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Abstract  

The recent wide-ranging interest in chiral materials motivates the need to understand the mechanisms that 

underlie mechanical chirality. This paper investigates the emergent chiral mechanical behavior of bars in 

relationship to microscale deformation mechanisms. The focus is upon (meta)material systems with 

granular motif that exploit couplings between stretch, shear and rotation such that the designed bar exhibits 

non-standard transverse motion under extension. To this end, a 1D-micropolar model is derived using the 

granular micromechanics paradigm to predict macroscale chirality based upon grain-scale interactions. The 

model provides micro-macro links necessary for designing the physical (meta)material system conceived 

as a granular bar. The validity of the derived model is then investigated through parametric experimentation 

using the designed system fabricated through 3D printing. The granular bar is varied with regard to two 

geometrical parameters that describe the interaction between two adjacent grains, thereby providing 

parametric spaces with respect to the considered geometrical parameters. Tensile experiments on the 

granular bar are analyzed using digital image correlation (DIC) to extract multiscalar deformation fields. 

The DIC results serve as the basis for investigating the unusual motions predicted by the 1D model by 

comparing the predicted displacement and rotation fields with those obtained experimentally. 

Keywords: Granular material; Microstructures; Mechanical tests; Energy methods; Chirality. 

  



1. INTRODUCTION 

A material system is deemed to exhibit a chiral behavior when the properties of plane-mirrored images 

cannot be mapped onto themselves by coordinate transformations consisting of rotations and translations 

alone following the concept discussed by Kelvin [1]. The significance of chirality lies in its applications in 

diverse branches of science, including physics, biology, and optics [2–5]. In the emerging field of 

metamaterials, vibration attenuation and negative coefficient of thermal expansion materials are 

applications that are being developed to exploit material chirality (see the review paper [6] for a more 

exhaustive list of applications of chiral metamaterials).  

Along these lines, chiral lattices have been extensively studied in terms of their phononic properties [7–10]. 

For example, the effect of geometrical parameters of such lattices on their band structure has been 

investigated [7]. The wave propagation characteristics of hexagonal chiral lattices have also been modeled 

as second gradient media [8]. Further, the effect of chirality on rotation of the polarization axis has been 

recently investigated experimentally in mechanical metamaterials [11]. The concept of chirality in lattices 

has also been extended to chiral metacomposites by including inclusions in order to obtain low-frequency 

stop bands in their band structure [9]. 

It is remarkable that chiral effects are also present in static mechanical systems. Several recent works have 

attempted to address the static deformation characteristics of chiral media. For instance, the elastic constants 

were related to in-plane deformation of different chiral honeycombs through finite element modeling and 

experiment [12]. Moreover, a homogenization scheme was implemented in a finite element setting to obtain 

effective mechanical properties over a unit-cell [13]. However, classical Cauchy elasticity was not sufficient 

to fully predict chirality as was experimentally shown by analyzing the deformation of a 2D non-centro-

symmetric lattice under static load [14]. In recent years, generalized continuum mechanics theories (such 

as micropolar, micromorphic and Willis elasticity) have been adopted to address the shortcomings of 

classical continuum mechanics in describing chirality [10,15–27].  

The literature on lattice chirality offers comprehensive studies on properties of particular pre-designed 

microstructural units using novel experimental and numerical schemes (see for example [25,27–30]). 

However, to obtain a deeper understanding of emergent macroscale mechanical chirality, a general analysis 

is needed to determine the effect of different contributing microscale factors. The focus is hereafter put 

upon (meta)material systems with granular motif that can be described as composed of nearly rigid elements 

(or grains) in which the elastic strain energy is stored in deformable interconnections or interfaces between 

the grains [31]. Such systems are representative of many materials with granular microstructures in which 

the deformation of an interacting grain-pair can be effectively described in terms of the relative motions of 



the grain centroids/barycenters regardless of the location of the actual deformation within the grains [31,32]. 

The chirality in this material system is introduced by exploiting the coupling between grain-pair relative 

stretch and rotation by designing appropriate grain-pair interaction mechanisms. With the view of keeping 

the analysis tractable, the simplest conceivable 1D mathematical model of chiral media is considered by 

including particular mechanisms that lead to a macroscale behavior distinguished by a specific axis/plane 

of chirality. In this context, let us note that in "classic" chiral beams, the chirality often relates to the axis 

of the beam under consideration. The typical example of such "classic" chiral beams is naturally twisted 

rods coupling torsion and stretch, such as those in biological molecules, in liquid crystals of cholesteric 

type, and in wire ropes [33–36]. Chirality of the mechanical behavior is known to manifest itself differently 

in systems that may be treated using 3D, 2D or 1D models. In the present work, the designed grain-pair 

interaction mechanisms considering stretch-rotation coupling leads to a 1D system with properties such that 

the axis of chirality is orthogonal to the beam axis.  

In the present paper, granular micromechanics approach (GMA) [32] is applied to derive a novel 1D-

micropolar model of a chiral bar that includes couplings between different deformation-modes of a bar, 

including stretch, bending and shear. It is shown that the derived model, with the included couplings, 

predicts non-standard transverse deformations and rotations as well as a chiral behavior in bars subjected 

to uniaxial loadings. These predictions are compared to experiments performed on bars fabricated by 

closely mimicking the modeling approach. A 1D model was derived with the intent of keeping the 

theoretical analysis and its experimental evaluation, including the fabrication of physical systems 

(metamaterial), as simple as possible. It is noteworthy that, to the authors’ best knowledge, no other such 

models, theoretical predictions, experimental results and their evaluations exist in the literature. 

In the following discussion, the granular micromechanics approach (GMA) of micro-macro links [31,32] 

is first utilized to develop a micropolar model with the lowest dimension capable of exhibiting chirality in 

a 1D granular bar placed in a 2D deformation plane. The motivation is to develop a tractable model that 

provides micro-macro links and opens an avenue for rigorous analyses of the role of different non-standard 

deformation mechanisms (i.e., transverse deformation and rotation) on chirality of a bar under axial loading. 

An example of a chiral granular bar is then proposed with a particular grain-pair interaction and fabricated 

using 3D printing. The proposed granular bar is then studied under uniaxial loading through parametric 

experimentation by altering the geometrical parameters that govern the grain-pair interaction mechanisms. 

The deformation mechanisms of the bar are analyzed by using Digital image correlation (DIC) to obtain 

full-field deformation measurements from the investigated experiments. Last, the model parameters are 

calibrated to the experimental results, where the effect of the alteration in grain-pair interactions on the 

deformation behavior and the range of validity of the micropolar model are discussed. 



 

2. MATERIALS AND METHODS 

This section is categorized into two main parts. The first part (subsection 2.1) gives the derivation of the 

1D micropolar model following GMA. The derivation proceeds by establishing the identification of grain 

motions with continuum displacement. Constitutive equations are introduced, the principle of virtual work 

is applied to determine the governing equations, and their non-dimensional form is then obtained. Further, 

analytical solutions are obtained for uniaxial extensions. The second part (subsection 2.2) describes the 

parametric experimentation for verifying the derived model. The design and fabrication of granular bars is 

described, the  experimental procedure and image acquisition protocol is given, and the procedure for digital 

image correlation is introduced.  

