
HAL Id: hal-03594790
https://hal.science/hal-03594790

Preprint submitted on 2 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel Dithering: How Fast Can We Go ?
Quentin Guilloteau

To cite this version:

Quentin Guilloteau. Parallel Dithering: How Fast Can We Go ?. 2022. �hal-03594790�

https://hal.science/hal-03594790
https://hal.archives-ouvertes.fr

Parallel Dithering: How Fast Can We Go ?
Quentin Guilloteau

ENSIMAG & MoSIG DI

Abstract

From palette reduction in GIF images to printing,
dithering techniques are widely used. With the in-
creasing size of the images today, due to better pho-
tographic hardware, we can wonder if we can gain in
performance by processing an image in parallel. In
this paper, we will implement a MPI algorithm to
apply the Floyd-Steinberg dithering in parallel. We
will then focus on performance and look for optimal
values of parameters.

1 Introduction

1.1 Dithering

The action of dithering is used in image processing to
reduce the number of colors used in an image. One
example is for printers that have only two values:
either with ink or without.

The error diffusion in the dithering process consists
in spreading to neighbouring pixels the quantification
error due to the restriction of a pixel to a reduced
palette. This technique reduces phenomena such as
banding (i.e. inaccurate color presentation) but intro-
duces some noise.

In this paper, we will focus on the palette reduction of
a grey scale image (256 values) to a black and white
image (2 values: 0 and 255).

Figure 1 represents a grey scale image, and figure 2 is
its dither image.

We can see on figure 2 the dots composing the image.
Even with only two pixel values, the contrast of the
different parts of the image is repescted.

1.2 Floyd-Steinberg Dithering

There are many different possible ditherings. They
all use the same principle, only some numerical con-
stants change. In this paper, we will only focus on

Figure 1: Grey Scale Image

Figure 2: Dithered Image

the Floyd-Steinberg Dithering. It uses the error
diffusion pattern depicted in figure 3.

The dithering works as follows:

1. We assign a new value to the current pixel

2. We compute the error of this pixel as the differ-
ence between the new value and the old value

3. [Error Diffusion] We add a fraction of this error
to the neighbouring pixels according to figure 3

For example, if the error for the current pixel is 42,
we will add 7

16 × 42 to the value of the pixels on its
right.

Figure 4 shows another way to look at the problem,

1

7
16

1
16

5
16

3
16

Figure 3: Error Diffusion for the Floyd-Steinberg
Dithering

3
16

1
16

5
16

7
16

Figure 4: Local Dependencies of the Floyd-Steinberg
Dithering

by considering the dependencies for a single pixel.

1.3 Pseudo-Code

We can write the pseudo code of the Floyd-Steinberg
Dithering:
for (y = 0; y < rows; y++) {

for (x = 0; x < cols; x++) {
// Computation of the error
int old_value = pixels[y * cols + x];
int new_value = (current_value < 127) ?

0 : 255;
int error = old_value - new_value;
pixels[y * cols + x] = new_value;

// Error Propagation
pixels[(y + 0) * cols + (x + 1)]

+= error * 7 / 16;
pixels[(y + 1) * cols + (x + 1)]

+= error * 1 / 16;
pixels[(y + 1) * cols + (x + 0)]

+= error * 5 / 16;
pixels[(y + 1) * cols + (x - 1)]

+= error * 3 / 16;

}
}

As we can see, this algorithm is highly sequential. We
have to start from the top left of the image and work
ourselves to the right until we reach the end of the
line. Then we start again from the next line.

2 Experimental Setup

Let us present the experimental setup used for every
experiment presented on this paper.

2.1 Experimental Design

All the experiments presented in this paper have 2
associated R scripts:

• A script generating the design of the experiment.

• A script reading the design of the experiment and
running it.

The first one will generate a CSV file composed of all
the configurations to benchmark during the experi-
ment. The second one will read the first one and then
run the correct MPI commands to run the experiment.

