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 on the convex regularization of Wasserstein barycenters for random measures supported on R d . We discuss the existence and uniqueness of such barycenters for a large class of regularizing functions. A stability result of regularized barycenters in terms of Bregman distance associated to the convex regularization term is also given. Additionally we discuss the convergence of the regularized empirical barycenter of a set of n iid random probability measures towards its population counterpart in the real line case, and we discuss its rate of convergence. This approach is shown to be appropriate for the statistical analysis of discrete or absolutely continuous random measures. In this setting, we propose an efficient minimization algorithm based on accelerated gradient descent for the computation of regularized Wasserstein barycenters.

Introduction

This paper is concerned by the statistical analysis of data sets whose elements may be modeled as random probability measures supported on R d . It is an overview of results that have been obtain in [START_REF] Bigot | Penalized barycenters in the Wasserstein space[END_REF]. In the special case of one dimension (d = 1), we are able to provide refined results on the study of a sequence of discrete measures or probability density functions (e.g. histograms) that can be viewed as random probability measures. Such data sets appear in various research fields. Examples can be found in neuroscience [START_REF] Wu | An information-geometric framework for statistical inferences in the neural spike train space[END_REF], biodemographic and genomics studies [START_REF] Zhang | Functional density synchronization[END_REF], economics [START_REF] Kneip | Inference for density families using functional principal component analysis[END_REF], as well as in biomedical imaging [START_REF] Petersen | Functional data analysis for density functions by transformation to a Hilbert space[END_REF]. In this paper, we focus on first-order statistics methods for the purpose of estimating, from such data, a population mean measure or density function.

The notion of averaging depends on the metric that is chosen to compare elements in a given data set. In this work, we consider the Wasserstein distance W 2 associated to the quadratic cost for the comparison of probability measures.

Let Ω be a subset of R d and P 2 (Ω) be the set of probability measures supported on Ω with finite order second moment. Definition 1. As introduced in [START_REF] Agueh | Barycenters in the Wasserstein space[END_REF], an empirical Wasserstein barycenter νn of a set of n probability measures ν 1 , . . . , ν n (not necessarily random) in P 2 (Ω) is defined as a minimizer of

µ → 1 n n i=1 W 2 2 (µ, ν i ), over µ ∈ P 2 (Ω). (1) 
The Wasserstein barycenter corresponds to the notion of empirical Fréchet mean [START_REF] Fréchet | Les éléments aléatoires de nature quelconque dans un espace distancié[END_REF] that is an extension of the usual Euclidean barycenter to nonlinear metric spaces.

However, depending on the data at hand, such a barycenter may be irregular. As an example let us consider a real data set of neural spike trains which is publicly available from the MBI website 1 . During a squared-path task, the spiking activity of a movement-encoded neuron of a monkey has been recorded during 5 seconds over n = 60 repeated trials. Each spike train is then smoothed using a Gaussian kernel (further details on the data collection can be found in [START_REF] Wu | An information-geometric framework for statistical inferences in the neural spike train space[END_REF]). For each trial 1 ≤ i ≤ n, we let ν i be the measure with probability density function (pdf) proportional to the sum of these Gaussian kernels centered at the times of spikes. The resulting data are displayed in Fig. 1(a). For probability measures supported on the real line, computing a Wasserstein barycenter simply amounts to averaging the quantile functions of the ν i 's (see e.g. Section 6.1 in [START_REF] Agueh | Barycenters in the Wasserstein space[END_REF]). The pdf of the Wasserstein barycenter νn is displayed in Fig. 1(b). This approach clearly leads to the estimation of a very irregular mean template density of spiking activity.

In this paper, we thus introduce a convex regularization of the optimization problem (1) for the purpose of obtaining a regularized Wasserstein barycenter. In this way, by choosing an appropriate regularizing function (e.g. the negative entropy in Subsection 2.1), it is of possible to enforce this barycenter to be absolutely continuous with respect to the Lebesgue measure on R d .