2.1. Micropolar Chiral Model using GMA 

For a micromorphic model of degree 1 of a 3D material with granular microstructure, the displacement of 

grains within a volume element, adopting the summation convention over repeated indices, is described 

as [32,37] 

i i ij j ijk j kx x x        ,         (1) 

where i  is the displacement of the center of mass of the volume element in the macroscale coordinate 

system ix , ij  and ijk  second and third rank micro-deformation tensors, respectively. In Eq. (1), i , ij

, and ijk  are all functions of ix  only, and ix  is the microscale coordinate system parallel to the macroscale 

coordinate system ix , and attached to the center of mass of the volume element. Note that Eq. (1) assumes 

continuity in both macro- and microscales [32] in the sense of Piola’s Ansatz for micro-macro kinematic 

identification (see for example [26,31,38]) and considers infinitesimal deformations of the granular solid. 

The kinematic description in Eq. (1) encodes sufficient microscale information to model both randomly-

packed granular materials and (tailored) metamaterials with granular mesostructures. Certain assumptions 

on the nature of the microdeformation tensors  ij  and ijk  have been shown to result in micropolar and 

second gradient theories [32]. In the present paper, the kinematic description of Eq. (1) is particularized to 

describe a 1D granular-mesostructured solid (termed here as granular bar) in the 2D 1 2x x  deformation 

plane. In that case, the displacement only depends on 1x  and 1x . As a result, Eq. (1) is written in component 

form as 



1 1 11 1 111 1 1x x x        ,  2 2 21 1 211 1 1x x x        .    (2) 

For further discussion, the following micro-macro relative measures are introduced [26,32] 

11 1,1 11 111 11,1 111 21 2,1 21 211 21,1 211, , ,                   ,   (3) 

where differentiation with respect to spatial coordinates 1x  is denoted by a comma in the subscript. If only 

1  is considered with 111 0  , the corresponding model is termed as micromorphic rod model of degree 1 

[32]. This form accounts for micro-macro transfer of energy (coupling) and length scale effects in the axial 

deformation of rods. If it is further assumed that 11 0  , the result is a second gradient model of a rod 

incorporating length scale effects [39]. Within the scope of the present paper, the case considered is the one 

in which the kinematic measure 111  vanishes (such that the polynomial expansion of 1  is up to linear 

terms in 1x .), and the micro-macro relative measure 11 0  , which leads to 11 1,1  . This consideration 

yields the simplest (classical model) model in the 1x  direction that is needed for modeling chirality in a 

micropolar medium [19,26]. For the kinematic description of the system in the 2x  direction ( 2 ), the 

following condition is assumed 211 211 21,10     . As a result, there remains only one independent 

microscale kinematic measure, 21 . Considering Eq. (3) and the afore-mentioned simplifications, Eq. (2) 

reduces to 

1 1 1,1 1x     ,  2 2 21 1 21,1 1 1x x x        .      (4) 

It is worth noting that the considered kinematic description given in Eq. (4) can be further simplified to 

other recognized models. For instance, neglecting any macroscale motion in the 1x  direction results in the 

classical Timoshenko beam kinematics, while further constraining the system to have 21 21 2,10      

yields the Euler-Bernoulli kinematics. 

The objective relative displacement of two neighboring grains n and p using Eq. (4) becomes 

1 1 1 1,1 1

2 2 2 21 1 21,1 2 2,1 1 21 1 21,1 2

,

,

np p n np

np p n np np np np np

J

J J J J J

   

       

  

      
     (5) 



where 1 1 1

np p nJ l l   and 2 1 1 1 1

np p p n nJ l l l l   are geometry moment measures, and 1

ql  the vector joining the 

center of mass of the volume element to grain q centroid in the 1x  direction. In Eq. (5), three different 

microscale (grain-pair) kinematic measures are recognized 

n 1,1 1 s 21 1 θ 21,1 2, ,np np npJ J J        ,       (6) 

where n  is the classical continuum relative displacement in the 1x  direction, s  the relative displacement 

in the 2x  direction due to the fluctuations between the macroscale displacement gradient 2,1  and the 

microscale kinematic measure 21 , and θ  a portion of relative displacement in the 2x  direction due to 

the second gradient effect (also interpretable as the gradient of rotation field). 

2.1.1. Constitutive equations 

Let us consider the macroscale deformation energy density W to be a function of the continuum kinematic 

measures, namely, 1,1 21 21,1( , , )W W    . It is worth noting that the macroscale deformation energy 

density W needs to be invariant with respect to rigid body motions, and hence, the term 2,1  alone cannot 

be a part of its description.  

Conjugates to the continuum kinematic measures, namely, macroscale stress measures, are introduced as 

11 21 211

1,1 21 21,1

, ,
W W W

  
  

  
  
  

,       (7) 

where 11  is recognized as the Cauchy stress, 21  as the relative stress, and 211  as the double stress. The 

macroscale deformation energy density, W, is also obtained as the accumulation of the microscale grain-

pair deformation energy expressed in terms of the microscale kinematic measures [31-32, 40] 

 α

n s θ

α

1
, ,W W

L
  


 ,         (8) 

where 
αW  is the microscale deformation energy calculated per unit bar cross-sectional area for the αth 

interacting grain pair in the bar volume element (VE) of size L’. Conjugates to the microscale kinematic 

measures, namely, grain-pair forces (and moments) n s θ, , andf f f , also calculated per unit bar cross-

sectional area are defined as 



α α α

n s θ

n s θ

, , .
W W W

f f f
  

  
  
  

       (9) 

Substituting Eq. (8) into Eq. (7) and employing Eqs. (6) and (9), the macroscale stress measures are linked 

to the corresponding force measures through 

α α α α α α

11 n 1 21 s 1 211 θ 2

α α α

1 1 1
, ,f J f J f J

L L L
    

  
   .     (10) 

In Eq. (10) it is noted that 
α

1J  and 
α

2J  for the αth grain-pair for interacting grains n and p are evaluated as 

np

1J  and 
np

2J , respectively. 

To obtain constitutive equations at both micro- and macroscales, an expression for the microscale 

deformation energy 
αW  is postulated. As a first approximation toward linking the micro-mechano-

morphology of a granular-mesostructured medium to its emergent macroscopic chiral behavior, only linear 

elastic mechanisms of deformation are considered. Therefore, the following quadratic expression for the 

microscale deformation energy 
αW  for the αth grain pair is considered 

     
2 2 2

α α α α α α α α α α α α α α α α

n n s s θ θ ns n s nθ n θ sθ s θ

1 1 1

2 2 2
W K K K K K K              .  (11) 

In Eq. (11),  α ,  where n, s, θ, ns, nθ, sθiK i , are the stiffnesses associated with their corresponding 

mechanisms for the αth grain pair, all having the dimension of force per length. In particular, 
α

nK  is the 

axial (normal) stiffness, 
α

sK  the shear stiffness, and 
α

θK  the rotational stiffness of a grain-pair (see for 

comparison [40]). The term 
α

nsK  couples normal and shear deformations, while 
α

nθK  and 
α

sθK  couple 

normal and rotational, and shear and rotational deformations, respectively, and are included for the sake of 

completeness inspired by experimental and discrete simulation observations [19], and appear in similar 

discrete systems [41]. The grain-pair forces introduced in Eq. (9) are obtained using Eq. (11) 

α α α α α α

n n n ns s nθ θ

α α α α α α

s s s ns n sθ θ

α α α α α α

θ θ θ nθ n sθ s

,

,

.

f K K K

f K K K

f K K K

  

  

  

  

  

  

        (12) 

Using Eq. (12), the emergent macroscale constitutive relationships (10) are written as 



n ns nθ

11 1,1 21 21,1

s ns sθ

21 21 1,1 21,1

θ nθ sθ

211 21,1 1,1 21

,

,

,

C C C

C C C

C C C

   

   

   

  

  

  

        (13) 

where the macroscale stiffnesses 
n s ns nθ sθ, , , , andC C C C C  are defined as 

n α α α s α α α θ α α α

n 1 1 s 1 1 θ 2 2

α α α

ns α α α nθ α α α sθ α α α

ns 1 1 nθ 1 2 sθ 1 2

α α α

1 1 1
, , ,

1 1 1
, , .

