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Mean field homogenization schemes are formulated for the Stokes to Darcy upscaling of the permeability on the basis of generalized inhomogeneity problems in which flow is described by Brinkman equations. The average velocity and drag force concentrations for flow in a potentially composite inclusion are characterized in terms of a permeability contribution tensor and an equivalent permeability, which allow for the direct transposition to Stokes to Darcy upscaling of most homogenization schemes available in elasticity (selfconsistent, differential, Mori-Tanaka, Maxwell, ...). The unified framework extends existing effective medium and cell model permeability estimates. Its flexibility is illustrated on a panel of microstructures of porous media: granular or fibrous materials, materials with spanning cylindrical or crack-like pores, double porosity materials with disconnected or connected meso-porosity and compared with existing or newly produced full field simulation results.

Introduction

Continuum micromechanics [START_REF] Zaoui | Continuum Micromechanics: Survey[END_REF][START_REF] Dormieux | Microporomechanics[END_REF][START_REF] Buryachenko | Micromechanics of Heterogenous Materials[END_REF][START_REF] Kanaun | Self-Consistent Methods for Composites[END_REF][START_REF] Kachanov | Micromechanics of Materials, with Applications[END_REF] is a framework to upscale material properties from microstructure information. The area of homogenization of elastic or conductive properties of disordered heterogeneous materials has developed intensively since the work of Eshelby [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF][START_REF] Eshelby | The elastic field outside an ellipsoidal inclusion[END_REF] on the concentration of elastic fields in an isolated ellipsoidal inhomogeneity surrounded by an unbounded reference material. The inhomogeneity problem of Eshelby has laid the foundations of a series of homogenization schemes to estimate the effective stiffness or conduction of heterogeneous media from targeted and limited microstructure information such as the stiffness or conduction of the constituents, their volume fraction, the approximate shape of the heterogeneities. Information on the interactions of the heterogeneities is implicitly accounted for by the choice of an appropriate homogenization scheme, such as: the dilute scheme, the Mori-Tanaka scheme [START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF][START_REF] Benveniste | On the Mori-Tanaka method for cracked solids[END_REF], the differential scheme [START_REF] Roscoe | The viscosity of suspensions of rigid spheres[END_REF][START_REF] Brinkman | The Viscosity of Concentrated Suspensions and Solutions[END_REF][START_REF] Roscoe | Isotropic composites with elastic or viscoelastic phases: General bounds for the moduli and solutions for special geometries[END_REF][START_REF] Boucher | Modules effectifs de matériaux composites quasi homogènes et quasi isotropes, constitués d'une matrice élastique et d'inclusions élastiques. II. Cas des concentrations finies en inclusions[END_REF][START_REF] Mclaughlin | A study of the differential scheme for composite materials[END_REF][START_REF] Norris | A differential scheme for the effective moduli of composites[END_REF], Maxwell's estimate [START_REF] Maxwell | A treatise on electricity and magnetism[END_REF][START_REF] Sevostianov | Generalization of Maxwell homogenization scheme for elastic material containing inhomogeneities of diverse shape[END_REF], the self-consistent scheme or effective medium approximation [START_REF] Bruggeman | Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen[END_REF][START_REF] Hershey | The elasticity of an isotropic aggregate of anisotropic cubic crystals[END_REF][START_REF] Kröner | Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls[END_REF][START_REF] Hill | A self-consistent mechanics of composite materials[END_REF][START_REF] Budiansky | On the elastic moduli of some heterogeneous materials[END_REF].

A related yet different problem lies in the upscaling of the permeability of a porous material, where flow is described by Darcy equations at the macroscopic scale and by Stokes equations at the microscopic scale, within the pore space. The emergence of Darcy equations from Stokes equations is well documented and justified by multi-scale asymptotic series expansions or averaging techniques [START_REF] Prager | Viscous Flow through Porous Media[END_REF][START_REF] Matheron | Élements pour une théorie des milieux poreux[END_REF][START_REF] Ene | Equations et phénomènes de surface pour l'écoulement dans un modèle de milieu poreux[END_REF][START_REF] Auriault | Etude du comportement macroscopique d'un milieu poreux saturé déformable[END_REF][START_REF] Whitaker | Flow in porous media I: A theoretical derivation of Darcy's law[END_REF]. However, the estimation of the effective permeability of a porous medium from targeted microstructure information and homogenization schemes at the scale of the pores and solid particles has undergone a distinct and perhaps narrower development than in elasticity or conduction.

The present contribution investigates the formulation of homogenization schemes for Stokes to Darcy upscaling of disordered porous media, directly inspired from their continuum micromechanics counterparts available for elasticity or conduction. Homogenization schemes are indeed believed useful alternatives to full field numerical simulations of flow within an explicit representative volume element of the pore space [START_REF] Abdallah | Stokes flow through a Boolean model of spheres: Representative volume element[END_REF][START_REF] Willot | The Permeability of Boolean Sets of Cylinders[END_REF][START_REF] Xiao | Geometry models of porous media based on Voronoi tessellations and their porosity-permeability relations[END_REF][START_REF] Bignonnet | Efficient FFT-based upscaling of the permeability of porous media discretized on uniform grids with estimation of RVE size[END_REF] or to pore network models [START_REF] Xiong | Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport[END_REF] when computational cost is a concern or available microstructure information is limited. The derived estimates can apply to both single porosity materials, in which all pores have the same length scale, and double or multiple porosity materials, which have pores sizes spread over distinct length scales.

Most of the existing estimates for Stokes to Darcy homogenization are build from either (1) the solution to Poiseuille's flow in a cylindrical or planar pore or (2) a single composite cell problem which feature a solid, potentially porous core surrounded by a fluid envelope. The effective permeability is derived from the relation between the applied velocity and the pressure drop or resultant drag force.

Models based on Poiseuille's flow have been widely used since the seminal work of Carman [START_REF] Carman | Fluid flow through granular beds[END_REF]. Poiseuille's flow has also been used in Darcy to Darcy homogenization schemes by replacing pores with a cylindrical or planar shape by a fictitious porous region with an equivalent permeability to account e.g. for cracks [START_REF] Dormieux | Homogenization Approach of Advection and Diffusion in Cracked Porous Material[END_REF][START_REF] Dormieux | Approche micromécanique du couplage perméabilité-endommagement[END_REF][START_REF] Barthélémy | Effective permeability of media with a dense network of long and micro fractures[END_REF] or interface effects [START_REF] Dormieux | Homogenized models of stress-sensitive reservoir rocks[END_REF][START_REF] Jeannin | Stress effects on the relative permeabilities of tight sandstones[END_REF]. This strategy has been extended to crack networks using discrete versions of the homogenization schemes to better account for percolation effects [START_REF] Timothy | Cascade Lattice Micromechanics Model for the Effective Permeability of Materials with Microcracks[END_REF]. However, these methods cannot account for other pore shapes.

Models based on composite cells deliver simple and efficient estimates to the permeability of granular or fibrous media. Two class of estimates have been formulated. In the first one, to which we will refer as cell models, the boundary conditions are applied directly at the surface of the composite cell. Various types of boundary conditions have been investigated: uniform velocity prescribed on both normal and tangential directions [START_REF] Cunningham | On the velocity of steady fall of spherical particles through fluid medium[END_REF], or on the normal direction only together with either zero shear stress [START_REF] Happel | Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles[END_REF][START_REF] Happel | Viscous Flow Relative to Arrays of Cylinders[END_REF][START_REF] Neale | Creeping flow relative to permeable spheres[END_REF][START_REF] Berdichewsky | Preform permeability predictions by self-consistent method and finite element simulation[END_REF][START_REF] Boutin | Study of permeability by periodic and self-consistent homogenisation[END_REF] or zero vorticity [START_REF] Kuwabara | The Forces experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers[END_REF]. Most cell models consider spherical or cylindrical geometries, but approximate formulas for their extensions to spheroidal particles have been derived [START_REF] Dassios | Stokes flow in spheroidal particle-in-cell models with Happel and Kuwabara boundary conditions[END_REF]. The solid core can be either impermeable [START_REF] Happel | Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles[END_REF][START_REF] Happel | Viscous Flow Relative to Arrays of Cylinders[END_REF][START_REF] Boutin | Study of permeability by periodic and self-consistent homogenisation[END_REF][START_REF] Kuwabara | The Forces experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers[END_REF][START_REF] Dassios | Stokes flow in spheroidal particle-in-cell models with Happel and Kuwabara boundary conditions[END_REF], porous [START_REF] Neale | Creeping flow relative to permeable spheres[END_REF][START_REF] Davis | Flow through beds of porous particles[END_REF][START_REF] Vasin | Permeability of complex porous media[END_REF][START_REF] Prakash | Stokes flow of an assemblage of porous particles: stress jump condition[END_REF] or multi-layered [START_REF] Deo | Hydrodynamic permeability of aggregates of porous particles with an impermeable core[END_REF]. In the second class of estimate, called Effective Medium Approximation (EMA), the composite cell is embedded in an unbounded reference porous domain [START_REF] Brinkman | On the permeability of media consisting of closely packed porous particles[END_REF][START_REF] Neale | Prediction of transport processes within porous media: Creeping flow relative to a fixed swarm of spherical particles[END_REF][START_REF] Li | Effective medium approximation and deposition of colloidal particles in fibrous and granular media[END_REF][START_REF] Albusairi | Flow through beds of perfusive particles: effective medium model for velocity prediction within the perfusive media[END_REF][START_REF] Sekhar | Effective medium model for flow through beds of porous cylindrical fibres[END_REF][START_REF] Prakash | Overall bed permeability for flow through beds of permeable porous particles using the effective medium model-stress jump condition[END_REF] with infinitely remote boundary conditions, akin to Eshelby inhomogeneity problem. The permeability of the reference medium is determined from a self-consistency argument: the drag force within the composite cell must match the one that there would be if the composite cell where replaced by the reference medium. While early studies assumed continuity of both the velocity and stress at the fluid -porous medium interface, more recent contributions [START_REF] Prakash | Stokes flow of an assemblage of porous particles: stress jump condition[END_REF][START_REF] Deo | Hydrodynamic permeability of aggregates of porous particles with an impermeable core[END_REF][START_REF] Prakash | Overall bed permeability for flow through beds of permeable porous particles using the effective medium model-stress jump condition[END_REF] have accounted for a "jump momentum" discontinuity condition of the shearing stress at a fluid -porous medium interface deduced by Ochoa-Tapia and Whitaker [START_REF] Ochoa-Tapia | Momentum transfer at the boundary between a porous medium and a homogeneous fluid -Theoretical development[END_REF][START_REF] Ochoa-Tapia | Momentum transfer at the boundary between a porous medium and a homogeneous fluid -Comparison with experiment[END_REF] from an averaging procedure of Navier-Stokes equations.

In these estimates, Brinkman's equations [START_REF] Brinkman | A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[END_REF] are used instead of Darcy's equations in the reference medium (and in the porous parts of the core, if any) in order to retain information regarding the shear stress at the fluid envelope -porous medium interface. The Brinkman corrective term to Stokes equations has been shown to arise from multiscale asymptotic series expansion with poor separation of scales for flow in non-homogeneous porous media [START_REF] Auriault | Filtration Law in Porous Media with Poor Separation of Scales[END_REF][START_REF] Rohan | A Darcy-Brinkman model of flow in double porous media -Two-level homogenization and computational modelling[END_REF]. Brinkman [60] introduced it to derive an early version of EMA (or swarm model) from the problem of an isolated spherical solid particle embedded in an infinite porous medium in which flow is described by Brinkman's equations. Heuristically, Brinkman's equations allow to capture both the fluid shearing stress in the near field and the average drag force contribution of other particles in the far field, within a continuous approach. A key asset of Brinkman's early EMA is its ability to efficiently retrieve the correct leading term in the drag force increment due to multiple sphere interactions at low solid concentration, as later shown from more sophisticated developments on random multi-particle systems [START_REF] Howells | Drag due to the motion of a Newtonian fluid through a sparse random array of small fixed rigid objects[END_REF][START_REF] Hinch | An averaged-equation approach to particle interactions in a fluid suspension[END_REF][START_REF] Kim | Modelling of porous media by renormalization of the Stokes equations[END_REF]. However at larger solid concentration, this estimate fails since the pore space is not explicitly accounted for in the isolated solid particle problem. Subsequent modifications with an explicit description of fluid by an envelope around the particle [START_REF] Brinkman | On the permeability of media consisting of closely packed porous particles[END_REF][START_REF] Neale | Prediction of transport processes within porous media: Creeping flow relative to a fixed swarm of spherical particles[END_REF][START_REF] Li | Effective medium approximation and deposition of colloidal particles in fibrous and granular media[END_REF] partially correct the low porosity behavior, but break down the exact asymptotic behavior at the low solid concentration.

From an iterated dilute approximation similar in concept to the differential estimate used in elasticity [START_REF] Roscoe | Isotropic composites with elastic or viscoelastic phases: General bounds for the moduli and solutions for special geometries[END_REF][START_REF] Boucher | Modules effectifs de matériaux composites quasi homogènes et quasi isotropes, constitués d'une matrice élastique et d'inclusions élastiques. II. Cas des concentrations finies en inclusions[END_REF][START_REF] Mclaughlin | A study of the differential scheme for composite materials[END_REF][START_REF] Norris | A differential scheme for the effective moduli of composites[END_REF], Wilkinson [START_REF] Wilkinson | Modified drag theory of permeability[END_REF] suggested a differential scheme to improve on the early EMA of Brinkman [START_REF] Brinkman | A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[END_REF] for the low porosity behavior. This differential scheme also relies on Brinkman's problem of a solid particle, without fluid envelope, surrounded by an unbounded porous medium described by Brinkman's equations.

This brief review of homogenization schemes for Stokes to Darcy upscaling (cell model, EMA, differ- ential scheme) highlights their relative scarcity as compared to those available for elasticity or conduction upscaling. We believe that the main reason for this hindered development is the fundamental difference between these two types of problems: when homogenizing elliptic equations such as elasticity or conduction ones, an equation invariance occurs ; while the Stokes to Darcy homogenization breaks down this invariance [START_REF] Brown | Homogenization of High-Contrast Brinkman Flows[END_REF]. In turn, Brinkman's equations allow working within a unified set of equations, which is beneficial for numerical simulations [START_REF] Brown | Homogenization of High-Contrast Brinkman Flows[END_REF] but also for analytical homogenization techniques, as developed herein. They indeed encompass Stokes equation in the limiting case of infinite permeability, solid regions in the case of zero permeability, but also provide an approximate means to handle double or multiple porosity materials.

The article sets a theoretical framework to transpose a larger panel of homogenization schemes available in elasticity or conduction to Stokes to Darcy upscaling, including double porosity media, and is structured as follows. Section 2 provides background on well established results regarding the upscaling permeability from Stokes equations. The main original contribution is the investigation of generalized Brinkman inhomogeneity problems in section 3, including the definition of property contribution tensors and equivalent permeability of heterogeneous inclusions to prepare the adaptation of homogenization schemes. Some useful results on cell models are also presented. Several homogenization schemes classical in elasticity or conduction upscaling are then systematically transposed to Stokes to Darcy upscaling in section 4 by relying on the Brinkman inhomogeneity problems. The last original contribution in section 5 lies in the extensive comparison of the resulting homogenization schemes with a rather wide range of porous microstructures for which full field simulation results are either available or produced. Appendix A provides solutions to several inhomogeneity problems in Cartesian, cylindrical and spherical coordinates used in the article.

Background: homogenization of permeability from Stokes equations

The emergence of Darcy's law from upscaling Stokes flow through porous media is a well established result [23, 25-27, 45, 61, 68]. Its main aspects are recalled in this section.

Flow descriptions at the microscopic and macroscopic scales

Two scales of flow description. We consider the description of flow of an incompressible Newtonian fluid of viscosity µ through a porous medium. The order of magnitude of the velocity is denoted V c , it is assumed sufficiently slow to neglect inertia effects. Two characteristic length scales l c and L c are involved. l c represents the characteristic size of the pores while L c represents the characteristic length of a characteristic macroscopic pressure drop δP c . L c is assumed of the same order of magnitude than the structure or sample scale. These scales are assumed separated, i.e. the ratio = l c /L c 1. Further, we assume that the viscous flow which induces O(µV c /l 2 c ) terms in momentum balance at the microscopic scale is driven by the macroscopic pressure drop which is O(δP c /L c ), hence µv c L c /(l 2 c p c ) = O(1).