Regularization of barycenters

We choose to add a penalty directly into the computation of the Wasserstein barycenter in order to smooth the Fréchet mean and to remove the influence of noise in the data. Definition 2. Let P ν n = 1 n n i=1 δ νi where δ νi is the dirac distribution at ν i . We define a regularized empirical barycenter µ γ P ν n of the discrete measure P ν n as a minimizer of

µ → 1 n n i=1 W 2 2 (µ, ν i ) + γE(µ) over µ ∈ P 2 (Ω), (2) 
where P 2 (Ω) is the space of probability measures on Ω with finite second order moment, E : P 2 (Ω) → R + is a smooth convex penalty function, and γ > 0 is a regularization parameter.

In what follows, we present the main properties on the regularized empirical Wasserstein barycenter µ γ P ν n .

1 http://mbi.osu.edu/2012/stwdescription.html 

Existence and uniqueness

We consider the wider problem of min µ∈P2(Ω)

J γ P (µ) = W 2 2 (µ, ν)dP(ν) + γE(µ). (3) 
Hence, (2) corresponds to the minimization problem (3) where P is discrete ie

P = P n = 1 n n i=1 δ νi .
Theorem 1 (Theorem 3.2 in [START_REF] Bigot | Penalized barycenters in the Wasserstein space[END_REF]) Let E : P 2 (Ω) → R + be a proper, lower semicontinuous and differentiable function that is strictly convex on its domain

D(E) = {µ ∈ P 2 (Ω) such that E(µ) < +∞}.
Then, the functional J γ P define by (3) admits a unique minimizer.

Such assumptions on E are supposed to be always satisfied throughout the paper. A typical example of regularization function satisfying such assumptions is the negative entropy defined as

E(µ) =    R d f (x) log(f (x))dx, if µ admits a density f with respect to
the Lebesgue measure dx on Ω, +∞ otherwise.

Stability

We study the stability of the minimizer of (3) with respect to the discrete distribution P ν n = 1 n n i=1 δ νi on P 2 (Ω). This result is obtained for the symmetric Bregman distance d E (µ, ζ) between two measures µ and ζ. Bregman distances associated to a convex penalty E are known to be appropriate error measures for various regularization methods in inverse problems (see e.g. [START_REF] Burger | Convergence rates of convex variational regularization[END_REF]). This Bregman distance between two probability measures µ and ζ is defined as

d E (µ, ζ) := ∇E(µ) -∇E(ζ), µ -ζ = Ω (∇E(µ)(x)-∇E(ζ)(x))(dµ -dζ)(x),
where ∇E : Ω → R denotes the gradient of E. In the setting where E is the negative entropy and µ = µ f (resp. ζ = ζ g ) admits a density f (resp. g) with respect to the Lebesgue measure, then d E is the symmetrised Kullback-Leibler divergence

d E (µ f , ζ g ) = (f (x) -g(x)) log f (x) g(x) dx.
The stability result of the regularized empirical barycenter can then be stated as follows.

Theorem 2 (Theorem 3.3 in [START_REF] Bigot | Penalized barycenters in the Wasserstein space[END_REF]) Let ν 1 , . . . , ν n and η 1 , . . . , η n be two sequences of probability measures in P 2 (Ω). If we denote by µ γ P ν n and µ γ P η n the regularized empirical barycenter associated to the discrete measures P ν n and P η n , then the symmetric Bregman distance (associated to E) between these two barycenters is bounded as follows

d E µ γ P ν n , µ γ P η n ≤ 2 γn inf σ∈Sn n i=1 W 2 (ν i , η σ(i) ), (4) 
where S n denotes the permutation group of the set of indices {1, . . . , n}.

In particular, inequality (4) allows to compare the case of data made of n absolutely continuous probability measures ν 1 , . . . , ν n , with the more realistic setting where we have only access to a dataset of random variables X = (X i,j ) 1≤i≤n; 1≤j≤pi organized in the form of n experimental units, such that X i,1 , . . . , X i,pi are iid observations in R d sampled from the measure ν i for each 1 ≤ i ≤ n. If we denote by ν pi = 1 pi pi j=1 δ Xi,j the usual empirical measure associated to ν i , it follows from inequality (4) that

E d 2 E µ γ P ν n , µ γ X ≤ 4 γ 2 n n i=1 E W 2 2 (ν i , ν pi ) ,
where µ γ X is given by µ γ X = argmin