C K J J C K J J C K J J
L L L

C K J J C K J J C K J J
L L L

  
  

  
  

  

  
   (14) 

In general, appropriate scalings of the grain-scale stiffnesses with the VE size L’ lead to non-trivial 

macroscale stiffnesses. For the purposes of this work, with the aim of investigating their consequences, it 

is assumed that all the macroscale stiffnesses exist and are not trivially vanishing. A formal homogenization 

scheme may be pursued along this line in the future to determine applicable scaling laws. The corresponding 

macroscale deformation energy density, following Eq. (11) and using Eqs. (7) and (13), becomes 

     
2 22n s θ ns nθ sθ

1,1 21 21,1 1,1 21 1,1 21,1 21 21,1

1 1 1

2 2 2
W C C C C C C              ,  (15) 

with positive definiteness of energy requiring that 

       
2 2 2 2

n n s ns n s θ ns nθ sθ n sθ s nθ θ ns0, , 2C C C C C C C C C C C C C C C C      . (16) 

Further, it is notable (from Eqs. (14) and (15)) that keeping only the first term in the microscale deformation 

energy (Eq. (11)) results in a classical rod model. Further, retaining only the third term in Eq. (11) results 

in the Euler Bernoulli beam model, while only the second and third terms (in Eq. (11)) yield the Timoshenko 

beam model, and finally, retaining the first four terms of Eq. (11) leads to a model equivalent to a non-

standard Timoshenko beam model [42]. 

2.1.2 Governing equations 

The principle of virtual work, neglecting inertia terms, states that 

0extW W    ,          (17) 

where   is the variation symbol, and the terms W , and extW  are defined in the sequel. In Eq. (17), 

L
W Wdx    represents the variation of total macroscale deformation energy 



 11,1 1 21,1 2 211,1 21 21 11 1 21 2 211 21 00 0

x L x L x L

xx xL L L
W dx dx dx             

  

 
           

            (18) 

The term extW  corresponds to the variation of total external energy. Considering non-contact volumic 

terms, it is defined as 

1 1 2 2 21 21 00 0

x L x L x L

ext xx x
W t t T   

  

 
   .       (19) 

In Eq. (19), 1t  and 2t  are the contact tractions in the 1x  and 2x  directions, respectively, and 21T  the contact 

double traction. Substituting Eqs. (18) and (19) in Eq. (17) results in the following balance equations 

11,1 21,1 211,1 210, 0, 0       .        (20) 

For the constitutive laws (13), assuming the macroscale stiffnesses to have spatial independence (or material 

homogeneity at the macroscale), the balance equations (20) are recast as 

n ns ns nθ

1,11 2,11 21,1 21,11

ns s s sθ

1,11 2,11 21,1 21,11

nθ ns sθ s s θ

1,11 1,1 2,11 2,1 21 21,11

0,

0,

0.

C C C C

C C C C

C C C C C C

   

   

     

   

   

     

     (21) 

Moreover, the boundary conditions are evaluated as 

 

 

 

n ns ns nθ

1 1,1 2,1 21 21,1 1

s s ns sθ

2 2,1 21 1,1 21,1 2

θ nθ sθ sθ

21 21,1 1,1 2,1 21 21

0, at 0, ,

0, at 0, ,

0, at 0, .

t C C C C x x L

t C C C C x x L

T C C C C x x L

    

    

    

      

      

      

    (22) 

It is also instructive to compare the current model against the classical Timoshenko beam model with 

constant parameters. The latter typically does not consider the axial deformation of the beam, and therefore, 

the first line in Eq. (21) is irrelevant. Moreover, it does not account for couplings between different 

deformation modes, hence 
ns nθ sθ 0C C C   . With these restrictions, Eq. (21) takes the simplified form 

θ

2,11 21,1 2,1 21 21,11s
0, 0,

C

C
                (23) 

and the natural boundary conditions (22) reduce to 

s θ

2 21 21 21,1, .t C T C            (24) 



The ratio 

θ

s

C

C
 is equivalent to the term 

EI

AG
 in the formulation of classical Timoshenko beams, where A 

is the cross sectional area, E the Young’s modulus, G the shear modulus, I the second moment of inertia, 

and   the Timoshenko shear coefficient. Moreover, 21  represents the angle of rotation of the normal to 

the mid-surface of the beam, 
2t  the shear force, and 21T  the bending moment. Last, it may be noted that 

the derived 1D model (Eqs. (21) and (22)) may not be obtained as a simplification of classical micropolar 

models such as those discussed in [43,44]. 

2.1.3. Dimensionless form of governing equations 

It is convenient to reduce the number of parameters involved in the problem by nondimensionalizing the 

governing equations (21). To this end, the following dimensionless variables and parameters are introduced 

1 2
1 2 21 21

s ns nθ sθ θ

s ns nθ sθ θn n n n n

, , , ,

1 1 1
, , ,

x
x

L L L

C C C C C
l l l

C C L C L C L C

 
   

 

   

    

    (25) 

The parameter s  is the ratio of the shear stiffness to the normal (axial) stiffness, and ns  the ratio of the 

normal-shear coupling stiffness to the normal stiffness. Moreover, nθl , sθl , and θl  are dimensionless 

characteristic lengths related to the effective magnitude of normal-rotation coupling stiffness, shear-rotation 

coupling, and rotational stiffnesses, respectively. With regard to Eq. (25), the dimensionless form of the 

governing equations (21) reads 
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The dimensionless spatial domain of the problem is 0 1x  , with dimensionless boundary conditions 

expressed as 
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  are dimensionless normal traction (axial force), shear traction 

(shear force), and contact double traction (bending moment), respectively. 

2.1.4. Closed-form solution for tensile testing 

Let us focus on the general solution to Eq. (26), which after some straightforward manipulations, becomes 
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         (28) 

where    , 0, 1, 2, 3 , , , 0, 1, 2i i ib i a e i   are 10 unknown coefficients to be determined. Substituting 

the solution (28) into the governing equations (26) results in 
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   (29) 

Equation (29) reduces the number of unknowns from 10 to 6, which are determined from the prescribed 

boundary conditions. To be consistent with the experimental loading condition (described in Section 2.2), 

let us focus on uniaxial tension with the following boundary conditions  

            1 1 2 2 21 210 0, 1 , 0 1 0, 0 1 0.rx x x x x x                    (30) 

Based on Eq. (30), rotation, transverse displacement, and axial displacement are fixed at one end, while, at 

the other end, rotation and transverse displacement are fixed and the axial displacement r  is prescribed 

such that from Eq. (28) 
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Equation (31), together with Eq. (29) is solved for the unknown coefficients in Eq. (28), resulting in 
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  (32) 

To illustrate model predictions, three granular bar are considered with stiffness constants s 0.5  , 

ns 0.5  , and θ 0.1l  , with different nθl  and sθl  values as stated in the caption of Fig. 1. The axial 

displacement 
1  is in general quadratic with respect to x , which reduces to a classical linear dependence 

when nθ sθ 0l l  . The transverse displacement 
2  is a cubic function of x , and vanishes only for the case 

of vanishing normal-shear coupling stiffness, ns . Further, only in the particular case of vanishing 

characteristic lengths, nθ sθ 0l l  , the midpoint of the granular bar overlaps with the inflection point of 

the transverse displacement field. This symmetry-like behavior is broken for non-vanishing nθl  or sθl , where 

the inflection point moves to some other location within or outside of the problem domain depending on 

the values of the characteristic lengths, nθl  and sθl . The rotation, 21 , within the granular bar follows a 

quadratic behavior for non-zero normal-shear coupling stiffness, ns , with its maximum level occurring at 

the midpoint of the granular bar. The magnitude of rotation is affected by the characteristic lengths, nθl  and 

sθl . The transverse displacement 
2  and rotation, 21 , under uniaxial stretch, are not invariant to mirror 

transformation, and hence represent a chiral behavior of a 1D continuum.   