Macroscopic scale. At the macroscopic scale, the filtration velocity V and the pressure P are fields of the slow spatial variable X. Darcy's law linearly V to the macroscopic pressure gradient ∇ X P via the permeability tensor k:

∇ X • V = 0 V = - k µ • ∇ X P (1) 
Microscopic scale. At the microscopic scale the flow is that of an incompressible Newtonian fluid within the pore space governed by Stokes equations. Within the framework of periodic homogenization [START_REF] Ene | Equations et phénomènes de surface pour l'écoulement dans un modèle de milieu poreux[END_REF][START_REF] Auriault | Etude du comportement macroscopique d'un milieu poreux saturé déformable[END_REF], a homogenization problem P Stokes is defined on a Representative Volume Element (RVE) Ω around a point X 0 of the macroscopic scale comprising a fluid phase Ω f , a rigid solid phase Ω s and a solid-fluid interface Γ.

The size L Ω of the RVE must meet L Ω L c to ensure the description by a continuum at the macroscopic scale as well as L Ω l c to ensure the representativity of the RVE. The fluid velocity v, the pressure p and the Cauchy stress tensor σ are fields of the fast spatial variable x = (X -X 0 )/ . Within the RVE, the macroscopic velocity V and the pressure gradient ∇ X P from (1) appears as constants for the fast spatial variable x. To simplify notations in what follows, we denote ∇ X P by F which acts as a forcing term on the local flow:

∇ x • σ = 0 in Ω f σ = -p1 + 2µ∇ s x v in Ω f ∇ x • v = 0 in Ω f v = 0 on Γ v and p -F • x periodic on ∂Ω (2)
where ∇ s

x v is the symmetric part of the microscopic velocity gradient and 1 the identity second order tensor. In what follows, we implicitly drop the reference to the fast space variable x in the differential operators at the microscopic scale.

By linearity of problem (2), the solution velocity field v linearly depends on F via some velocity concentration tensor field κ such that:

∀x ∈ Ω, v(x) = - 1 µ κ(x) • F (3) 
where, by extension, v is set to 0 in Ω s .

Correspondence of the two flow descriptions. The macroscopic velocity V is related to its microscopic counterpart by the averaging rule:

V = v Ω with v Ω = 1 |Ω| Ω v dV ( 4 
)
where v is null in the solid phase. The combination of ( 3) and ( 4) shows that the macroscopic velocity V is linearly related to the macroscopic pressure gradient F by the permeability tensor k hom of the porous medium defined as:

k hom = κ Ω , (5) 
to be used in (1) at the macroscopic scale. From an equivalent energy definition of k hom , the homogenized permeability is shown symmetric and definite positive [START_REF] Dormieux | Microporomechanics[END_REF].

Decomposition of the volume average over regions. A common practice in continuum micromechanics is to decompose the RVE Ω in several phases or regions (Ω i ) i=1,...,n which form a partition of Ω (see e.g. fig. 1). Each region gathers parts of the RVE which have the same characteristics, for example all pores or solid grains of a given size, shape and orientation, or regions within which the microstructure can be described by a homogeneous random process. The volume fraction of each region Ω i is denoted

ϕ i = |Ω i |/|Ω|.
The volume average of a field, say κ, over the RVE then decomposes as:

κ Ω = n i=1 ϕ i κ i with κ i = 1 |Ω i | Ωi κ dV (6) 
The homogenized permeability (5) can thus be computed from the region-wise averages κ i .

Extension to the solid phase of the microscopic flow problem

The Stokes to Darcy upscaling problem P Stokes (2) can be extended to the solid phase by considering the whole RVE Ω filled with a homogeneous Newtonian fluid of uniform viscosity µ, provided the solid phase and the no-slip condition are indirectly accounted for by an appropriate choice of a body force field f applied to the homogeneous fluid [START_REF] Bignonnet | Upper Bounds on the Permeability of Random Porous Media[END_REF]:

∇ • σ + f = 0 in Ω σ = -p1 + 2µ∇ s v in Ω ∇ • v = 0 in Ω v = 0 in Ω s v and p -F • x periodic on ∂Ω (7)
The body force f must verify f = 0 in Ω f to retrieve local momentum balance in the "true" fluid domain Ω f and f Ω = F to ensure the overall momentum balance of the RVE [START_REF] Bignonnet | Upper Bounds on the Permeability of Random Porous Media[END_REF]. In other words, the average body force f Ω exerted by the solid on the fluid is equal to the macroscopic pressure gradient F .

Formally, the solution to problem P Stokes [START_REF] Dormieux | Microporomechanics[END_REF] in Ω f can be retrieved from the body force field:

f = F I s + (σ |f + (F • x)1) • ∇I s (8)
where σ |f is the stress evaluated on the Ω f side of Γ and I s is the indicator function of the solid phase, equal to 1 in Ω s and 0 in Ω f . The field [START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF] is understood in the sense of distributions: it features a surface distribution on Γ since ∇I s = δ Γ n f s where δ Γ is the Dirac surface distribution of Γ and n f s the unit normal to Γ oriented from the fluid to the solid. Due to the surface distribution of f on Γ, σ is discontinuous across Γ with a jump of the stress vector equal to (σ |f + (F • x)1) • n f s . When the field ( 8) is used in problem [START_REF] Eshelby | The elastic field outside an ellipsoidal inclusion[END_REF], it comes in Ω s that the stress is -(F • x)1 which is compatible with zero velocity. By linearity of problem [START_REF] Eshelby | The elastic field outside an ellipsoidal inclusion[END_REF], the fields v and f linearly depends on F via some force concentration tensor field κ and b such that:

∀x ∈ Ω, v(x) = - 1 µ κ(x) • F with κ Ω = k hom ; f (x) = b(x) • F with b Ω = 1 (9) 
As f , the force concentration field b has a surface distribution term at Γ. When the macroscopic velocity V is chosen as the loading parameter instead of F , concentration tensor fields are similarly defined as:

∀x ∈ Ω, v(x) = a(x) • V with a Ω = 1 ; f (x) = -µρ(x) • V with ρ Ω = r hom (10) 
where r hom = k -1 hom is the homogenized resistance, κ = a • k hom and b = ρ • k hom . The homogenized permeability k hom [START_REF] Kachanov | Micromechanics of Materials, with Applications[END_REF] or resistance r hom can hence be computed from the region-wise averages κ i or ρ i via the decomposition [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF]. The aim of the article is to derive a strategy to estimate κ i or ρ i in each region Ω i from an appropriate choice of an inhomogeneity problem which features a single Morphological Representative Pattern (MRP) embedded in a homogenenous medium, akin to generalized Eshelby problems for linear elasticity in continuum micromechanics [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF][START_REF] Bornert | A generalized pattern-based self-consistent scheme[END_REF].

Brinkman inhomogeneity and cell problems

Brinkman inhomogeneity problems are auxiliary problems introduced as building blocks for the construction of estimates to the region-wise averages κ i or ρ i of the concentration tensors of P Stokes . An inhomogeneity problem features a single inhomogeneity or MRP surrounded by a homogeneous porous medium. The final estimates of κ i or ρ i -and thus of the homogenized permeability -will result from the combination of concentration tensors defined on the inhomogeneity problems in this section using various homogenization schemes exposed in section 4. In these auxiliary problems, Brinkman equations are used following the strategy by [52-57, 60, 66]. The originality of the present section lies (1) in the arbitrary types of inhomogeneities which are considered, including inhomogeneities which represent only some types of pores or solid grains, a multi-layered grain surrounded by a fluid envelope, or any idea relevant to the microstructure to be modelled, [START_REF] Dormieux | Microporomechanics[END_REF] in the definition and study of property contribution tensors and equivalent apparent properties which allow a generic treatment in view of the homogenization schemes presented in section 4.

Since the mathematical treatment of the inhomogeneity problems is close to that of cell problems which are used to build cell models (see section 1), we also take advantage of the developments in this section to highlight some useful properties of the cell problems.

Brinkman's equation

To study the drag force experienced by a solid particle in a swarm, Brinkman [START_REF] Brinkman | A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[END_REF] suggested describing the flow through a swarm of fixed particles by introducing a drag force term proportional to the velocity in the momentum balance equation of a Stokes fluid:

-∇p + µ ∆v -µk -1 • v = 0 (11) 
Brinkman's equation [START_REF] Brinkman | The Viscosity of Concentrated Suspensions and Solutions[END_REF] can be viewed as an ensemble average of the momentum balance equation of [START_REF] Eshelby | The elastic field outside an ellipsoidal inclusion[END_REF] over random realizations of the microstructure seen as a random field. The force -µk -1 • v accounts for the expectation of the force field f exerted by the solid on the fluid. Brinkman [START_REF] Brinkman | A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[END_REF] introduced the effective viscosity µ to account for a possible modification of momentum transport by the solid phase.

The relation between the Stokes to Darcy upscaling problem and Brinkman equations has been investigated by several techniques. When the medium is statistically homogeneous, Brinkman equations can only arise for dilute concentrations of solid particles under specific constraint between the particle size and the solid concentration [START_REF] Howells | Drag due to the motion of a Newtonian fluid through a sparse random array of small fixed rigid objects[END_REF][START_REF] Hinch | An averaged-equation approach to particle interactions in a fluid suspension[END_REF][START_REF] Kim | Modelling of porous media by renormalization of the Stokes equations[END_REF][START_REF] Childress | Viscous flow past a random array of spheres[END_REF][START_REF] Freed | On the Stokes problem for a suspension of spheres at finite concentrations[END_REF][START_REF] Lévy | Fluid flow through an array of fixed particles[END_REF][START_REF] Allaire | Homogenization of the Navier-Stokes equations with a slip boundary condition[END_REF][START_REF] Quintard | Transport in ordered and disordered porous media II: Generalized volume averaging[END_REF][START_REF] Auriault | On the Domain of Validity of Brinkman's Equation[END_REF][START_REF] Feppon | High Order Homogenization of the Stokes System in a Periodic Porous Medium[END_REF]. Otherwise, Darcy equations prevail in a statistically homogeneous porous medium with non-dilute solid concentration, even for a poor separation of the macroscopic and pore scales [START_REF] Auriault | On the Domain of Validity of Brinkman's Equation[END_REF]. In turn, when the medium is not statistically homogeneous and with poor separation of scales, a Brinkman-like term arises [START_REF] Ochoa-Tapia | Momentum transfer at the boundary between a porous medium and a homogeneous fluid -Theoretical development[END_REF][START_REF] Auriault | Filtration Law in Porous Media with Poor Separation of Scales[END_REF][START_REF] Rohan | A Darcy-Brinkman model of flow in double porous media -Two-level homogenization and computational modelling[END_REF][START_REF] Goyeau | Averaged Momentum Equation for Flow Through a Nonhomogenenous Porous Structure[END_REF] as a higher order corrective term, even for non-dilute solid concentrations.

By definition, an inhomogeneity problem attempts to account for a statistically non-homogeneous flow. Indeed, it aims at estimating the concentration of fields of the conditional ensemble average of the flow past patterns of a region Ω i . By conditional average, we mean that there always is a pattern of region Ω i at the center of the averaged problems, which can be obtained by suitable translations of P Stokes . For statistically homogeneous disordered media, the conditional average of the properties far from the center should be homogeneous. This heuristically motivates the use of Brinkman equations in the inhomogeneity problems, with an inhomogeneity embedded in an otherwise homogeneous domain.

3.2.

Restrictive assumptions on the effective viscosity and the continuity of the fields Effective viscosity. The effective viscosity concept has been investigated by theoretical [START_REF] Ochoa-Tapia | Momentum transfer at the boundary between a porous medium and a homogeneous fluid -Theoretical development[END_REF][START_REF] Kim | Modelling of porous media by renormalization of the Stokes equations[END_REF][START_REF] Muthukumar | On the Stokes problem for a suspension of spheres at nonzero concentrations. II. Calculations for effective medium theory[END_REF][START_REF] Koplik | Viscosity renormalization in the Brinkman equation[END_REF][START_REF] Breugem | The effective viscosity of a channel-type porous medium[END_REF] or numerical [START_REF] Zaripov | Determination of Brinkman Model Parameters Using Stokes Flow Model[END_REF] means. Recently, [START_REF] Rohan | A Darcy-Brinkman model of flow in double porous media -Two-level homogenization and computational modelling[END_REF] suggested extending the effective viscosity notion to a fourth-rank symmetric anisotropic viscosity tensor in the fluid constitutive law. As of today, there seem to be no consensus whether the ratio µ /µ should be greater [START_REF] Ochoa-Tapia | Momentum transfer at the boundary between a porous medium and a homogeneous fluid -Theoretical development[END_REF][START_REF] Brinkman | A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[END_REF][START_REF] Kim | Modelling of porous media by renormalization of the Stokes equations[END_REF][START_REF] Muthukumar | On the Stokes problem for a suspension of spheres at nonzero concentrations. II. Calculations for effective medium theory[END_REF][START_REF] Zaripov | Determination of Brinkman Model Parameters Using Stokes Flow Model[END_REF] or smaller [START_REF] Brinkman | A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[END_REF][START_REF] Koplik | Viscosity renormalization in the Brinkman equation[END_REF][START_REF] Breugem | The effective viscosity of a channel-type porous medium[END_REF] than 1. This point, which may be microstructure dependent, is not investigated in the present contribution. In the absence of a practical tool to estimate µ for any microstructure type, we assume µ = µ throughout the remainder of the document. This is acknowledged as a limitation and an open issue. Continuity of the fields. The continuity of the fields at the clear fluid -porous medium interface has been extensively studied (see e.g. [START_REF] Ochoa-Tapia | Momentum transfer at the boundary between a porous medium and a homogeneous fluid -Theoretical development[END_REF][START_REF] Ochoa-Tapia | Momentum transfer at the boundary between a porous medium and a homogeneous fluid -Comparison with experiment[END_REF][START_REF] Rohan | A Darcy-Brinkman model of flow in double porous media -Two-level homogenization and computational modelling[END_REF][START_REF] Kim | Modelling of porous media by renormalization of the Stokes equations[END_REF][START_REF] Beavers | Boundary conditions at a naturally permeable wall[END_REF][START_REF] Saffman | On the Boundary Condition at the Surface of a Porous Medium[END_REF][START_REF] Sudhakar | Higher-Order Homogenized Boundary Conditions for Flows Over Rough and Porous Surfaces[END_REF]), pointing out the need to introduce a jump in the stress across the interface to account for momentum transfer. Such jump condition has been accounted for in the cell and inhomogeneity problems in [START_REF] Prakash | Stokes flow of an assemblage of porous particles: stress jump condition[END_REF][START_REF] Deo | Hydrodynamic permeability of aggregates of porous particles with an impermeable core[END_REF][START_REF] Prakash | Overall bed permeability for flow through beds of permeable porous particles using the effective medium model-stress jump condition[END_REF].

Ω 0 v = V 0 (KUBC) or σ • n = -(F 0 • x)n (SUBC) or v , p + F 0 • x periodic (PBC) k(x) cell on ∂Ω 0 (a) a cell problem k 0 Ω 0 → R 3 k 0 v = V 0 (KUBC) or σ • n = -(F 0 • x)n (SUBC) or v , p + F 0 • x periodic (PBC) reference medium ω i k(x)
In our quest to the construction of a methodology to quickly estimate the homogenized permeability from a restricted set of microstructure parameters, we face two issues. The first issue is that the jump condition introduces an additional parameter (which can be positive or negative in the case of the jump condition by [START_REF] Ochoa-Tapia | Momentum transfer at the boundary between a porous medium and a homogeneous fluid -Comparison with experiment[END_REF]) whose dependence on the microstructure characteristics is not known a priori and which is usually fitted. Accounting for it would thus impair the use of the methodology as a predictive tool. The second issue is that the generalization of the jump condition to the interface between two distinct arbitrary porous phases would be required to properly account for momentum transfer at interfaces in the heterogeneous Brinkman problem [START_REF] Boucher | Modules effectifs de matériaux composites quasi homogènes et quasi isotropes, constitués d'une matrice élastique et d'inclusions élastiques. II. Cas des concentrations finies en inclusions[END_REF]. Such generalized jump condition is yet unavailable to the best of our knowledge. For these two reasons, we restrict our study to the case of continuity of the stress vector σ • n across interfaces, where n is the unit normal to the interface. This is acknowledged has another current limitation.

Accordingly, admissible velocity and stress field are here assumed to belong to the following continuity sets:

C v = {v |continuous ; ∇ • v = 0 } C σ = {σ |σ • n continuous across any surface of discontinuity with normal n } (12) 

Generic heterogeneous Brinkman problem definition

The generic heterogeneous Brinkman problem is defined on a domain Ω 0 in which the permeability k is a heterogeneous tensor field (see figure 2). This generic heterogeneous problem will allow the study of both:

• cell problems P cell (fig. 2a): the whole cell Ω 0 represents all the regions of the RVE Ω in a simplified way to keep solutions of P cell tractable analytically or semi-analytically.

