

Towards the design of Kresling tower origami as a compliant building block

John Berre, François Geiskopf, Lennart Rubbert, Pierre Renaud

To cite this version:

John Berre, François Geiskopf, Lennart Rubbert, Pierre Renaud. Towards the design of Kresling tower origami as a compliant building block. Journal of Mechanisms and Robotics, 2022, $10.1115/1.4053378$. hal-03594848

HAL Id: hal-03594848 <https://hal.science/hal-03594848v1>

Submitted on 2 Mar 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

TOWARDS THE DESIGN OF KRESLING TOWER ORIGAMI AS A COMPLIANT BUILDING BLOCK

J. Berre∗ **, F. Geiskopf, L. Rubbert, P. Renaud ICube** INSA - CNRS - University of Strasbourg john.berre@insa-strasbourg.fr

 In this paper, the use of the Kresling tower origami as a building block for compliant mechanism design is consid- ered. To help building systems using this origami, models are derived to link the origami pattern geometry to the Kresling tower characteristics. This includes the position of stable configurations, the helical trajectory describing the motion and the orientation of panels during the tower deployment. The provided analytical expressions are helpful to adjust the tower geometry according to desired specification. In addi- tion, an original modification of fold geometry is introduced to modify the tower stiffness. Material removal at specific locations, where maximum fold deformations occur, aims at reducing the actuation force without affecting the kinemat- ics. Experimental evaluation is conducted to assess the rel- evance of the proposed models and evaluate the impact of fold line modification. The proposed simplified models are precise enough for the synthesis. The capacity to strongly reduce the actuation force, thanks to the the fold line modifi-cation, is observed.

²⁰ 1 Introduction

²¹ In the past few years, origami traditional asian art has 22 been increasingly used in several fields of engineering $\left[\frac{1}{2}\right]$. ²³ Indeed, origami has various interesting mechanical proper- 24 ties such as deployability $\boxed{3}$, advantageous ratio between 25 stiffness and weight $[4]$, reconfiguration capabilities $[5]$, $[6]$, 26 and for some origami structures, bistability $[7]$. This has led ²⁷ to different designs of robotic components and systems based 28 on origami $\left[\frac{8}{9}\right]$. Polymer material is then a relevant choice 29 to keep devices lightweight, using for instance POM $[10]$, 30 PET $[8]$ or PP $[9]$.

31 Origami structures can be used alone or in combina-32 tion. In [\[11\]](#page-10-10), tubular structures based on origami patterns are assembled to form a metamaterial. Each tube can con- tract along a preferred axis, and has different stiffnesses in other directions. By coupling several tubes in different con- figurations, a compliant structure is obtained that is deploy-able in a given direction and stiff in other directions. In $\sqrt{2}$,

Paper number: JMR-21-1532 Corresponding author: Berre Page 1

two origamis with different motions are assembled to gener- 38 ate a perilstatic displacement. Another example is in $[12]$, $\frac{39}{2}$ where two origamis with different kinematics are combined 40 to convert a rotational input motion into a translational output 41 motion. For compliant mechanisms, design by association ⁴² of elementary components is well known with the identifi- ⁴³ cation of so-called building blocks, providing specific kine- ⁴⁴ matic properties $[13]$. This was successfully used in $[14, 15]$ $[14, 15]$ $[14, 15]$. $\overline{}$ Origamis belong to the general class of compliant mecha- ⁴⁶ nisms. So, identifying origamis that can be used as build- ⁴⁷ ing blocks, with tools to help their synthesis, should create ⁴⁸ opportunities to elaborate more complex architectures to be ⁴⁹ used in robotics.

The Kresling tower origami $[16]$ (Fig. [1\)](#page-2-0) is an interesting structure to go in that direction. It is at the same time $a = 52$ structural element with specific deployment kinematics of its 53 panels, and also a mechanical component with the kinemat- ⁵⁴ ics of an helical joint that can be used as such for mechanism 55 design. In $[17]$, the origami is used for its deployment capabilities, with the panels used to deploy an antenna. In $\begin{bmatrix} 8 \\ 1 \end{bmatrix}$ 57 the Kresling tower is also used for the motion of its panels, $\frac{58}{2}$ the inner radius of the tower being used to guide an endo- ⁵⁹ scope. In $[12]$, the tower is used for its kinematics as the 60 helical motion is used to transform a rotational motion into a 61 translation motion to achieve peristaltic locomotion. Moreover, the Kresling tower can possess two stable configura- 63 tions. This bistability is in favor of energy efficiency, as no 64 energy is needed to maintain the two stable configurations. It $\frac{65}{65}$ also brings safety, as in absence of actuation, the mechanism 66 remains in a configuration corresponding to one of the two 67 stable states.

In this paper, we consider the Kresling tower origami θ and bring elements to help the designer building functional 70 components from this structure. Two aspects are covered. 71 The first one concerns the geometrical synthesis of the 72 origami pattern, with the derivation of analytical models describing the deployment of its panels and the overall helical $\frac{74}{6}$ motion. This description of the structure kinematics has not $\frac{75}{6}$ been presented in the literature yet. The second one concerns the structural stiffness of the component, and a way to 77 modify it through a modification at specific locations, where $\frac{78}{6}$

[∗]Address all correspondence to this author.

FIG. 1: Prototype of Kresling tower used for assessment

FIG. 2: Pattern of the Kresling tower. Mountain folds depicted with red lines, valley folds by blue dashed lines. The number of elementary patterns is here chosen as $n = 8$

⁷⁹ fold and panels deformations are observed. One new design ⁸⁰ parameter is introduced accordingly and its impact is anal-81 ysed. By providing a set of relationships to help the design 82 of the Kresling tower and an original crease modification to 83 limit stiffness, this paper will help further use of this origami 84 structure in the design of innovative mechanisms.

 85 In section $\overline{2}$, the approach we adopt to model the struc-⁸⁶ ture and modify the structure stiffness are introduced and jus-87 tified. The design characteristics to derive are also selected. 88 The relationships of interest are then developed in section [3](#page-3-0) ⁸⁹ as well as the stiffness modification technique we investi-90 gate. Both aspects are assessed experimentally in section $\overline{4}$. ⁹¹ Finally, discussion on the results and perspectives in terms of 92 origami design are drawn in Section $\overline{5}$.