2.2 Hardware

For all the experiements, we used the Grid5000 dahu
cluster located in Grenoble.

The hardware on this cluster is:

• CPU: 2 x Intel Xeon Gold 6130

• Cores: 16 cores/CPU

• Memory: 192 GiB

• Storage: 240 GB SSD + 480 GB SSD + 4.0 TB
HDD

• Network: 10 Gbps + 100 Gbps Omni-Path

3 Important Notions

We will here give some notions and notations that we
will use for the rest of this paper.

• w: processing time of a single pixel

• H: height of the image

• W : width of the image

• p: number of processes

• B: bandwidth of the network

• L: latency of the network

• T (H, W, p): execution time of the algorithm de-
pending on the image and the number of proces-
sors

2

1 2

3

3 4

4

5

5

5

Figure 5: Potential Parallel Execution

• S(H, W, p) = tseq

tpar
: speedup of the algorithm for

an image of size H ×W with p processors (the
greater the better)

• Eff = S(H,W,p)
p : efficiency (the greater the bet-

ter)

4 Parallel Dithering

The main idea of the parallel dithering, is that the
progression looks more like a triangle than a rectangle:

Figure 5, shows that there are indeed some possible
parallelism in the dithering process. The numbers
correspond to the order of the execution. When some
pixels have the same number, it means that they can
be processed in parallel.

We also see that each line needs to be 2 pixels ahead
of the line below due to the error diffusion pattern of
the dithering algorithm (see figure 3).

4.1 Alternate Processes: Presentation

The first idea to process the image in parallel is to
alternate processes and giving them one line at the
time to work with.

Figure 6 gives an example of the distribution of data
between 2 processes.

Process 0 will start working on the first pixel of its
line. As we saw in figure 5, a process must be done
processing pixel n of its line for the next process to
be able to process the pixel n− 2 of its own line. So,
we have to make sure to respect this requirement.

P1

P1

P0

P0

Figure 6: Data Distribution per Process (with 2 pro-
cesses)

4.2 Implemenation Details

4.2.1 Representing one Pixel

One decision made to simplify the code was to encode
pixel values on a int16_t integer.

Of course, pixels in a grey scale image only go from 0
to 255, only requiring 8 bits.

However, as we will need to add or substract error
values to the value of a pixel, being able to have
negative values was crucial.

4.2.2 Distributing the lines to the processes

As one process has non adjacent lines, we have to
define our own MPI_Vector_Type to properly send
the correct lines to each process.

As we want process Pi to have H
p lines with p−1 lines

between each line and stating with the ith line.
// Definition of the custom type
MPI_Type_vector(h / world_size,

w, world_size * w,
MPI_INT16_T, &PixelLine);

MPI_Type_commit(&PixelLine);

Unfortunatly, it is not possible to simply use the
MPI_Scatter function to send the pixels to the pro-
cesses. Indeed, it will start the next PixelLine at
the end of the previous one, however, we want it to
start at the same position that the previous one with
an offset of w.

So we decided to simply call the MPI_Send function
manually to scatter the lines among the processes.

4.2.2.1 Processing a line

3

Apart for the first line of the first process, every pro-
cess has to receive the error from the above process
to be able to process the pixels of its current line.
// Call to recv the error from above
MPI_Recv(&error_from_top, 1, MPI_INT16_T,

(my_rank + world_size - 1) % world_size,
0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

Once the error from the process above has been re-
ceived, we need to update the value of the current
pixel.
// Updating the local value
local_pixels[i + w * line_index]

+= error_from_top;

At this point, we can compute the new value for this
pixel and its error to propagate.
// Processing the current pixel
int16_t current_value =

local_pixels[i + w * line_index];
int16_t new_value = (current_value < 127) ?

0 : 255;
local_pixels[i + w * line_index] = new_value;
int16_t error = current_value - new_value;

4.2.3 Propagating the error to the process
below

As figure 3 shows, once its value updated, one pixel
has to send its error to (at most) 3 pixels to the line
below. However, in order for the first error of the line
to be send to the process below, we need to wait for
the second pixel to be done processing as we want to
send the error only once.

