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A Gazebo Simulator for Continuum Parallel
Robots

Andrea Gotelli1,2, Federico Zaccaria1,2,3, Olivier Kermorgant1,2, and Sébastien
Briot1,4

Abstract Continuum Parallel Robots (CPRs) combine properties of continuum and
parallel rigid-link robots. They inherit simplicity, compliance, and cost-effectiveness
from the first as payload capacity and stiffness from the latter. In this paper, we
propose to use Gazebo and ROS to provide a generalized simulator for CPRs, in
terms of their joints and geometry, while we use the Cosserat rod theory to model
their deformable bodies. We exploit our simulator to solve the direct and inverse
geometrico-static models of CPRs and to provide a useful base for simulations.

1 Introduction

Continuum Parallel Robots (CPRs) are manipulators with flexible elastic links, ar-
ranged in parallel. Like rigid links parallel robots, they have a good payload capacity
and stiffness, but they also show the simplicity, compliance, and cost-effectiveness
of continuum robots. Early research on these robots started with [7] and, nowadays,
CPRs have a wide range of applications [8] [3].

In this work, we consider robots composed by a single distal plate, a single base
and 𝑛 deformable links, or limbs, ({𝑛 ∈ N, 𝑛 > 1}), as in [8]. A generic representation
of such a robot is given in Figure 1b. In what follows, we consider three possible
types of actuated base joints: prismatic, revolute and an actuation that changes the
length of the rod, like the one in [8], namely extensible limb. With this layout, the
structure of these robots is simple, inexpensive, lightweight, compliant, and easily
scalable, making it possible to realize CPRs of a few millimeters [3].
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(a) Representation of a Cosserat rod.

(b) On the right, an example of a generic assembly of a CPR
with a graphical representation of the numerical integration.

Fig. 1: Representation of Cosserat rod (on the left) and of a generic CPR (on the
right).

The combination of rigid and deformable bodies complicates the identification
of the CPRs configuration. It depends on the robot geometry and the efforts among
its bodies; this problem is called geometrico-static. In general, as it does not admit
an analytical solution, simulations can be used to find a solution numerically.

However, there are no generalized simulators available in the literature. For every
case study, researchers develop their own code [8] [3]. These specific simulations
can be severely optimized to achieve real-time computation as in [8], but they are not
prone to modification of the robot geometry or assembly. Any modification requires
modifying the code or, in the worst case, refactoring the whole simulator.

In this paper, we propose a generic simulation for CPRs, based on Gazebo and
able to identify the robot assembly automatically. We choose to use Gazebo and ROS
as nowadays they are standard in many robotics applications. In particular, Gazebo
allows integrating new capabilities, in terms of custom physics and rendering [6].

The paper is structured as follows: in Section 2 we discuss modeling for the
deformable links. In Section 3, we present the generalized modeling strategy for
CPRs. In Section 4, we briefly introduce the architecture of the simulator. In Section
5, we present some case studies to show the capabilities of our simulator. Finally we
discuss our conclusion in Section 6.

2 Cosserat rod theory

The Cosserat rod theory is widely used and discussed in the literature to model the
geometrico-static properties of continuum robots [7], as it has been proven to be
reliable and precise [2]. A rod can be represented as a sequence of cross-sections
stacked on top of each other along the rod centerline, as shown in Figure 1a. This
line is parameterized by 𝑠 ∈ [0 1] being a normalized curvilinear abscissa, defined
by 𝑠 = 𝑝/ℓ, with 𝑝 ∈ [0 ℓ] the non-normalized curvilinear abscissa along the beam,
and ℓ the beam length at rest. Following the assumptions discussed in [8], we attach
a frame F(𝑠) to every rod cross-section, defined with the principal axis of inertia of
the cross-section at 𝑠, namely d1, d2 and d3 = d1 × d2. The frame configuration is
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defined by an homogeneous transformation 𝑤T(𝑠) ∈ 𝑆𝐸 (3) that describes its pose in
terms of the position of its origin 𝑤p(𝑠) ∈ R3 and orientation 𝑤R(𝑠) ∈ 𝑆𝑂 (3) of its
frame axes with respect to a reference frame F𝑤:

𝑤T(𝑠) = ⟨𝑤p(𝑠) ,
𝑤 R(𝑠)⟩ =

[
𝑤R(𝑠)

𝑤p(𝑠)
0[1×3] 1

]
(1)

