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Abstract 18 

Hyperspectral imaging (HSI) is a non-destructive, high-resolution imaging technique that is currently 19 

under significant development for analyzing geological areas with remote devices or natural samples 20 

in a laboratory. In both cases, the hyperspectral image provides several sedimentary structures that 21 

must be separated to temporally and spatially describe the sample. Sediment sequences are composed 22 

of successive deposits (strata, homogenite, flood) that are visible depending on sample properties. The 23 

classical methods to identify them are time-consuming, have a low spatial resolution (millimeters) and 24 

are generally based on naked-eye counting. In this study, we compare several supervised classification 25 

algorithms to discriminate sedimentological structures in lake sediments. Instantaneous events in lake 26 

sediments are generally linked to extreme geodynamical events (e.g., floods, earthquakes), so their 27 

identification and counting are essential to understand long-term fluctuations and improve hazard 28 

assessments. Identification and counting are done by reconstructing a chronicle of event layer 29 

occurrence, including estimation of deposit thicknesses. Here, we applied two hyperspectral imaging 30 

sensors (Visible Near-Infrared, VNIR, 60 μm, 400-1 000 nm; Short Wave Infrared, SWIR, 200 μm, 1 000-31 

2 500 nm) on three sediment cores from different lake systems. We highlight that the SWIR sensor is 32 

the optimal one for creating robust classification models with discriminant analyses (prediction 33 

accuracies of 0.87-0.98). Indeed, the VNIR sensor is impacted by the surface reliefs and structures that 34 

are not in the learning set, which causes mis-classification. These observations are also valid for the 35 

combined sensor (VNIR-SWIR) and the RGB images. Several spatial and spectral pre-processing were 36 

also compared and enabled one to highlight discriminant information specific to a sample and a sensor. 37 

These works show that the combined use of hyperspectral imaging and machine learning improves the 38 

characterization of sedimentary structures compared to conventional methods.  39 

 40 

Keywords: Hyperspectral Imaging, Machine Learning, Discrimination methods, Visible and Near-41 

Infrared Spectroscopy, Automatic Detection, Sedimentary Deposits    42 
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1 Introduction 43 

Natural archives, such as sediment cores, are composed of a succession of deposits, so they record 44 

past climate and environment biological-physical-chemical variations. There are two main processes: 45 

continuous sedimentation and event layers, and the former can be interrupted by the latter. The 46 

continuous sedimentation enables one to create an age-depth model and infer the environment and 47 

climate conditions. Event layers, e.g., related to floods (Gaume et al., 2009; Glur et al., 2013), storms 48 

(Sabatier et al., 2012), landslides, earthquakes (Wilhelm et al., 2016), tsunamis (Chagué-Goff, 2010), 49 

and eruptions, are linked to some of the most damaging disasters in terms of economic and societal 50 

losses. Currently, in an overwhelming majority of laboratory studies on natural archives, sedimentary 51 

structures are first visually described; subsequently, numerous physical (X-ray imaging, computed 52 

tomography scan, grain-size) and chemical (X-ray fluorescence or diffraction, scanning electron 53 

microscopy) analyses are undertaken. From those results, the event layers are identified and 54 

described. Then, layers with identical characteristics (e.g., color and texture) are usually counted by 55 

naked-eye observation. This approach is time-consuming, characterized by a low spatial resolution and 56 

subject to high uncertainties due to human interpretation (Lotter and Lemcke, 1999). To overcome 57 

these limits, several semi-automatic methods were developed to discriminate these sedimentary 58 

deposits from RGB images. The main approaches study the strata from annually laminated sediment 59 

to create an age-depth model with their discretization, but they only use a line or a combination of 60 

segments, and a deposit is characterized by the detection of the maxima (Meyer et al., 2006; Weber 61 

et al., 2010). Similarly, for the automatic detection of event layers, Vannière et al. (2013) proposed to 62 

use a 1/Red signal and threshold. Some studies also used discrimination methods based on labeled 63 

pixels to create classification maps, e.g., an adaptive neuro-fuzzy inference system (Ebert and Trauth, 64 