93 2 Selection of Methods and Design Characteristics 94 2.1 Desired Characteristics

 The Kresling tower is based on a pattern composed of $\frac{1}{96}$ triangles (Fig. [2\)](#page-2-2). It was named after B. Kresling, because 97 of her work on buckling effect on paper tubes [\[16\]](#page-11-4), even though similar patterns have been observed earlier in liter-99 ature $[18, 19]$ $[18, 19]$. In $[20]$, the tower is built to reach the full folded configuration, i.e. with zero height of the tower, as a first stable configuration. A parameter that controls the trian- gles definition is used to adjust the energy needed to switch between two stable configurations. Using the completely folded configuration as one stable state is however restrictive from a design point of view. Interestingly, a parameterization 106 proposed in [\[21\]](#page-11-9) gives the possibility to generate a general- ized Kresling tower with a non-flat stable configuration. In this case, the tower has two stable states, that can be desig-

nated as low and high configurations. The low configuration 109 corresponds to the state where the tower is compressed, and 110 the high configuration where the tower is deployed as shown 111 on Fig. $\overline{3}$. With this work, the height characterizing these 112 states cannot however be tuned. 113

The authors in $\sqrt{2}$ considered the height of the low stable configuration as an input parameter for the synthesis of 115 generalized Kresling towers. In $[22]$, analytical equations, 116 based on the geometry of the tower, allow to determine the 117 pattern dimensions according to the desired stable configura-
118 tions, characterized by two parameters corresponding to the 119 height of low and high configurations.

To use the Kresling tower as a component in a mecha- ¹²¹ nism, link between the pattern geometry and other character-
122 istics of the tower kinematics is needed. In $\sqrt{8}$, it is shown the 123 value of the inner radius of the structure, later named r_i , with 124 the index *i* used to designate this inner dimension (Fig. $\overline{3}$), 125 is to be evaluated. It is then outlined that the evolution of $_{126}$ the inner radius while the height *h* of the tower (Fig. $\boxed{3}$) is 127 varying can be an issue in practical applications. Therefore, 128 modelling the variation of the inner radius during the motion 129 is of importance. The rotation angle ϕ between the top and 130 bottom surfaces of the tower is also a key information $\boxed{7}$. In 131 our opinion, the angle between the panel fold lines and the 132 tower axis later, designated as $ρ$, is also to be estimated as it 133 helps describing the panel motions with the outer radius of 134 the structure. In addition, what is needed for design is the ¹³⁵ variation of these characteristics during the evolution of the 136 tower, from a flat configuration up to a fully extended config-
137 uration. To our knowledge, there is no existing model giving $_{138}$ analytical expressions of these properties for configurations 139 outside the stable states. In the literature $[12, 8, 20]$ $[12, 8, 20]$ $[12, 8, 20]$, these 140 characteristics are indeed only computed for stable config- ¹⁴¹ urations. Our approach is then to derive such a model to $_{142}$ access to these characteristics, with explicit relationships be- ¹⁴³ tween their values and the parameters that define the origami 144 pattern. As a summary, we wish to extract the expressions of $_{145}$ (ϕ, r_i, ρ) for any tower height *h*. In the following, we will use $_{146}$ the index 1 (resp. 2) for the low (high) stable configurations $_{147}$ $(Fig. 3)$ $(Fig. 3)$.

2.2 Modeling Approach 149

Kresling tower origami belongs to the class of non- ¹⁵⁰ rigidly foldable origamis $[23]$, which means that the tower 151 cannot be folded without panel deformations. Several 152 works have been introduced to tackle this origami model-
153 ing. In $[24]$, the difficulties associated with the use of finite 154 element methods for origami are outlined. Therefore simpli-
155 fied models built by modeling the structure as an assembly 156 of truss are developed. Such a model is of interest as the ¹⁵⁷ truss dimensions and arrangement can be linked to the actual 158 origami pattern. The trusses replace the fold lines and their $_{159}$ axial deformation is taken into account. The authors intro- ¹⁶⁰ duce virtual folds between the vertices of panels to model 161 the bending stiffness of 4-sided panels, as encountered in 162 some origami tubular designs. For the Kresling tower, 3-163 sided panels have to be modeled thus the method presented 164

FIG. 3: Representation of the Kresling tower characteristics of interest for a tower height *h* (left), and for the low (middle) and high (right) stable configurations

165 in $\sqrt{24}$ is no more applicable. In $\sqrt{25}$, $\sqrt{26}$, $\sqrt{27}$, a modification of the previous model makes it possible to study the Kresling tower with similar method. However, there is no introduc- tion of virtual folds so the bending stiffness of panels cannot be modeled, whereas it is at the origin of the bistability ef- fect. In [\[20\]](#page-11-8), a virtual fold line has been added in the Kres- ling tower pattern to allow rigid foldability. Despite this, the mountain folds of the pattern are deleted at the same time. This seems a rather important simplification, as interactions occurs between the panels in this origami of closed shape. Another limit of the previous works is related to the energy oriented approaches that are used to link the origami defor-177 mation to the energy variation during its motion. Energy as- sessment during origami deployment eases the analysis of 179 bistability, as with other bistable mechanism [\[28\]](#page-11-16). However, there is no derived analytical expression that would link the geometry of the tower pattern with the definition of bistable configurations and the aforementioned properties of interest. Our approach is to develop a rigid-bar model based on these previous studies to get such relationships.

¹⁸⁵ 2.3 Stiffness Modulation

186 It was shown in $[26,24,29]$ $[26,24,29]$ $[26,24,29]$ that the origami stiffness can be linked to the stiffness of panels and fold lines. As a conse- quence, the modulation of an origami stiffness is usually ob- tained by changing the thickness or material of the origami 190 sheet $[30]$, or by changing the pattern geometry $[4]$. Thick- ness variation remains limited, as it impacts the origami kine- matics. Material modification can be restricted by the manu- facturing techniques and by material requirements due to the application context.

FIG. 4: 3D view of the tower in deployed stable configuration. Top and bottom base polygons are represented in green. Elementary pattern is highlighted in orange and hatched

Another considered fold line modification is a change 195 of geometry all along the fold length. Changing the ratio ¹⁹⁶ between strokes and breaks of a dashed line crease pattern is 197 one instance. In $\boxed{10}$, this type of approach is studied on a 198 Kresling tower, with a significant reduction of the stiffness 199 of the origami.

In this paper, we propose to investigate a complementary 201 approach to have a strong impact on origami stiffness. It con- ²⁰² sists in removing material at a specific location, where maxi-
203 mum deformations are encountered along the fold line during 204 the transition between the stable configurations. There are 205 several manufacturing methods to realize a crease, which are 206 dependent on the material or the manufacturing technique of 207 the origami. The double dashed line in $[10]$ is one of them. 208 The approach presented in this paper can be advantageously 209 used in combination with any fold line manufacturing tech-
210 nique. Our objective is in the end to reduce the actuation 211 force required for the tower deployment while respecting the 212 properties adjusted by design of the origami pattern in a first 213 stage. 214

3 Models for Design 215

The Kresling tower has a kinematic behavior which is $_{216}$ equivalent to an helical joint when considering the relative 217 motion of the top and bottom surfaces. In order to describe 218 such kinematics, we focus first on the derivation of the angle ϕ as a function of the height *h*. This will be designated 220 as the kinematic model of the Kresling tower. The other 221 characteristics will be derived using the model afterwards. 222 Most of the notations are taken from $[27, 7]$ $[27, 7]$ and some equations presented could be defined for stable configurations ²²⁴ in $[31, 32, 27, 7]$ $[31, 32, 27, 7]$ $[31, 32, 27, 7]$ $[31, 32, 27, 7]$. The tower kinematics are dependent on 225 the geometry of the pattern depicted in Fig. $2\frac{1}{2}$. We therefore 226 start by presenting the set of parameters used to define the 227 pattern.