• inhomogeneity problems P inhom i,0

(fig. 2b): The domain Ω 0 is arbitrarily large and contains a single inhomogeneity that occupies a domain ω i ⊂ Ω 0 . The domain ω i is chosen as a MRP of patterns of a region Ω i chosen in [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF] for each i ∈ {1, . . . , n}. The permeability field of P inhom i,0 is equal to some uniform reference permeability k 0 for the reference medium in Ω 0 \ω i but can be arbitrarily heterogeneous within the inhomogeneity ω i . Of course, simple shapes must be used when one wishes to keep solutions to P inhom i,0 tractable analytically or semi-analytically for computational efficiency reasons.

Field equations. The generic heterogeneous Brinkman problem is defined as:

∇ • σ + f = 0 in Ω 0 (13a) f = -µk -1 • v in Ω 0 (13b) σ = -p1 + 2µ∇ s v in Ω 0 (13c) ∇ • v = 0 in Ω 0 (13d) v and p -F 0 • x periodic on ∂Ω 0 if PBC (13e) v = V 0 on ∂Ω 0 if KUBC (13f) σ • n = -(F 0 • x)n on ∂Ω 0 if SUBC ( 13g 
)
where n is the outward unit normal to ∂Ω 0 . The field f is a body force which accounts for the resisting efforts via the Brinkman term. The combination of (13a), (13b) and (13c) yields Brinkman's momentum equation:

-∇p + µ∆v -µk -1 • v = 0 ( 14 
)
The loading parameters F 0 or V 0 are uniform vectors, interpreted respectively as a body force or a velocity. Three variants in boundary conditions are investigated: periodic (PBC), kinematically uniform (KUBC) or statically uniform (SUBC) boundary conditions. The boundary conditions early investigated in the cell problem of Cunningham [START_REF] Cunningham | On the velocity of steady fall of spherical particles through fluid medium[END_REF] correspond to KUBC. Alternative types of boundary conditions sometimes used for cell problems such as the zero vorticity one [START_REF] Kuwabara | The Forces experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers[END_REF], the zero shear stress-uniform normal velocity one [START_REF] Happel | Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles[END_REF][START_REF] Happel | Viscous Flow Relative to Arrays of Cylinders[END_REF][START_REF] Neale | Creeping flow relative to permeable spheres[END_REF][START_REF] Berdichewsky | Preform permeability predictions by self-consistent method and finite element simulation[END_REF] or the Kvashnin [START_REF] Kvashnin | Cell model of suspension of spherical particles[END_REF] one are not considered. For isotropic local permeabilities and cylindrical or spherical geometries, Brinkman equation admits separable solution and the zero shear stress-uniform normal velocity boundary condition appears to coincide with SUBC (see Appendix A) ; however, they can differ in general. Heterogeneous Brinkman problems have been addressed by numerical methods in e.g. [START_REF] Brown | Homogenization of High-Contrast Brinkman Flows[END_REF]. The permeability field k -or its inverse the resistance field r = k -1 -is here arbitrary. Extreme permeability values are locally allowed, which namely correspond to:

• clear fluid when r = 0 (k → ∞): since f = 0, eq. ( 14) becomes -∇p + µ∆v which is Stokes' momentum equation for a Newtonian fluid ;

• solid when k = 0: the velocity is then v = 0 and the body force f is locally indeterminate. In that case, only the resultant force exerted by a solid region ω s is known by ωs f dV = -∂ωs σ • n dS from (13a) and the divergence theorem.

Admissible fields. For SUBC, KUBC or PBC, the sets of velocity fields kinematically admissible with some uniform velocity V 0 and stress fields statically admissible with some uniform drag force density F 0 specify as:

KUBC

K(V 0 ) = {v ∈ C v |v = V 0 on ∂Ω 0 } S(F 0 ) = σ ∈ C σ 1 |Ω0| ∂Ω0 σ • n dS = -F 0 SUBC K(V 0 ) = v ∈ C v 1 |Ω0| ∂Ω0 x (v • n) dS = V 0 S(F 0 ) = {σ ∈ C σ |σ • n = -(F 0 • x)n on ∂Ω 0 } PBC K(V 0 ) = v ∈ C v v periodic on ∂Ω 0 and v Ω 0 = V 0 S(F 0 ) = {σ ∈ C σ |σ • n + (F 0 • x)n anti-periodic on ∂Ω 0 } (15)
For each of the above types of boundary conditions, the relaxed set

K = ∪ V 0∈R 3 K(V 0 ) (resp. S = ∪ F 0∈R 3 S(F 0 )
) is defined when the imposed load is the force F 0 (resp. the velocity V 0 ).

Velocity or force control. The flow in the generic heterogeneous Brinkman problem ( 13) is driven by imposing either the uniform velocity V 0 or the uniform body force F 0 . The flow problem is generically defined for each type of boundary condition from the field equations (13a) through (13d) together with one of the two following types of controls:

velocity control: v ∈ K(V 0 ) and σ ∈ S ; force control : v ∈ K and σ ∈ S(F 0 ) (16) 
Virtual power theorem. Admissible fields enjoy the following virtual power theorem in KUBC, SUBC or PBC:

∀v ∈ K(V 0 ) , ∀σ ∈ S(F 0 ) P(v , σ) := Ω0 [(∇ s v ) : σ + v • (∇ • σ)] dV = -|Ω 0 |V 0 • F 0 (17) 
Indeed, the term within the square brackets is

∇ • (v • σ) thus P(v , σ) = ∂Ω0 v • σ • n dS by direct
application of the divergence theorem. The final equality in [START_REF] Sevostianov | Generalization of Maxwell homogenization scheme for elastic material containing inhomogeneities of diverse shape[END_REF] results from the properties of the different sets of boundary conditions. As a side note, theorem [START_REF] Sevostianov | Generalization of Maxwell homogenization scheme for elastic material containing inhomogeneities of diverse shape[END_REF] would not apply to the zero vorticity boundary condition used by [START_REF] Kuwabara | The Forces experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers[END_REF].

Averaging rules. The velocity V 0 and the body force F 0 respectively correspond to the volume average of the fields v and f from ( 15) and ( 17):

V 0 = 1 |Ω 0 | ∂Ω0 x(v • n) dS = v Ω0 = -1 µ k • f Ω0 F 0 = - 1 |Ω 0 | ∂Ω0 σ • n dS = f Ω0 = -µr • v Ω0 (18) 
Concentration tensors. Under velocity control (resp. force control), by linearity of the problem ( 13), the solution velocity (resp. force) is linearly related to V 0 (resp. F 0 ) by some velocity concentration tensor field A (resp. force concentration B) such as at any point x of the domain Ω 0 :

v(x) = A(x) • V 0 with A Ω0 = 1 (velocity control) ; f (x) = B(x) • F 0 with B Ω0 = 1 (force control) (19 
) where the identity 1 result from the averaging rules [START_REF] Bruggeman | Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen[END_REF] and properties of admissible fields for all types of BCs. Provided k 0 is non-null and finite, the velocity and force concentration tensors are related by

k • B = A • k 0 (20)

Cell problems

Let us first focus on cell problems P cell in which Ω 0 is a cell which represents all regions of the RVE in a simplified way (fig. 2a). The averaging rules [START_REF] Bruggeman | Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen[END_REF] provide a motivation to interpret V 0 and F 0 as estimates to the macroscopic variables V and F introduced in sec. 2 and ( 19) is reminiscent of ( 9), [START_REF] Roscoe | The viscosity of suspensions of rigid spheres[END_REF].

Apparent properties of the cell. From ( 18) and ( 19), apparent permeability k app and resistance r app = k -1 app of the cell Ω 0 are defined as:

r app = r • A Ω0 (velocity control) ; k app = k • B Ω0 (force control) (21) 
Since V 0 = -1 µ k app • F 0 , the apparent permeability of the cell is used as an estimate to the homogenized permeability k hom [START_REF] Kachanov | Micromechanics of Materials, with Applications[END_REF] in most cell models cited in sec. 1. In general, the concentration tensors A and B and hence the apparent properties k app = r -1 app depend on the type of boundary conditions (PBC, KUBC or SUBC), see e.g. [START_REF] Whitaker | Flow in porous media I: A theoretical derivation of Darcy's law[END_REF].

Symmetry of r app or k app follows from the virtual power theorem [START_REF] Sevostianov | Generalization of Maxwell homogenization scheme for elastic material containing inhomogeneities of diverse shape[END_REF]. Let (v, σ) (resp. (v , σ )) the solutions to the generic Brinkman problem (13) under velocity control with velocity V 0 (resp. V 0 ), then from ( 17)

|Ω 0 |V 0 • µ r app • V 0 = -P(v , σ) = -P(v, σ ) = |Ω 0 |V 0 • µ r app • V 0 (22) 
which shows the symmetry, irrespective of the type of boundary conditions investigated here.

Energy theorems. The kinematic energy functional W defined on velocities and the complementary static energy functional W * defined on stresses are introduced as:

W (v) = Ω0 w(v) dV with w(v) = 1 2 2µ(∇ s v) : (∇ s v) + µv • k -1 • v W * (σ) = Ω0 w * (σ) dV with w * (σ) = 1 2 1 2µ σ dev : σ dev + 1 µ (∇ • σ) • k • (∇ • σ) (23) 
where σ dev = σ -1 3 (σ : 1)1 is the deviatoric stress. Since the functionals W and W * are positive definite quadratic forms, repeated use of the virtual power theorem [START_REF] Sevostianov | Generalization of Maxwell homogenization scheme for elastic material containing inhomogeneities of diverse shape[END_REF] and definitions [START_REF] Prager | Viscous Flow through Porous Media[END_REF] classically yields the following minimum energy theorems:

|Ω 0 | 2 µV 0 • r app • V 0 = inf u∈K(V 0) W (u) = -inf σ ∈S (W * -Φ * )(σ , V 0 ) (velocity control) |Ω 0 | 2µ F 0 • k app • F 0 = inf σ ∈S(F 0 ) W * (σ ) = -inf u∈K (W -Φ)(u, F 0 ) (force control) (24) 
where the virtual powers of external given loads are defined on admissible fields as:

Φ(u, F 0 ) = -F 0 • ∂Ω0 x(u • n) dS (force control) ; Φ * (σ , V 0 ) = V 0 • ∂Ω0 σ • n dV (velocity control) (25) 
The minimum energy theorems [START_REF] Matheron | Élements pour une théorie des milieux poreux[END_REF] provide energy definitions to the apparent properties and means to construct bounds on them. For example, since v = V 0 ∈ K(V 0 ) and σ = -(F 0 • x)1 ∈ S(F 0 ) for all types of boundary conditions, the apparent properties are bounded by analogues to the Voigt and Reuss bounds:

k app ≤ k Ω0 ; r app ≤ r Ω0 (26) 
where inequalities stand in the sense of positive definite quadratic forms. Further, since K KUBC (V 0 ) ⊂ K PBC (V 0 ) and S SUBC (F 0 ) ⊂ S PBC (F 0 ), one may easily prove from [START_REF] Matheron | Élements pour une théorie des milieux poreux[END_REF] the hierarchy:

k KUBC app ≤ k PBC app ≤ k SUBC app (27) 

Inhomogeneity problems

In an inhomogeneity problem P inhom i,0

, the domain Ω 0 is arbitrarily large and contains a single inhomogeneity that occupies a domain ω i ⊂ Ω 0 (see figure 2b). Akin to Eshelby's inhomogeneity problem in linear elasticity [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF], we consider the asymptotic case where Ω 0 → R 3 . In that case, provided the inhomogeneity ω i is of finite extension, PBC, KUBC and SUBC coincide as the far field in the reference material asymptotically verifies:

as |x| → ∞ : v → V 0 ; σ ∼ -(F 0 • x)1 ; f = -∇ • σ → F 0 (28) 
To handle mathematical difficulties related to the definition of a flow problem in a infinite domain, the admissible sets K(V 0 ) and S(F 0 ) (15) are restricted to velocity and stress fields that have a square integrable deviation from the uniform asymptotic behavior [START_REF] Abdallah | Stokes flow through a Boolean model of spheres: Representative volume element[END_REF]. More precisely, the incremental energy densities w(v -V 0 ) and w * (σ + (F 0 • x)1) must be integrable on R 3 , where w and w * are defined in [START_REF] Prager | Viscous Flow through Porous Media[END_REF].

Average concentration tensor. The averages over the inhomogeneity ω i of the concentration tensors [START_REF] Hershey | The elasticity of an isotropic aggregate of anisotropic cubic crystals[END_REF] are of paramount importance to the methodology and denoted:

A i,0 := A ωi (velocity control) ; B i,0 := B ωi (force control) (29) 
Equivalent properties. Apparent or equivalent permeability k i,0 and resistance r i,0 = k -1 i,0 of the inhomogeneity ω i embedded in a reference medium with permeability k 0 are defined as:

r i,0 := r • A ωi • A ωi -1 (velocity control) ; k i,0 := k • B ωi • B ωi -1
(force control) [START_REF] Xiao | Geometry models of porous media based on Voronoi tessellations and their porosity-permeability relations[END_REF] From (13b) and ( 19), the normalization by A i,0 or B i,0 in (30) indeed ensures:

f ωi = -µ r i,0 • v ωi (velocity control) ; v ωi = -1 µ k i,0 • f ωi (force control) (31) 
In the case of infinite resistance (i.e. a solid inhomogeneity), the average drag force density

f ωi = -µr • v ωi
involves the volume integral of an indeterminate term as v vanishes, so that the alternative expression is preferred:

f ωi = -µr • A ωi • V 0 = 1 |ω i | ∂ωi σ • n dS (32) 
The equivalent properties k i,0 = r -1 i,0 depend on the reference medium permeability k 0 in general. Unlike the apparent properties k app = r -1 app defined in [START_REF] Hill | A self-consistent mechanics of composite materials[END_REF] for cells problems, the symmetry of the equivalent properties of the inhomogeneity cannot be shown in general.

Property contribution tensors. The replacement of the reference medium property k 0 = r -1 0 by some (possibly heterogeneous) property k = r -1 in the inhomogeneity ω i induces a flow perturbation from the undisturbed fields which correspond to the asymptotic fields of [START_REF] Abdallah | Stokes flow through a Boolean model of spheres: Representative volume element[END_REF].

Let (v, σ) and (v , σ ) the solutions to the inhomogeneity problem under velocity control (resp. force control) with imposed velocities V 0 and V 0 (resp. forces F 0 and F 0 ). The crossed power increment induced by the replacement of the reference medium by the inhomogeneity is:

δP 0 (v , σ) := R 3 (∇ s v ) : σ + v • (∇ • σ) -µV 0 • r 0 • V 0 dV (velocity control) R 3 (∇ s v ) : σ + v • (∇ • σ) -1 µ F 0 • k 0 • F 0 dV (force control) (33) 
Application of the virtual power theorem [START_REF] Sevostianov | Generalization of Maxwell homogenization scheme for elastic material containing inhomogeneities of diverse shape[END_REF] to [START_REF] Carman | Fluid flow through granular beds[END_REF] yields:

δP 0 (v , σ) = V 0 • R 3 µ(r • v -r 0 • V 0 ) dV = V 0 • R 3 µ [r 0 • (v -V 0 ) + µ(r -r 0 ) • v] dV (velocity control) δP 0 (v , σ) = F 0 • R 3 1 µ (k • f -k 0 • F 0 ) dV = F 0 • R 3 1 µ k 0 • (f -F 0 ) + 1 µ (k -k 0 ) • f dV (force control) (34) 
The velocity averaging rule implies R 3 v -V 0 dV = 0 while the term (r -r 0 ) • v is supported in the inhomogeneity ω i only, and similarly for force control. Resorting to the concentration tensors [START_REF] Hershey | The elasticity of an isotropic aggregate of anisotropic cubic crystals[END_REF], one has finally:

δP 0 (v , σ) = |ω i |µV 0 • (r -r 0 ) • A ωi • V 0 (velocity control) δP 0 (v , σ) = |ω i | 1 µ F 0 • (k -k 0 ) • B ωi • F 0 (force control) (35) 
The quantities in [START_REF] Dormieux | Approche micromécanique du couplage perméabilité-endommagement[END_REF] defined by:

R i,0 := (r -r 0 ) • A ωi (velocity control) ; K i,0 := (k -k 0 ) • B ωi (force control) ( 36 
)
are respectively called the resistance contribution tensor and permeability contribution tensor of the inhomogeneity ω i surrounded by the reference medium k 0 , in the spirit of property contribution tensors [START_REF] Kachanov | Micromechanics of Materials, with Applications[END_REF][START_REF] Sevostianov | Explicit cross-property correlations for anisotropic two-phase composite materials[END_REF][START_REF] Kachanov | On quantitative characterization of microstructures and effective properties[END_REF].

It is clear from the reciprocity theorem P(v , σ) = P(v, σ ) that the property contribution tensors R i,0 and K i,0 are symmetric (unlike A i,0 , B i,0 , k i,0 or r i,0 in general).