 



2.2. Parametric Experimentation 

The predictions of the proposed micropolar model introduced above, show that chirality in granular media 

is tied to the deformation mechanisms of interacting grains modelled by inter-granular stiffnesses. To 

evaluate these predictions, parametric experiments were performed using 3D printed granular bars, whose 

design was guided by the micro-macro links that form the basis of the GMA considerations described above. 

The underlying methodology pursued in this work follows the paradigm of designing metamaterials 

following a rational design approach based upon predictive theories [45]. 

2.2.1. Prototypical model design and realization 

The needed bar should include grain-pair interconnections designed to achieve the interactions that embody 

the grain-pair deformation energy postulated in Eq. (11). These interactions include grain-pair relative 

stretch, shear, rotations and couplings among these mechanism. A schematic of the designed granular bar 

is shown in Fig. 2(a) where the set of solid beams connecting two grains is considered as the mechanical 

(rheological) analog of grain-pair interactions. This simple mechanism leads to grain-pair interaction that 

exhibits shear-normal-rotational couplings as proven using FE models in which each grain and grain-pair 

connection are treated as composed of classical Cauchy continua [19,42].  

To investigate the influences of these deformation mechanisms, the geometrical parameters t and b 

associated with the mechanical analog of grain-pair interactions were varied, thus enabling for an extensive 

parametric study. This choice is reported in Fig. 2(a) where each sample with its unique set of parameters t 

and b is shown with a marker within the domain of geometrical parameters. With regard to the considered 

granular bar, the sample with the largest weight has almost 16% more than those with the least weight.  

The CAD software SolidWorks (Dassault Systems SolidWorks Corporation, Waltham, MA, USA) was 

used to generate the granular bar geometries based on Fig. 2(a). Each granular bar is composed of 11 grains 

with an out-of-plane thickness of 4 mm (Fig. 2(b)). This value was chosen to induce 2D planar 

deformations, while preventing warpage in the fabrication process. The granular bar is terminated at both 

ends with flat extensions designed to facilitate gripping. The designed granular bars were fabricated with a 

Low Force Stereolithography 3D printer Form 3 (FormLabs, USA), using the so-called “Durable Resin” 

monomer, with XY resolution and layer thickness of 50 μm . The Young’s modulus of the cured resin 

is nominally 1.0 GPa. The printed samples had a maximum of 0.1 mm variation in b and t parameters with 

respect to their nominal values. For each granular bar geometry, three samples were 3D printed and tested. 

Measured data from first two sets of samples were used for model verification, and the additional third test 

was used for assessing measurement repeatability. 



2.2.2. Experimental prescription 

An ElectroForce 3200 (TA Instruments) testing machine was utilized to conduct tensile tests on the 3D 

printed metamaterial. The testing machine is equipped with a load cell of capacity ± 450 N, a measurement 

uncertainty of 0.1%, and resolution of 1 mN; and a displacement transducer with a range of ± 6.5 mm, a 

measurement uncertainty of 0.1%, and a resolution of 1 µm. Figure 2(b) shows a snapshot of a granular bar 

being attached to the testing machine with the grips. The boundary conditions prescribed by the grips on 

the sample were expected to conform to those of Eq. (30), such that a comparison can be made between the 

theoretical predictions and experimental results. A total extension of 10 mm (axial strain of ca. 0.095) was 

applied on the granular bar specimens at a rate of 50 µm/s. 

To extract grain kinematic data from the experiments, a speckle pattern was applied on the surface of the 

samples using black and white paint sprays (Fig, 2(b)). Using a DLSR camera, ten images were acquired 

in the reference configuration for the purpose of uncertainty quantifications, and consecutive images were 

taken from the samples during the experiment. The image acquisition setup is shown in Fig. 2(c) with the 

specifications listed in Table 1. To facilitate the distinction between the printed samples and their 

environment, a red background was adopted, and soft boxes were used to generate diffusive lighting. The 

captured images were transformed into black and white for performing DIC registrations. 

2.2.3. Digital image correlation (DIC) 

The captured images of the experiments were post-processed using DIC to measure full-field deformations 

at different scales of observation. The Correli 3.0 DIC framework was used in which Hencky-elastic 

regularization was implemented [46]. DIC is based on the registration of image 0I  in the reference 

configuration and image tI  in the deformed configuration. The registration is based upon the conservation 

of gray levels between the two images 

    0 tI I x x u x ,          (33) 

where x is the position vector of each pixel within the domain of interest, and u the unknown displacement 

field. The problem is to find a displacement field u such that the sum of squared differences between the 

reference image  0I x  and the corrected deformed image   tI x u x  is minimized. Let us consider a 

displacement field u with the following form 

   , ,i

i

u x p Ν x p ,         (34) 



where the summation convention for subscripts is not exercised, p  the column vector of sought degrees of 

freedom, and  ,iΝ x p  the i-th trial displacement field. We note that the expression for u in Eq. (34) can 

be linear or nonlinear with respect to the degrees of freedom, p , depending on the assumed kinematics. 

The registration minimizes the squared sum of pixel-wise gray level residual   over a region of interest 

(ROI) 

   2 2

ROI

, p x p ,          (35) 

where 

      0, ,tI I   x p x u x p x .        (36) 

The minimization scheme is nonlinear and the degrees of freedom vector p  is obtained by iteration using 

a Gauss-Newton method [47,48]. When finite-element based kinematics are used (particularly for 

macroscale and microscale analyses described in Section 3.2), the previous cost function was penalized 

with the equilibrium gap functional [49] written on displacement increments (i.e., corresponding to Hencky 

elasticity [50]). For mesoscale analyses (Section 3.2), which measured the rigid body motions of each 

individual grain, no additional regularization was enforced. 

3. RESULTS AND DISCUSSION 

The results obtained from the experiments described in Subsection 2.2 and their calibration with the model 

described in Subsection 2.1 are presented here categorized into three parts. The first part (Subsection 3.1) 

quantifies the uncertainty in displacement measurements obtained via DIC. The second part (Subsection 

3.2) describes the multiscalar DIC and the types of data obtained from these analyses. Last, the third part 

(subsection 3.3) discusses the evaluation of the micropolar model utilizing the results from multiscalar DIC 

analyses for all the tested specimens. To this end, model parameter identification and the assessment of 

goodness-of-fit as well as the repeatability of the model evaluation are carried out. The effect of the 

geometrical parameters on the deformation mechanism is then investigated.  

3.1. Uncertainty Quantification 

As a first step, all possible combinations of reference images acquired before the beginning of loading were 

analyzed to quantify the uncertainty levels of displacements extracted from DIC runs. Ten reference images 

were acquired such that the total number of DIC analyses for uncertainty quantification was 45. The 

fluctuations caused by the motion of loading machine actuator during image acquisition were corrected by 



subtracting the recorded macroscale axial displacement from the DIC measurements. Similarly, the 

transverse displacements and rotations were corrected by subtracting the mean transverse displacement and 

mean rotation, since they were not measured in the loading device. Standard deviations were then calculated 

for each degree of freedom with respect to the 45 DIC analyses. Table 2 reports the uncertainties for the 

DIC analyses performed at different spatial scales introduced in the following discussions. As seen in Table 

2, the uncertainty of displacement measurements through DIC are almost two orders of magnitude lower 

than the smallest reported displacement.  