3.1 Tower Parametrization 229

The Kresling tower is a closed origami of tubular shape 230 $(Fig. \mathbf{A})$. The elementary pattern, composed of two triangular 231 panels, is distributed following an axial repetition around the 232

FIG. 5: Representation of the elementary pattern on a 3D view of the tower and motion of bar *l* and *b* during deployment.

ass axis Δ as shown on Fig. $\overline{4}$. The top and bottom contours are base polygons composed of *n* sides, with *n* the number of el-235 ementary patterns (Fig. $\boxed{2}$). As described in $\boxed{7}$, we consider that the base polygons are rigid. The vertices U, V and W (Fig. $\overline{5}$) that define the triangular panels are constrained to 238 move at the same distance from the axis Δ . This is equiva- lent to constrain the vertices to move on the surface of the cylinder of radius r , which circumscribes the base polygons. Because of that, we can restrict the analysis of the Kresling tower motion to the analysis of a single elementary triangle, using cylindrical coordinates.

244 An elementary pattern is represented in Fig. $\boxed{2}$. The ²⁴⁵ parallelogram $UWVW'$ is composed of two identical trian- $_{246}$ gles *UVW* and *UVW'*. The lengths *a*, *b* and *l*, of respec-²⁴⁷ tively segments *UW*, *VW* and *UV*, parameterize the ge-²⁴⁸ ometry of the elementary pattern. The set of parameters (a, b, l, n, r) then defines the geometry of one Kresling tower. 250 The value of length *a* is linked to *r* and *n* (Fig. $\overline{6}$) with $a = 2.r.\sin(\pi/n)$. Thus we define the minimal set of four 252 parameters $η = (b, l, n, r)$ to describe the tower geometry.

²⁵³ 3.2 Derivation of Models

²⁵⁴ 3.2.1 Kinematic Model Determination

 The kinematic model has to relate the angle φ to the tower height *h*. This allows us to describe the evolution of the vertex *V* during the folding, to have then the possibil- ity to reconstruct the panel *UVW* as in Fig. **5** and finally the whole Kresling tower.

 The model derivation is achieved by considering an equivalent rigid-body mechanism. The latter is obtained by replacing the fold lines with bars, connected with spherical joints to the base polygons, also considered as rigid bod- ies. Without loss of generality, the tower we consider is built from the pattern shown in Fig. 2 , to get a left-handed helical shape. There are only two configurations where the mecha- nism can be assembled. They correspond to the two configu- rations where the origami tower does not have bending of its ²⁶⁹ panels.

The angle ϕ in Fig. [6](#page-4-1) is defined as the angle between \vec{x} and the projection of \overrightarrow{OV} . The bars *l* and *b* have different

$$
\frac{1}{\sqrt{\frac{1}{1\sqrt{\frac{1}{\sqrt{\frac{1}{1\sqrt{\frac{1}{1\sqrt{\frac{1}{1\sqrt{\frac{1}{1\sqrt{\frac{1}{1\sqrt{\frac{1}{1\sqrt{\frac{1}{1\sqrt{\frac{1{1\cdot\frac{1}{1\sqrt{1 \cdot \frac{1}{1\sqrt{1 \cdot \frac{1}{\sqrt{\frac{1}{1\sqrt{1 \cdot \frac{1}{1\sqrt{1 \cdot \frac{1}{1\sqrt{1 \cdot \frac{1}{1\sqrt{1 \cdot \frac{1}{1\sqrt{\frac{1}{1\sqrt{1 \cdot \frac{1}{1\sqrt{1 \cdot \frac{1}{1\sqrt{\frac{1}{1\sqrt{\frac{11\cdot\frac{1}{1\cdot \frac{1}{1\cdot \frac
$$

FIG. 6: Projected view of the elementary pattern

FIG. 7: Observation of fold line deformations during a tower compression

lengths. They are considered rigid and they rotate respec- 272 tively around *U* and *W* (Fig. 5). With this model, the two 275 bars cannot remain connected in *V* during the origami motion, except for the two stable states. We then define two ²⁷⁵ points V_l and V_b that are built from the point V but belonging respectively to the bar *l* and the bar *b*. The points V_l and 277 V_b are constrained as the other vertices to move at a constant 278 distance *r* from the axis Δ . This is equivalent in cylindrical 279 coordinates to have a constant radius r . The Eqn. (1) links 280 the value of ϕ for the points V_l and V_b , respectively ϕ_l and ϕ_b 281 to the height *h*: 282

$$
\phi_l(h) = 2 \cdot \operatorname{asin}\left(\frac{\sqrt{l^2 - h^2}}{2r}\right) - \frac{\pi}{n}
$$

$$
\phi_b(h) = 2 \cdot \operatorname{asin}\left(\frac{\sqrt{b^2 - h^2}}{2r}\right) + \frac{\pi}{n}
$$
 (1)

We have in Eqn. (\Box) two expressions of the angle ϕ . 283 Each one corresponds to an hypothesis on the rigidity of ²⁸⁴ the fold line. During the motion between the stable config- ²⁸⁵ urations, there are necessarily deformations in the origami ²⁸⁶ structure. We thus need to make an assumption on the deformation of bars during the deployment, to derive the po-

288 sition of the vertex. In $[7, 27]$ $[7, 27]$, the authors faced that same 289 issue and considered the bar l to be rigid, but without giv ing details. We performed various experiments to observe the behavior of the fold lines, corresponding to the bars *l* and *b* during origami deployment. We could observe, as illus-294 trated in Fig. $\boxed{7}$ that compression along the fold line leads to panel buckling. On the opposite, tension along a fold leads to panel stretching. The stretching of a panel causes negligi- ble deformations compared to a buckling. Thus, we consider for the model the trajectory of the vertex that causes a fold compression.

³⁰⁰ With Eqn. [\(1\)](#page-4-2) describing the trajectories of the vertices V_i illustrated by Fig. 5 , we can deduce that the bar *b* is so- 302 licited in compression in the range of heights $[h_1h_2]$ when connected to V_l . Conversely, the bar *l* is solicited in traction when connected to V_b . As a consequence, the trajectory of V_l $\frac{1}{205}$ described by ϕ_l is used to model the motion of the tower be-³⁰⁶ tween the two stable configurations. On the contrary, outside 307 the interval $[h_1h_2]$, the roles are reversed. The trajectory of V_b described by ϕ_b is used consequently to model the motion ³⁰⁹ of the tower outside the range defined by the stable configu-³¹⁰ rations.