From the definitions (36) and ( 30), the property contribution tensors are directly expressed from the average concentration tensors A i,0 and B i,0 [START_REF] Willot | The Permeability of Boolean Sets of Cylinders[END_REF] in the inhomogeneity by:

R i,0 = (r i,0 -r 0 ) • A i,0 (velocity control) ; K i,0 = (k i,0 -k 0 ) • B i,0 (force control) (37) 
These results hold regardless of the shape of ω i as well as for arbitrarily heterogeneous permeability within ω i . When the inhomogeneity ω i is finite and k 0 = r -1 0 are neither zero nor infinite, the permeability and resistance contribution tensors are related by

K i,0 = -k 0 • R i,0 • k 0 ⇔ R i,0 = -r 0 • K i,0 • r 0 (38)
Physically, the permeability (resp. resistance) contribution tensor relates to the overall permeability (resp. resistance) increment induced by the replacement of the reference medium by the inhomogeneity ω i . More precisely, let's consider briefly for the sake of illustration that the inhomogeneity problem is not defined on R 3 but on a cell Ω 0 containing ω i and filled with the reference medium in Ω 0 \ω i . Under force control, the apparent permeability k app of the cell defined by [START_REF] Hill | A self-consistent mechanics of composite materials[END_REF] relates to the power increment [START_REF] Carman | Fluid flow through granular beds[END_REF] by [START_REF] Carman | Fluid flow through granular beds[END_REF]. This allows to link the permeability contribution tensor of the inhomogeneity in the cell to the apparent permeability of the cell by:

δP 0 (v , σ) = |Ω 0 |µ -1 F 0 • (k app -k 0 ) • F 0 provided that integrals are performed on Ω 0 instead of R 3 in
k app -k 0 = ϕK inhom. in cell i,0 (inhomogeneity in cell) ( 39 
)
where ϕ = |ωi| |Ω0| is the volume fraction of the inhomogeneity ω i within the cell Ω 0 . As a convenience, we provide in Appendix A the average velocity concentration tensors for spherical (including composite spheres), cylindrical and planar inhomogeneities, for which the Brinkman equations admit separable solutions. These serve as building blocks for the homogenization schemes presented in the next section. When more complex Morphological Representative Patterns are required, the schemes below similarly apply, but one may have to resort to numerical simulation or a semi-analytical strategy to solve the inhomogeneity problems.

Homogenization schemes to estimate the homogenized permeability

In this section, several homogenization schemes are presented to estimate the homogenized permeability (5) of the RVE Ω of a porous medium as in sec. 2. To prepare the presentation of these schemes, recall from ( 9) or (10) that the homogenized permeability and resistance can be indifferently computed by:

r hom = ρ Ω = i ϕ i ρ i = r 0 + i ϕ i (ρ -r 0 • a) i (velocity control) k hom = κ Ω = i ϕ i κ i = k 0 + i ϕ i (κ -k 0 • b) i (force control) (40)
where f i denotes the volume average of any field f over a region Ω i with volume fraction

ϕ i = |Ω i |/|Ω| and k 0 = r -1
0 is an arbitrary uniform reference property. The estimates of the homogenized permeability are build from elementary bricks arising from Brinkman inhomogeneity problems to estimate the region-wise averages in [START_REF] Cunningham | On the velocity of steady fall of spherical particles through fluid medium[END_REF]. Thanks to the general results established in sec. 3, well established ideas of continuum micromechanics on elasticity or conduction homogenization schemes can directly be transposed to the Stokes to Darcy homogenization problem at hand. The purpose of this section is to recall these schemes and adapt them whenever necessary to the present, new context of Brinkman inhomogeneities.

Choices for the approximate representation of the material by inhomogeneity problems

Decomposition in regions and definition of inhomogeneities. To approximately represent the material, the user of the homogenization schemes must first choose regions Ω i for the decomposition of the averages in [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF] and then inhomogeneities ω i to represent them. These choices for such approximate representations are usually not unique, although they should be motivated by the actual characteristics of the microstructure of the investigated porous medium. For single porosity material, i.e. when all the heterogeneity have the same length scale, inhomogeneities have usually a permeability equal either to k = 0 (parts of solid) or k → ∞ (pores) or composite inhomogeneities featuring a solid core with k = 0 surrounded by a pore shell with k → ∞. For multiple porosity materials, i.e. with pore size spread over several separated length scales, a region Ω i with a porosity at a scale lower than the current inhomogeneity scale may be represented by an inhomogeneity with a finite, non-zero permeability which would correspond to the homogenized permeability of a RVE of that region only. The apparent permeability of that region could either be known from an experiment on a sample of the material of region Ω i , full field simulations or a recursive application of the homogenization schemes presented herein at a lower scale. It is also theoretically possible, albeit not practical, to define the permeability of that region Ω i from the equivalent permeability k i,0 (30) of a heterogeneous inhomogeneity directly defined as a representative subset of Ω i (e.g. with many small pores and solid grains).

In practice, the set of material parameters required for building the estimate comprises: the volume fraction of each region, the shape, size and orientation distribution of each type of inhomogeneity. For actual materials, these information may be inferred from experimental measures such as picnometry (overall porosity), mercury intrusion porosimetry (pore size distribution) or sieve analysis (grain size distribution), analysis with statistical treatment of many microscope observations (fiber diameter and orientations, particle shapes, general organisation of the microstructure).

Reference medium. Second, all the presented homogenization schemes rely on the introduction of a reference medium with permeability k 0 . The choice of k 0 varies among schemes, but there are two main categories. In some situations, one region m ∈ {1, . . . , n} among those chosen to decompose the average in (6) plays the specific role of a matrix. This means that only the region Ω m forms a connected domain in the RVE Ω, while all other regions Ω i (i = m) are constituted of disconnected inclusions embedded in the matrix region. If that region is statistically homogeneous with apparent permeability k m , the choice k 0 = k m can be made for such matrix-inclusion materials. In some other situations, no phase plays the role of a matrix and connectivity of the regions depend on their volume fraction and shape. In that case, the reference medium can be defined as an effective medium from the self-consistency requirement k 0 = k hom .

Loading parameters. Third, the auxiliary loading parameters V 0 or F 0 must be related to the actual macroscopic variables V or F . Some schemes rely on the simple choice V 0 = V or F 0 = F , while other effective field schemes rely on V 0 = V or F 0 = F . The effective fields V 0 or F 0 can be chosen in order to meet the velocity or force averaging rules (9) or (10) (average of velocity or force concentration tensors equal to 1).

In practice, the choices of the reference medium and the loading parameters are bundled in that of the homogenization scheme.

Dilute estimate or non-interacting approximation

In the dilute estimate, the RVE is assumed to comprise a matrix region Ω m which can be represented with a permeability k m and regions Ω i of volume fractions ϕ i 1 constituted of disconnected inclusions. The inclusions are assumed sufficiently far apart such that for i = m the region-wise averages b i , κ i or a i , ρ i of the concentration tensors ( 9) or ( 10) of problem P Stokes can be approximated from their counterpart B i,m or A i,m (29) and the equivalent properties k i,m or r i,m [START_REF] Xiao | Geometry models of porous media based on Voronoi tessellations and their porosity-permeability relations[END_REF] on distinct inhomogeneity problems with 3a), i.e.:

V 0 = V or F 0 = F and k 0 = k m (see fig.
(i = m) a i ≈ A i,m and ρ i ≈ r i,m • A i,m ⇒ (ρ -r m • a) i ≈ R i,m (velocity control) (i = m) b i ≈ B i,m and κ i ≈ k i,m • B i,m ⇒ (κ -k m • b) i ≈ K i,m (force control) (41) 
where the last implications for the property contribution tensors R i,m and K i,m (36) result from relation [START_REF] Jeannin | Stress effects on the relative permeabilities of tight sandstones[END_REF]. This non-interacting approximation leads to a dilute estimate of the homogenized permeability or resistance [START_REF] Kachanov | Micromechanics of Materials, with Applications[END_REF]:

r hom ≈ r dil := r m + R •,m (velocity control) ; k hom ≈ k dil := k m + K •,m (force control) (42) R 3 ω i k i k m matrix v → |x|→∞ V macroscopic field (a) dilute R 3 ω i k i k m matrix v → |x|→∞ V 0 effective field (b) Mori-Tanaka R 3 ω i k i k hom effective medium v → |x|→∞ V 0 effective field (c) self-consistent R 3 ω i k i k hom effective medium v → |x|→∞ V macroscopic field (d) EMA R 3 ω i k diff (ζ) differential effective medium v → |x|→∞ V macroscopic field k diff (ζ) k i dζ (e) differential R 3 Ω k m matrix v → |x|→∞ V macroscopic field k hom R 3 ω i k m matrix v → |x|→∞ V macroscopic field k i same i ϕ i K i,m K hom,m = average permeability contribution tensor (f) Maxwell
Figure 3: Inhomogeneity problems used in homogenization schemes with their types of reference medium and remote load.

For each region Ω i of the RVE (except the matrix if any), an inhomogeneity ω i is chosen as a representative pattern of Ω i . The shape of the inhomogeneities ω i may be arbitrary and their permeability k i either homogeneous or heterogeneous. The schemes finally estimate the permeability by averaging relevant concentration tensors over all inhomogeneities.

where the overline with subscript •,m denotes the volume average from inhomogeneity-based quantities with reference medium property k m = r -1 m , for example:

K •,m := i ϕ i K i,m (43) 
For i = m in eqs. ( 42), [START_REF] Neale | Creeping flow relative to permeable spheres[END_REF], the abusive but convenient notation K m,m = R m,m = 0 is used for the matrix region which is consistent that there is no property increment for an (in)homogeneity problem with k = k m everywhere.

The symmetry of k dil and r dil directly results from that of the property contribution tensors. Interestingly, ( 42) is reminiscent of the permeability increment [START_REF] Timothy | Cascade Lattice Micromechanics Model for the Effective Permeability of Materials with Microcracks[END_REF] for the illustrative inhomogeneity in cell problem. The two estimates r -1 dil = k dil , but are equal at first order in ϕ i 1. For some specific applications, one of the estimate can provide a fair approximation beyond ϕ i 1 while the other would fail [START_REF] Kachanov | Micromechanics of Materials, with Applications[END_REF].

Mori-Tanaka-Benveniste estimate

The Mori-Tanaka estimate [START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF], as presented by Benveniste [START_REF] Benveniste | On the Mori-Tanaka method for cracked solids[END_REF], is an effective field method which aims at alleviating shortcomings of the dilute estimate when the volume fraction of inhomogeneities is not infinitesimal.

The scheme applies to matrix-inclusion composites, with matrix permeability k m . For i = m, the region-wise averages of the velocity and body force v i , f i of problem P Stokes are approximated from their counterparts on distinct inhomogeneity problems with V 0 = V or F 0 = F (effective fields) and k 0 = k m (see fig. 3b). Additionally, the effective velocity V 0 or force F 0 is chosen as the average velocity or force over the matrix region Ω m , i.e.:

v i ≈ A i,m • V 0 (i = m) and v m ≈ V 0 (= A m,m • V 0 ) (velocity control) f i ≈ B i,m • F 0 (i = m) and f m ≈ F 0 (= B m,m • V 0 ) (force control) (44) 
with the abusive but convenient notation A m,m = B m,m = 1 for the matrix region which is consistent with an (in)homogeneity problem with k = k m everywhere. The effective fields are determined from the averaging rule

V = v Ω ≈ A •,m • V 0 (4) or F = f Ω ≈ B •,m • F 0 (see e.g. ( 9 
)) using the notation (43) for inhomogeneity-based average. Eventually, the concentration tensors are approximated for all regions by:

a i ≈ A i,m • A •,m -1 and ρ i ≈ r i,m • A i,m • A •,m -1 (velocity control) b i ≈ B i,m • B •,m -1 and κ i ≈ k i,m • B i,m • B •,m -1 (force control) (45) 
From ( 40), the Mori-Tanaka estimates to the homogenized permeability or resistance are:

r hom ≈ r mt := r •,m • A •,m • A •,m -1 = r m + R •,m • A •,m -1 (velocity control) k hom ≈ k mt := k •,m • B •,m • B •,m -1 = k m + K •,m • B •,m -1 (force control) (46) 
Provided k m is neither vanishing nor infinite, r mt = k -1 mt from [START_REF] Kröner | Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls[END_REF] or [START_REF] Jeannin | Stress effects on the relative permeabilities of tight sandstones[END_REF]. The Mori-Tanaka estimates k mt and r mt may be not symmetric.

Self-consistent estimate

The self-consistent estimate was developed for dielectric properties by Bruggeman [START_REF] Bruggeman | Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen[END_REF] and subsequently in elasticity by [START_REF] Hershey | The elasticity of an isotropic aggregate of anisotropic cubic crystals[END_REF][START_REF] Kröner | Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls[END_REF][START_REF] Hill | A self-consistent mechanics of composite materials[END_REF][START_REF] Budiansky | On the elastic moduli of some heterogeneous materials[END_REF].

In the self-consistent estimate, no phase has a specific role of matrix. The concentration rules are drawn from inhomogeneity problems (see fig. 3c) in which the reference material is an effective medium, i.e. the sought-for homogenized material, and the applied remote load is an effective field V 0 or F 0 . Let k sc the self-consistent estimate to k hom . The self-consistent estimate is build similarly to [START_REF] Boutin | Study of permeability by periodic and self-consistent homogenisation[END_REF] but with a reference medium of permeability k 0 = k sc instead of a matrix. The concentration tensors are hence approximated by:

a i ≈ A i,sc • A •,sc -1 and ρ i ≈ r i,sc • A i,sc • A •,sc -1 (velocity control) b i ≈ B i,sc • B •,sc -1 and κ i ≈ k i,sc • B i,sc • B •,sc -1 (force control) (47) 
Replacing both k m and k mt by k sc in [START_REF] Kuwabara | The Forces experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers[END_REF], the self-consistent estimates to the homogenized permeability k sc and resistance r sc with r sc = k -1 sc are equivalently defined by:

r hom ≈ r sc := r •,sc • A •,sc • A •,sc -1 ⇔ R •,sc = 0 (velocity control) k hom ≈ k sc := k •,sc • B •,sc • B •,sc -1 ⇔ K •,sc = 0 (force control) (48) 
The self-consistent estimate exhibits percolation thresholds: if one phase has a vanishing permeability, then the self-consistent estimate of the permeability will be zero for volume fractions of that phase above a critical value. In general, the value of the percolation threshold of the self-consistent scheme should not be considered as predictive of that of a specific microstructure. This threshold depends on the shapes of all inhomogeneities used to model the microstructure (see e.g. [89, Appendix B]).

Effective Medium Approximation

A distinction is here made between the terminologies "self-consistent" or "Effective Medium Approximation" (EMA). The term EMA may actually cover several methods in the literature: the self-consistent estimate of sec. 4.4 (which is an effective medium and effective field approximation), and the method described below, to which we simply refer as EMA herein. Indeed, this EMA is build from inhomogeneity problems with a reference medium of permeability k 0 = k ema (effective medium), but with an applied remote load equal to the macroscopic velocity V or body force F (see figure 3d). As a result, the concentration tensors are approximated in EMA by: a i ≈ A i,ema and ρ i ≈ r i,ema • A i,ema (velocity control)

b i ≈ B i,ema and κ i ≈ r i,ema • A i,ema (force control) (49) 
As opposed to [START_REF] Dassios | Stokes flow in spheroidal particle-in-cell models with Happel and Kuwabara boundary conditions[END_REF], the EMA estimates of a i or b i (49) may violate the averaging rules a Ω = 1 or b Ω = 1.

The EMA estimates k ema and r ema to the homogenized permeability and resistance are build from a selfconsistency condition which is an unscaled version of (48):

r hom ≈ r ema := r .,ema • A .,ema (velocity control) ; k hom ≈ k ema := k .,ema • B .,ema (force control) (50) Unlike the self-consistent estimate [START_REF] Davis | Flow through beds of porous particles[END_REF], the EMA estimates k ema and r ema may be not symmetric (see e.g. [START_REF] Li | On micromechanics approximation for the effective thermoelastic moduli of multi-phase composite materials[END_REF]).

