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Abstract. This paper is an overview of results that have been obtain in
[2] on the convex regularization of Wasserstein barycenters for random
measures supported on Rd. We discuss the existence and uniqueness of
such barycenters for a large class of regularizing functions. A stability
result of regularized barycenters in terms of Bregman distance associated
to the convex regularization term is also given. Additionally we discuss
the convergence of the regularized empirical barycenter of a set of n iid
random probability measures towards its population counterpart in the
real line case, and we discuss its rate of convergence. This approach is
shown to be appropriate for the statistical analysis of discrete or ab-
solutely continuous random measures. In this setting, we propose an
efficient minimization algorithm based on accelerated gradient descent
for the computation of regularized Wasserstein barycenters.

Keywords: Wasserstein space, Fréchet mean, Barycenter of probability
measures, Convex regularization, Bregman divergence

1 Introduction

This paper is concerned by the statistical analysis of data sets whose elements
may be modeled as random probability measures supported on Rd. It is an
overview of results that have been obtain in [2]. In the special case of one dimen-
sion (d = 1), we are able to provide refined results on the study of a sequence
of discrete measures or probability density functions (e.g. histograms) that can
be viewed as random probability measures. Such data sets appear in various
research fields. Examples can be found in neuroscience [10], biodemographic and
genomics studies [11], economics [7], as well as in biomedical imaging [9]. In this
paper, we focus on first-order statistics methods for the purpose of estimating,
from such data, a population mean measure or density function.

The notion of averaging depends on the metric that is chosen to compare
elements in a given data set. In this work, we consider the Wasserstein distance
W2 associated to the quadratic cost for the comparison of probability measures.
Let Ω be a subset of Rd and P2(Ω) be the set of probability measures supported
on Ω with finite order second moment.

Definition 1. As introduced in [1], an empirical Wasserstein barycenter ν̄n of
a set of n probability measures ν1, . . . , νn (not necessarily random) in P2(Ω) is



defined as a minimizer of

µ 7→ 1

n

n∑
i=1

W 2
2 (µ, νi), over µ ∈ P2(Ω). (1)

The Wasserstein barycenter corresponds to the notion of empirical Fréchet mean
[6] that is an extension of the usual Euclidean barycenter to nonlinear metric
spaces.

However, depending on the data at hand, such a barycenter may be irregu-
lar. As an example let us consider a real data set of neural spike trains which
is publicly available from the MBI website1. During a squared-path task, the
spiking activity of a movement-encoded neuron of a monkey has been recorded
during 5 seconds over n = 60 repeated trials. Each spike train is then smoothed
using a Gaussian kernel (further details on the data collection can be found in
[10]). For each trial 1 ≤ i ≤ n, we let νi be the measure with probability density
function (pdf) proportional to the sum of these Gaussian kernels centered at
the times of spikes. The resulting data are displayed in Fig. 1(a). For probability
measures supported on the real line, computing a Wasserstein barycenter simply
amounts to averaging the quantile functions of the νi’s (see e.g. Section 6.1 in
[1]). The pdf of the Wasserstein barycenter ν̄n is displayed in Fig. 1(b). This ap-
proach clearly leads to the estimation of a very irregular mean template density
of spiking activity.

In this paper, we thus introduce a convex regularization of the optimization
problem (1) for the purpose of obtaining a regularized Wasserstein barycenter.
In this way, by choosing an appropriate regularizing function (e.g. the negative
entropy in Subsection 2.1), it is of possible to enforce this barycenter to be
absolutely continuous with respect to the Lebesgue measure on Rd.

2 Regularization of barycenters

We choose to add a penalty directly into the computation of the Wasserstein
barycenter in order to smooth the Fréchet mean and to remove the influence of
noise in the data.

Definition 2. Let Pνn = 1
n

∑n
i=1 δνi where δνi is the dirac distribution at νi. We

define a regularized empirical barycenter µγPνn of the discrete measure Pνn as a
minimizer of

µ 7→ 1

n

n∑
i=1

W 2
2 (µ, νi) + γE(µ) over µ ∈ P2(Ω), (2)

where P2(Ω) is the space of probability measures on Ω with finite second order
moment, E : P2(Ω) → R+ is a smooth convex penalty function, and γ > 0 is a
regularization parameter.