311 Because the bar lengths are constant, our modeling has 312 a given domain of validity. The maximum reachable height ³¹³ corresponds to the length of bars *b*. The value of the min-314 imum reachable height depends on the pattern dimensions. ³¹⁵ If the bar length *l* is smaller than the origami diameter, the 316 height *h_{min}* is equal to zero. Else, the minimum reachable height can be derived geometrically with $h_{min} = \sqrt{l^2 - 4 \cdot r^2}$. ³¹⁸ As a consequence, the kinematic model is:

$$
\phi(h) = \begin{cases} \phi_b(h) \text{ if } h \in]h_{min}; h_1[\cup]h_2; b[\\ \phi_l(h) \text{ if } h \in [h_1; h_2], \end{cases}
$$
 (2)

319 3.2.2 Design Relationships

320 With $\eta = (b, l, n, r)$ the set of geometrical parameters ³²¹ that define the pattern geometry, it is possible to derive the 322 heights (h_1, h_2) of stable configurations. The stable config-323 uration positions are obtained when $V_l = V_b$, which can be $_{324}$ expressed from the Eqn. [\(1\)](#page-4-2):

$$
G(h,\eta) = \phi_l(h) - \phi_b(h)
$$

= $2\left(\operatorname{asin}\left(\frac{\sqrt{l^2 - h^2}}{2r}\right) - \operatorname{asin}\left(\frac{\sqrt{b^2 - h^2}}{2r}\right) - \frac{\pi}{n}\right)$ (3)

³²⁵ The designer can then compute the values of heights *h*¹ 326 and $h₂$ with

$$
\begin{cases}\nG(h_1, \eta) = 0 \\
G(h_2, \eta) = 0\n\end{cases}
$$
\n(4)

There is a maximum height $H = 2 \cdot r \cdot \sqrt{1 - \sin(\frac{\pi}{n})^2}$ of ³²⁸ the tower that cannot be exceeded. This height is linked to 329 the radius *r* and the number of sides *n*. Thus the heights h_1 and h_2 must be smaller than H , to find a feasible pattern 331 geometry.

dz x y z d

FIG. 8: Definition of the lead angle γ: global view with the path of a vertex *V* in red (left) and close-up in the tangent plane (right)

The inner radius r_i is calculated using the projected view 332 along the \vec{z} axis, then calculating the height of the *UOV* 333 isosceles triangle at *O*. In triangle *UOV*, angle in *O* is $\phi + \frac{\pi}{n}$ *n* ³³⁴ with $\frac{\pi}{n}$ the angle between $(\overrightarrow{x}, \overrightarrow{OW})$ and $(\overrightarrow{x}, \overrightarrow{OU})$. Using 335 trigonometry, one finally obtains: 336

$$
r_i(h) = \sqrt{r^2 - 4 \cdot r^2 \sin\left(\frac{\phi(h) + \frac{\pi}{n}}{2}\right)}
$$
 (5)

The value of the angle ρ between the panels and the 337 plane (\vec{x}, \vec{y}) is equal to: 338

$$
\rho(h) = \operatorname{asin}\left(\frac{h}{l(h)\cdot \sin\left(\frac{l(h)^2 + a^2 - b(h)^2}{2 \cdot a \cdot b(h)}\right)}\right) \tag{6}
$$

 $with$ 339

$$
\begin{cases}\n l(h) = \sqrt{4 \cdot r^2 \cdot \sin\left(\frac{\phi(h) - \frac{\pi}{n}}{2}\right)} \\
 b(h) = \sqrt{4 \cdot r^2 \cdot \sin\left(\frac{\phi(h) + \frac{\pi}{n}}{2}\right)}\n\end{cases} (7)
$$

One possible use of the Kresling tower is to build a com- ³⁴⁰ pliant helical joint. For such type of joint, the designer can ³⁴¹ be interested by the value of the so-called lead angle, illus-
₃₄₂ trated in Fig. $\boxed{8}$ and noted γ, which describes the relationship 343 between the translational and rotational degrees of freedom. 344 The angle $\gamma(h)$ describes the relationship between the variation of the vertex height *V* and its angular position. For ³⁴⁶ a given height *h*, it can be computed (Fig. \vert **8**) as the ratio \vert ₃₄₇ between the infinitesimal variation *dh* and the displacement 348 *r*·*d*φ in the tangential direction, $\gamma(h) = \tan(dh/r.d\phi)$, which 349 becomes becomes

Table 1: List of tower characteristics with required relationships for their derivation

Characteristic	Notation	Eqn.
Tower height	h	111314)
Tower angle	Ø	(12)
Tower inner radius	r_i	(5)
Angle between panel and horizontal	ρ	$\left(617\right)$
Tower helical lead angle evolution	V	

FIG. 9: Example of pattern with *FD*=80%. 20% of fold line represented in black are deleted

FIG. 10: Prototype of tower 4 (*FD*=80%)

we will assess the impact of this parameter. To do so, the ³⁸³ actuation force needed to switch between the two stable con- ³⁸⁴ figurations can be monitored, as it is related to the structural ³⁸⁵ stiffness. For this evaluation, experimental approach is pre- ³⁸⁶ ferred to numerical simulation, as it will allow us to take into 387 account the material behavior, the possible non linearities in- ³⁸⁸ troduced by the specific material removal, the manufacturing 389 variabilities, among others. 390

4 Fabrication And Experimental Assessment 391

4.1 Synthesis And Fabrication of Prototypes 392

The proposed design approach was applied to build pro-
393 totypes with different geometries. Here, the goal is to verify ³⁹⁴ the capacity to adjust the position of stable configurations 395 while modifying the behavior of the equivalent helical joint, 396 through modifications of the lead angle value. The design 397 requirements were chosen according to the manufacturing 398 capabilities and the experimental protocol, that are detailed 399 $below.$ 400

For the origami structure, PP (polypropylene) sheets of 401 0.5 mm thickness are used. This material has already been 402 proven for robotic applications for example in $[9]$. The PP $_{403}$ sheets are laser-cut with a Speedy 300 machine from Trotec 404

$$
\gamma(h) = \begin{cases} \n\text{atan} \left(-\frac{\sqrt{l^2 - h^2} \cdot \sqrt{1 - \frac{l^2 - h^2}{4r^2}}}{h} \right) & \text{if } h \in [h_1; h_2] \\
\text{atan} \left(-\frac{\sqrt{b^2 - h^2} \cdot \sqrt{1 - \frac{b^2 - h^2}{4r^2}}}{h} \right) & \text{otherwise}\n\end{cases} \tag{8}
$$

 The derived relationships are listed in Table $\boxed{1}$ with their link to the tower characteristics. These relationships allow the designer to compute the tower characteristics for a given pattern, defined by η. For a tower synthesis, the way to use the relationships will obviously depend on the design re- quirements. As there are 4 independent geometrical parame- ters defining the origami pattern, 4 conditions can be fulfilled simultaneously. As an example, we consider the synthesis of a Kresling tower in section 4 starting from given values of $\{r, n, h_1, h_2\}$, and solve the corresponding system of equations to obtain the parameter set η .