The methods of [START_REF] Neale | Prediction of transport processes within porous media: Creeping flow relative to a fixed swarm of spherical particles[END_REF][START_REF] Li | Effective medium approximation and deposition of colloidal particles in fibrous and granular media[END_REF][START_REF] Albusairi | Flow through beds of perfusive particles: effective medium model for velocity prediction within the perfusive media[END_REF][START_REF] Sekhar | Effective medium model for flow through beds of porous cylindrical fibres[END_REF][START_REF] Prakash | Overall bed permeability for flow through beds of permeable porous particles using the effective medium model-stress jump condition[END_REF] for Stokes to Darcy upscaling are EMA in the sense of (50) which feature a single composite inhomogeneity ω 1 with a solid (potentially porous) core, surrounded by a Stokes fluid envelop, itself embedded in an infinite effective medium. Denoting by k 1,ema the equivalent permeability of the inhomogeneity as defined in [START_REF] Xiao | Geometry models of porous media based on Voronoi tessellations and their porosity-permeability relations[END_REF], the EMA ( 50) is build from the self-consistency rule k ema = k 1,ema •B 1,ema , whereas the self-consistent scheme [START_REF] Davis | Flow through beds of porous particles[END_REF] directly requires the equality of the homogenized and equivalent permeabilities k sc = k 1,sc thanks to a proper scaling of the permeability. The two expressions differ since it turns out that B 1,ema = 1 in general.

Differential estimate or iterated dilute approximation

Differential estimates or differential effective medium have been first proposed by Roscoe [START_REF] Roscoe | The viscosity of suspensions of rigid spheres[END_REF] and Brinkman [START_REF] Brinkman | The Viscosity of Concentrated Suspensions and Solutions[END_REF] for the effective viscosity of suspensions and latter in elasticity by [START_REF] Roscoe | Isotropic composites with elastic or viscoelastic phases: General bounds for the moduli and solutions for special geometries[END_REF][START_REF] Boucher | Modules effectifs de matériaux composites quasi homogènes et quasi isotropes, constitués d'une matrice élastique et d'inclusions élastiques. II. Cas des concentrations finies en inclusions[END_REF][START_REF] Mclaughlin | A study of the differential scheme for composite materials[END_REF][START_REF] Norris | A differential scheme for the effective moduli of composites[END_REF]. The methodology was applied to Stokes to Darcy homogenization by Wilkinson [START_REF] Wilkinson | Modified drag theory of permeability[END_REF] for a specific case of Brinkman inhomogeneity problem, under the denomination iterated dilute approximation.

The idea is to apply (42) by iteratively adding infinitesimal volume fractions of inhomogeneities to a reference medium defined as the homogenized property from the previous iteration (see fig. 3e). More precisely, the replacement process is described by a variable ζ such as at each step an incremental volume fraction dζ of the material homogenized from step ζ is replaced by inhomogeneities, starting from a reference material of permeability k 0 = k m at step ζ = 0, where k m is the permeability of the matrix region. The evolving volume fraction of each region Ω i (i = m) is described by the current volume fraction φ i varying from 0 at ζ = 0 to ϕ i at the end of the process. Similarly, the current overall volume fraction of inhomogeneities Φ = i =m φ i varies from 0 to i =m ϕ i .

In the replacement, a volume fraction γ i dζ of new inhomogeneities of each region i is introduced in the system, where γ i is a filling rate which may depend on ζ, with i =m γ i = 1. Due to overlaps with previously added inhomogeneities, the replacement removes a volume fraction φ i dζ of each region i, so that the net increase in volume fraction of this region is dφ i = (γ i -φ i ) dζ. The net increase of overall volume fraction of inhomogeneities is dΦ = (1 -Φ) dζ which provides a one to one relationship between Φ and ζ:

Φ = 1 -exp(-ζ) (51) 
Denoting by k dif (Φ(ζ)) the permeability at iteration ζ, application of ( 42) gives the permeability increment

k dif (Φ + dΦ) -k dif (Φ) = i =m γ i dζ K i,dif(Φ) ⇔ dk dif dΦ = 1 1 -Φ i =m γ i K i,dif(Φ) (52) 
Eq. ( 52) with the initial condition k dif (Φ = 0) = k m defines the differential estimate of the permeability by a tensorial differential equation, which degenerates to a scalar one in the case of overall isotropy. The differential estimate does not introduce a percolation of the region i = m, regardless of their volume fractions (except in the degenerate situation Φ = 1), unless inhomogeneities of the matrix k m are artificially introduced (see [START_REF] Norris | A differential scheme for the effective moduli of composites[END_REF]). Reciprocal definition of (52) in terms of resistance leads to the exact inverse of k dif [START_REF] Mclaughlin | A study of the differential scheme for composite materials[END_REF], except if k 0 is either vanishing or infinite. The distinction between ζ and Φ via dΦ = (1 -Φ) dζ and (51) allows to retrieve the self-consistent estimate (48) in the limit Φ → 1 with the proportional filling rule introduced below (see [START_REF] Norris | A differential scheme for the effective moduli of composites[END_REF]).

The relative rates of filling with different regions, which can be described by a path in the space of the {φ i }, modifies the output of the differential estimate [START_REF] Norris | A differential scheme for the effective moduli of composites[END_REF]. Some simple choices are:

(a) proportional filling, i.e. α i = ϕ i / j =m ϕ j [START_REF] Kachanov | Micromechanics of Materials, with Applications[END_REF][START_REF] Boucher | Modules effectifs de matériaux composites quasi homogènes et quasi isotropes, constitués d'une matrice élastique et d'inclusions élastiques. II. Cas des concentrations finies en inclusions[END_REF][START_REF] Mclaughlin | A study of the differential scheme for composite materials[END_REF]. (b) sequential filling, say only region i = 1 first, then only region i = 2, and so on [START_REF] Wilkinson | Modified drag theory of permeability[END_REF]. As the replacement by a region i removes inhomogeneities from regions j ≤ i, it is necessary to introduce excess of the first regions to reach the target final volume fractions.

Choice (b) leads to non-monotonous evolution of the current volume fraction which was excluded from possibilities investigated in [START_REF] Norris | A differential scheme for the effective moduli of composites[END_REF] as non-physical. Nonetheless, choice (b) has been used by Wilkinson [START_REF] Wilkinson | Modified drag theory of permeability[END_REF] to estimate the permeability of materials made of impervious solid spherical grains with a particle size distribution.

Maxwell estimate

We here follow the reformulation of the Maxwell estimate [START_REF] Maxwell | A treatise on electricity and magnetism[END_REF] in terms of property contribution tensors by [START_REF] Kachanov | Micromechanics of Materials, with Applications[END_REF][START_REF] Sevostianov | Generalization of Maxwell homogenization scheme for elastic material containing inhomogeneities of diverse shape[END_REF]. The Maxwell estimate is suited to matrix-inclusion composites, and the matrix permeability k m is taken as the reference permeability in all inhomogeneity problems below. The homogenized permeability k hom of the RVE Ω is estimated by k Max chosen such that the permeability contribution tensor (36) of an equivalent inhomogeneity of uniform permeability k Max is equal to the volume average of the permeability contribution tensors of all inhomogeneities ω i (see fig. 3f):

K Max,m (Ω) = K •,m (53) 
In the left-hand side of ( 53), the equivalent inhomogeneity replaces the whole domain Ω. The Maxwell estimate thus introduces a dependence of the homogenized permeability on the shape of the RVE and, apart from the asymptotic case discussed below, on its size. This is a major issue concerning its interpretation and may lead to inconsistencies in some situations, which can be mitigated by a careful analysis [START_REF] Kachanov | Micromechanics of Materials, with Applications[END_REF] in the conduction or elasticity settings.

The dependence of k Max on the size L Ω of the RVE can be alleviated since L Ω is much larger than the characteristic size ω of the inhomogeneities. Apart from the situation where the reference medium is a Stokes fluid (k m → ∞), ω is usually much larger the characteristic size m given by k m (e.g. m = √ k m for k m = k m 1). Hence, in the Brinkman inhomogeneity problem involving the inhomogeneity of permeability k Max and size L Ω , the effects of Brinkman layer -which occur in a layer of thickness O( m ) -are negligible. The laplacian of v is much smaller than k m • v and Darcy equation are asymptotically retrieved (see e.g. figure A.12 as R/ m → ∞). In that case, provided that the shape chosen to represent the RVE Ω is ellipsoidal, one may approximate the permeability contribution tensor K Max,m (Ω) of the homogenized RVE by its closed form expression from the Darcy inhomogeneity problem, namely:

lim LΩ/ m →∞ K Max,m (Ω) = (k Max -k m ) -1 + P Ω m -1 (54) 
where P Ω m is the Hill tensor of the ellipsoidal shape Ω in the reference Darcy medium of permeability k m , which does not depend on the absolute size of Ω and is known explicitly [START_REF] Barthélémy | Effective permeability of media with a dense network of long and micro fractures[END_REF].

Clearly, this asymptotic situation does not apply to Stokes to Darcy homogenization if the matrix is the Newtonian fluid, i.e. r m = 0 and thus m → ∞. In that case, solution of Stokes flow past a Brinkman inhomogeneity introduces a strong dependence on the inhomogeneity size, and use of the Maxwell scheme is discouraged.

Assessment of homogenization schemes on full field simulations

The different homogenization schemes presented in section 4 are now compared to a wide range of microstructure types to illustrate their flexibility, show their range of validity and highlight some pitfalls.

Worked-out example: granular porous media with impermeable grains

Let us work out the estimates presented in section 4 in the case where the porous medium comprises a solid phase made out of impermeable grains (phase s) and a complementary Stokes fluid phase (phase p). The porosity is denoted by ϕ. The homogenized permeabilities will be compared in figure 5 to the following model granular media: Mori-Tanaka ( 56) differential (58) (Wilkinson [START_REF] Wilkinson | Modified drag theory of permeability[END_REF]) self-consistent (sph. pore) [START_REF] Auriault | Filtration Law in Porous Media with Poor Separation of Scales[END_REF] self-consistent (cyl. pore) [START_REF] Rohan | A Darcy-Brinkman model of flow in double porous media -Two-level homogenization and computational modelling[END_REF] self-consistent (comp. sph.) [START_REF] Howells | Drag due to the motion of a Newtonian fluid through a sparse random array of small fixed rigid objects[END_REF] bound K 3pts ss (Bignonnet [69]) EMA (no pore) (64) (Brinkman [START_REF] Brinkman | A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[END_REF]) EMA (comp. sph.) (65) (Neale [START_REF] Neale | Prediction of transport processes within porous media: Creeping flow relative to a fixed swarm of spherical particles[END_REF]) cell model, SUBC (66b) (Happel [41]) cell model, KUBC (66a) (Cunningham [40]) Boolean solid spheres (Abdallah [START_REF] Abdallah | Stokes flow through a Boolean model of spheres: Representative volume element[END_REF]) Boolean pore spheres (Abdallah [START_REF] Abdallah | Stokes flow through a Boolean model of spheres: Representative volume element[END_REF]) Voronoi (eroded faces) (Xiao & Yin [START_REF] Xiao | Geometry models of porous media based on Voronoi tessellations and their porosity-permeability relations[END_REF]) unpenetrable solid spheres (Rong [START_REF] Rong | Lattice-Boltzmann simulation of fluid flow through packed beds of uniform spheres: Effect of porosity[END_REF]) unpenetrable solid spheres (Ladd [91]) unpenetrable solid spheres (Kim [65]) Voronoi mosaic (Bignonnet [31]) (a) Boolean model of spheres (fig. 4a), with equisized spheres of radius R that have centers randomly positioned according to a random Poisson process and may overlap. Simulation results are available from [START_REF] Abdallah | Stokes flow through a Boolean model of spheres: Representative volume element[END_REF]. (b) Unpenetrable spheres, with randomly positioned but non-overlapping equisized spheres. Reference results are taken from fluid dynamics models [START_REF] Kim | Modelling of porous media by renormalization of the Stokes equations[END_REF][START_REF] Ladd | Hydrodynamic transport coefficients of random dispersions of hard spheres[END_REF] and simulations [START_REF] Rong | Lattice-Boltzmann simulation of fluid flow through packed beds of uniform spheres: Effect of porosity[END_REF]. (c) Voronoi mosaic, with Voronoi cells randomly labeled as solid or pore. Simulations results are from [START_REF] Bignonnet | Efficient FFT-based upscaling of the permeability of porous media discretized on uniform grids with estimation of RVE size[END_REF].

Permeability is scaled by an equivalent grain radius R computed so as to meet the two previous sphere models in the dilute limit ϕ → 1. (d) Voronoi cells with eroded faces, obtained by erosion of cells in a Voronoi tessellation from faces, leaving disconnected solid polyhedrons separated by planar pores with constant opening thickness t (i.e. t is the distance between the faces of two neighbouring solid polyhedrons) [START_REF] Xiao | Geometry models of porous media based on Voronoi tessellations and their porosity-permeability relations[END_REF]. Permeability is scaled by an equivalent grain radius R computed by matching the porosity of a composite sphere model with a solid core of radius R and a fluid shell of radius R + t/2.

Dilute scheme. Selecting the Stokes fluid as the matrix (r 0 = r m → 0), combination of ( 42) and (A.3b) with α 0 → 0 yields the dilute estimate of the resistance of a bed of spheres with volume fraction 1 -ϕ 1:

r dil = (1 -ϕ) 9 2R 2 (55) 
Mori-Tanaka scheme. Since the velocity and hence A s,p vanish in the solid phase, while the drag force hence r p • A p,p vanish in the pore phase, the Mori-Tanaka estimate [START_REF] Kuwabara | The Forces experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers[END_REF] of the resistance here is simply:

r mt = 1 -ϕ ϕ 9 2R 2 (56) 
which corrects [START_REF] Albusairi | Flow through beds of perfusive particles: effective medium model for velocity prediction within the perfusive media[END_REF] to yield k mt → 0 as the porosity ϕ → 0, but largely overestimates the permeability for all comparison granular models in fig. 5.

Differential scheme. The differential equation of the differential estimate [START_REF] Brinkman | On the permeability of media consisting of closely packed porous particles[END_REF] written in terms of resistance here requires the concentration tensor (A.3b) with α 0 set to

α diff = R √ r diff :
-

dr dif dϕ = 1 ϕ R s,dif = 1 ϕ 3 3 + 3α diff + α 2 diff 2R 2 (57) 
The latter can be integrated analytically [START_REF] Wilkinson | Modified drag theory of permeability[END_REF] to give the implicit definition of r diff :

-3 2 ln ϕ = ln(1 + α diff + α 2 diff /3) -2 √ 3 arctan 2 √ 3 α diff + √ 3 -π 3 ( 58 
)
The differential estimate improves on the Mori-Tanaka one for the models in fig. 5, yet still overestimates the permeability and violates at low porosities the three point correlation upper bound K 3pts ss derived in [START_REF] Bignonnet | Upper Bounds on the Permeability of Random Porous Media[END_REF] for the Boolean model of spheres.

Self-consistent scheme. The self-consistent estimate requires a description of all phases by relevant Brinkman inhomogeneity problems. If the solid phase is obviously represented by a spherical inhomogeneity of radius R s = R and uses (A.3b) as previously, an inhomogeneity shape has to be chosen for the pore phase. Spherical pores. Let us start with the simplest choice, namely spherical pores of equal radius R p . Then the velocity concentration in pores is given by (A.3a) and the self-consistent estimate (48) of the permeability is the solution to: with α s,sc = R s √ r sc for the grains and α p,sc = R p √ r sc for the pores.