In this paper, we define a derivative with respect to the arc length 𝑑
𝑑𝑠

with the
symbol (·) ′. In order to establish the evolution of the continuum body with respect
to the arc length, we compute the derivative of position and orientation respectively
as 𝑤p′

(𝑠) and 𝑤R′
(𝑠) . Their counterparts, in the local coordinate of the cross-section,

are: 𝑠v(𝑠) = 𝑤R(𝑠)
𝑇𝑤p′

(𝑠) and 𝑠u(𝑠) =

[
𝑤R(𝑠)

𝑇𝑤R′
(𝑠)

]∨
, where we used the map

(·)∨ : R3×3 → R3 such that: a ∈ R3, (â)∨ = a, â being the cross-product matrix
associated with the vector a. In the following, we drop the prefix 𝑤(·) for the quantities
expressed with respect to F𝑤.

In our work, we implement the system of ordinary differential equations (ODEs)
for a Cosserat rod [3] for every 𝑖𝑡ℎ limb of a CPR, with 𝑖 = 1, . . . , 𝑛.

p𝑖
′
(𝑠) = ℓ𝑖

(
R𝑖(𝑠)

𝑠v𝑖(𝑠)
)

R𝑖
′
(𝑠) = ℓ𝑖

(
R𝑖(𝑠)

𝑠u𝑖(𝑠)

)
n𝑖

′
(𝑠) = −ℓ𝑖 f̄𝑖(𝑠)

m𝑖
′
(𝑠) = −ℓ𝑖

(
p𝑖

′
(𝑠) × n𝑖(𝑠) + l̄𝑖(𝑠)

)
(2)

n𝑖(𝑠) = R𝑖(𝑠) K𝑆𝐸𝑖

[
𝑠v𝑖(𝑠) − 𝑠v0

𝑖(𝑠)

]
(3)

m𝑖(𝑠) = R𝑖(𝑠) K𝐵𝑇𝑖

[
𝑠u𝑖(𝑠) − 𝑠u0

𝑖(𝑠)

]
(4)

Where f̄𝑖(𝑠) and l̄𝑖(𝑠) are respectively some external distributed forces and moments
along the centerline of the 𝑖𝑡ℎ limb, while n𝑖 (𝑠) and m𝑖 (𝑠) are respectively the internal
forces and moments that act from a cross-section 𝑠 to the next one 𝑠 + 𝑑𝑠 having 𝑑𝑠

as an infinitesimal increment of 𝑠. The ODEs (2) are paired with Equations (3) and
(4) linking the deformation with the internal stresses of the rod (Hooke’s law). The
deformation is a difference between the current rod curvatures and the ones in a load
free state: 𝑠u0

(𝑠) and 𝑠v0
(𝑠) . The two diagonal matrices K𝑆𝐸 = 𝑑𝑖𝑎𝑔 (𝐺𝐴,𝐺𝐴, 𝐸𝐴)

and K𝐵𝑇 = 𝑑𝑖𝑎𝑔
(
𝐸𝐼𝑥𝑥 , 𝐸 𝐼𝑦𝑦 , 𝐸

(
𝐼𝑥𝑥 + 𝐼𝑦𝑦

) )
account for geometrical and physical

properties of the rod: 𝐸 and 𝐺 are the rod Young and shear modules, 𝐴 is the
cross-section area while 𝐼𝑥𝑥 and 𝐼𝑦𝑦 the principal moment of inertia.

We define the state of a rod as y𝑖(𝑠) =
(
p𝑖(𝑠) ,R𝑖(𝑠) , n𝑖(𝑠) ,m𝑖(𝑠)

)
, where the operator

(·, . . . , ·) is a vertical concatenation of the vector listed between parentheses, in the
case of a matrix, it vertically concatenates each of its columns. For every 𝑖𝑡ℎ limb,
starting from the state at the rod base: y𝑖(𝑠=0) = y𝑖0 , the numerical integration of (2)
gives the state at the rod tip y(𝑠=1) = y𝐿 .This final state contains the pose of the last
cross section T𝑖(𝑠=1) = T𝑖𝐿 , and the wrench of the internal stresses W𝑖(𝑠=1) = W𝑖𝐿 .
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(a) Distal plate representation.
(b) Representation of the ge-
ometrical constrains.

Fig. 2: Representation of the distal plate joint. On the left its definition, on the right
considerations about the geometrical constrains.