³⁶² 3.2.3 Stiffness Modulation

 To modulate the stiffness of the tower, and hence the energy needed for its actuation, we consider a modification of the fold lines. Our proposition is to perform material re- moval at a specific location along the fold line, to act on the one hand on the stiffness of the fold line, and on the other hand to modify the energy needed for the deformation of the panels adjacent to the fold line. The location of fold mod- ification is identified from experimental observations. The 371 deformations are visible during the folding process such as depicted in Fig. **7.** One can see that the deformation of a fold line is not only the expected bending along the line axis. We also note that the deformations are located around the 375 middle of the crease. Consequently, the fold line material re- moval is being operated at the center of the line as depicted in Fig $\overline{9}$. A prototype of the tower cut with this pattern is vis-378 ible in Fig. [10.](#page-6-4) We introduce accordingly a parameter called the "fold density", denoted *FD*, to characterize the modifica- tion. It is defined as the ratio between the preserved sections and total length of the fold line. It can vary between 100% , when no modification is made, and 0%. In the following,

Table 2: Designation and description of design conditions for the prototypes

Tower	h_1 [mm]	h_2 [mm]	$\gamma_{\rm max}$ $^{[o]}$
θ	106.3	166.3	31.5
1	41.5	124.7	54.3
$\mathcal{D}_{\mathcal{L}}$	80.0	130.0	39.4
3	106.3	166.3	35.8

Table 3: Designation and description of parameter set η for the prototypes

⁴⁰⁵ company. The pattern dimensions are in particular compati-⁴⁰⁶ ble with the laser cutting process and a manual folding.

 $_{407}$ Tower 0 is considered as a reference tower (Table $\overline{2}$). 408 The value of h_2 is equal to the maximum reachable height H . The height h_1 is set to 106.3 mm to reach 60 mm of stroke between the two stable configurations. Tower 1 is designed to have the stroke between the two stable configurations cen- tered around *H*/2. Tower 2 is built to reach 50 mm of stroke 413 with an offset from $H/2$. For towers 0, 1 and 2, the other two conditions for the design were chosen by a direct selec- tion of parameters *r* and *n*. Finally, tower 3 is built with the 416 same values for h_1 and h_2 as for tower 0, but then adjusting the values of r and n to maximize the lead angle along the deployment of the tower. The corresponding η sets for these 419 towers are presented in Table [3.](#page-7-1)

420 A CAD exploded view of prototypes is shown in Fig. $\boxed{13}$ 421 with designation of the components. The tower is composed ⁴²² of the origami structure which is mounted on rigid ends. The ⁴²³ connection is obtained by screwing blocking plates on the ⁴²⁴ periphery of the rigid ends.

 As a first step, fold lines are produced without any spe- cific modification. For their manufacturing, 3 processes have been compared, with the shapes depicted in Fig. $\boxed{11}$: a dashed line with cutting of minimal width, an intermittent cutting with an oblong profile, and engraving. The minimal cut width is about 0.3mm given the laser spot characteris- tics. Microscopic observations are used to compare the pro- cesses. The engraving process (C on Fig. $\boxed{11}$) leads to fold anisotropy, as the operation is performed on one side only. One engraving step would be needed on each side of the sheet, to alternate the engraving of the mountain and valley

FIG. 11: Sketchs of fold design: patterns of minimal thickness intermittent cutting (A), oblong profile cutting (B) and continuous engraving (C)

folds and get isotropic folding. This is time consuming, and 436 positioning errors of the vertices may be introduced. Given 437 the dimensions, the oblong profile (B on Fig. $\boxed{11}$) requires 438 a manual separation of the drops, as they stay fused to the 439 polymer sheet after laser machining. This time-consuming ⁴⁴⁰ phase is avoided by choosing the intermittent cutting, later 441 named dashed line. In addition, the obtained fold lines have 442 an endurance that is comparable to those with the other cutting profiles. 444

The dashed line pattern is being used with a 1:1 ratio 445 between strokes and breaks, as shown on the cutting pattern 446 in Fig. $\boxed{12}$. The dashed lines are positioned to have 5 mm of 447 material around the vertices, to avoid panel deformation in 448 these regions. 449

Gluing tabs shown on Fig. $\boxed{12}$ were integrated to the 450 origami pattern for closing the shape. The tab size was min- ⁴⁵¹ imized to limit variation of thickness due to material over- ⁴⁵² lay. The width of the gluing tabs is fixed to 10 mm to have 453 sufficient contact surface for gluing. Preliminary tests were 454 set up to define the best bonding process. For initial surface 455 treatments, sanding and cleaning, chemical treatment with 456 PPXP, and plasma treatment by Corona effect were com- ⁴⁵⁷ pared. Three types of adhesives were considered : neoprene, 458 MS Crystal and cyanoaocrylate. To test the bonding, we used 459 specimens which geometry corresponded to the surface of $\frac{460}{ }$ the tabs used for the tower. The specimens were tested in ten- ⁴⁶¹ sion and shear. Panel gluing should not modify strongly the 462 panel stiffness, as it will affect the symmetry of the structure. 463 Bending stiffness was then also assessed. Finally, the most 464 appropriate process is a combination of surface preparation ⁴⁶⁵ by sanding, cleaning of the gluing area, plasma treatment, ⁴⁶⁶ and finally use of a neoprene glue. 467

The rigid ends are obtained by milling of 10 mm-thick PP. Blocking tabs with rectangular holes on the pattern, are added for positioning the tower. The rectangular hole fits in a milled volume on rigid ends. The blocking plates on Fig. $\frac{13}{471}$ applies pressure along the tower, to maintain it in position during the folding process. 473

4.2 Validation of Kinematic Behavior 474

Before measurements, the towers are submitted to a sequence of 10 foldings and unfoldings using a tensile testing 476 machine, followed by a 30-minute resting period. Loading 477 history is then the same for all prototypes. The number of 478 cycles is chosen based on our observations of a stabilization 479 of the tower behavior. Tower assessment is achieved after ⁴⁸⁰ this phase. 481

FIG. 12: Cutting pattern for prototypes

FIG. 13: CAD exploded view of the prototype of tower

Table 4: Measurements of tower heights (standard deviations indicated in brackets) and relative error when compared to the tower radius. The index *m* stand for measured to differentiate the theoretical value

Tower	h_{1m} [mm] Error		h_{2m} [mm]	Error
θ	105.5(0.4)	0.8%	$165.8(0.1)$ 0.6%	
1	51.7(5.0)	11.3%	$124.6(0.3)$ 0.1%	
2	82.5(0.4)	2.7%	$131.9(0.2)$ 2.1%	
3	112.7(1.2)	6.4%	165.3(0.1)	1%

 The evaluation was conducted in two steps. First, a di- rect measurement of the position of stable configurations was achieved. The values of tower height are measured after plac- ing the tower in both configurations. The tower is placed on a marble and the height is measured with a gauge at the edge of the polygon. The given value is an average based on four measures, at 90 $^{\circ}$ from each other, to avoid error due to slight non-parallelism between the two polygons of the tower.

