (Proof of Theorem 1.) Let 1 < Y k ↑ ∞ with k, be an integer sequence such that

Y k+1 /e 5(log log Y k+1 ) 3/2 ≥ Y k (1 + Y k ), k = 1, 2, . . .
We use the following precise result of Pintz [START_REF] Pintz | Oscillatory properties of M (x) = n≤x µ(n), III[END_REF]: for Y > c effective, there exists

x , x ∈ [Y e -5(log log Y ) 3/2 , Y ] such that M (x ) < - √ x L , M (x ) > √ x L . (38) 
L = 136000. Assume that Y 1 > max(c, 1). Let n = Y k+1 . There thus exist an increasing sequence of integers m j , 1 ≤ j ≤ k, such that

m j ∈ [Y j+1 e -5(log log Yj+1) 3/2 , Y j+1 ], and 
M (m j ) > √ m j L . (39) 
For each 1 ≤ j ≤ k, let d j be such that m j = n dj . One has

m j = n dj ⇐⇒ n dj -1 < m j ≤ n dj ⇐⇒ n 1+mj < d j ≤ n mj . The inequality n mj -n 1+mj = Y k+1 mj (1+mj ) ≥ 1, j = 1, . . . k - 1 
ensures the existence of integers d j be such that m j = n dj for j = 1, . . . k -1. These numbers d j are moreover mutually distinct since m j are assumed to be increasing (one also has

d j-1 -d j ≥ Y k+1 (Yj +1)(Yj +2) > 0).
Next we use the infinite Möbius inversion formula which we recall. Suppose that

∞ n=1 |f (n)|d(n) < ∞ and ∞ n=1 |g(n)|d(n) < ∞. Then g(x) = ∞ m=1 f (mx) ⇐⇒ f (x) = ∞ n=1 µ(n)g(nx). (40) 
See [START_REF] Hartman | On Möbius' Inversion[END_REF] or [START_REF] Hardy | An introduction to the theory of numbers[END_REF], see also [START_REF] Montgomery | Multiplicative Number Theory I. Classical Theory[END_REF] p. 40, Exercise 6.

For continuing the proof we use the following assertion, which we shall prove.

(a) If ∞ m,n=1 |g(mnx)| < ∞, then f (x) = ∞ n=1 µ(n)g(nx) =⇒ g(x) = ∞ m=1 f (mx). (41) Note that ∞ m,n=1 |g(mnx)| = ∞ k=1 d(k)|g(kx)| < ∞. (42) 
Thus under the assumption made f is obviously well defined. Now

M m=1 f (mx) = ∞ n=1 µ(n) M m=1 g(mnx) = ∞ n=1 µ(n) M m=1 nm≤M g(mnx) + R M (x) where R M (x) = ∞ n=1 µ(n) M m=1 nm>M g(mnx) verifies |R M (x)| ≤ ∞ n=1 M m=1 nm>M |g(mnx)| ≤ ν>M |g(νx)| n≥1 n|ν 1 = ν>M |g(νx)|d(ν),
and thus is small if M is large. Further,

∞ n=1 µ(n) nm≤M g(mnx) = ν≤M g(νx) n|ν µ(n) = ν≤M g(νx)δ(ν) = g(x)
, by ( 28). This allows one to conclude to (a).

Note also that the assertion below similarly follows from (28). 

(b) If ∞ m,n=1 |f (mnx)| < ∞, then g(x) = ∞ m=1 f (mx) =⇒ f (x) = ∞ n=1 µ(n)g(nx). (43) 
k=1 k k-1 h σ ( k ) -h σ (t) dt ≤ C σ 1-σ k=1 1 k 1+σ ≤ C σ 1-σ . ( 47 
) Now k=1 1 k σ h k -1-σ 1 0 h σ (t)dt = 1-σ k=1 k k-1 k -σ h k -h σ (t) dt = 1-σ k=1 k k-1 h σ k -h σ (t) dt. (48) 
Thus

k=1 1 k σ h k -1-σ 1 0 h σ (t)dt ≤ 1-σ k=1 k k-1 h σ k -h σ (t) dt ≤ C σ .
Therefore R hσ ( ) - 

F n, 1

 1 (f ) = c f1 (0

f

  Indeed g(x) is well defined since∞ k=1 d(m)|f (mx)| < ∞ by assumption. Next (mnx) is small if N is large since |T N | ≤ ν>N |f (νx)|d(ν).

Remark 2 D

 2 As observed by a referee, under assumption ∞ m,n=1 |f (mnx)| < ∞, the implication (⇐=) in Theorem 270 in [8], namely g(x) = , suggesting in place assertions (a) and (b), to be clarified. Note that (a)&(b) imply (40), and are intrinsically more precise. Assertion (a) clearly applies if g is finitely supported on integers. Next choosef : [0, 1] → R so that c f ( ) := ∞ m=1 µ m)D(m ),whereD(d) = D j if d = d j , 1 ≤ j < k, 0 otherwise. (Note that c f ( ) = 0 if is large enough, for m = d j ⇒ |d j ). Then D(d) = ∞ m=1 c f (md) = D f (d). Note that c f ( ) = 1≤j<k , |dj µ dj D j , also c f ( ) = 1≤j<k D j |dj µ f (d j ) M (m j ) ≥ C 1≤j<k D f (d j )for any σ ∈ C. Let 0 ≤ σ < 1. We prove that R hσ ( ) -

1 0 1 ( 1 1 0

 1111 h σ (x) = (-2π sin 2πx)x -σ + cos 2πx(-σx -1-σ ), we have |h σ (x)| ≤ (2π + σ)x -1-σ , for any x ∈]0, 1]. Let 1 ≤ k ≤ and t ∈] k-1 , k ]. Then, h σ ( k ) -h σ (t) ≤ 1 |h σ (ξ)| ≤ 1 2π + σ ξ 1+σ , for some ξ ∈] k-1 , k [. Thus k k-1 h σ ( k ) -h σ (t) dt ≤ C σ 2 ( k ) 1+σ = c σ 1-σ 1 k 1+σ , c σ = 2 σ (2π + σ) (46) if k > 1, and if k = 1, |h σ (t)|dt ≤ -σ)1-σ , and |h σ ( 1 )|dt ≤ 1 1-σ . Thus

1 0+ O n 1 -

 11 h σ (t)dt ≤ C σ / 1-σ as claimed. We deduce thatF n,σ (h) = d≤n R hσ (d) d 2σ2σ log n .
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Consequently,

Now let σ = 1/2. By Lemma 1, next Lemma 2 and (34),

Finally let 0 < σ < 1/2. By Lemma 2,

and by (32), λ≤x µ(λ)

By reporting these estimates in (49), we get
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