To proceed, we need a rule to set the spherical pore radius R p as a function of the spherical solid grain radius R s . The rule is defined by requesting that the specific surface area of the solid-fluid interface seen from a pore inhomogeneity is the same as the one seen from a solid grain inhomogeneity. For both inhomogeneities, the reference medium is the homogenized medium so that it is reasonable to assume that in average over all pore or solid inhomogeneities, a fraction ϕ (resp. 1 -ϕ) of the inhomogeneity-reference medium interface is an inhomogeneity-pore (resp. inhomogeneity-solid) interface. Let us denote s i the specific surface area of an inhomogeneity i (i = p, pore or i = s, solid). From the point of view of the pore inhomogeneities, the specific surface area between pores and solid is: specific surface area of the inhomogeneity (s p ) times portion of that area in contact with solid (1 -ϕ) times volume proportion of such inhomogeneity in the material (p), hence s p × (1 -ϕ) × ϕ, while it is s s × ϕ × (1 -ϕ) from the solid inhomogeneity point of view. The equality of these two specific surface areas is fulfilled if:

s p = s s ( 60 
)
Since we here have spherical shapes for all phases, (60) requires R s = R p and (59) simplifies to:

1 -ϕ ϕ = 2α 2 sc (15 + 15α sc + 6α 2 sc + α 3 sc ) (3 + 3α sc + α 2 sc )(45 + 45α sc + 6α 2 sc + α 3 sc ) with α sc = R √ r sc (61) 
Despite its relative simplicity, the self-consistent estimate defined by ( 61) provides an almost perfect agreement with simulation data on the Boolean model of spheres and the Voronoi mosaic for porosities above 50%. It reproduces exactly the non-analytical behavior of the drag force due to interactions between multiple spheres, with the leading term r hom /r dil = 1 + 3 [START_REF] Howells | Drag due to the motion of a Newtonian fluid through a sparse random array of small fixed rigid objects[END_REF][START_REF] Hinch | An averaged-equation approach to particle interactions in a fluid suspension[END_REF][START_REF] Kim | Modelling of porous media by renormalization of the Stokes equations[END_REF] (see fig. 5, right). As in Darcy to Darcy or conduction homogenization, the self-consistent model with spherical shapes (61) features a porosity percolation threshold of 1 3 . It is obviously inappropriate to describe the permeability of the Boolean model of spheres which has a porosity percolation threshold ϕ c ≈ 3%, because the spherical shape used for pores is not an appropriate representation of the actual concave shaped pores. Interestingly, the complementary "swiss-cheese" model with Boolean spherical pores in an impermeable matrix has a threshold ϕ c ≈ 29% ( [START_REF] Abdallah | Stokes flow through a Boolean model of spheres: Representative volume element[END_REF], empty dots in fig. 5) which is closer to 1 3 . In general, the value of the percolation threshold of the self-consistent scheme should not be considered as predictive of that of a specific microstructure. Cylindrical pores. To go beyond the spherical pore assumption, the present framework theoretically allows the use of arbitrary shapes of inhomogeneities, for example concave shaped pores as used in [START_REF] Chen | Evaluation of the effective elastic and conductive properties of a material containing concave pores[END_REF][START_REF] Giraud | Effective elastic properties and thermal conductivity of isotropic rocks containing concave pores. Application to oolitic limestones[END_REF][START_REF] Markov | A unified methodology for calculation of compliance and stiffness contribution tensors of inhomogeneities of arbitrary 2D and 3D shapes embedded in isotropic matrix -open access software[END_REF] for elasticity and conduction homogenization. Since solutions to Brinkman inhomogeneity problems with concave pores are yet not available, use of such pores is not possible to day. However, let us illustrate the effect of the pore shape on the output of the self-consistent scheme by representing pores via the Brinkman inhomogeneity problem of an infinitely elongated cylindrical pore of radius R p . The concentration tensor for a cylindrical pore is now given in (A.9a) and involves modified Bessel functions as well as a unit vector n which indicates the orientation of the cylinder axis. The cylinders are assumed to follow an isotropic distribution of orientations, so that upon summation over all pores only the orientation averages of the tensors 1 n = n ⊗ n and 1 t = (1 -n ⊗ n) are required, and equal to 1 3 1 and 2 3 1 respectively. The selfconsistent estimate (48) of the permeability is now the solution to:

√ 2 √ 1 -ϕ + o( √ 1 -ϕ)
(1 -ϕ) 3 3 + 3α s,sc + α 2 s,sc 2R 2 s -ϕ r sc 1 3 8 + α 2 p,sc + 4α p,sc K 0 1 (α p,sc ) 8 + 2 3 2 8 + α 2 p,sc + 4α p,sc K 0 1 (α p,sc ) 16 + α 2 p,sc + 4α p,sc K 0 1 (α p,sc ) = 0 (62) 
where α s,sc = R s √ r sc and α p,sc = R p √ r sc . To link the cylindrical pore radius R p to the solid grain one R s , we invoke again the specific surface area requirement [START_REF] Brinkman | A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[END_REF]. For a cylinder s p = 2/R p while s s = 3/R s for the sphere, hence R p = 2 3 R s is chosen. By doing so, the two self-consistent estimates (61) and ( 62) have exactly the same behavior in the dilute regime ϕ → 1, as seen in the right of figure 5. If a different value of R p were selected, this correspondence would break down.

Interestingly, use of cylindrical pores ensures percolation of the self-consistent estimate at all porosities. Intermediate values of porosity percolation threshold 0 < ϕ c < 1 3 are expected for spheroidal pore shapes, as well as a better agreement with comparison granular models in fig. 5 at low porosity. The solution to the spheroidal Brinkman inhomogeneity is unfortunately known only for an axial loading [START_REF] Zlatanovski | Axisymmetric creeping flow past a porous prolate spheroidal particle using the Brinkman model[END_REF]. Composite spherical inhomogeneity. Another way to describe the pore space is to resort to a composite inhomogeneity. A single type inhomogeneity ω 1 with volume fraction 1 is used. The composite spherical inhomogeneity ω 1 has an impermeable spherical core of radius R surrounded by a concentric spherical Stokes fluid shell of radius R/ 3 √ 1 -ϕ, itself embedded in a Brinkman medium of permeability equal to the soughtfor homogenized permeability. The concentration tensors are given in (A.4). The self-consistent equation [START_REF] Davis | Flow through beds of porous particles[END_REF] collapses to:

r sc = r 1,sc (63) 
where r 1,sc is the equivalent resistance of the composite inhomogeneity defined according to [START_REF] Xiao | Geometry models of porous media based on Voronoi tessellations and their porosity-permeability relations[END_REF] and given by replacing α 0 by R √ r sc in (A.5). The composite sphere self-consistent estimate underestimates the permeability w.r.t. comparison granular models in fig. 5 but produces the correct order of magnitude on the whole porosity range. As for other cell models [START_REF] Saffman | On the Settling Speed of Free and Fixed Suspensions[END_REF], the non-analytic corrective term in the average drag force is incorrectly reproduced, with a behavior in

3 √ 1 -ϕ instead of √ 1 -ϕ.
Brinkman's original self-consistent model. Eq. ( 61) is not to be confused with the original self-consistent method or effective medium approximation of Brinkman [START_REF] Brinkman | A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[END_REF]:

r brinkman = (1 -ϕ) 3 3 + 3α brinkman + α 2 brinkman 2R 2 with α brinkman = R √ r brinkman (64) 
in which the role of the pore phase is obliterated. Eqs. ( 61) and ( 64) both percolate at ϕ = 1 3 and provide the same leading term as ϕ → 1, but in the range ϕ > 0.5 eq. ( 61) agrees with the Boolean model of spheres while eq. ( 64) agrees with the model of unpenetrable spheres.

Effective medium approximation. As detailed in sec. 4.5, the self-consistent estimate with a composite sphere ω 1 (63) is not to be confused with the effective medium approximation (EMA) used by [START_REF] Neale | Prediction of transport processes within porous media: Creeping flow relative to a fixed swarm of spherical particles[END_REF][START_REF] Li | Effective medium approximation and deposition of colloidal particles in fibrous and granular media[END_REF]. The implicit equation defining the EMA estimate r ema to the resistance is:

r ema = r 1,ema • A 1,ema (65) 
The EMA (65) lies slightly above [START_REF] Howells | Drag due to the motion of a Newtonian fluid through a sparse random array of small fixed rigid objects[END_REF] and slightly below comparison granular models in fig. 5.

Cell models. In cell models, a composite cell Ω 0 identical to the composite inhomogeneity used in ( 63) or ( 65) is considered with boundary conditions applied directly on the boundary of the cell. Several choices of boundary conditions have been investigated [START_REF] Happel | Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles[END_REF][START_REF] Boutin | Study of permeability by periodic and self-consistent homogenisation[END_REF][START_REF] Vasin | Permeability of complex porous media[END_REF], we here only present the KUBC and SUBC (see [START_REF] Boucher | Modules effectifs de matériaux composites quasi homogènes et quasi isotropes, constitués d'une matrice élastique et d'inclusions élastiques. II. Cas des concentrations finies en inclusions[END_REF]) which gives respectively minimum and maximum values of the apparent permeability ( 21) for these types of cell models:

k KUBC app = (1 -η) 3 (4 + 7η + 4η 2 ) 18η 3 (1 + η + η 2 + η 3 + η 4 ) R 2 (66a) k SUBC app = (1 -η) 3 (1 + η)(2 + η + 2η 2 ) 3η 3 (3 + 2η 5 ) R 2 (66b) with η = 3 √ 1 -ϕ.
The SUBC estimate (66b) coincides with the zero shear stress BC of Happel [START_REF] Happel | Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles[END_REF] in that case, and provides a good agreement with the unpenetrable sphere model and the eroded face Voronoi model in fig. 5. Estimates (66) bound the composite self-consistent estimate [START_REF] Howells | Drag due to the motion of a Newtonian fluid through a sparse random array of small fixed rigid objects[END_REF] and EMA [START_REF] Kim | Modelling of porous media by renormalization of the Stokes equations[END_REF].

Discussion. Figure 5 illustrates discrepancies with reference results that can arise from the use of the various homogenization schemes. For such materials, schemes based on a clear fluid reference medium like the dilute (55) and Mori-Tanaka (56) schemes are inappropriate: they capture only the leading asymptotic term as ϕ → 1 and fail to reproduce the first corrective term 3 √ 2 √ 1 -ϕ on the drag force increment. This result is expected since the use of a clear fluid reference medium cannot reproduce the average field far from a grain. The differential scheme (58) provides a partial but insufficient correction. Conversely, schemes relying on an effective medium such as the self-consistent scheme (61), [START_REF] Rohan | A Darcy-Brinkman model of flow in double porous media -Two-level homogenization and computational modelling[END_REF] reproduce the first corrective term 3 √ 2 √ 1 -ϕ -which confirms the interest in using Brinkman's law in the inhomogeneity problems -, unless the porosity is represented as a shell around a spherical grain using a composite sphere [START_REF] Howells | Drag due to the motion of a Newtonian fluid through a sparse random array of small fixed rigid objects[END_REF], [START_REF] Kim | Modelling of porous media by renormalization of the Stokes equations[END_REF]. As for cell models (66), the composite sphere indeed introduces a 3 √ 1 -ϕ corrective term improper at low solid concentration due to a placement of porosity which is too regular and leads to an underestimation of the permeability. A major result of this work is that porosity can be represented differently than by a composite sphere using homogenization schemes. Under requirement [START_REF] Brinkman | A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[END_REF], the two self-consistent estimates with spherical [START_REF] Auriault | Filtration Law in Porous Media with Poor Separation of Scales[END_REF] or cylindrical [START_REF] Rohan | A Darcy-Brinkman model of flow in double porous media -Two-level homogenization and computational modelling[END_REF] pores illustrate that the shape of the inhomogeneities used to represent pores becomes increasingly important as the porosity decreases. As compared to the Voronoi mosaic or Boolean solid sphere models, a good agreement is provided by ( 61), [START_REF] Rohan | A Darcy-Brinkman model of flow in double porous media -Two-level homogenization and computational modelling[END_REF] for solid concentrations as high as 50%. But for lower porosities, a representation of pores by spheres (61) underestimates (resp. cylinders (62) overestimates) the connectivity of the pore phase: more appropriate pore shapes (spheroidal, concave, ...) should be used to achieve a realistic porosity percolation threshold.

Fibrous porous media with impermeable fibers

A detailed study of the permeability of fibrous media can be found in Jackson and James [START_REF] Jackson | The permeability of fibrous porous media[END_REF], including a large experimental database and a review of permeability homogenization models such as periodic arrangements of fibres or cylindrical cell models. The homogenized permeabilities will here be compared in figure 5 to the following actual or model fibrous media: (a) Experimental results gathered in [START_REF] Jackson | The permeability of fibrous porous media[END_REF][START_REF] Davies | The Separation of Airborne Dust and Particles[END_REF] on a variety of fibrous media. (b) Boolean model of cylinders [START_REF] Willot | The Permeability of Boolean Sets of Cylinders[END_REF] with isotropic distribution of orientations (see fig. 4b). (c) Voronoi fibrous model [START_REF] Xiao | Geometry models of porous media based on Voronoi tessellations and their porosity-permeability relations[END_REF], which is obtained by dilation of the edges of the cells of Voronoi tessellations.

Dilute, Mori-Tanaka and differential schemes. Because of Stokes' paradox, the inhomogeneity problem of an isolated solid cylinder in an infinite Stokes fluid cannot be used, hence the dilute, Mori-Tanaka and differential estimates cannot be defined here. This meets the above discussion in sec. 5.1 that clear fluid is not an appropriate reference medium as it fails to represent the average behavior in the far field.

Self-consistent scheme. The self-consistent estimate ( 48) is built from cylindrical impermeable inhomogeneities (A.9b) of radius R s = R together with a spherical (A.3a) or cylindrical (A.9a) Stokes inhomogeneity of radius R p with R p = 3 2 R s for the spherical pore and R p = R s for the cylindrical pore from [START_REF] Brinkman | A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[END_REF]. The implicit equation for spherical (67a) or cylindrical (67b) pores are, with α i,sc = R i √ r sc :

( The self-consistent estimates (67a) and (67b) are in close agreement with the Boolean cylinders [START_REF] Willot | The Permeability of Boolean Sets of Cylinders[END_REF] or Voronoi fibrous [START_REF] Xiao | Geometry models of porous media based on Voronoi tessellations and their porosity-permeability relations[END_REF] models for ϕ > 0.5. The use of spherical pores in (67a) leads to a percolation threshold around 35%, while cylindrical pores always percolate. Neither spherical nor cylindrical pores are representative of the actual pore shapes, which explains the discrepancy with numerical results at lower porosity.

1 -ϕ) 2 + α s,sc K 0 1 (α s,sc ) α s,sc K 0 1 (α s,sc ) 5 
Effective medium approximation. EMA have been derived by embedding the composite cylinders either in an effective Darcy [START_REF] Neale | Flow perpendicular to mats of randomly arranged cylindrical fibers (importance of cell models)[END_REF] or Brinkman [START_REF] Li | Effective medium approximation and deposition of colloidal particles in fibrous and granular media[END_REF] reference medium with remote boundary conditions. The results of [START_REF] Li | Effective medium approximation and deposition of colloidal particles in fibrous and granular media[END_REF], as well as the self-consistent estimate with a composite cylindrical inhomogeneity [START_REF] Davis | Flow through beds of porous particles[END_REF], are not reported in figure 6 as they both lie within the bounds [START_REF] Rubinstein | Flow in random porous media: mathematical formulation, variational principles, and rigorous bounds[END_REF]. The transposition of Brinkman's model for spheres [START_REF] Brinkman | A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[END_REF] to cylinders is treated by [START_REF] Spielman | Model for predicting pressure drop and filtration efficiency in fibrous media[END_REF] and lies below the self-consistent model with spherical pores and cylindrical solids.

Cell models. Cylindrical cell models [START_REF] Happel | Viscous Flow Relative to Arrays of Cylinders[END_REF][START_REF] Boutin | Study of permeability by periodic and self-consistent homogenisation[END_REF][START_REF] Kuwabara | The Forces experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers[END_REF][START_REF] Deo | Hydrodynamic permeability of aggregates of porous particles with an impermeable core[END_REF] feature a composite cylinder made of a solid core of radius R and a Stokes fluid envelope of radius R/η, where η is usually set to match the overall porosity ϕ as η = √ 1 -ϕ. For a single cylinder of axis along the unit vector n, apparent permeabilities [START_REF] Hill | A self-consistent mechanics of composite materials[END_REF] with KUBC or SUBC -which here coincides with the no shear stress BC of [START_REF] Happel | Viscous Flow Relative to Arrays of Cylinders[END_REF] -are [45, Appendix A]:

k KUBC app = - R 2 η 2 ln η + 1 -η 2 1 + η 2 1 2 1 n + 1 4 1 t (68a) k SUBC app = - R 2 η 2 ln η + (1 -η 2 )(3 -η 2 ) 4 1 2 1 n + ln η + 1 -η 4 2(1 + η 4 ) 1 4 1 t (68b) 
To deal with an isotropic distribution of orientations of the fibers, the orientation averages of (68) are taken in figure 6. This amounts to replace 1 n and 1 t by 1 3 1 and 2 3 1 respectively. The cell models (68) encompass most of the experimental results gathered in [START_REF] Jackson | The permeability of fibrous porous media[END_REF][START_REF] Davies | The Separation of Airborne Dust and Particles[END_REF], but tend to underestimate the simulation results on the Boolean model of cylinders [START_REF] Willot | The Permeability of Boolean Sets of Cylinders[END_REF] and the Voronoi fibrous model [START_REF] Xiao | Geometry models of porous media based on Voronoi tessellations and their porosity-permeability relations[END_REF], similarly to their counterparts in sec. 5.1.