3 Generic Modeling of CPRs

We assume that base joints are responsible for the motion of the deformable links
and that they define the initial state of the rod: y𝑖0 , or the rod length ℓ𝑖 . At the distal
plate, every rod tip state y𝑖 𝐿 must comply with the assembly constraints coming from
the coupling between the tip of the rod and the joint. Moreover, the static balance of
the distal plate must be satisfied. We detail these computations in what follows.

3.1 Assembly Constrains

The distal plate joints are attached to the platform body, each one with its own
frame F𝐽𝑖 , as represented in Figure 2a. These frames are described with a rigid
body transformation 𝑑𝑝T𝐽𝑖 with respect to the distal plate frame F𝑑𝑝 . For every
joint, 𝐽𝑖T𝑎𝑝 describes how the rod tip should connect with the joint body. If the rod
tip does not reach the attach point, we define an error as shown in Figure 2b. The
projection of 𝐽𝑖T−1

𝑎𝑝 through T𝐿 gives a pseudo joint origin F𝐽𝑖
= ⟨p𝐽𝑖

,R𝐽𝑖
⟩. We

then define: e𝑖 =
(
e𝑖 𝑝𝑜𝑠 , e𝑖𝑜𝑟𝑖

)
, e𝑖 ∈ R6; the geometrical error in 𝑆𝐸 (3) between

the rod tip and the joint, with e𝑖 𝑝𝑜𝑠 = p𝐽𝑖
− p𝐽𝑖

and e𝑖𝑜𝑟𝑖 =
(
R𝑇

𝐽𝑖
R𝐽𝑖

− R𝐽𝑖R𝐽𝑖
𝑇
)∨

.
These formulations are detailed in [8], where all joints are assumed ideal and body-
less. Note that e𝑖 can be computed in different ways. However, we believe that our
formulation is more computationally efficient and allows to account for the joint
geometry and DoFs generically. If the joint has some DoFs, the corresponding part
of e𝑖 is neglected, as there are no constraints on that motion. We introduce the vector
𝐽𝑖a = (𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧) ∈ R3, for which each component can have two possible values: 1
if the joint is free along the corresponding axis and 0 otherwise. It defines a matrix
𝐼 = 𝐼−𝑑𝑖𝑎𝑔

(
𝐽𝑖a

)
, with 𝐼 the identity matrix, that we use to compose a block-diagonal

matrix 𝐽𝑖I𝑑𝑜 𝑓 ∈ R6×6. This last matrix cancels the component of e𝑖 along the joint
DoFs. As an example, we detail the calculation for a spherical joint. As it can rotate
in all directions, we have to consider only the translation part of the error. It follows
that 𝐽𝑖a = (1, 1, 1) and 𝐼 = 03×3, and the error is computed as follows:
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e 𝑗𝑛𝑡
𝑝𝑖 = R𝐽𝑖

𝐽𝑖I𝑑𝑜 𝑓R
𝑇
𝐽𝑖

e𝑖 (5)

e 𝑗𝑛𝑡
𝑝𝑖 = R𝐽𝑖

[
13×3 03×3
03×3 𝐼

]
R

𝑇
𝐽𝑖

[
e𝑖 𝑝𝑜𝑠
e𝑖𝑜𝑟𝑖

]
= R𝐽𝑖

[
13×3 03×3
03×3 03×3

] [
𝐽𝑖e𝑖 𝑝𝑜𝑠
𝐽𝑖e𝑖𝑜𝑟𝑖

]
= R𝐽𝑖

[
𝐽𝑖e𝑖 𝑝𝑜𝑠
03×1

]
=

[
e𝑖 𝑝𝑜𝑠
03×1

] (6)

Table 1: Definition of I𝑑𝑜 𝑓 based
on joint type

ty
pe axis I𝑑𝑜 𝑓

𝐽𝑖a𝑇

re
vo

lu
te x 𝑑𝑖𝑎𝑔

(
𝐼, 𝐼

)
(1, 0, 0)

y 𝑑𝑖𝑎𝑔
(
𝐼, 𝐼

)
(0, 1, 0)

z 𝑑𝑖𝑎𝑔
(
𝐼, 𝐼

)
(0, 0, 1)

pr
is

m
at

ic x 𝑑𝑖𝑎𝑔
(
𝐼, 𝐼

)
(1, 0, 0)

y 𝑑𝑖𝑎𝑔
(
𝐼, 𝐼

)
(0, 1, 0)

z 𝑑𝑖𝑎𝑔
(
𝐼, 𝐼

)
(0, 0, 1)

fixed 𝑑𝑖𝑎𝑔 (𝐼, 𝐼) (0, 0, 0)
spherical 𝑑𝑖𝑎𝑔

(
𝐼, 𝐼

)
(1, 1, 1)