 The results of the tower height measurements are gath- ered in Table 4. The average difference between the com- puted and measured heights is about 2.9 mm. We note a bet-493 ter accuracy at the positions h_2 than at positions h_1 . Indeed,

the average difference at the position h_1 is about 5.0 mm, 494 whereas at h_2 , it is about 0.9 mm. We also note that the $\frac{495}{495}$ biggest difference is at the position h_1 of tower 1 which has 496 the smallest value of h_1 among the 4 prototypes. The mean 497 relative error on values of Table $\frac{4}{1}$ is about 3%. Even though 498 refinement of the model might be needed to predict small ⁴⁹⁹ values of the tower height, the accuracy seems satisfactory, 500 given the simplicity of the model, manufacturing defects and 501 the impacts of PP material non-linearities.

Second, a compression test was performed using a ten- 503 sile testing machine (Zwick/Roell, Z005) as seen on the 504 Fig. $\boxed{14}$. The bottom end is linked to the machine with a $\frac{1}{505}$ cylindrical joint, and the top end is connected to the mov- ⁵⁰⁶ ing part of the machine, that is linked with prismatic joint $_{507}$ to the machine frame. Displacement of the top end is ob- ⁵⁰⁸ tained using the integrated sensor. A camera (Canon EOS 509 $700D$) is placed in front of the tower, to measure the rotation 510 during the compression test. The camera is used to monitor 511 the value provided by protractor, as shown in Fig. $\boxed{13}$. The $_{512}$ measuring tool is integrated to the bottom end of the struc- ⁵¹³ ture, which rotates during the folding. It is then possible to 514 get the time needed to achieve each 1-degree rotation. The 515 translation speed is set by the testing machine, so we are able $\frac{1}{516}$ to compute the corresponding translation carried out by the 517 tower after an initial registration. Finally, the evolution of $_{518}$ the tower angle ϕ can be plotted as a function of the relative $\frac{519}{2}$ displacement between the tower ends.

In order to validate our model, we plot the angle ϕ , according to the height *h* from the Eqn. $\boxed{2}$ and compare with $\frac{522}{2}$ the experimental data in black on Fig. $\overline{15}$. On this figure, $\overline{5}$ ₂₃ the yellow curve is the theoretical curve for $\phi_l(h)$ and the 524 pink one is for $φ_b(h)$. $φ(h)$ curve is represented in solid line 525 from ϕ_l , respectively ϕ_b , according to the definition interval σ ₅₂₆ presented in Eqn. $\boxed{2}$. We note that the distance, between the 527 experimental curve and the theoretical curve of $\phi(h)$ in solid $\frac{1}{528}$ line, is always smaller than with the dashed lines. This ob- ⁵²⁹ servation confirms our proposition for the expression of the 530 ϕ angle outside the stable configurations. 531

The mean relative error, computed between the exper-

₅₃₂ imental evaluation and the values issued from the proposed 533 models, is in the order of 1.5%, 0.2%, 0.9% and 0.6% respec- ⁵³⁴ tively for towers 0, 1, 2 and 3. These results, below 2% of \sim 535 error, allow us to validate our model to describe the motion 536 of the tower. ⁵³⁷

4.3 Validation of Stiffness Modification 538

For this validation, the same experimental protocol is 539 used in terms of initial loading of the prototypes. The ⁵⁴⁰ compression force is now measured using a force cell ⁵⁴¹ (Zwick/Roell Xforce HP 500N), as seen in Fig. $\boxed{14}$. The prototypes used to assess the impact of fold density modifica- ⁵⁴³ tion are based on the same geometrical set η : $b = 174.6$ mm, $\frac{544}{256}$ $l = 202.2$ mm $r = 90$ mm and $n = 8$. It defines the tower 0, 545 for which $FD = 100\%$. Towers 4 and 5 are prototypes produced respectively with FD set to 80% and 60%.

To assess the impact of the proposed fold modification, ⁵⁴⁸ tower 6 is produced with an homogeneous modification of $_{549}$

FIG. 14: Prototype during testing with vision-based measurement of rotation

 the fold line, where the ratio between strokes and breaks dur- ing the laser machining of the fold line has been modified. This tower is characterized by the same amount of material along fold line as the tower 5 with *FD* set at 60 %, but with a homogeneous material distribution along the fold line. This 555 tower is designated by the index $60 - h$. Tower 6 is then compared with both tower 0, which also has a homogeneous material distribution along fold line, and tower 5, which has the same amount of material along fold line to highlight the relevance of material removing at a specific location.

 The maximum compression force F_{max} is obtained for a compression of about 8 mm as shown in Fig. $\overline{16}$. The values for towers 0 and 6 are close (Table 5). Reducing the effective length of material along fold lines from *FD*=100 % for tower 0 to 60 % for tower 6 causes a reduction of the maximal force by 3.8%. In comparison, the maximal force is lowered by 63 % when using the tower 5, based on the same amount of material along the fold line than the tower 6. The impact of the proposed fold line modification is then significantly higher than the one created by a global modification of fold line pattern.

571 The value of F_{max} for tower 4 ($FD = 80\%$) is reduced by 555% in comparison with the tower 0. That means removing ⁵⁷³ 20 % of the fold line leads to a decrease of the maximal force ⁵⁷⁴ of more than half. The impact of the *FD* parameter is very ⁵⁷⁵ significant.