It may be noted that when compared to previously reported levels for a similar experiment [51], the 

uncertainty levels are higher. Notably, in the previous study, the uncertainty levels were evaluated in a 

different way since only one reference image was available and a series of artificial images with the noise 

level associated with the background was created. Thus, the previous work did not account for all 

experimental fluctuations. The present levels are expectedly more realistic in terms of noise floor 

estimates [52]. 

3.2. Multiscale DIC Analyses of Grain Bar  

Altogether, three sets of 14 grain-bar specimens (42 samples) with different t and b combinations were 

subjected to tensile loading and imaged as described in Sections 2.2.1 and 2.2.2. As an example, Fig. 3(a) 

shows the initial, final and three intermediate images of a granular bar with t = 1.2 mm and b = 1 mm. All 

these experiments were analyzed using the described DIC framework at 3 spatial scales, namely the macro, 

meso and microscales (see [51] for details of the methods).  

3.2.1. Macroscale DIC analyses 

The first scale, which is referred herein as macroscale DIC, is that in which the granular bar is assumed to 

be a continuous bar of homogenous cross-section. Macroscale DIC assumes that the granular bar is a small 

finite volume of a larger body with indistinguishable grains, and as a result, is useful when macroscale 

continuum models are to be developed. Additionally, in multiscale DIC, this macroscale analysis serves a 

secondary purpose as well, as its results provide an initialization for the solution for finer scale DIC analyses 

that, typically, leads to significantly reduced number of iterations and computational demands. Figure 3(b) 

shows the finite element discretization of the domain for macroscale DIC using 3-noded (T3) elements with 

a size of 33 px (about 2 mm). It was observed that no significant gain was obtained by using a finer mesh, 

and the discretization shown in Fig. 3(b) was deemed sufficient to represent many aspects of the system 

deformation that are apparent at this first scale.  



Figures 3(d,f) show, respectively, the transverse and axial displacements for the macroscale analysis 

considering the full range of applied stretch. The chiral behavior of the granular bar is observed with 

resemblance to the theoretical predictions of Fig. 1. With regard to Fig. 3(h), an increase in the root mean 

square (RMS) gray level residuals suggests that the macroscale analysis becomes less accurate as the 

deformation progresses. The increase in RMS value is essentially attributed to the kinematic assumptions 

not being accurate enough when the deformations in the grain-pair interaction mechanisms (beams and 

bars) become large. This issue is amplified by the fact that the macroscale discretization does not 

differentiate the granular bar from the background, suggesting the need for finer-scale analyses. Therefore, 

there is a need to identify a domain encompassing the structure (or the microstructure) of interest with the 

minimum inclusion of background with the intent to extract further details of the deformations.  

3.2.2. Microscale DIC analyses 

Accordingly, the nominal geometry of the granular bar (i.e., mask) was created, and a registration was 

performed, using the same algorithm as in standard DIC, to backtrack the mask image of the granular bar 

in its initial configuration [49,51]. As a result, the structural domain that includes an insignificant amount 

of background, if any, is obtained (Fig. 3(c)).  This structural domain was spatially discretized using T3 

elements size of 10 px (about 0.63 mm). The corresponding mesh is shown in Fig. 3(c). Since the DIC 

analysis is performed using this mesh that is based upon all structural details, it is referred to as microscale 

analysis. As mentioned before, microscale analyses were initialized using the corresponding macroscale 

solution. Fig. 3(e,g) show the transverse and axial displacements in the granular bar, respectively, using 

microscale DIC. A noticeable similarity is observed between the displacement fields obtained from macro- 

and microscale analyses. However, the RMS gray level residuals for microscale DIC (Fig. 3(i)) suggests a 

higher faithfulness compared to macroscale DIC as the deformation progresses since the relative increase 

in RMS level is significantly lower. 

The results from macro- and microscale analyses provide interesting evidence of the presence of chirality. 

While the printed granular bars may be viewed as a chiral lattice structure (similar to chiral lattices proposed 

in the literature where deformable/rigid nodes are connected via different beam/rod elements), they may 

also be deemed as granular (meta-)material with a series of rigid grains interacting with each other through 

some specific grain-pair interaction mechanisms. To check this hypothesis, the strain distribution is 

examined within the granular bar (note that strain may be taken as proportional to stress distribution for 

assumed linear elastic constituent material as a first order approximation). Figure 3(j-l) shows, respectively, 

the normal strain field in the transverse direction, normal strain field in the axial direction, and shear strain 

field for the full range of applied deformation based upon microscale analyses. The grains experience 

negligible deformation compared to the interconnections that define the grain-pair interactions. Further, 



Fig. 3(m) shows the results for the dimensionless form of the strain energy measure (square root of strain 

energy normalized by half of the Young’s modulus of the constituent material).  

3.2.3. Mesoscale DIC analyses 

The distributions shown in Fig. 3(m) confirm that the strain energy is localized in the grain-pair interactions, 

and not in the grains themselves. Therefore, the construct under consideration may truly be treated as a 

granular system. Consequently, it is useful to focus on the kinematics of individual grains induced by their 

interaction mechanisms since such a description may lead to reduced-order descriptions of the bar as a 

granular medium. 

To this end, mesoscale DIC analyses with three degrees of freedom for each grain were performed to extract 

their rigid motions, namely the axial displacement, 1t , the transverse displacement, 2t , and the rotation, 

, of each grain about its center of mass. For the mesoscale analyses, each grain is considered in a separate 

region of interest, and therefore, DIC initialized solutions from macroscale analyses were performed on 

each grain independently. For the purpose of illustration, let us consider the granular bar with t = 1.2 mm 

and b = 1 mm (Fig. 4). Figure 4(a) shows the RMS gray level residuals corresponding to the 11 grains for 

all the load-steps indicated by the color-scale. Grain 1 corresponds to that attached to the fixed lower grip, 

and grain 11 to the moving upper grip. Fig. 4(b) displays the axial displacement of each grain. The 

transverse displacement of grains is reported in Fig. 4(c), and the rotation of grains in Fig. 4(d). A qualitative 

agreement is noted between the results shown in Fig. 4 and the theoretical predictions (Fig. 1). 

3.3. Model Evaluation 

A quantitative evaluation of the granular bar behavior based on the proposed micropolar model is possible 

by comparing the displacement and rotation fields predicted by the model and those of the experiments as 

determined by the mesoscale DIC analyses. This approach enables the effect of geometric parameters b and 

t to be evaluated on the behavior of the system, with no need for identifying the stiffnesses associated with 

each granular bar. Moreover, it serves as a tool to assess the domain of validity of the model predictions in 

terms of resultant deformation fields. To this end, the grain positions, axial and transverse displacements 

were nondimensionalized with respect to the initial length of each bar to harmonize the experimental results 

with the expressions of Eq. (28). A least-squares optimization with equality constraints was utilized to 

determine the model parameters (described in Appendix A) and to analyze the goodness-of-fit.  