Where R𝐽𝑖 = 𝑑𝑖𝑎𝑔
(
R𝐽𝑖 ,R𝐽𝑖

)
is a block-diagonal matrix to project an error in

𝑆𝐸 (3) from the joint frame to the world frame. In Equation (5), we provide the the
general computation of the actual error while, in Equation (6), there is the formula
applied to a spherical joint. For other joints, the Table 1 refers for the various cases.

Dual considerations apply for the static equilibrium of the distal plate. The wrench
from the rod tip transfers on the joint origin: 𝐽𝑖W𝐽𝑖 = −AdT𝑟𝐽𝑖

W𝐿 , where AdT𝑟𝐽𝑖
is

the adjoint transformation from the rod tip frame and the joint frame defined in [5].
It can be dived in two parts: 𝑗W𝑟

𝐽𝑖
= 𝐽𝑖I𝑑𝑜 𝑓

𝐽𝑖W𝐽𝑖 that is reciprocal to the joint twist
and 𝐽𝑖W𝑝

𝐽𝑖
=
[
𝐼 − 𝐽𝑖I𝑑𝑜 𝑓

]
𝐽𝑖W𝐽𝑖 that develops a non zero power.

The contribution of the 𝑖𝑡ℎ limb on the distal plate balance is obtained again with
the shifting law: W𝑖 𝑑𝑝 = R𝑑𝑝 AdT𝐽𝑖𝑑𝑝

𝐽𝑖W𝑟
𝐽𝑖

.

3.2 Unique Solver

In order to find the configuration of a CPR, the geometrico-static problem is divided
into two sub problems: the direct and inverse geometrico-static problem (DGM and
IGM, respectively). The DGM consists in finding the pose of the distal plate knowing
the wrench applied on it and the base joint actuations. In the IGM, knowing the distal
plate pose and wrench, the joints coordinates are found.

In the literature, the CPRs geometrico-static problem is typically solved with the
shooting method as in [8]. The shooting method consists in manipulating two vectors:
the guess and the residual vector. The former, denoted as x0, is a vector containing
all the variables in the geometrico-static problem while the second, denoted as r
represents a cost function which module must be null. They are defined as:

x0 =

(
W1 (0) , . . . ,W𝑛 (0) , . . . , q, p𝑑𝑝 , ea𝑑𝑝

)
(7)

r =

(
e 𝑗𝑛𝑡
𝑝1 , e𝑝𝑜𝑤

𝑊1
, . . . , e 𝑗𝑛𝑡

𝑝𝑛 , e
𝑝𝑜𝑤

𝑊𝑛
, . . . , e𝑏𝑎𝑙𝑊 , (r𝐷𝐺𝑀 |r𝐼𝐺𝑀 )

)
(8)
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Where q is the vector of joints values, W𝑖 (0) the wrench at the 𝑖𝑡ℎ rods base
and p𝑑𝑝 and ea𝑑𝑝 describes the platform position and Euler angles orientation
respectively. The residual vector r contains the constrains e 𝑗𝑛𝑡

𝑝𝑖 and e𝑝𝑜𝑤
𝑊𝑖

= W𝑝

𝑖
and

the static equilibrium of the distal plate e𝑏𝑎𝑙
𝑊

, which satisfies the following equation.

e𝑏𝑎𝑙𝑊 = Wg
𝑑𝑝

+
𝑛∑︁
𝑖=0

W𝑖 𝑑𝑝 + Wext
𝑑𝑝 = 0 (9)

Where Wg
𝑑𝑝

and Wext
𝑑𝑝

are gravity and external wrenches acting on the distal plate.
Finally, the section (r𝐷𝐺𝑀 |r𝐼𝐺𝑀 ) allows to handle both DGM and IGM with the

same numerical framework [9]. It constrains either q or ⟨p𝑑𝑝 , ea𝑑𝑝⟩ depending on
the problem type. Using ·∗ for the desired values, we can describe r𝐷𝐺𝑀 |r𝐼𝐺𝑀 as

follows: r𝐷𝐺𝑀 = (q∗ − q) and r𝐼𝐺𝑀 =

(
p∗
𝑑𝑝

− p𝑑𝑝 ,

[
R∗𝑇

𝑑𝑝R𝑑𝑝 − R∗
𝑑𝑝R𝑇

𝑑𝑝

]∨)
.