2015) or K-nearest neighbor (Ndiaye et al., 2012). Thereby, only the color signal has been investigated, 65 

while many other parameters are potentially useful to distinguish event layers, such as the texture, 66 

grain size, and chemical composition (Fouinat et al., 2017; Gilli et al., 2013; Wilhelm et al., 2018). A 67 

more relevant approach will automatically detect event layers considering all of these parameters. 68 
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In the current literature, a great number of works focus on the use of hyperspectral imaging (HSI) data 69 

for resource management. For instance, in agriculture applications (Teke et al., 2013) several works 70 

are focusing on the analysis of (i) environmental stress in crops and associated diseases (Feng et al., 71 

2017), (ii) crops variability (Rubwurm and Korner, 2017), and (iii) soil erosion stages (Chabrillat et al., 72 

2014) among many others. In forestry and environmental management, relevant works care about 73 

analyzing the status and health of forests (Shang and Chisholm, 2014), and infestations in plantation 74 

forestry (Peerbhay et al., 2015). In geological exploration and mineralogy, HSI data have been used for 75 

detection and mapping of mineral deposits (Contreras Acosta et al., 2019; Dumke et al., 2018) or soil 76 

composition analysis (Shi and Wang, 2014). HSI is a non-destructive high-resolution laboratory analysis 77 

that enables a semi-automatic description of the natural deposits based on their physical-chemical 78 

characterization. HSI can improve chemical knowledge by analyzing the sample surface. It has been 79 

used to characterize mineralogical fingerprints (Feng et al., 2018; Lorenz et al., 2019; Tusa et al., 80 

2020b), organic matter (Jacq et al., 2019c; Van Exem, 2018), pigments (Butz et al., 2017; Makri et al., 81 

2020; Schneider et al., 2018), and particle size distribution (Jacq et al., 2019b). Some of these studies 82 

highlight sedimentary structures with proxy estimation but without spatially characterizing them. To 83 

describe these deposits, image or classification approaches were used with hyperspectral remote 84 

sensing imaging (Ghamisi et al., 2017; Li et al., 2019). These approaches have been used in the 85 

laboratory for mineralogical characterization of rock cores or for the detection of veins from other 86 

sensor data that require destructive sampling (Contreras Acosta et al., 2020, 2019; Tusa et al., 2020a, 87 

2019). These works employ methods such as random forest (RF) or support vector machine (SVM) to 88 

classify each hyperspectral pixel into a dominant mineral class or for a mixture of minerals, they used 89 

visible and near-infrared (VNIR), short and long wave infrared (SWIR, LWIR) hyperspectral cameras. 90 

These approaches are therefore interesting for the problem of detecting sedimentary deposits, but 91 

sediments from aquatic environments are moreover more complex than those from rocks because of 92 

the presence of moisture and particles that will interfere in the hyperspectral signal (Verpoorter et al., 93 

2014). To this day, only one study based on lake or marine sediments employs HSI to characterize 94 
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spatial variations in volcanic tephra layers with a VNIR camera using a supervised classification method 95 

based on an artificial neural network and manual non-destructive labeling (Aymerich et al., 2016). 96 

As we have just seen, in the literature many hyperspectral image classification methods have been 97 

applied on remote sensing, but few to sedimentary images. Therefore, to classify sediments from cores 98 

to know their composition, we want to study three supervised classification methods (decision tree 99 

DT, random forest RF, and artificial neural network ANN) and three parametric methods (linear and 100 

quadratic discriminant analysis LDA/QDA, partial least-square discriminant analysis PLS-DA). These six 101 

methods are problematically specific (Khaledian and Miller, 2020).  The hyperspectral images used in 102 

this study come from a visible and near-infrared camera (VNIR, pixel size: 60 μm) and a shortwave 103 

infrared sensor (SWIR, pixel size: 200 μm). The two sensors can also be combined to estimate a VNIR-104 

SWIR composite sensor (pixel size: 200 μm) or reduced to create composite RGB images. Several 105 

spectral and spatial pre-processing and compression algorithms were compared. Thus this study 106 

proposes to compare numerous approaches (the type of image, pre-processing, and discrimination) to 107 

separate and characterize the sedimentary structures of three different samples and provide a 108 

simplified methodology for its application to other sites. 109 

2 Materials and methods 110 

2.1 Sample site descriptions  111 

 112 
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Figure 1: Locations, tributaries, and effluents of the lakes: (a) Bourget and Geneva, (b) Allos  113 