We decided to use a circular buffer of size 3 to manage
this issue.

This buffer will store the cumulated errors to send to
the process below until they are ready to be sent. We
need a size of 3 because a pixel propagates its error
to (at most) 3 pixels on the line below.

Figure 7 resumes the mechanism used with the buffer.

1. The first pixel of line i is processed on process
Pk. We add the proportions of the error to the
corresponding cells of the buffer. In this example,
there are only 2 cells to update as we are on the
far left on the image (see figure ??)

2. The second pixel of line i is processed on process
Pk. We add the propotions of the error to the
corresponding cells of the buffer.

1 2

send3

line i

Buffer

line i + 1

Pk

Pk+1

Figure 7: Use of the cicular buffer

3. The first cell of the buffer is ready to be send to
process Pk+1 (no more dependencies). It contains
the cumulated error for the first pixel of line i+1.

4. Once sent, we set the value of the sent cell back
to 0.

As the buffer is circular, the first cell will be used to
store the error for the right dependency of the 3rd

pixel.

4.3 Performance Analysis

Let p be the number of processors. Let us consider
an image of size H ×W . Let L be the latency of the
network and B its bandwidth. Let w be the processing
time of a pixel.

Each processor has H×W
p pixels to process.

The global time spent “busy waiting” is 2(H − 1)w
(because of the 2 pixels spacing between processes)
and we have to wait for the last process to finish.

We thus have:

T (H, W, p) = HW

p

(
w + L + 1

B

)
+ 2(H − 1)w (1)

The sequential time is: wHW .

We can thus compute the speedup:

S(H, W, p) = wHW
HW

p

(
w + L + 1

B

)
+ 2(H − 1)w

The limit speedup is thus:

4

Step 1

Step 2

processing to be processed

processed processing
to be processed

Figure 8: Execution per block with k = 2

lim
(H,W)→(∞,∞)

S(H, W, p) = 1
1
p + L

wp + 1
wpB

(2)

The efficiency of this algorithm is:

Eff = lim
(H,W)→(∞,∞)

S(H, W, p)
p

= 1
1 + L

w + 1
B×w

(3)

The efficiency of this algorithm (equation 3) is less
than one. It thus means that it is not very efficient.

5 Reducing the Granularity

5.1 Presentation

Sending the error every time a process process a pixel
introduce too much loss due to the latency of the
network. We will try to reduce the granularity of the
algorithm by grouping pixels per block. We will also
send the errors per block. We call k the number of
pixels in a block. Figure 8 summarise the execution
of a line of pixels using blocks.

5.2 Performance Analysis

We note k the size of a block. So a block contains k
pixels.

T (H, W, p) = HW

p× k

(
w × k + L + k

B

)
+ 2k(H−1)w

(4)

We compute next the speedup of this new version:

S(H, W, p) = wHW
n2

p×k

(
w × k + L + k

B

)
+ 2k(H − 1)w

The limit speedup is thus:

lim
(H,W)→(∞,∞)

S(H, W, p) = 1
1
p + L

wpk + 1
wpB

(5)

The efficiency of this algorithm is:

Eff = lim
(H,W)→(∞,∞)

S(H, W, p)
p

= 1
1 + L

wk + 1
Bw

(6)

We see that we improve the efficiency of the algorithm
by limiting the use of the network and reducing the
global cost of the latency. So, the higher k, the less
we will pay the cost of the latency.

5.3 Upper bound for k

We want k to be the higher possible, but if we increase
k, we will at some point have some busy waiting time.

Let us find the upper bound for k that does not
generate busy waiting time.

5.3.1 Theoretical Value

Let W be the width of the image and p be the number
of processes.

In order to not have any idle time by the processes, we
would like the process Pp−1 to have at least finished
processing its first 2 blocks of its line when process
P0 is done processing its line.