With this method, the variables in the vector x0 are computed in order to cancel
the norm of r. This problem requires a nonlinear solver: we used here the Levenberg-
Marquardt algorithm implemented in the Ceres library [1].

4 The Gazebo simulator

Gazebo is a widely used simulator for the dynamic of rigid bodies [4]. It is open-
source and based on the Open Dynamic Engine or Bullet physics. It hosts many
robotics applications and, with our work, we want to bring the CPRs in this worldwide
framework. Even if it does not support deformations, it provides extensions for its
physics and rendering through plugins. Plugins allow users to control the Gazebo
environment and physics. We developed our own plugin which accounts for the
physics of the deformable links, applies the effects on the rigid bodies and displays
the rod shapes using Gazebo rendering capabilities.

In order to simulate a CPR we need to specify its properties: deformable links
are described in a dedicated .yaml file while the rigid bodies are described in a .sdf
(simulation description format) file. This file contains all the physical, geometrical
and visualization properties of the bodies.

We developed three main routines in our plugin. The first one is activated when all
the parts of the CPR are loaded in Gazebo; our plugin starts retrieving their needed
properties in order to construct the robot model: joints poses, geometries and axis 𝐽𝑖a
for all 𝑖 = 1, . . . , 𝑛. A second routine initializes the simulation finding a solution for
the robot model. The shooting method requires an initial guess for begin the iterative
process. This guess can be given by the user or can be found automatically. In the
last case, the solver will start assuming all the forces and actuation values as zero.
If no solution is found, then bounded random values for wrench and joints actuation
are used to find a suitable solution. If no solution is found after a fixed number of
tentative, the simulator exits with error. Once the robot is initialized, the third routine
allows the user to move the robot. For this purpose, we created a Graphical User
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(a) (b) (c)

(d) 3EFR moved in IGM. (e) 3PFR moved in IGM. (f) 3RFR moved in IGM.
.

Fig. 3: Simulation of four planar CPRs with different actuations. In Figures 3a, 3b
and 3c, we show a robot with two actuated revolute joints and an extensible limb
which is then fixed on the distal plate. In Figure 3d, we present a robot with three
extensible limbs (3EFR). In Figure 3e, we depict a robot with prismatic joints at the
base (3PFR). A robot with revolute joints at the base (3RFR) in Figure 3f.

Interface (GUI) to ease the usage of the simulator, which is available online in our
GitHub repository1.A video demonstration can be found on YouTube2.

5 Simulations results

In this section, we want to present the simulation of some CPRs starting with a version
of the simulator for planar CPRs for which loads, deformations and displacements
happen in the plane only. As a result, their model is simpler compared to the one of a
spatial CPR such as [8]. Illustrations of DGM and IGM simulations are represented
respectively in Figure 3. Another version of the simulator is dedicated to the general
case of spatial CPRs. Figure 4 shows the examples of three Stewart-Gough like
platforms with different types of joints at the distal plate.

We used the simulator developed in [8] and carried out an identical robot model
to be loaded in Gazebo and simulated with our simulator. We compared the length
obtained for the extensible limb for different configurations of the robot. The relative
error is negligible as its order is ∝ 10−4 𝑚 for rods length of ∝ 100 𝑚, which shows
the accuracy of our simulator.

1 https://github.com/aGotelli/A_Gazebo_Simulator_For_Continuum_Parallel_Robots.git
2 https://youtu.be/6k5aZPOQjQ8



8 A. Gotelli et al.

(a) Fixed joints. (b) Revolute joints. (c) Spherical joints.

Fig. 4: Simulation of three Stewart-Gough like platforms with different joint types.

6 Conclusions

In conclusion, we developed a simulator for CPRs, with ROS interfaces and designed
for non-programmer users. Nonetheless, it can be used, extended, or modified in order
to simulate specific CPRs. There are no other generic simulators in the literature and
thus every researcher had to develop their own simulator in their own language,
starting from scratch. We generalized the shooting method in order to deal with a
wide range of CPRs, accounting for the geometry and dimensions of the joints.

Future works will target the implementation of a theory different from the one
we used. We aim to accomplish real-time performances in Gazebo simulation in to
order efficiently simulate CPRs, while preserving our generalized approach.
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