576 Direct measurements of the height for the stable config-577 urations were also performed. All the towers from Table [5](#page-10-13) use the same set of parameters η , thus the theoretical val- ues of h_1 and h_2 are identical and equal to 106.3 mm and 166.3 mm. The average position difference with theoretical values for towers 0 and 6 is about 0.5 mm, and about 3.6 mm for towers 4 and 5. For these towers, the mains differences are related to the values of h_1 , which describes the configu-ration where the tower is compressed at most. The impact

FIG. 15: Tower angle φ as a function of the tower height *h*. In pink, the theoretical curve for ϕ_h , in yellow, the theoretical curve for ϕ_l and in black, the measured curve. The solid line compose the curve for theoretical $\phi(h)$ according to the definition interval defined in Eqn. [\(2\)](#page-5-3)

of fold line modification can be seen as acceptable, as it re- ⁵⁸⁵ mains in the order of 5 $\%$, even though that will depend on $\frac{586}{2}$ exact application requirements. This means the synthesis of 587 the tower could be achieved in two phases. First the pattern 588 geometry can be defined to achieve the two stable configura-
₅₈₉ tions. Then the stiffness level can be modified using the fold 590 modification approach. 591

FIG. 16: Force-displacement curves obtained from compres-sion tests of towers described in Table [5](#page-10-13)

Table 5: Measured values of h_1 , h_2 and maximum force for prototypes with modified fold lines

Tower	$FD [\%]$		F_{max} [N] h_{1m} [mm]	h_{2m} [mm]
$^{(1)}$	100	54.8	105.5	165.8
4	80	24.2	114.8	167.1
5	60	14.9	110.3	167.3
6	60-h	52.7	105.6	166.4

⁵⁹² 5 Conclusion

 In this paper, we provided tools to the designer to build compliant components based on the Kresling tower for robotic applications. The origami provides specific motion of its panels, with an overall behavior that can be applied as a bistable helical joint. The tower is then of great interest if associated to a building block design approach. Relation- ships have been established between the origami pattern and the characteristics of interest which were defined as the posi- tion of bistable configurations, the inner radius of the struc- ture, and the orientation of the panels. The experimental re- sults on origami, achieved using materials and processes for suitable with robotic applications, have confirmed the valid- ity of the proposed model.Additionally, an original modifi- cation of fold lines at specific locations was introduced to modulate the stiffness of the Kresling tower. Experimental observations confirmed the provided models can be used to select an origami pattern, according to design input param- eters. The impact of our specific fold line modification was investigated experimentally as well. Results are confirming the significant impact on stiffness, while the error on the po- sition of stable configurations is not significantly increased by fold modification. This means it seems possible to cor-rect the origami stiffness independently from its kinematics.

 Two approaches can be envisioned to be capable of tun-⁶¹⁷ ing the tower stiffness. The first one would be purely ex- perimental, using a trial and error process. The other one would be based on a model, that can be established using fi- nite element simulation and identification. Model building and comparison of the two approaches constitute the main perspectives of the work.

Acknowledgements 623

The authors would like to thank Damien Cartier-Millon, 624 for the definition of the bonding protocol. This work 625 was supported by the French National Agency for Re- 626 search (ORIGABOT ANR-18-CE33-0008), and Investisse- 627 ments d'Avenir program (Robotex ANR-10EQPX-44). 628

 $References$ 629

- [1] Greenberg, H., Gong, M., Magleby, S., and Howell, L., 630 2011. "Identifying links between origami and compli- 631 ant mechanisms". *Mechanical Sciences,* 2(2), pp. 217– ⁶³² $225.$ 633
- [2] Liu, T., Wang, Y., and Lee, K., 2017. "Three- ⁶³⁴ dimensional printable origami twisted tower: Design, 635 fabrication, and robot embodiment". IEEE Robotics 636 *and Automation Letters,* 3(1), pp. 116–123. 637
- [3] Zirbel, S. A., Lang, R. J., Thomson, M. W., Sigel, 638 D. A., Walkemeyer, P. E., Trease, B. P., Magleby, S. P., 639 and Howell, L. L., 2013. "Accommodating thickness in 640 origami-based deployable arrays". *Journal of Mechan-* ⁶⁴¹ *ical Design,* **135**(11). ⁶⁴²
- [4] Onal, C. D., Tolley, M. T., Wood, R. J., and Rus, D., 643 2014. "Origami-inspired printed robots". *IEEE/ASME* ⁶⁴⁴ *transactions on mechatronics*, **20**(5), pp. 2214–2221. 645
- [5] Belke, C. H., 2020. From modular origami robots to 646 polygon-based modular systems: a new paradigm in re- ⁶⁴⁷ configurable robotics. Tech. rep., EPFL. 648
- [6] Berre, J., Geiskopf, F., Rubbert, L., and Renaud, 649 P., 2021 . "Origami-inspired design of a deployable 650 wheel". In New Advances in Mechanisms, Mechani- 651 cal Transmissions and Robotics, E.-C. Lovasz, I. Ma- ⁶⁵² niu, I. Doroftei, M. Ivanescu, and C.-M. Gruescu, eds., 653 Springer International Publishing, pp. 114–126. 654
- [7] Bhovad, P., and Li, S., 2018. "Using Multi-Stable 655 Origami Mechanism for Peristaltic Gait Generation: ⁶⁵⁶ A Case Study". In International Design Engineering 657 Technical Conferences and Computers and Information 658 in Engineering Conference, Vol. 5B: 42nd Mechanisms 659 and Robotics Conference. V05BT07A061. 660
- [8] Sargent, B., Butler, J., Seymour, K., Bailey, D., Jensen, 661 B., Magleby, S., and Howell, L., 2020. "An origami- 662 based medical support system to mitigate flexible shaft 663 buckling". *Journal of Mechanisms and Robotics,* 12(4), ⁶⁶⁴ $p. 041005.$
- [9] Wu, S., Ze, Q., Dai, J., Udipi, N., Paulino, G. H., and 666 Zhao, R., 2021. "Stretchable origami robotic arm with 667 omnidirectional bending and twisting". *Proceedings of* ⁶⁶⁸ *the National Academy of Sciences,* **118**(36). 669
- [10] Hwang, H.-Y., 2021. "Effects of perforated crease line 670 design on mechanical behaviors of origami structures". 671 *International Journal of Solids and Structures,* 230- ⁶⁷² **231**, p. 111158. 673
- [11] Filipov, E. T., Tachi, T., and Paulino, G. H., 2015. 674 "Origami tubes assembled into stiff, yet reconfigurable 675 structures and metamaterials". Proceedings of the 676 *National Academy of Sciences,* 112(40), pp. 12321– ⁶⁷⁷ 12326. 678