Otherwise, process P0 would have to wait for process
Pp−1 to send the error of the first block, thus creating
some busy-waiting time.

Let khi be the lower bound of k such that there is no
busy waiting by the processes.

There are W

k
blocks to process on one line.

Once the first line will be done by process P0, process
Pp−1 would have processed W

k − 2× (p− 1).

5

We want the last process to have processed at least 2
blocks (so it can send the error of the first block to
process P0).

Thus,

W

k
− 2× (p− 1) ≥ 2 =⇒ k ≤ W

2× p
= khi (7)

5.3.2 Experiment

We took an example with an image of width 8192
pixels on 16 processors. We doubled the block size
starting from 2 pixels up to the total width of the
image.

We can compute the upper bound for k:

khi = W

2p
= 8192

2× 16 = 256 (8)

0.0

0.5

1.0

1.5

2.0

2 4 8 16 32 64 128 k_hi 512 1024 2048 4096 8192
block size

S
pe

ed
up

Speedup depending on the block size

Figure 9: Speedup depending on the block size (k)

In figure 9 we show that the speedup is indeed maximal
for k = khi.

5.3.3 Remarks

We can also see a small dip in performance for k = 16.
We suspect that it must be linked to MPI having
different ways to send the data depending on the size
of the message compared to a threshold.

r

recv recv recv recv

send send

Figure 10: Zig-Zag processing on a block of r = 3
lines

6 Limiting the Impact of the
Bandwidth

6.1 Presentation

For the moment, we only managed to reduce the cost
of the latency of the network. In order to reduce the
impact of the bandwith, we must send less messages
through the network. In the previous section, we
increased the size of the messages by sending pixels
per block. In this section, we will create blocks of
lines. Each process will have several blocks of lines.
Each block of line will contain r consecutive lines
of pixels. Only the top and bottom lines of the block
will require communications. The remaining pixels
will be processed sequentially.

We cannot however afford to process the pixels in a
block of lines, sequentially line by line from left to
right. Indeed, this would result in too much time
“busy waiting” for the processes. We thus decided to
process the pixels in the block of lines in a zig-zag (or
serpentine) way, as depicted in figure 10.

6.2 Performance Anlysis

We pretty much have the same logic than in section
4.3, with blocks instead of pixels.

The waiting time is:

Wait = wk

(
H

r
− 1
)

r(r − 1)
2 = wk

(H − r)(r − 1)
2

(9)

6

T (H, W, p) = HW

krp

(
wk + L + k

B

)
+wk

(H − r)(r − 1)
2
(10)

We compute next the speedup of this new version:

S(H, W, p) = wHW
HW
krp

(
wk + L + k

B

)
+ wk (H−r)(r−1)

2

The limit speedup is thus:

lim
(H,W)→(∞,∞)

S(H, W, p) = 1
1

pr + L
pkrw + 1

pwrB

(11)

The efficiency of this algorithm is:

Eff = lim
(H,W)→(∞,∞)

S(H, W, p)
p

= 1
1
r + L

wkr + 1
Brw
(12)

We see that we improve the efficiency of the algorithm
by limiting the use of the network and reducing the
global cost of the bandwidth. The highest r is, the
better the speedup will be.

6.3 Upper bound for r

As for k, increasing r too much will produce some
busy waiting time. Let us find the upper bound for r
that does not produce busy waiting time.

6.3.1 Theoretical Value

In order to process the ith block of pixel of the last line
of the block of line, we need to process the (i + 1)th

block of the previous line of the block.

We can then compute the number of block to process
first to be able to process the ith block of the last line:

r−1∑
j=0

i + j = r × i + (r − 1)r
2 (13)

So, to send the first error to the process below, we
need to process the first 2 blocks of the last line (i.e.
i = 2). Thus, we need to process the total of r(r+3)

2
blocks of pixels.