Three sediment cores were selected from three lakes located in the western French Alps (Figure 1) in 114 

different watersheds, representing different geological contexts and surface areas that present event 115 

layers with different geochemical compositions. The studied cores were retrieved from Lake Allos 116 

(ALO09_P13, IGSN: IEFRA08JN, coring year: 2009) (Wilhelm et al., 2015, 2012), the deep basin of Lake 117 

Le Bourget (LDB17_P11, coring year: 2017, water inflow: 10.65 m.an-1) (Jenny, 2013; Jenny et al., 2014), 118 

and Lake Geneva (LEM10_P6, IGSN: IEFRA008N, coring year: 2010, water inflow: 13.07 m.an-1) (Jenny, 119 

2013; Rapuc et al., 2020).  120 

 121 

Figure 2: XRF analysis for Ti, Zr/K, and Ca of the three cores: (a) Allos, (b) Bourget, and (c) Geneva 122 

The sediment from the three selected cores was first described and logged after naked-eye 123 

observations. When they were present, the event layers were distinguished from the continuous 124 

sedimentation by using sedimentological and geochemical results; for these three cores X-ray 125 

fluorescence, particle size distribution, and total organic carbon were made.  126 

Lake Allos sediment sequence (ALO09_P13) presents two different sedimentary units. The upper part 127 

is enriched in organic matter and presents Total Organic Carbon (TOC) values > 1.5% (Wilhelm et al., 128 

2012). The rest of the sequence is composed of light-gray homogeneous silty clay (median = 10 µm), 129 
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corresponding to the continuous sedimentation, which is interrupted by coarser (median = 40 µm) 130 

normally graded beds (Wilhelm et al., 2012). These beds present higher values of dry bulk density, 131 

lower TOC values (< 1%), and are enriched in calcium contents (Figure 2). XRF signals also show peaks 132 

of Zr/K and low Ti values due to an increase of the grain size at the base of the layers and a depletion 133 

in silicate particles, respectively. The graded beds were interpreted as linked to turbidity currents 134 

triggered by gravity reworking or flood events (Wilhelm et al., 2012). 135 

Lake Bourget sediment sequence (LDB17_P11) presents two main units. The first one (0-10 cm) is 136 

laminated with an alternation of white/light-gray and dark-gray/brown laminae. These laminae are 137 

mainly composed of diatoms, micrite, organic matter (TOC > 2.5%), and autochthonous calcite with a 138 

mean grain size comprise between 15 and 30 µm (Giguet-Covex et al., 2010). The second unit is non-139 

laminated and corresponds to homogeneous light-gray sediment composed of carbonate particles, 140 

silts, clays, and a few diatoms. The mean grain size of this unit is almost constant and is comprised 141 

between 4 and 9 µm. The organic matter content is under 5% (Giguet-Covex et al., 2010), and 142 

carbonate particles represent at least half of the total sediment (Arnaud, 2005). Several darker 143 

deposits, enriched in detrital silicate and carbonate particles, interrupted the continuous 144 

sedimentation and were interpreted as underflow deposits linked to flood events (Giguet-Covex et al., 145 

2010; Jenny et al., 2014). These deposits present peaks of Ti and Zr/K signals at their base (Figure 2), 146 

which support the higher detrital content and the increase of grain size within these layers.  147 