- ⁶⁷⁹ [12] Angatkina, O., Chien, B., Pagano, A., Yan, T., Alleyne,
- ⁶⁸⁰ A., Tawfick, S., and Wissa, A., 2017. "A metameric ⁶⁸¹ crawling robot enabled by origami and smart materi-
- ⁶⁸² als". In Smart Materials, Adaptive Structures and Intel-⁶⁸³ ligent Systems, Vol. 58257, American Society of Me-
- ⁶⁸⁴ chanical Engineers, p. V001T06A008.
- ⁶⁸⁵ [13] Moon, Y.-M., Trease, B. P., and Kota, S., 2002. "De-⁶⁸⁶ sign of large-displacement compliant joints". *Journal* ⁶⁸⁷ *of Mechanical Design,* 36533, pp. 65–76.
- ⁶⁸⁸ [14] Rubbert, L., Bitterli, R., Ferrier, N., Fifanski, S., Vardi, ⁶⁸⁹ I., and Henein, S., 2016. "Isotropic springs based on ⁶⁹⁰ parallel flexure stages". *Precision Engineering,* 43,
- $_{691}$ pp. 132–145. ⁶⁹² [15] Merriam, E. G., 2016. *Stiffness Reduction Strategies*
- ⁶⁹³ *for Additively Manufactured Compliant Mechanisms*. ⁶⁹⁴ Brigham Young University.
- ⁶⁹⁵ [16] Kresling, B., 2008. "Natural twist buckling in ⁶⁹⁶ shells: from the hawkmoth's bellows to the deployable ⁶⁹⁷ Kresling-pattern and cylindrical Miura-ori". In Pro-⁶⁹⁸ ceedings of the 6th International Conference on Com-⁶⁹⁹ putation of Shell and Spatial Structures, IASS-IACM ⁷⁰⁰ 2008, pp. 1–4.
- ⁷⁰¹ [17] Jape, S., Garza, M., Ruff, J., Espinal, F., Sessions, D., ⁷⁰² Huff, G., Lagoudas, D. C., Hernandez, E. A. P., and ⁷⁰³ Hartl, D. J., 2020. "Self-foldable origami reflector an-⁷⁰⁴ tenna enabled by shape memory polymer actuation". ⁷⁰⁵ *Smart Materials and Structures,* 29(11), p. 115011.
- ⁷⁰⁶ [18] Nojima, T., 2002. "Modelling of folding patterns in flat ⁷⁰⁷ membranes and cylinders by origami". *JSME Interna-*⁷⁰⁸ *tional Journal Series C Mechanical Systems, Machine* ⁷⁰⁹ *Elements and Manufacturing,* 45(1), pp. 364–370.
- ⁷¹⁰ [19] Guest, S. D., and Pellegrino, S., 1994. "The Folding ⁷¹¹ of Triangulated Cylinders, Part I: Geometric Consid-⁷¹² erations". *Journal of Applied Mechanics,* 61(4), 12, ⁷¹³ pp. 773–777.
- ⁷¹⁴ [20] Pagano, A., Yan, T., Chien, B., Wissa, A., and Taw-⁷¹⁵ fick, S., 2017. "A crawling robot driven by multi-⁷¹⁶ stable origami". *Smart Materials and Structures,* 26(9), ⁷¹⁷ p. 094007.
- ⁷¹⁸ [21] Zhang, Q., Cai, J., Li, M., and Feng, J., 2018. "Bistable ⁷¹⁹ behaviour of a deployable cylinder with kresling pat-⁷²⁰ tern". In Proceedings of the 7th International Meet-⁷²¹ ing on Origami in Science, Mathematics and Education ⁷²² (7OSME), Oxford, UK, pp. 4–7.
- ⁷²³ [22] Lang, R. J., 2017. *Twists, tilings, and tessellations:* ⁷²⁴ *mathematical methods for geometric origami*. CRC ⁷²⁵ Press.
- ⁷²⁶ [23] Tachi, T., 2010. "Geometric considerations for the ⁷²⁷ design of rigid origami structures". In Proceedings ⁷²⁸ of the International Association for Shell and Spatial ⁷²⁹ Structures (IASS) Symposium, Vol. 12, Elsevier Ltd, ⁷³⁰ pp. 458–460.
- ⁷³¹ [24] Filipov, E., Liu, K., Tachi, T., Schenk, M., and Paulino, ⁷³² G. H., 2017. "Bar and hinge models for scalable anal-⁷³³ ysis of origami". *International Journal of Solids and* ⁷³⁴ *Structures,* 124, pp. 26–45.
- ⁷³⁵ [25] Zhai, Z., Wang, Y., and Jiang, H., 2018. "Origami-⁷³⁶ inspired, on-demand deployable and collapsible me-

chanical metamaterials with tunable stiffness". *Pro-* ⁷³⁷ *ceedings of the National Academy of Sciences,* 115(9), ⁷³⁸ pp. $2032-2037$.

- [26] Liu, K., and Paulino, G., 2017. "Nonlinear me- ⁷⁴⁰ chanics of non-rigid origami: an efficient computa- ⁷⁴¹ tional approach". *Proceedings of the Royal Society* ⁷⁴² *A: Mathematical, Physical and Engineering Sciences,* ⁷⁴³ $473(2206)$, p. 20170348.
- [27] Pagano, A., Leung, B., Chien, B., Yan, T., Wissa, ⁷⁴⁵ A., and Tawfick, S., 2016. "Multi-Stable Origami ⁷⁴⁶ Structure for Crawling Locomotion". In Smart Ma- ⁷⁴⁷ terials, Adaptive Structures and Intelligent Systems, ⁷⁴⁸ Vol. 2: Modeling, Simulation and Control; Bio- ⁷⁴⁹ Inspired Smart Materials and Systems; Energy Harvest- ⁷⁵⁰ ing, p. V002T06A005. 751
- [28] Qiu, J., Lang, J. H., and Slocum, A. H., 2004. "A 752 curved-beam bistable mechanism". *Journal of micro-* ⁷⁵³ *electromechanical systems,* **13**(2), pp. 137–146. $\frac{754}{6}$
- [29] Nayakanti, N., 2016. "Flexigami: folded polygonal 755 unit cells for deployable metamaterials and mecha- ⁷⁵⁶ nisms". PhD thesis, Massachusetts Institute of Technology. The contract of the co
- [30] Yellowhorse, A., and Howell, L. L., 2018. "Three 759 approaches for managing stiffness in origami-inspired 760 mechanisms". In International Design Engineering 761 Technical Conferences and Computers and Information 762 in Engineering Conference, Vol. 51814, American So- ⁷⁶³ ciety of Mechanical Engineers, p. V05BT07A056. 764
- [31] Jianguo, C., Xiaowei, D., Ya, Z., Jian, F., and Yong- ⁷⁶⁵ ming, T., 2015. "Bistable Behavior of the Cylindrical 766 Origami Structure With Kresling Pattern". *Journal of* ⁷⁶⁷ *Mechanical Design,* **137**(6), 06. 061406.
- [32] Butler, J., Morgan, J., Pehrson, N., Tolman, K., Bate- 769 man, T., Magleby, S. P., and Howell, L. L., 2016. 770 "Highly compressible origami bellows for harsh en- ⁷⁷¹ vironments". In Proceedings of the ASME 2016 In- ⁷⁷² ternational Design Engineering Technical Conferences 773 and Computers and Information in Engineering Con- ⁷⁷⁴ ference, Vol. 5B: 40th Mechanisms and Robotics Con- ⁷⁷⁵ ference. V05BT07A001. 776