3.3.1. Parameter identification and goodness-of-fit 

For further discussion, it is advantageous to consider the following normalized form of model parameters  
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Two cases were considered. First, the focus was put on the deformation of granular bars with prescribed 

axial strain of ~0.035. Second, the full deformation (axial strain of 0.095) was considered. Measurements 

from two sets of samples were used as first step of parameter calibration, while the data from the third set 

was employed to assess model repeatability described later. Figure 5 shows the calibrated normalized 

parameters 1a , 1b , and 2b  for all granular bars for axial strains of 0.035 (two left columns) and 0.095 (two 

right columns), respectively. Further, Fig. 6 shows the goodness of the fits for the considered granular bar 

for axial strains of 0.035 (two top rows) and 0.095 (two bottom rows), respectively. The goodness of fit is 

shown with the symbol   and is plotted separately for the predicted axial and transverse displacements, 

rotations, and the global response of the model. The goodness of fit for different fields is calculated as the 

RMS residual divided by the corresponding standard uncertainty, where the residuals are defined as the 

dimensionless differences between model prediction and experimental observation. The global goodness 

of fit, global , is computed as the RMS of the goodness of fit in axial, transverse, and rotation components, 

and is an indicator of global quality of the model.  

From the results reported in Figs. 5 and 6, the following comments can be made. Figure 5 shows that, for 

all the configurations of the grain-pair interaction, and for both considered axial strains, the parameter 1a   

is never exactly unity, although its deviation from unity is typically small. This result implies a small 

contribution of the quadratic term to the nonlinearity of axial displacements. Further, the value of 1a  for 

each configuration is almost constant for both axial strain levels, and therefore is independent of the 

prescribed axial strain. Given the scatter observed in the plots corresponding to 1a  for all b and t values, an 



average value of 1 0.982a   is reported to describe all the samples at all axial strains. Notably, based on 

model predictions, the quadratic term with coefficient 2 11a a   in the axial displacement emerges only if 

normal-rotational and shear-rotational stiffnesses are present. Therefore, it is reasonable to state that such 

mechanisms exist in the studied chiral granular bar. However, their corresponding stiffness values are likely 

to be small. Moreover, having similar 1a  values for all the samples allows us to conclude that the change 

in the geometrical parameters t and b has minimal influence on the axial behavior of the sample under 

tension predicted by the model. This statement is supported by considering the goodness of fits for the axial 

displacements where all axial  values are within a narrow range, and therefore suggests that all fits are of 

the same quality for each considered axial strain. However, the average value of axial  for an axial strain 

of 0.095 is almost two times larger than its counterpart for an axial strain of 0.035, which suggests a 

degradation in the quality of the model at larger strains to predict the axial behavior of the system. 

Regarding the parameters 1b  and 2b , a large scatter is observed for the samples with 𝑡 = 0.3 mm and 𝑡 =

0.6 mm (Fig. 5) due to extremely soft grain-pair interaction mechanisms with very thin beams. For all the 

other specimens, only small fluctuations are observed for 1b  and 2b  with respect to the geometrical 

parameters t and b for an axial strain of 0.035, and average values of 1 0.902b    and 2 2.338b   are 

obtained for all the samples for this strain level. It is also noteworthy that the goodness-of-fits, transverse  and 

rotational , for an axial strain of 0.035 also show uniformity with little scatter for all specimens with varying 

b and t (except for the two samples with 𝑡 = 0.3 mm and 𝑡 = 0.6 mm) . Further, comparing transverse  and 

rotational  for the two groups of varying b and t for an axial strain of 0.035, the samples in the group of 

varying b are better described using the proposed model. Analyzing the results for different axial strain-

levels, a decrease in magnitude is observed for 1b  and 2b , with average values 1 0.647b    and 2 1.813b   

for an axial strain equal to 0.095. It is also notable that transverse  and rotational  values have increased for an 

axial strain 0.095 compared 0.035, which indicates a degradation in the quality of the model in predicting 

transverse displacements and rotations of grains at larger strains. The change observed in 1b  and 2b  for 

higher strains is indicative of the evolution in grain-pair stiffnesses as the deformation progresses. Such 

progressive degradation of stiffnesses is potentially due to a significant influence of nonlinearities (both 

geometrical and material) in the grain-pair interaction mechanisms. It is also observed that for both axial 



strains and, for nearly all samples, the quality of transverse displacement predictions is better than that of 

grain rotation predictions. 

In general, and for both axial strains, transverse  and rotational  assume larger values than axial . This effect is 

partly due to the fact that the model predicts coupled transverse displacement and rotation (and hence are 

more constrained) than the uncoupled axial displacement. It is also observed that all   values increase as 

the deformation progresses. The model predictions are less correct at larger strains. This trend is presumably 

caused by nonlinearities in the grain-pair interaction, which become increasingly significant as loading 

progresses, while the model is predicated upon linear interaction mechanisms between grains. Moreover, 

an increase in transverse  and rotational  values is observed as the geometrical parameter t increases for an axial 

strain of 0.095. This increase suggests that the model is less predictive in granular systems with larger 

geometrical parameter t in the large strain regime. 

The repeatability of both experimental and theoretical results is further investigated in the small 

deformation range (axial strain equal to 0.035) through tensile tests performed, as mentioned before, on a 

third set of 14 samples, such that there are altogether three independent repeats for each specimen type. 

Figures 7 and 8 give updates to the calibrated parameters and the goodness of fit using the results of these 

additional experiments. It is notable that the general trends with respect to the parameters 1a , 1b  and 2b

remain unchanged, although there is some increase in the spread, which nevertheless remains within ca. 

±5% of the average value. Notably, the goodness of fit remains virtually unchanged (Fig. 8). In Fig. 9, 

direct comparisons of the calibrated and measured data are shown for selected cases. The agreement 

between the measured data and model predictions is excellent for the axial deformation. Further, it is seen 

that the model replicates very well the trends of the transverse deformations and rotations, both qualitatively 

and quantitatively, although with some scatter. It is also noteworthy that both transverse deformations and 

rotations are generally one order of magnitude lower than axial deformations, thus more sensitive to small 

imperfections in the fabrication process as well as measurement uncertainties. Last, it is observed that for 

the same prescribed axial deformation, the transverse deformations and rotations depend upon the 

geometrical parameters of the interconnections. In the examples given in Fig. 9, it is noteworthy that the 

maximum transverse deformations and rotations are larger for higher t. At the normalized axial 

displacement, 
1 =0.035, for the case of t = 0.7mm (Fig. 9a-c), the normalized transverse displacement, 

2  

ranges from ca. -3x10-3 to 1x10-3, and the maximum normalized rotation, 21 , is ca. 0.035. On the other 

hand, tt approximately the same normalized axial displacement for the case of t = 1.8mm (Fig. 9g-i), the 



normalized transverse displacement, 
2  ranges from ca. -3x10-3 to 3x10-3, and the maximum normalized 

rotation, 21 , is ca. 0.045.   

3.3.2. Variation in deformation mechanism  

Finally, it is useful to highlight a transition of deformation mechanisms within the range of considered 

geometrical parameters b and t, and further expatiate the emergence of nonlinearities in grain-pair 

interactions. Figures 10 and 11 show the dimensionless strain energy density distribution for geometries for 

axial strains equal to 0.035 and 0.095, respectively. While the strain energy density magnitude is different 

in granular bars between the two axial strains (as expected), a similar deformation mechanism is observed 

for each granular bar for both axial strains. It is notable that as the geometrical parameter b increases, the 

main deformation mechanism shifts from the two beams identified with b to the middle beam identified 

with t. Conversely, for small values of the geometrical parameter t, the middle beam identified with t 

undergoes maximum deformation, and as t increases, the deformation of the two beams identified with their 

thickness b becomes dominant. These variations in strain energy distributions within the grain-pair 

interactions are connected to the emergent transverse displacements and rotations at the mesoscale. For 

example, grain transverse displacement and rotations for specimen b = 0.8 mm and t = 0.7 mm are smaller 

than those for specimen b = 1.0 mm and t = 1.8 mm (Fig. 9).  It is seen that in the first case the strain energy 

is distributed among all the three elements of grain-pair interaction (shown in the first row of Fig. 10), while 

for the second case, the strain energy is concentrated in the two vertical elements of grain-pair interaction 

(second row of Fig. 10). The emergent non-standard behavior predicted by the derived 1D micropolar model 

can be modulated by grain-pair interaction by making small variations in the inter-connection geometries. 