In what follows, we present the main properties on the regularized empirical
Wasserstein barycenter µγPνn .

1 http://mbi.osu.edu/2012/stwdescription.html
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Fig. 1. (a) A subset of 3 smoothed neural spike trains out of n = 60. Each row rep-
resents one trial and the pdf obtained by smoothing each spike train with a Gaus-
sian kernel of width 50 milliseconds. (b) Probability density function of the empirical
Wasserstein barycenter ν̄n for this data set.

2.1 Existence and uniqueness

We consider the wider problem of

min
µ∈P2(Ω)

JγP (µ) =

∫
W 2

2 (µ, ν)dP(ν) + γE(µ). (3)

Hence, (2) corresponds to the minimization problem (3) where P is discrete ie
P = Pn = 1

n

∑n
i=1 δνi .

Theorem 1 (Theorem 3.2 in [2]) Let E : P2(Ω) → R+ be a proper, lower
semicontinuous and differentiable function that is strictly convex on its domain
D(E) = {µ ∈ P2(Ω) such that E(µ) < +∞}. Then, the functional JγP define by
(3) admits a unique minimizer.

Such assumptions on E are supposed to be always satisfied throughout the paper.
A typical example of regularization function satisfying such assumptions is the
negative entropy defined as

E(µ) =


∫
Rd f(x) log(f(x))dx, if µ admits a density f with respect to

the Lebesgue measure dx on Ω,
+∞ otherwise.

2.2 Stability

We study the stability of the minimizer of (3) with respect to the discrete dis-
tribution Pνn = 1

n

∑n
i=1 δνi on P2(Ω). This result is obtained for the symmetric

Bregman distance dE(µ, ζ) between two measures µ and ζ. Bregman distances
associated to a convex penalty E are known to be appropriate error measures for



various regularization methods in inverse problems (see e.g. [4]). This Bregman
distance between two probability measures µ and ζ is defined as

dE(µ, ζ) := 〈∇E(µ)−∇E(ζ), µ− ζ〉=
∫
Ω

(∇E(µ)(x)−∇E(ζ)(x))(dµ− dζ)(x),

where ∇E : Ω → R denotes the gradient of E. In the setting where E is the
negative entropy and µ = µf (resp. ζ = ζg) admits a density f (resp. g) with
respect to the Lebesgue measure, then dE is the symmetrised Kullback-Leibler
divergence

dE(µf , ζg) =

∫
(f(x)− g(x)) log

(
f(x)

g(x)

)
dx.

The stability result of the regularized empirical barycenter can then be stated
as follows.

Theorem 2 (Theorem 3.3 in [2]) Let ν1, . . . , νn and η1, . . . , ηn be two se-
quences of probability measures in P2(Ω). If we denote by µγPνn and µγPηn the regu-
larized empirical barycenter associated to the discrete measures Pνn and Pηn, then
the symmetric Bregman distance (associated to E) between these two barycenters
is bounded as follows

dE

(
µγPνn , µ

γ
Pηn

)
≤ 2

γn
inf
σ∈Sn

n∑
i=1

W2(νi, ησ(i)), (4)

where Sn denotes the permutation group of the set of indices {1, . . . , n}.

In particular, inequality (4) allows to compare the case of data made of n
absolutely continuous probability measures ν1, . . . , νn, with the more realis-
tic setting where we have only access to a dataset of random variables X =
(Xi,j)1≤i≤n; 1≤j≤pi organized in the form of n experimental units, such that
Xi,1, . . . ,Xi,pi are iid observations in Rd sampled from the measure νi for each
1 ≤ i ≤ n. If we denote by νpi = 1

pi

∑pi
j=1 δXi,j the usual empirical measure

associated to νi, it follows from inequality (4) that

E
(
d2E

(
µγPνn ,µ

γ
X

))
≤ 4

γ2n

n∑
i=1

E
(
W 2

2 (νi,νpi)
)
,

where µγX is given by µγX = argmin
µ∈P2(Ω)

1
n

∑n
i=1W

2
2 (µ, 1

pi

∑pi
j=1 δXi,j

) + γE(µ).