Materials with tubular or crack-like pores

The homogenized permeabilities are compared in figure 7 to numerical simulations on the following model porous media:

(a) Boolean model of elongated (resp. flat) cylinders of radius R (resp. thickness 2R) [START_REF] Willot | The Permeability of Boolean Sets of Cylinders[END_REF] with isotropic distribution of orientations (see fig. 4b or 4c) (b) Voronoi tubular (resp. granular) model with tube radii R (resp. intergranular distance 2R) [START_REF] Xiao | Geometry models of porous media based on Voronoi tessellations and their porosity-permeability relations[END_REF], which is obtained by erosion from the edges (resp. faces) of the cells of Voronoi tessellations As opposed to section 5.2, flow now occurs only inside the cylinders or eroded parts. cell model SUBC (68b) (Happel [42]) cell model KUBC (68a) (Boutin [45]) exp. data (Jackson and James [START_REF] Jackson | The permeability of fibrous porous media[END_REF]) exp. data (Davies [START_REF] Davies | The Separation of Airborne Dust and Particles[END_REF]) Boolean cyl. fibres (Willot [29]) Voronoi cyl. fibres (Xiao & Yin [30]) Mori-Tanaka scheme. The matrix is the impermeable solid, while the inhomogeneity problems feature Stokes fluid inhomogeneities, either cylindrical or planar. Flow is possible in the axial (resp. transverse) direction of the cylindrical (resp. planar) pore inhomogeneities since they are unbounded: these problems actually correspond to Poiseuille's flows. The concentration tensors for the cylinder of axis n, radius R is lim kp→∞ k p • B p,s = R 2 8 1 n and of the planar pore of normal n, thickness 2R is lim kp→∞ k p • B p,s = R 2 3 1 t . The Mori-Tanaka estimate [START_REF] Kuwabara | The Forces experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers[END_REF] is:

k mt = R 2 24 ϕ 1 -ϕ (tubular pores) ; k mt = 2R 2 9 ϕ 1 -ϕ (planar pores) (69) 
Differential scheme. Starting from the solid as the background medium (k dif (ϕ = 0) = 0), the differential estimate ( 52) is built by iteratively adding cylindrical or planar pores. Their permeability contribution tensors [START_REF] Barthélémy | Effective permeability of media with a dense network of long and micro fractures[END_REF] are readily obtained from (A.9a) or (A.12a) and [START_REF] Kröner | Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls[END_REF]. The ordinary differential equations defining k dif with α dif = R/ √ k dif are:

dk dif dϕ = k dif 3(1 -ϕ) 8 + α 2 dif + 4α dif K 0 1 (α dif ) 8 + 4 8 + α 2 dif + 4α dif K 0 1 (α dif ) 16 + α 2 dif + 4α dif K 0 1 (α dif ) (tubular pores) (70a) dk dif dϕ = k dif 3(1 -ϕ) 1 + 2 1 + α dif + 1 3 α 2 dif (planar pores) (70b)
Self-consistent scheme. A spherical shape is chosen to represent the solid phase. Eq. ( 62) directly applies to the medium with tubular pores, while for planar pores it becomes:

(1 -ϕ)

3 3 + 3α s,sc + α 2 s,sc 2R 2 s -ϕ r sc 1 3 + 2 3 1 + α p,sc + 1 3 α 2 p,sc = 0 ( 71 
)
where α i,sc = R i √ r sc and R s = 3R p from (60). Carman Kozeny (plan. pore) [START_REF] Willot | The Permeability of Boolean Sets of Cylinders[END_REF] Boolean (cyl. pore) (Willot [START_REF] Willot | The Permeability of Boolean Sets of Cylinders[END_REF])

Voronoi (cyl. pore) (Xiao & Yin [START_REF] Xiao | Geometry models of porous media based on Voronoi tessellations and their porosity-permeability relations[END_REF])

Boolean (plan. pore) (Willot [START_REF] Willot | The Permeability of Boolean Sets of Cylinders[END_REF])

Voronoi (plan. pore) (Xiao & Yin [START_REF] Xiao | Geometry models of porous media based on Voronoi tessellations and their porosity-permeability relations[END_REF])

Figure 7: Permeability of a porous medium with cylindrical or planar pores of equal radius R or thickness 2R, as a function of the porosity ϕ. Comparison to numerical simulations on Boolean models of elongated (fig. 4b) or flat cylinders (fig. 4c) [START_REF] Willot | The Permeability of Boolean Sets of Cylinders[END_REF] and tubular (resp. granular) media built from Voronoi diagrams eroded at edges (resp. faces) [START_REF] Xiao | Geometry models of porous media based on Voronoi tessellations and their porosity-permeability relations[END_REF]. The specific surface area in the Carman Kozeny estimate is taken from the Boolean models [START_REF] Willot | The Permeability of Boolean Sets of Cylinders[END_REF]. Double porosity medium with disconnected mesopores: meso-porosity 25%, micro-porosity 65%, total porosity 73.5%, size ratio of mesopores to micrograins 8 (c) Double porosity medium with microporous Boolean disks (meso-porosity 40%, micro-porosity 65%, total porosity 79%), size ratio of mesograins to micrograins 8

All estimates reproduce the overall trend of models as seen from figure 7, left. Rescaling the results by ( 69) provides more details: for planar pores, the best agreement with Boolean or eroded Voronoi models is obtained with the Mori-Tanaka scheme. For cylindrical pores, numerical models lie between the Mori-Tanaka and the differential scheme. The Carman Kozeny estimate (see [START_REF] Willot | The Permeability of Boolean Sets of Cylinders[END_REF] for details) is well suited, except at the highest permeabilities. For double porosity models (b) and (c), the total porosity is:

ϕ tot = ϕ meso + (1 -ϕ meso )ϕ micro (72) 
where ϕ meso is the volume fraction of meso-pores in the RVE and ϕ micro is the intrinsic porosity of the micro-porous region, i.e. the volume of micro-pores divided by the sum of the volumes of micro-pores and micro-grains.

In model (a) the pores are connected provided the porosity lies above the percolation threshold of the Boolean model of disks, that is for porosities above ϕ c = 0.323661 according to [START_REF] Quintanilla | Efficient measurement of the percolation threshold for fully penetrable discs[END_REF]. As the Representative Volume Element size for the permeability increases strongly near the percolation threshold [START_REF] Abdallah | Stokes flow through a Boolean model of spheres: Representative volume element[END_REF][START_REF] Bignonnet | Efficient FFT-based upscaling of the permeability of porous media discretized on uniform grids with estimation of RVE size[END_REF], simulations are carried out for porosities above 40%, up to 99%. In model (b) the mesoporosity is disconnected, meaning that the fluid must penetrate the micropores to join two mesopores. As a result, the mesoporosity is expected to have a moderate impact on the increase of the macroscopic permeability. In model (c), the connectivity of the mesopores depends on the position of the mesoporosity w.r.t. the percolation threshold of the Boolean model of disks. The permeability is thus expected to undergo a drastic increase as the , as a function of the porosity ϕ.

mesoporosity exceeds ϕ c . Simulations are carried out on realizations with target mesoporosity between 5% and 40% for model (b) and between 10% and 90% for model (c). Note that unlike simulations in [START_REF] Mezhoud | Computation of macroscopic permeability of doubly porous media with FFT based numerical homogenization method[END_REF] where Darcy equations are assumed in the microporous domain and Stokes equations in the mesopores, present simulations are sufficiently refined so that the both the micropores and mesopores are discretized on the same large simulation, assuming Stokes equations in all types of pores, as in [START_REF] Zaripov | Determination of Brinkman Model Parameters Using Stokes Flow Model[END_REF]. Hence, the present simulations are free of assumptions that would arise concerning the Darcy-Stokes interface. Obviously, such simulations are quite demanding to obtain both accurate and representative results, even in a two-dimensional setting.

Discretization errors and representativity of simulations. First, the accuracy is assessed by carrying out simulations on three nested discretization grids (512 2 , 1024 2 , 2048 2 ) for each random realization of the models. The computational time for a single simulation on the finest 2048 2 grid ranges from 60 seconds for the most porous samples to 300 seconds for the least porous samples, namely model (a) with ϕ = 0.4, on a standard office computer with CPU frequency 3.2GHz and parallelization on 8 threads. In the finest grid, the ratio of the disk diameter d to pixel size h is 16 (this is the diameter of the micro disks for models (b) and (c)). Plots of the computed permeability w.r.t. to h/d show linear trends which are fitted to extrapolate results to h/d → 0. Further, for model (a) only, the effect of the discretization procedure is investigated by choosing three variants among the procedures described in [START_REF] Bignonnet | Efficient FFT-based upscaling of the permeability of porous media discretized on uniform grids with estimation of RVE size[END_REF], namely : the energy-consistent, rotated or forward-backward Green operators, together with force placement assumptions @center, @vertex or @face of the pixels respectively. The procedure energy-consistent@center (resp. rotated@vertex) yields decreasing (resp. increasing) computed permeability as h/d decreases and allows to bound the permeability, while the procedure forward-backward@face yields intermediate values for the lowest half of investigated porosities. Extrapolated values of the computed permeabilities using the three procedures have been used to display the error bars in figure 9: the accuracy is high for porosities above 50% but worsens as the porosity approaches the percolation threshold. For the porosity 65% selected for the background microporous material in models (b) and (c), the discretization error is negligible. With the addition of larger mesopores, the discretization error is further reduced. Hence, discretization errors are not reported on figures 10, model (b) and 11, model (c).

Second, the representativity of simulations is addressed by two methods. At each porosity or mesoporosity, n realizations of the random microstructure model are performed (n = 20 for model (a), n = 10 for models (b) and (c)), and simulated on three grid sizes as stated above. The 95% confidence interval around the mean value is computed from the standard deviation D k of the extrapolated permeabilities as 2D k / √ n, the corresponding representativity error bars are displayed in the results of figures 10, model (b) and 11, model (c). For model (a), the methodology used in [31, section 4] to estimate the expected standard deviation from the integral range -which is a mesure of the volume of self-correlation of the velocity fieldshows a good agreement with observed standard deviations from n = 20 realizations at each porosity. The relative representativity error RV E k = 2D k /( √ nk hom ) expected from a single realization (resp. from n = 20 simulations) is below 7.5% (resp. 1.7%) for all studied porosities in model (a) and 5.7% (resp 1.3%) for the selected porosity 65%. To reach RV E k = 5% from a single simulation for the porosity 65%, the size L of the simulation box is estimated to about 145 times the disk diameter d according to the methodology used in [START_REF] Abdallah | Stokes flow through a Boolean model of spheres: Representative volume element[END_REF][START_REF] Bignonnet | Efficient FFT-based upscaling of the permeability of porous media discretized on uniform grids with estimation of RVE size[END_REF], which is much larger than for 3D simulations with the Boolean model of spheres [START_REF] Abdallah | Stokes flow through a Boolean model of spheres: Representative volume element[END_REF]. We have used L/d = 128 in all simulations.

The permeability of model (a) at porosity ϕ = 65% is k micro /R 2 micro = 0.072 ± 0.001. Accordingly for double porosity models (b) and (c), selected ratios R meso /R micro of 2, 4, 8, 16 correspond to dimensionless parameter α = R meso / √ k micro values equal to 7.4, 14.9, 29.7, 59.4 respectively at the mesoscopic scale.

Assessment of homogenization schemes

Model (a). The dilute, Mori-Tanaka and differential scheme which start from a clear fluid reference medium are discarded for the reasons discussed in sections 5.1 and 5.2. The self-consistent estimate ( 48) is built from cylindrical impermeable inhomogeneities (A.9b) of radius R s = R together with a cylindrical (A.9a) or planar (A.12a) Stokes inhomogeneity of radius R p with R p = R s for the cylindrical pore and R p = 2R s for the planar pore from [START_REF] Brinkman | A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[END_REF]. The implicit equation for cylindrical (73a) or planar (73b) pores are, with

α i,sc = R i √ r sc : (1 -ϕ) 2 + α s,sc K 0 1 (α s,sc ) α s,sc K 0 1 (α s,sc ) -ϕ 8 + α 2 p,sc + 4α p,sc K 0 1 (α p,sc ) 16 + α 2 p,sc + 4α p,sc K 0 1 (α p,sc ) = 0 (disk pores) (73a) (1 -ϕ) 2 2 + α s,sc K 0 1 (α s,sc ) α s,sc K 0 1 (α s,sc ) - ϕ 2 1 + 1 + α p,sc + α 2 p,sc /3 = 0 (planar pores) (73b)
where a plane isotropy of the planar pores is assumed in (73b). The self-consistent estimate for a composite cylinder is derived by analogy with [START_REF] Howells | Drag due to the motion of a Newtonian fluid through a sparse random array of small fixed rigid objects[END_REF]. It lies between the transverse components of cylindrical cell models [START_REF] Rubinstein | Flow in random porous media: mathematical formulation, variational principles, and rigorous bounds[END_REF], see figure 9. The trends of figure 5 for spherical grains are retrieved. Eqs. (73a) and (73b) are respectively below and above the simulation results for model (a). Eq. (73a) percolates at ϕ = 1 2 but provides a reasonable agreement with simulation results for ϕ ≥ 60%.

Model (b). Let ϕ meso denote the volume fraction of mesopores of radii R meso , k 0 the permeability of the microporous phase, r 0 its inverse and α 0 = R meso / √ k 0 . From (A.9a), the Mori-Tanaka estimate (46) of the homogenized resistance is:

r mt = (1 -ϕ meso )r 0 (1 -ϕ meso ) + ϕ meso A 1,0 with A 1,0 = 2 8 + α 2 0 + 4α 0 K 0 1 (α 0 ) 16 + α 2 0 + 4α 0 K 0 1 (α 0 ) (74) 
The differential estimate is started from the initial condition r dif (ϕ meso = 0) = r 0 and the differential equation:

dr dif dϕ meso = - 2 1 -ϕ meso 8 + α 2 dif + 4α dif K 0 1 (α dif ) 16 + α 2 dif + 4α dif K 0 1 (α dif ) with α dif = R meso r dif (75) 
Considering that the inhomogeneity size used to represent the RVE is a disk much larger than √ k 0 and plane isotropy, the Maxwell estimate [START_REF] Neale | Prediction of transport processes within porous media: Creeping flow relative to a fixed swarm of spherical particles[END_REF] written in terms of resistance requires the RVE resistance contribution tensor R RVE,0 in the Darcy limit whose in-plane components are (r Max -r 0 ) -1 + (2r 0 ) -1 -1 . With A 1,0 defined as in [START_REF] Allaire | Homogenization of the Navier-Stokes equations with a slip boundary condition[END_REF], the Maxwell estimate to the resistance is:

r Max = r 0 1 - 1 2 + 1 ϕ meso A 1,0 -1 (76) 
Eq. ( 76) violates the Reuss bound (26) r app ≤ r Ω = (1 -ϕ meso )r 0 at large mesoporosity. This confirms that, because size effects are inherent to Brinkman inhomogeneities, the transposition of Maxwell's scheme to Brinkman-Darcy upscaling is not appropriate.

The self-consistent estimate with cylindrical pores (A.9a) and microporous cylindrical grains (A.8) all of radii R meso is solution to:

(1-ϕ meso ) (r 0 -r sc )α sc 2(α 2 0 -α 2 sc ) + α sc α 2 0 K 0 1 (α sc ) I 1 0 (α 0 ) + α 0 α 2 sc [2α sc (α 2 0 -α 2 sc ) + α 2 0 (α 2 0 + α 2 sc )K 0 1 (α sc )] I 1 0 (α 0 ) + α sc α 0 (α 2 sc + α 2 0 )

-ϕ meso r sc 8 + α 2 sc + 4α sc K 0 1 (α sc ) 16 + α 2 sc + 4α sc K 0 1 (α sc ) = 0 (77) with α sc = R meso r sc . Asymptotically as R meso √ k 0 , r sc → r 0 (1-2ϕ meso ) if ϕ meso ≤ 1 2 else 0, as in Darcy-Darcy upscaling with infinitely permeable cylindrical pores. The ordering of the Mori-Tanaka, differential and self-consistent schemes using Brinkman inhomogeneities is expected from the trends known in Darcy-Darcy (equivalent to conduction) upscaling. At low mesoporosity (ϕ meso ≤ 25%), simulation results in figure 10 are slightly below the self-consistent estimate [START_REF] Feppon | High Order Homogenization of the Stokes System in a Periodic Porous Medium[END_REF]. At intermediate mesoporosity (ϕ meso ≥ 30%), simulation results fall between the self-consistent (77) and differential [START_REF] Quintard | Transport in ordered and disordered porous media II: Generalized volume averaging[END_REF] estimates, while the Mori-Tanaka one (74) overestimates the resistance. Model (c). The self-consistent estimate with microporous, disk-shaped grains is given by (77) for disk-shaped pores, and for planar pores with a plane isotropic distribution of orientations by:

(1-ϕ meso ) (r 0 -r sc )2α sc 2(α 2 0 -α 2 sc ) + α sc α 2 0 K 0 1 (α sc ) I 1 0 (α 0 ) + α 0 α 2 sc [2α sc (α 2 0 -α 2 sc ) + α 2 0 (α 2 0 + α 2 sc )K 0 1 (α sc )] I 1 0 (α 0 ) + α sc α 0 (α 2 sc + α 2 0 ) -ϕ meso 2 r sc 1 + 1 + α p,sc + α 2 p,sc /3 = 0 (78) The self-consistent estimates [START_REF] Feppon | High Order Homogenization of the Stokes System in a Periodic Porous Medium[END_REF] and [START_REF] Goyeau | Averaged Momentum Equation for Flow Through a Nonhomogenenous Porous Structure[END_REF] are compared in figure 11 to simulations results for model (c). The asymptotic trend as ϕ meso → 1 is well reproduced. The use of planar pores (78) (resp disk pores (77)) tends to overestimate (resp. underestimate) the simulation results, which is directly attributed to the overor underestimation of the mesoporosity percolation thresholds, as for model (a).