The working time is then:

Work = wk
r(r + 3)

2 (14)

We don’t want to have processes being busy waiting
between when they finish processing their previous
block of lines and when they start their next block of
lines.

For processes other than the first one, there are actu-
ally unavoidable waiting times. Indeed, for example,
to receive the second error, a process has to wait for
the process above to send it. However, there is not
enough work to do yet to be busy until the error is
sent.

The waiting time for such a process is:

Wait = wk

r∑
i=1

(r − i) = wk
r(r − 1)

2 (15)

Thus, for processes that are not the first process, the
time to send the first error is:

Work+Wait = wk
r(r + 3)

2 +wk
r(r − 1)

2 = wkr(r+1)
(16)

Thus, the total time to get the first error in the second
block of line of the first process is:

wk
r(r + 3)

2 +wk(p−1)r(r+1) = wkr

(
r

(
p− 1

2

)
+
(

p + 1
2

))
(17)

We want the first process to finish the first block of
lines after the first error for its second block of lines
is sent:

r

(
r

(
p− 1

2

)
+
(

p + 1
2

))
≤ W

k
r (18)

Thus, the upper bound for r is:

r ≤
W
k −

(
p + 1

2
)

p− 1
2

= rhi (19)

We can also express the value of k given r:

k = W

r
(
p− 1

2
)

+
(
p + 1

2
) (20)

7

6.3.2 Experiment

We can now make an experiement.

We fixed H, W and p. We took a range of values for r
and took the k value associated with this r (see equa-
tion 20). We plot the speedup for each configuration.

0

1

2

3

2 4 8 16 32 64 128 256 512
block size

S
pe

ed
up

Speedup depending on the block size

Figure 11: Speedup depending on the block size (r)

We can see the results of the experiment in fugure 11.

We see that for r = rhi, we optain the highest speedup.

6.3.3 Remarks

If we plug k = khi in the value of the upper bound
for r, we get r ≤ 1. Which makes sense as this is an
optimal value of k for blocks of one line.

7 Optimal block sizes

7.1 Assumptions

In equation 19, we found a relation linking the param-
eters of our problem: r and k.

We can thus easily get the optimal value of one given
the other. The question now is to get the best couple
(r, k).

From 10, we have:

T = HW

prk

(
L + k

B
+ wk

)
+ (H − r)(r − 1)

2 wk

Let us focus on the “busy waiting” time and try to
minimize it.

Wait = (H − r)(r − 1)
2 k

We can plug the expression of k found in equation 20
and derive with respect to r:

Wait = (H − r)(r − 1)W
2
(
r
(
p− 1

2
)

+ p + 1
2
)

Let us derive with respect to r:

(H + 1− 2r)(r(p− 1
2) + p + 1

2)− (H − r)(r − 1)(p− 1
2)

(r(p− 1
2) + p + 1

2)2

(21)

We are looking at when the upper part equals 0.

After some manipulations, we obtain:

r2(2−P)+r((H+3)P−(H+1))−(2H+1)P = 0 (22)

with P =
p + 1

2
p− 1

2

We can assume that P = 1, which is reasonable for
values of p > 10.

We thus get the following equation:

r2 + 2r − (2H + 1) = 0 (23)

The positive solution, which is the r minimizing the
waiting time, is:

r+ = −1 +
√

2(H + 1) (24)

For large values of H we can simply take r '
√

2H

7.2 Example

Let us take an example with a square image of size
8192× 8192 with 16 processes.
H <- 2^13
W <- 2^13
p <- 16

r <- sqrt(2 * H)
r

[1] 128

8

k <- W / (r * (p - 0.5) + (p + 0.5))
k

[1] 4.094976

We have to take the r the closest to this optimal value
such that H ≡ 0 (mod r × p).

In this particular case:
r <- 2^(as.integer(log2(r)))
r

[1] 128

k <- W / (r * (p - 0.5) + (p + 0.5))
k

[1] 4.094976

We also need k to be a valid number (integer that
divides W).