µ∈P2(Ω) 1 n n i=1 W 2 2 (µ, 1 pi pi j=1 δ Xi,j ) + γE(µ).
This result allows to discuss the rate of convergence (for the symmetric squared Bregman distance) of µ γ X to µ γ P ν n as a function of the rate of convergence (for the squared Wasserstein distance) of the empirical measure ν pi to ν i for each 1 ≤ i ≤ n (in the asymptotic setting where p = min 1≤i≤n p i is let going to infinity). As an illustrative example, in the one-dimensional case (that is d = 1), one may use the work in [START_REF] Bobkov | One-dimensional empirical measures, order statistics and Kantorovich transport distances[END_REF] on a detailed study of the variety of rates of convergence of an empirical measure on the real line toward its population counterpart for the expected squared Wasserstein distance. For example, by Theorem 5.1 in [START_REF] Bobkov | One-dimensional empirical measures, order statistics and Kantorovich transport distances[END_REF], it follows that

E W 2 2 (ν i , ν pi ) ≤ 2 p i + 1 J 2 (ν i ), with J 2 (ν i ) = Ω F i (x)(1 -F i (x)) f i (x) dx,
where f i is the pdf of ν i , and F i denotes its cumulative distribution function. Therefore, provided that J 2 (ν i ) is finite for each 1 ≤ i ≤ n, one obtains the following rate of convergence of µ γ X to µ γ

P ν n (in the case of measures ν i supported on an interval Ω of R) E d 2 E µ γ P ν n , µ γ X ≤ 8 γ 2 n n i=1 J 2 (ν i ) p i + 1 ≤ 8 γ 2 1 n n i=1 J 2 (ν i ) p -1 . (5) 
Note that by the results in Appendix A in [START_REF] Bobkov | One-dimensional empirical measures, order statistics and Kantorovich transport distances[END_REF], a necessary condition for J 2 (ν i ) to be finite is to assume that f i is almost everywhere positive on the interval Ω.

Convergence to a population Wasserstein barycenter

Introducing this symmetric Bregman distance also allows to analyze the consistency of the regularized barycenter µ γ Pn as the number of observations n tends to infinity and the parameter γ is let going to zero. When ν 1 , . . . , ν n are supposed to be independent and identically distributed (iid) random measures in P 2 (Ω) sampled from a distribution P, we analyze the convergence of µ γ P ν n with respect to the population Wasserstein barycenter defined as

µ 0 P ∈ argmin µ∈P2(Ω) W 2 2 (µ, ν)dP(ν),
and its regularized version

µ γ P = argmin µ∈P2(Ω) W 2 2 (µ, ν)dP(ν) + γE(f ).
In the case where Ω is a compact of R d and ∇E(µ 0 P ) is bounded, we prove that µ γ P converges to µ 0 P as γ → 0 for the Bregman divergence associated to E. This result corresponds to showing that the bias term (as classically referred to in nonparametric statistics) converges to zero when γ → 0. We also analyze the rate of convergence of the variance term when Ω is a compact of R: Theorem 3 (Theorem 4.5 in [START_REF] Bigot | Penalized barycenters in the Wasserstein space[END_REF]) For Ω compact included in R, there exists a constant C > 0 (not depending on n and γ) such that

E d 2 E µ γ P ν n , µ γ P ≤ C γ 2 n .
Therefore, when ν 1 , . . . , ν n are iid random measures with support included in a compact interval Ω, it follows that if γ = γ n is such that lim n→∞ γ 2 n n = +∞ then lim

n→∞ E(d 2 E µ γ P ν n , µ 0 P ) = 0.

Numerical experiments

We consider a simulated example where the measures ν i are discrete and supported on a small number p i of data points (5 ≤ p i ≤ 10). To this end, for each i = 1, . . . , n, we simulate a sequence (X ij ) 1≤j≤pi of iid random variables sampled from a Gaussian distribution N (µ i , σ 2 i ), and the µ i 's (resp. σ i ) are iid random variables such that -2 ≤ µ i ≤ 2 and 0 ≤ σ i ≤ 1 with E(µ i ) = 0 and E(σ i ) = 1/2. The target measure that we wish to estimate in these simulations is the population (or true) Wasserstein barycenter of the random distribution N (µ 1 , σ 2 1 ) which is N (0, 1/4) thanks to the assumptions E(µ 1 ) = 0 and E(σ 1 ) = 1/2. Then, let ν i = 1 pi pi j=1 δ Xij , where δ x is the Dirac measure at x. In order to compute the regularized barycenter, we solve (3) with an efficient minimization algorithm based on accelerated gradient descent (see [START_REF] Cuturi | A smoothed dual approach for variational wasserstein problems[END_REF]) for the computation of regularized barycenters in 1-D (see Appendix C in [START_REF] Bigot | Penalized barycenters in the Wasserstein space[END_REF]).