The cell model with SUBC (generalized Happel model) and porous core surrounded by a fluid envelope with size ratio η = √ 1 -ϕ meso gives a permeability for flow transverse to cylinder axis equal to (see e.g. [START_REF] Deo | Hydrodynamic permeability of aggregates of porous particles with an impermeable core[END_REF]): k SUBC app,transverse = R 2 8η 4 α 3 1 ln η + 2α 

The self-consistent estimate with the same composite inclusion, worked out from the general solution (A.7), is bounded by the cell model with SUBC (79) and KUBC (not detailed here, see e.g. [START_REF] Deo | Hydrodynamic permeability of aggregates of porous particles with an impermeable core[END_REF]). For intermediate mesoporosity (ϕ meso ≤ 0.6) and larger grains (α 1 ≥ 14.9), schemes based on composite inclusions are in closer agreement with simulation results than (77), ( 78)) due to issues on the mesoporosity percolation threshold discussed above.

Conclusion

This work is a contribution towards the unification and generalization of existing schemes for permeability upscaling, as an extension of micromechanical estimates available for elasticity or conduction. The definition and study of generalized Brinkman inhomogeneities is demonstrated as an efficient way to formulate homogenization schemes suitable to Stokes to Darcy upscaling. The existing effective medium approximations with composite cells [START_REF] Brinkman | On the permeability of media consisting of closely packed porous particles[END_REF][START_REF] Neale | Prediction of transport processes within porous media: Creeping flow relative to a fixed swarm of spherical particles[END_REF][START_REF] Li | Effective medium approximation and deposition of colloidal particles in fibrous and granular media[END_REF][START_REF] Albusairi | Flow through beds of perfusive particles: effective medium model for velocity prediction within the perfusive media[END_REF][START_REF] Sekhar | Effective medium model for flow through beds of porous cylindrical fibres[END_REF][START_REF] Prakash | Overall bed permeability for flow through beds of permeable porous particles using the effective medium model-stress jump condition[END_REF] or the iterated dilute approximation [START_REF] Wilkinson | Modified drag theory of permeability[END_REF] naturally appear as special cases within the present formalism.

The Brinkman based homogenization schemes have been assessed against a panel of types of porous media, including granular and fibrous media, model materials with spanning flat or elongated pores as well as double porosity materials with either connected or disconnected mesoporosity. An important conclusion is that there is no universal homogenization scheme, but rather a diversity which is necessary to handle the variety of microstructure types. The Brinkman-based dilute, Mori-Tanaka, differential and self-consistent schemes behave similarly to their counterparts in elasticity or conduction upscaling, although permeability is a property extremely sensitive to microstructure characteristics. However, because of a size dependence inherent to Brinkman inhomogeneities, the transposed Maxwell's scheme appears ill-behaved and may violate Voigt-Reuss bounds. The self-consistent scheme delivers accurate results for higher porosity granular or fibrous materials, by far better than upper bounds build on more complex microstructure information such as three point volume and surface correlation functions [START_REF] Bignonnet | Upper Bounds on the Permeability of Random Porous Media[END_REF]. Its potential to handle intermediate porosity must still be explored by resorting to more appropriate pore shapes, which have a direct impact on the percolation threshold.

Generalized inhomogeneities allow not only for simple shaped, uniform inclusion or cell based estimates as investigated here, but also in future and with additional computational effort, for more complex shapes akin to concave shaped pores [START_REF] Chen | Evaluation of the effective elastic and conductive properties of a material containing concave pores[END_REF][START_REF] Giraud | Effective elastic properties and thermal conductivity of isotropic rocks containing concave pores. Application to oolitic limestones[END_REF][START_REF] Markov | A unified methodology for calculation of compliance and stiffness contribution tensors of inhomogeneities of arbitrary 2D and 3D shapes embedded in isotropic matrix -open access software[END_REF] or any relevant morphological representative pattern [START_REF] Bornert | A generalized pattern-based self-consistent scheme[END_REF][START_REF] Bornert | Morphologically representative pattern-based bounding in elasticity[END_REF]. A first natural extension would be the spheroidal shape. The solution to Brinkman's flow inside spheroid slightly deformed from a sphere has been investigated in [START_REF] Saad | Translation and rotation of a porous spheroid in a spheroidal container[END_REF][START_REF] Yadav | On hydrodynamic permeability of a membrane built up by porous deformed spheroidal particles[END_REF] for a cell model. Solution to Brinkman equation for axial flow past an arbitrary spheroid is given in [START_REF] Zlatanovski | Axisymmetric creeping flow past a porous prolate spheroidal particle using the Brinkman model[END_REF] but still missing for the transverse direction.

The homogenization schemes may mathematically handle anisotropic media as well as particle or pore size distributions, but their relevance has not been demonstrated herein. In particular, materials with continuous and spread size distributions raise fundamental issues related to scale separation. This aspect will be critical for real material applications.

Two fundamental points have been omitted from the current study: the effect of the effective fluid viscosity in Brinkman's equations and the impact of the jump momentum at the interface between two different porous media. The present framework will have to be extended as understanding will progress on these aspects.

The direct correspondence between the elasticity, conduction or Brinkman-based homogenization schemes opens the possibility for joint property upscaling in the spirit of [START_REF] Achour | Multi-scale modeling of the chloride diffusivity and the elasticity of Portland cement paste[END_REF], e.g. the simultaneous upscaling of stiffness, conduction and permeability of porous material from a shared microstructure description via inhomogeneities and homogenization schemes.
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 1 Figure 1: Graphical abstract of the article: estimates of the homogenized permeability are build via several Brinkman inhomogeneity problems, assembled by homogenization schemes, to estimate the region-wise averages of the velocity and force concentration tensors of the Stokes flow problem at the microscopic scale.
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 2 Figure2: Examples of cell and inhomogeneity problems with different types of boundary conditions (PBC can only be used when Ω 0 is a parallelepiped). (a) the whole domain Ω 0 is a cell of heterogeneous permeability k(x) whose apparent permeability kapp is used to estimate k hom ; (b) the inhomogeneity ω i is a morphologically representative pattern of a region Ω i of the RVE, embedded in a reference medium of uniform permeability k 0 .
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 4 Figure 4: Examples of Boolean models of spheres and elongated or flat cylinders
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 52 Figure 5: Permeability of a granular porous medium with spherical grains of equal radius R or Voronoi cells, scaled by kmt = 2R 2 ϕ 9(1-ϕ) (left) or r dil = 9(1-ϕ) 2R 2(right), as a function of the porosity ϕ.

( 1 2 s,sc 2R 2 s-ϕ r sc 3 15 +

 12215 -ϕ) 3 3 + 3α s,sc + α 15α p,sc + 6α 2 p,sc + α 3 p,sc 45 + 45α p,sc + 6α 2 p,sc + α 3

  (cyl. pore) (67b) self-consistent (sph. pore) (67a)

Figure 6 :

 6 Figure 6: Permeability of a fibrous porous medium with cylindrical fibres of equal radius R, scaled by rasympt = 6(1-ϕ) -ln(1-ϕ)R 2 , as a function of the porosity ϕ.

  (cyl. pore) (69)a differential (cyl. pore) (70a) self-consistent (cyl. pore)[START_REF] Rohan | A Darcy-Brinkman model of flow in double porous media -Two-level homogenization and computational modelling[END_REF] Carman Kozeny (cyl. pore)[START_REF] Willot | The Permeability of Boolean Sets of Cylinders[END_REF] Mori-Tanaka (plan. pore) (69)b differential (plan. pore) (70b) self-consistent (plan. pore)[START_REF] Childress | Viscous flow past a random array of spheres[END_REF] 

Figure 8 :

 8 Figure8: Some realizations of microstructures used in 2D FFT simulations (a) Boolean models of disks with porosity 65% (b) Double porosity medium with disconnected mesopores: meso-porosity 25%, micro-porosity 65%, total porosity 73.5%, size ratio of mesopores to micrograins 8 (c) Double porosity medium with microporous Boolean disks (meso-porosity 40%, micro-porosity 65%, total porosity 79%), size ratio of mesograins to micrograins 8

5. 4 .

 4 Double porosity materials 5.4.1. Simulations Models. A series of simulations is carried out on model microstructures discretized on uniform grids using the algorithm based on the Stokes fluid Green function and Fast Fourier Transform described in[START_REF] Bignonnet | Efficient FFT-based upscaling of the permeability of porous media discretized on uniform grids with estimation of RVE size[END_REF]. Three types of microstructure models are investigated:(a) a single porosity model of Boolean disks (figure8a), which serves as a reference porous medium (b) a double porosity model with mesopores created by carving out non overlapping disks in the medium of model (a) (figure8b) (c) a double porosity model with mesopores created by retaining the medium of model (a) only inside the disks of a Boolean model of larger disks, leaving the complementary space as mesopores (figure8c)

  (cyl. pore) (73a) self-consistent (plan. pore) (73b) self-consistent (composite cyl.) cell model SUBC (68b) along 1 t cell model KUBC (68a) along 1 t Boolean disks (FFT sim.)
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 9 Figure 9: Permeability of the 2D Boolean model of disks (model (a)) with impermeable disks of equal radius R, scaled by kasympt = -ln(1-ϕ)R 2 8(1-ϕ)

  Maxwell FFT sim. α 0 = 7.4 FFT sim. α 0 = 14.9 FFT sim. α 0 = 29.7 FFT sim. α 0 = 59.4
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 10 Figure 10: Permeability of the 2D double porosity material model (b) with microporosity ϕ micro = 65%, as a function of the mesoporosity ϕmeso, for ratios of meso to micro disks of 2, 4, 8 and 16 (resp. α 0 = Rmeso/ √ k micro = 7.4, 14.9, 29.7 and 59.4).
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Figure 11 :

 11 Figure 11: Permeability of the 2D double porosity material model (c) with microporosity ϕ micro = 65%, as a function of the mesoporosity ϕmeso, for ratios of meso to micro disks of 1, 2, 4, 8 and 16 (resp. α 1 = Rmeso/ √ k micro = 3.7, 7.4, 14.9, 29.7 and 59.4).

Funding. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Appendix A. Solutions to some Brinkman inhomogeneity problems

Appendix A.1. Spherical inhomogeneity Brinkman equations admit separable solutions in the spherical coordinate system (r, θ, φ) when the permeability is isotropic, i.e. k i = k i 1 in each medium i. The characteristic length i = √ k i introduced. The velocity and pressure solutions to the inhomogeneity problem with remote velocity V 0 = V 0 e z with the direction z corresponding to θ = 0 are: v = u(r) cos(θ)e r -(u(r) + 1 2 r u (r)) sin(θ)e θ u(r) = c 1,i + c 2,i r -3 + c 3,i ( i -r)r -3 exp(r/ i ) + c 4,i ( i + r)r -3 exp(-r/ i )

For the medium i = 1 containing the origin, the coefficients must meet c 2,1 = 0 and c 3,i = c 4,i to avoid the diverging behavior as r → 0. In the unbounded reference medium i = 0, the coefficients must meet c 3,0 = 0 to avoid the diverging behavior as r → ∞. The other coefficients are determined by solving the system of equations of continuity of the radial and tangential velocity and stress across the boundary between two phases.

Appendix A.1.1. Homogeneous spherical inhomogeneity The average velocity localisation tensor [START_REF] Willot | The Permeability of Boolean Sets of Cylinders[END_REF] in a Brinkman sphere of radius R with isotropic permeability k 1 immersed in a reference Brinkman medium of permeability k 0 is:

with the dimensionless variables α i = R/ √ k i (i = 0, 1). The following limiting cases of inhomogeneity types are useful:

Stokes inhomogeneity lim

Darcy inhomogeneity lim

Eq. (A.3b) times µV is the well known expression of Brinkman [START_REF] Brinkman | A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[END_REF] for the drag force per unit volume experienced by a solid sphere in a Brinkman medium with remote velocity V . Eq. (A.3c) is the classical expression used in Darcy to Darcy homogenization. Eq. (A.3a) has not been used in previous Stokes to Darcy homogenization schemes [START_REF] Brinkman | A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles[END_REF][START_REF] Wilkinson | Modified drag theory of permeability[END_REF] but plays a key role in our version of the Stokes to Darcy self-consistent scheme or when dealing with double porosity materials (i.e. with porosity at several scales).

Appendix A.1.2. Composite spherical inhomogeneity

The average concentration tensors (29) of a composite spherical inhomogeneity ω 1 with impermeable core of radius R and Stokes shell of radius R/η with η ∈ [0; 1] embedded in a Brinkman reference medium of isotropic permeability k 0 are:

where

with α 0 = R/ √ k 0 and where ( 32) is used to compute the average leading to r 1,0 • A 1,0 . The equivalent resistance of the composite sphere is defined according to (30) as:

Solutions to composite n-layered spherical Brinkman inhomogeneities with finite permeability can be readily worked out from the general solution (A.1) in spherical geometry and appropriate continuity and boundary conditions, by a strategy similar to [START_REF] Hervé | n-layered inclusion-based micromechanical modelling[END_REF][START_REF] Barthélémy | The Eshelby problem of the confocal N-layer spheroid with imperfect interfaces and the notion of equivalent particle in thermal conduction[END_REF]. General expressions are too lengthy to be reproduced herein.

Appendix A.2. Cylindrical inhomogeneity

The solution of the Brinkman cylindrical inhomogeneity of radius R and axis along the unit vector n with isotropic permeability k 1 = 2 1 immersed in a reference Brinkman medium of permeability k 0 = 2 0 is expressed in terms of the modified Bessel functions of order n of the first and second kind respectively denoted I n and K n . The cylindrical coordinate system (r, θ, z) is used with z along n.

• axial flow. The solution to the inhomogeneity problem with remote body force F 0 = F 0 e z is:

in each medium i ∈ {0, 1}. Coefficients c 1,0 = 0 and c 2,1 = 0 to avoid the diverging behavior as r → ∞ and r → 0 respectively, while c 2,0 and c 1,1 are determined from the continuity of the tangential velocity and stress across the boundary of the cylinder. The velocity concentration is expressed with regard to the remote velocity V 0 = k 0 F 0 /µ far away from the cylinder.

• transverse flow. The solution to the inhomogeneity problem with remote velocity V 0 = V 0 e x with the direction x corresponding to θ = 0 is

in each medium i ∈ {0, 1}. Coefficients c 4,0 = 0 and c 2,1 = c 3,1 = 0 to avoid the diverging behavior as r → ∞ and r → 0 respectively, c 1,0 = V 0 to meet the remote boundary condition while c 2,0 and c 1,1 , c 4,1 are determined from the continuity of the radial and tangential velocity and stress across the boundary of the cylinder.

Note that rigorously, (A.6) (resp. (A.7)) is not the solution to a KUBC (resp. SUBC) problem, because the inhomogeneity is of infinite extension. The average of the velocity concentration tensor (29) over the cylindrical homogeneity is:

where α i = R/ √ k i (i = 0, 1) are the dimensionless variables and

The following limiting cases of inhomogeneity types are useful: as well as, when dealing with low permeabilities:

. Planar inhomogeneity

In the case where the inhomogeneity is the space comprised between the two planes z = ±R of unit normal n, with isotropic permeability k 1 = 2 1 , immersed in a reference Brinkman medium of permeability k 0 = 2 0 , the solution to the inhomogeneity problem is obtained in Cartesian coordinate system (x, y, z): • flow perpendicular to the planes. the solution to the inhomogeneity problem with remote velocity V 0 = V 0 e z is the uniform velocity v = V 0 e z so that the velocity concentration tensor component zz is 1.

• flow parallel to the planes. (say in direction x) the solution to the SUBC problem with remote drag force density F 0 = F 0 e x is p = F 0 x and v = (-F 0 2 i /µ + c 1,i exp(z/ i ) + c 2,i exp(-z/ i ))e x in the layer i of permeability k i = 2 i . Coefficient c j,i are matched to obtained continuity of the tangential velocity and stress across the planes. The velocity concentration is expressed with regard to the remote velocity V 0 = -k 0 F 0 /µ far away from the planar inhomogeneity.

The average velocity concentration tensor (29) over the planar inhomogeneity is: [START_REF] Brinkman | The Viscosity of Concentrated Suspensions and Solutions[END_REF] where α i = R/ √ k i (i = 0, 1) are the dimensionless variables. The following limiting cases of inhomogeneity types are useful: 

Stokes inhomogeneity lim