So, in this example, we would take r = 128 and k = 4

7.3 Experiment

We can thus make an experiment in order to check if
the theorical optimal value for r is the one we found.

In this experiement, we fixed the size of the image
and the number of processors. We generated points
for some possible values of r and computed the op-
timal value of k associated with this value of r (see
equation 20). We added to the dataset the optimal
configuration. We then mesured the speedup for each
configuration and plotted the results in figure 12.

0

1

2

3

4

2 4 8 16 32 64 128 256 512
block size

S
pe

ed
up

Speedup depending on the block size

Figure 12: Speedup depending on the block size (r)

We can see that the theorical optimal value of r (in
blue on figure 12) is not exactly the experiemental
optimal value (around r = 64).

However, after r = 64, there seems to be a “plateau”
where the speedup does not variate much. Thus by
keeping the therorical optimal r, we could still get
some high performances.

7.4 Summary

Given an image of size H ×W , and p processors, we
recommend taking:

• r '
√

2H

• k ' W

p
√

2H

8 Performances

In this experiment, we fix the image size and increase
the number of processes.

The values of r and k are computed with respect to
the rules given in 7.4.

0

1

2

3

4

2 4 16 64 128
Number of processors

S
pe

ed
up

Speedup depending on the number of processors

Figure 13: Speedup depending on te number of pro-
cessors

We can do a linear regression for the speedup, and we
find that:

S(p) ' log2(√p) + 1 (25)

9

X 7
48

5
48

3
48

5
48

7
48

5
48

3
48

1
48

3
48

5
48

3
48

1
48

Figure 14: Error Diffusion for the Jarvis, Judice and
Ninke Dithering

9 Conclusion

9.1 To go further

9.1.1 Powers of 2

In this paper, we decided to limit the implementa-
tion to a “simple” use. Indeed, our implementation
requires H ≡ 0 (mod k) and H ≡ 0 (mod r × p).
Those constraints are limiting. This is why all the
experiments are based on powers of 2.

But, by only using image with a size that is a power of
2, we limit ourselves to a very small region of the space.
We hope however that measuring on those points gave
us enough information on the global space.

With more time, implementing a generic program to
take any k and any r would allow us to be more precise
in our experiments and analysis.

9.1.2 Another Dithering Algorithm

There are several dithering algorithms. We could
also compare the impact of the error-diffusion on the
performances.

For instance, the Jarvis, Judice and Ninke
Dithering has the error diffusion pattern depicted in
figure 14.

9.1.3 GPU and Shared Memory

It would also be interesting to develop versions of a
parallel Floyd-Steinberg Dithering on a GPU with
CUDA and on shared memory (with Rust and Rayon
or with OpenMP) and look at the difference in per-
formances.

9.2 Performances

Concerning performances, we manage to reduce the
execution time by:

• Working on blocks of pixels instead of single pix-
els: reduced the impact of the latency of the
network

• Giving several consecutive lines to each process:
reduced the impact of the network (latency +
bandwith)

• Computing optimal values of k and r: those val-
ues are computed to reduce waiting time

10

	Introduction
	Dithering
	Floyd-Steinberg Dithering
	Pseudo-Code

	Experimental Setup
	Experimental Design
	Hardware

	Important Notions
	Parallel Dithering
	Alternate Processes: Presentation
	Implemenation Details
	Representing one Pixel
	Distributing the lines to the processes
	Propagating the error to the process below

	Performance Analysis

	Reducing the Granularity
	Presentation
	Performance Analysis
	Upper bound for k
	Theoretical Value
	Experiment
	Remarks

	Limiting the Impact of the Bandwidth
	Presentation
	Performance Anlysis
	Upper bound for r
	Theoretical Value
	Experiment
	Remarks

	Optimal block sizes
	Assumptions
	Example
	Experiment
	Summary

	Performances
	Conclusion
	To go further
	Powers of 2
	Another Dithering Algorithm
	GPU and Shared Memory

	Performances