Further, it is worth noting that the observed trends of transverse  and rotational  for an axial strain of 0.095 

(Fig. 6) can be explained using Fig. 11. In particular, for samples with very small b, it is the geometric 

nonlinearity, and for samples with very large b, the material nonlinearity that are the main causes for lower 

model quality (i.e., larger transverse  and rotational  values). This effect contributes to having large transverse  

and rotational  values in both ends of the spectrum and lower values for samples in the middle of the range. 

For samples with very small t, it is dominated by material nonlinearity, while for samples with very large 

t, the geometrical nonlinearity is the primary reason for lower model quality (i.e., larger transverse  and 

rotational  values) for large axial strains. In particular, the model quality decreases considerably as the 

geometrical parameter t increases for an axial strain of 0.095, and, in this case, the geometrical nonlinearity 

has a more pronounced effect on the predictive capability of the model. 



 

4. SUMMARY AND CONCLUSION 

The key findings of the presented work relate to the emergent chiral behavior of bars under extension such 

that the axis of chirality is orthogonal to the beam axis. The obtained results from both experimental and 

theoretical efforts show that this type of chirality arises in a granular motif through stretch-shear-rotation 

coupling of grain-pair interactions. The paper has presented a micropolar model based on a granular 

micromechanics approach (GMA) to describe the chiral behavior of 1D granular strings. The proposed 

model incorporates normal, shear, and rotational stiffnesses, along with normal-shear, normal-rotational, 

and shear-rotational coupling stiffnesses, all modeled as linear deformation mechanisms. The model 

predicts the behavior of chiral granular bars subjected to uniaxial tension, particularly non-standard 

transverse and rotational motions.  

Inspired by this theoretical model, chiral granular bars with particular interaction mechanisms were 

designed, fabricated using 3D printing, and tested in a uniaxial testing machine. Digital image correlation 

(DIC) was carried out to measure full-field deformations of the tested specimens. Results obtained from 

DIC affirm that the designed constructs are representative of granular media composed of rigid grains 

interacting with each other through grain-pair interaction mechanisms. Repeatability of the measurements 

was demonstrated via experiments performed on three independent replications for every specimen. 

The range of validity of the derived micropolar model was assessed by calibration against experimentally 

measured displacements and rotation fields of the studied granular bars. It was found that the model 

correctly predicted non-standard transverse deformations and rotations under bar extension, and that the 

calculations closely matched the measured deformations at small strain levels. The close agreement shows 

that the complex phenomena that occur in interacting grain pairs was well represented in the linear model 

by incorporating couplings between all deformation mechanisms. However, at higher strain levels, in which 

both material and geometrical nonlinearities become significant, large transverse displacements and 

rotations were observed in the grains nearest the boundaries of the bars, although the deformation trends 

were essentially replicated. These departures from the calculated responses are likely due to the effect of 

boundary layer and nonlinear interactions between grains. The present linear model is therefore limited to 

describing the overall behavior of the system far from boundaries and for small axial strains.  

The findings of this work suggest future enhancements in both the theoretical model and the experimental 

campaign. From a theoretical viewpoint, there is need to introduce additional kinematic features [39], which 

may allow for the prediction of boundary layers as well the evaluation of deformation under multiple 



boundary conditions. These theoretical predictions would need corresponding experimental investigations 

in which the boundary conditions and the geometric features were controlled with greater precision, which 

may better reveal the effect of microfeatures at the macroscale.  
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Appendix A: Determination of Model Parameters from Mesoscale DIC Analyses 

To obtain the model parameters    , , 0, 1, 2 , , 0, 1, 2, 3i i ia e i b i  , a least squares optimization with 

equality constraints was adopted. Explicitly, the cost function 
2( )f  x Ax b  was minimized subject 

to linear constraints Cx d , where, x  is a column vector of length 10 and is composed of the unknown 

model parameters    , , 0, 1, 2 , , 0, 1, 2, 3i i ia e i b i  , A  a 33-by-10 matrix with nonzero components 

with respect to the location of grains according to Eq. (28), and b  a column vector of length 33 with its 

components being the grain displacements and rotations based upon mesoscale DIC analyses. The matrix 

C  is 7-by-10 and together with the 7-vector d  provide the linear constraints  

0

0 1 2

0

measured axial displacement of grain adjacent to fixed grip,

measured axial displacement of grain adjacent to moving grip,

measured transverse displacement of grain adjacent to fixed grip
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a a a

b



  



0 1 2 3

0

0 1 2

,

measured transverse displacement of grain adjacent to moving grip,

measured rotation of grain adjacent to fixed grip,

measured rotation of grain adjacent to moving grip,

b b b b

e

e e e

   



  

 (A1) 

and the relationship 1 33 0e b  . Introducing the Lagrange multiplier vector z , setting up the Lagrangian 

cost function, and requiring it to be mutually minimized, one needs to solve the following system of 

equations to obtain the sought parameters and Lagrange multipliers 

T T T    
    

    

xA A C A b

zC 0 d
.         (A2) 

Moreover, each row of A  and b  corresponding to displacements was divided by the corresponding 

standard uncertainty, and each row of A  and b  corresponding to rotations was divided by the 

corresponding uncertainty. To improve the conditioning of the system of equations (44), C  and d  were 

multiplied by 
 
 

norm

norm

A

C
. 

Due to the linear constraints, the model parameters 0a , 0b , and 0e  assume negligible values, and the other 

model parameters follow relationships (32).   
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List of Figures 

Fig 1 Prediction from the derived micropolar model of (a) axial displacement, (b) transverse 

displacement, and (c) rotation fields of a 1D chiral bar under uniaxial tension. 

Fig 2. Proposed granular string with (a) its building-block geometry and specimen tested in the 

space of geometric parameters. (b) Image of speckle pattern on the surface of a specimen for digital 

image correlation (DIC) analyses. (c) Experimental and image acquisition setup. 

Fig 3. Macro- and microscale DIC results for a granular string with t = 1.2 mm and b = 1 mm. 

(a) Initial, final and three intermediate images captured during the tensile test. (b) Finite element 

(FE) mesh for macroscale DIC. (c) FE mesh for microscale DIC. (d, f) Transverse and axial 

displacement fields, respectively, for the macroscale analysis. (e, g) Transverse and axial 

displacement fields, respectively, for the microscale analysis. (h) Root mean square (RMS) gray 

level residuals for the macroscale analyses. (i) RMS gray level residuals for the microscale 

analyses. (j-m) Transverse normal strain, axial normal strain, shear strain, and normalized strain 

energy for the microscale analysis.  

Fig 4. Typical results from mesoscale DIC analyses shown for a granular string with t = 1.2 mm 

and b = 1 mm subjected to uniaxial extension. Each curve depicted by changing shade represents 

the end of a load increment as the experiment progresses. (a) Root mean square gray level residuals 

showing that DIC identification accuracy diminishes at larger loading. (b)-(d) Grain axial 

displacement, transverse displacement and rotation for different levels of overall axial extension. 