To illustrate the benefits of regularizing the Wasserstein barycenter of the ν i 's, we compare our estimator with the one obtained by the following procedure which we refer to as the kernel method. In a preliminary step, each measure ν i is smoothed using a standard kernel density estimator to obtain

f i,hi (x) = 1 p i h i pi j=1 K x -X ij h i , x ∈ Ω,
where K is a Gaussian kernel. The bandwidth h i is chosen by cross-validation. An alternative estimator is then defined as the Wasserstein barycenter of the smoothed measures with density f 1,h1 , . . . , f n,hn . Thanks, to the well-know quantile averaging formula, the quantile function F -1 n of this smoothed Wasserstein barycenter is given by F

-1 n = 1 n n i=1 F -1 f i,h i
where F -1 g denotes the quantile function of a given pdf g. The estimator F -1 n corresponds to the notion of smoothed Wasserstein barycenter of multiple point processes as considered in [START_REF] Panaretos | Amplitude and phase variation of point processes[END_REF]. The density of F -1 n is denoted by f n , and it is displayed in Fig. 2. Hence, it seems that a preliminary smoothing of the ν i followed quantile averaging is not sufficient to recover a satisfactory Gaussian shape when the number p i of observations per unit is small.

Alternatively, we have applied our algorithm directly on the (non-smoothed) discrete measures ν i to obtain the regularized barycenter f γ Pn defined as the minimizer of (2). For the penalty function E, we took either the negative entropy or a Dirichlet regularization. The densities of the penalized Wasserstein barycenters associated to these two choices for E and for different values of γ are displayed as solid curves in warm colors in Fig. 2. For both penalty functions and despite a small number of observations per experimental units, the shape of these densities better reflects the fact that the population Wasserstein barycenter is a Gaussian distribution.

Finally, we provide Monte-Carlo simulations to illustrate the influence of the number n = 100 of observed measures on the convergence of these estimators. For a given 10 ≤ n 0 ≤ n, we randomly draw n 0 measures ν i from the whole sample, and we compute a smoothed barycenter via the kernel method and a regularized barycenter for a chosen γ. For given value of n 0 , this procedure is repeated 200 times, which allows to obtain an approximation of the expected error E (d(μ, µ P )) of each estimator μ, where d is either d E or W 2 . The penalty used is a linear combinaison of Dirichlet and negative entropy functions. The results are displayed in Figure 3. It can be observed that our approach yields better results than the kernel method for both types of error (using either the Bregman or Wasserstein distance). In this paper, we have summarize some of the results of [START_REF] Bigot | Penalized barycenters in the Wasserstein space[END_REF]. We provide a study on regularized barycenters in the Wasserstein space, which is of interest when the data are irregular or for noisy probability measures. Future works will concern the numerical computation and the study of the convergence to a population Wasserstein barycenter for Ω ⊂ R d .
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 1 Fig. 1. (a) A subset of 3 smoothed neural spike trains out of n = 60. Each row represents one trial and the pdf obtained by smoothing each spike train with a Gaussian kernel of width 50 milliseconds. (b) Probability density function of the empirical Wasserstein barycenter νn for this data set.

Fig. 2 .

 2 Fig. 2. Simulated data from Gaussian distributions with random means and variances. In all the figures, the black curve is the density of the true Wasserstein barycenter. The blue and dotted curve represents the pdf of the smoothed Wasserstein barycenter obtained by a preliminary kernel smoothing step. Pdf of the regularized Wasserstein barycenter µ γ Pn (a) for 20 ≤ γ ≤ 50 with E(f ) = ||f || 2 (Dirichlet), and (b) for 0.08 ≤ γ ≤ 14 with E(f ) = f log(f ) (negative entropy) .

Fig. 3 .

 3 Fig. 3. Errors in terms of expected Bregman and Wasserstein distances between the population barycenter and the estimated barycenters (kernel method in dashed blue, regularized barycenter in red) for a sample of size n0 = 10, 25, 50 and 75.
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