This result allows to discuss the rate of convergence (for the symmetric squared
Bregman distance) of µγX to µγPνn as a function of the rate of convergence (for the

squared Wasserstein distance) of the empirical measure νpi to νi for each 1 ≤
i ≤ n (in the asymptotic setting where p = min1≤i≤n pi is let going to infinity).
As an illustrative example, in the one-dimensional case (that is d = 1), one may
use the work in [3] on a detailed study of the variety of rates of convergence of
an empirical measure on the real line toward its population counterpart for the



expected squared Wasserstein distance. For example, by Theorem 5.1 in [3], it
follows that

E
(
W 2

2 (νi,νpi)
)
≤ 2

pi + 1
J2(νi), with J2(νi) =

∫
Ω

Fi(x)(1− Fi(x))

fi(x)
dx,

where fi is the pdf of νi, and Fi denotes its cumulative distribution function.
Therefore, provided that J2(νi) is finite for each 1 ≤ i ≤ n, one obtains the
following rate of convergence of µγX to µγPνn (in the case of measures νi supported

on an interval Ω of R)

E
(
d2E

(
µγPνn ,µ

γ
X

))
≤ 8

γ2n

n∑
i=1

J2(νi)

pi + 1
≤ 8

γ2

(
1

n

n∑
i=1

J2(νi)

)
p−1. (5)

Note that by the results in Appendix A in [3], a necessary condition for J2(νi)
to be finite is to assume that fi is almost everywhere positive on the interval Ω.

2.3 Convergence to a population Wasserstein barycenter

Introducing this symmetric Bregman distance also allows to analyze the consis-
tency of the regularized barycenter µγPn as the number of observations n tends to
infinity and the parameter γ is let going to zero. When ν1, . . . ,νn are supposed
to be independent and identically distributed (iid) random measures in P2(Ω)
sampled from a distribution P, we analyze the convergence of µγPν

n
with respect

to the population Wasserstein barycenter defined as

µ0
P ∈ argmin

µ∈P2(Ω)

∫
W 2

2 (µ, ν)dP(ν),

and its regularized version

µγP = argmin
µ∈P2(Ω)

∫
W 2

2 (µ, ν)dP(ν) + γE(f).

In the case where Ω is a compact of Rd and ∇E(µ0
P) is bounded, we prove that

µγP converges to µ0
P as γ → 0 for the Bregman divergence associated to E. This

result corresponds to showing that the bias term (as classically referred to in
nonparametric statistics) converges to zero when γ → 0. We also analyze the
rate of convergence of the variance term when Ω is a compact of R:

Theorem 3 (Theorem 4.5 in [2]) For Ω compact included in R, there exists
a constant C > 0 (not depending on n and γ) such that

E
(
d2E

(
µγPν

n
, µγP

))
≤ C

γ2n
.

Therefore, when ν1, . . . ,νn are iid random measures with support included in
a compact interval Ω, it follows that if γ = γn is such that limn→∞ γ2nn = +∞
then

lim
n→∞

E(d2E

(
µγPν

n
, µ0

P)
)

= 0.



3 Numerical experiments

We consider a simulated example where the measures νi are discrete and sup-
ported on a small number pi of data points (5 ≤ pi ≤ 10). To this end, for
each i = 1, . . . , n, we simulate a sequence (Xij)1≤j≤pi of iid random variables
sampled from a Gaussian distribution N (µi,σ

2
i ), and the µi’s (resp. σi) are

iid random variables such that −2 ≤ µi ≤ 2 and 0 ≤ σi ≤ 1 with E(µi) = 0
and E(σi) = 1/2. The target measure that we wish to estimate in these simu-
lations is the population (or true) Wasserstein barycenter of the random distri-
bution N (µ1,σ

2
1) which is N (0, 1/4) thanks to the assumptions E(µ1) = 0 and

E(σ1) = 1/2. Then, let νi = 1
pi

∑pi
j=1 δXij

, where δx is the Dirac measure at x.

In order to compute the regularized barycenter, we solve (3) with an efficient
minimization algorithm based on accelerated gradient descent (see [5]) for the
computation of regularized barycenters in 1-D (see Appendix C in [2]).