Fig 5. Calibrated independent model parameters for applied axial strain 0.035 (two left columns) 

and 0.095 (two right columns) for varying geometric parameters b (a)-(c) and (g)-(i), and t (d)-(f) 

and (j)-(l). Deviation from unity of parameter 1a  (top row) indicates the contribution of the 

quadratic term to axial displacement. Parameters 1b  and 2b  (2nd and 3rd row) indicate complex 

dependence geometrical parameters b and t. Circles denote the mean values and crosses the 

extreme values.   

Fig 6. Goodness of fit for applied axial strain 0.035 (two top rows or (a)-(h)) and 0.095 (two bottom 

rows or (i)-(p)) for varying geometrical parameters b (a)-(d) and (i)-(l), and t (e)-(h) and (m)-(p). 

Larger values at axial strain of 0.095 (row 3 and 4) indicates deteriorating fit with model compared 

to axial strain of 0.035 (row 1 and 2). Circles denote the mean values and crosses the extreme 

values. 

Fig 7. Calibrated model parameters for an applied axial strain equal to 0.035 including data from 

additional experiments showing the repeatability of the results for (a) varying geometrical 

parameter b, and (b) for varying geometrical parameter t. Circles denote the mean values and 

crosses the extreme values. 

Fig 8. Goodness of fit for an applied axial strain of 0.035 including data from additional 

experiments showing the repeatability of the results for (a)-(d) varying geometrical parameter b, 

and (e)-(h) for varying geometrical parameter t. Circles denote the mean values and crosses the 

extreme values. 

Fig 9. Direct comparisons of predicted and measured grain axial displacement, transverse 

displacement and rotation for granular strings with (a)-(c) t = 0.7 mm and b = 0.8 mm, (d)-(f) t = 

1.2 mm and b = 1 mm, and (g)-(i) t = 1.8 mm and b = 1 mm. 



Fig 10. Strain energy density distribution in granular bar with different geometric parameters for 

applied axial strain 0.035. First row gives the results for varying geometrical parameter b of 

vertical elements in grain-pair interconnections and constant t=0.7mm of horizontal element. 

Second row gives the results for constant b=1.0 mm varying t. 

Fig 11. Strain energy density distribution in granular bar with different geometric parameters for 

applied axial strain 0.095. First row gives the results for varying geometrical parameter b of 

vertical elements in grain-pair interconnections and constant t=0.7mm of horizontal element. 

Second row gives the results for constant b=1.0 mm varying t.  



 

Table 1. DIC hardware parameters. 

Camera NIKON D300 

Definition 4288 × 2848 pixels (RGB image) 

Gray levels amplitude 8 bits 

Lens AF-S VR Micro-Nikkor 105mm f / 2.8G ED 

Aperture f / 4.5 

Field of view 111 × 74 mm2 

Image scale 60 μm / px (B&W images) 

Stand-off distance ≈ 90 cm 

Image acquisition rate 1/5 fps 

Exposure time 20 ms 

Patterning technique Sprayed black paint 

Pattern feature size 2.6 px 

 

 

Table 2. Standard uncertainties for the DIC analyses at different levels. 

 Axial direction Transverse direction Rotation 

Macroscale 0.024 px (1.5 μm) 0.024 px (1.5 μm) - 

Microscale 0.024 px (1.5 μm) 0.024 px (1.5 μm) - 

Mesoscale 0.021 px (1.3 μm) 0.021 px (1.3 μm) 1.5 × 10−4 

 

 

 



 

 

 

 

 

Fig 1. Prediction from the derived micropolar model of (a) axial displacement, (b) transverse displacement, and 

(c) rotation fields of a 1D chiral bar under uniaxial tension.  
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Fig 2. Proposed granular string with (a) its building-block geometry and specimen tested in the space of 

geometric parameters. (b) Image of speckle pattern on the surface of a specimen for digital image correlation 

(DIC) analyses. (c) Experimental and image acquisition setup. 
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Fig 3. .Macro- and microscale DIC results for a granular string with t = 1.2 mm and b = 1 mm. (a) Initial, final and three 

intermediate images captured during the tensile test. (b) Finite element (FE) mesh for macroscale DIC. (c) FE mesh for 

microscale DIC. (d, f) Transverse and axial displacement fields, respectively, for the macroscale analysis. (e, g) 

Transverse and axial displacement fields, respectively, for the microscale analysis. (h) Root mean square (RMS) gray 

level residuals for the macroscale analyses. (i) RMS gray level residuals for the microscale analyses. (j-m) Transverse 

normal strain, axial normal strain, shear strain, and normalized strain energy for the microscale analysis.  



 

 

 

 

Fig 4. Typical results from mesoscale DIC analyses shown for a granular string with t = 1.2 mm and b = 1 mm 

subjected to uniaxial extension. Each curve depicted by changing shade represents the end of a load increment 

as the experiment progresses. (a) Root mean square gray level residuals showing that DIC identification 

accuracy diminishes at larger loading. (b)-(d) Grain axial displacement, transverse displacement and rotation for 

different levels of overall axial extension. 

  



 

 

 
 

 

Fig 5. Calibrated independent model parameters for applied axial strain 0.035 (two left columns) and 

0.095 (two right columns) for varying geometric parameters b (a)-(c) and (g)-(i), and t (d)-(f) and (j)-(l). 

Deviation from unity of parameter 1a  (top row) indicates the contribution of the quadratic term to axial 

displacement. Parameters 1b  and 2b  (2nd and 3rd row) indicate complex dependence geometrical parameters b 

and t. Circles denote the mean values and crosses the extreme values.   



 

 
 

Fig 6. Goodness of fit for applied axial strain 0.035 (two top rows or (a)-(h)) and 0.095 (two bottom rows or (i)-

(p)) for varying geometrical parameters b (a)-(d) and (i)-(l), and t (e)-(h) and (m)-(p). Larger values at axial 

strain of 0.095 (row 3 and 4) indicates deteriorating fit with model compared to axial strain of 0.035 (row 1 and 

2). Circles denote the mean values and crosses the extreme values.   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7. Calibrated model parameters for an applied axial strain equal to 0.035 including data from additional 

experiments showing the repeatability of the results for (a) varying geometrical parameter b, and (b) for varying 

geometrical parameter t. Circles denote the mean values and crosses the extreme values.  



 

 

Fig 8. Goodness of fit for an applied axial strain of 0.035 including data from additional experiments showing 

the repeatability of the results for (a)-(d) varying geometrical parameter b, and (e)-(h) for varying geometrical 

parameter t. Circles denote the mean values and crosses the extreme values. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 9. Direct comparisons of predicted and measured grain axial displacement, transverse displacement and 

rotation for granular strings with (a)-(c) t = 0.7 mm and b = 0.8 mm, (d)-(f) t = 1.2 mm and b = 1 mm, and (g)-

(i) t = 1.8 mm and b = 1 mm. 
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Fig 10. Strain energy density distribution in granular bar with different geometric parameters for applied axial 

strain 0.035. First row gives the results for varying geometrical parameter b of vertical elements in grain-pair 

interconnections and constant t=0.7mm of horizontal element. Second row gives the results for constant b=1.0 

mm varying t. 

  



 

 

Fig 11. Strain energy density distribution in granular bar with different geometric parameters for applied axial 

strain 0.095. First row gives the results for varying geometrical parameter b of vertical elements in grain-pair 

interconnections and constant t=0.7mm of horizontal element. Second row gives the results for constant b=1.0 

mm varying t. 
 