To illustrate the benefits of regularizing the Wasserstein barycenter of the
νi’s, we compare our estimator with the one obtained by the following procedure
which we refer to as the kernel method. In a preliminary step, each measure νi
is smoothed using a standard kernel density estimator to obtain

f̂ i,hi(x) =
1

pihi

pi∑
j=1

K

(
x−Xij

hi

)
, x ∈ Ω,

where K is a Gaussian kernel. The bandwidth hi is chosen by cross-validation.
An alternative estimator is then defined as the Wasserstein barycenter of the
smoothed measures with density f̂1,h1

, . . . , f̂n,hn . Thanks, to the well-know

quantile averaging formula, the quantile function F̄−1n of this smoothed Wasser-
stein barycenter is given by F̄−1n = 1

n

∑n
i=1 F

−1
f̂ i,hi

where F−1g denotes the quan-

tile function of a given pdf g. The estimator F̄−1n corresponds to the notion of
smoothed Wasserstein barycenter of multiple point processes as considered in
[8]. The density of F̄−1n is denoted by f̂n, and it is displayed in Fig. 2. Hence,
it seems that a preliminary smoothing of the νi followed quantile averaging is
not sufficient to recover a satisfactory Gaussian shape when the number pi of
observations per unit is small.

Alternatively, we have applied our algorithm directly on the (non-smoothed)
discrete measures νi to obtain the regularized barycenter fγPn defined as the
minimizer of (2). For the penalty function E, we took either the negative en-
tropy or a Dirichlet regularization. The densities of the penalized Wasserstein
barycenters associated to these two choices for E and for different values of γ
are displayed as solid curves in warm colors in Fig. 2. For both penalty func-
tions and despite a small number of observations per experimental units, the
shape of these densities better reflects the fact that the population Wasserstein
barycenter is a Gaussian distribution.

Finally, we provide Monte-Carlo simulations to illustrate the influence of the
number n = 100 of observed measures on the convergence of these estimators.
For a given 10 ≤ n0 ≤ n, we randomly draw n0 measures νi from the whole
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Fig. 2. Simulated data from Gaussian distributions with random means and variances.
In all the figures, the black curve is the density of the true Wasserstein barycenter.
The blue and dotted curve represents the pdf of the smoothed Wasserstein barycenter
obtained by a preliminary kernel smoothing step. Pdf of the regularized Wasserstein
barycenter µγPn (a) for 20 ≤ γ ≤ 50 with E(f) = ||f ′||2 (Dirichlet), and (b) for
0.08 ≤ γ ≤ 14 with E(f) =

∫
f log(f) (negative entropy)

.

sample, and we compute a smoothed barycenter via the kernel method and a
regularized barycenter for a chosen γ. For given value of n0, this procedure is
repeated 200 times, which allows to obtain an approximation of the expected
error E (d(µ̂, µP)) of each estimator µ̂, where d is either dE or W2. The penalty
used is a linear combinaison of Dirichlet and negative entropy functions. The
results are displayed in Figure 3. It can be observed that our approach yields
better results than the kernel method for both types of error (using either the
Bregman or Wasserstein distance).
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Fig. 3. Errors in terms of expected Bregman and Wasserstein distances between the
population barycenter and the estimated barycenters (kernel method in dashed blue,
regularized barycenter in red) for a sample of size n0 = 10, 25, 50 and 75.



4 Conclusion

In this paper, we have summarize some of the results of [2]. We provide a study
on regularized barycenters in the Wasserstein space, which is of interest when the
data are irregular or for noisy probability measures. Future works will concern
the numerical computation and the study of the convergence to a population
Wasserstein barycenter for Ω ⊂ Rd.

Acknowledgment

This work has been carried out with financial support from the French State,
managed by the French National Research Agency (ANR) in the frame of the
GOTMI project (ANR-16-CE33-0010-01).

References

1. M. Agueh and G. Carlier. Barycenters in the Wasserstein space. SIAM Journal
on Mathematical Analysis, 43(2):904–924, 2011.

2. J. Bigot, E. Cazelles, and N. Papadakis. Penalized barycenters in the Wasserstein
space. Submitted. Available at https://128.84.21.199/abs/1606.01025.

3. S. Bobkov and M. Ledoux. One-dimensional empirical measures, order statistics
and Kantorovich transport distances. 2014. Book in preparation. Available at
http://perso.math.univ-toulouse.fr/ledoux/files/2013/11/Order.statistics.10.pdf.

4. M. Burger and S. Osher. Convergence rates of convex variational regularization.
Inverse problems, 20(5):1411, 2004.
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