Like the two other sediment sequences, the Lake Geneva sequence (LEM10_P6) presents two principal 148 

sedimentary units. The upper laminated unit corresponds to an alternation of light and dark-gray 149 

laminae, enriched in organic matter (TOC values > 5%; (Jenny, 2013)). This unit is followed by 150 

homogeneous light-gray silty clay identified as a non-laminated unit (Jenny, 2013), which presents 151 

lower organic content (TOC values < 2%) and higher values of calcium (Figure 2). The mean grain size 152 

of these two units is higher (> 25 µm) than Lake Bourget sediment sequence values. The lower unit is 153 

interrupted by thick and coarse graded beds that show peaks of Zr/K, and higher values of Ti (Figure 2) 154 
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are linked to increased detrital silicates compared to the continuous sedimentation. These deposits 155 

present similarities with those observed in the two other sequences and were interpreted as flood 156 

layers. 157 

Once clearly identified, those layers were visually counted. The data sets will be referred to using the 158 

name of the lake, but it must be understood that there may be differences (color, chemical, physical) 159 

among different sequences from the same lake. 160 

2.2 VNIR and SWIR hyperspectral image acquisition 161 

Two hyperspectral reflectance cameras were used to analyze these cores at the UMR CNRS M2C lab 162 

facilities, University of Normandie-Rouen (France). They cover two consecutive spectral ranges: 400-1 163 

000 nm (visible and near-infrared, Specim VNIR PFD OLE23) and 968-2 574 nm (shortwave infrared, 164 

Specim SWIR OLES22.5). They have a theoretical spatial pixel size of 60 μm and 200 μm, respectively. 165 

The real resolution may vary due to surface roughness. Relevant data were obtained with a flattening 166 

and a cleaning of the core to have a plane surface that revealed sediment structures (Butz et al., 2015; 167 

Jacq et al., 2020). Then, the camera was calibrated with a spectral acquisition on a reference, as the 168 

image of a known object has squared pixels (true shape) and relevant reflectance intensities (color and 169 

signal-to-noise ratio).  170 

The resolution of the two datasets (VNIR and SWIR) was also homogenized at a common spatial 171 

resolution of 200 μm to obtain a VNIR-SWIR composite sensor. The two hyperspectral images were 172 

combined into a unique one (i.e., VNIR-SWIR) with image registration (Liu et al., 2011) adapted to HSI 173 

on a wavelength plane characteristic of a similar chemical compound. In previous work, we found that 174 

the 970 nm (VNIR) and 1 200 nm (SWIR) wavelengths were optimal for combining (Jacq et al., 2019a). 175 

They are related to hydroxyl chemical bonds mostly associated with moisture in sediment cores (Bull, 176 

1991; Viscarra Rossel and Behrens, 2010). Therefore, a composite sensor was created to merge the 177 

VNIR and SWIR datasets to cover the range of 400-2 500 nm. No reflectance adjustment was used to 178 

correct for shifts in the spectral overlap range between the two sensors. In this study, we compare the 179 
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classification performances of three datasets: VNIR at a spatial resolution of 60 μm, SWIR at a 180 

resolution of 200 µm, and VNIR-SWIR at a resolution of 200 μm. 181 

Pre-processing can be used to correct the data from noise or aberrant values and highlight discriminant 182 

wavelengths. The three dimensions of the HSI, spectral, and spatial pre-processing procedures can be 183 

used (Rinnan et al., 2009; Vidal and Amigo, 2012). The spectral pre-processing procedures compared 184 

in this study are normalization (autoscale), linear baseline correction (detrend), scattering effect 185 

correction (Standard Normal Variate (SNV) and Multiplicative Scatter Correction (MSC)) (Barnes et al., 186 

1989), and Savitzky-Golay first and second derivatives (D1 and D2) (Savitzky and Golay, 1964). The 187 

derivatives use second-order polynomial fitting and a window of 7 and 13 wavelengths for the first and 188 

second derivatives respectively.  Principal component analysis (PCA) was also used as a compression 189 

of the spectral dimension (Pearson, 1901). Contrast limited adaptive histogram equalization (CLAHE) 190 

was used on the spatial dimensions with an estimation based on the grayscale image levels and applied 191 

to each image wavelength (Zuiderveld, 1994). Thus, nine datasets per sensor were used for training in 192 

an independent way. 193 

2.3 Data Analysis 194 

Six commonly used machine learning algorithms were used to create classification models with three 195 

types of spectral data (VNIR, SWIR, and VNIR-SWIR) (Figure 3). First, an RGB image was made from the 196 

VNIR HSI to visually and manually label continuous sedimentation and event layer pixels by an expert. 197 

Then, machine learning methods were used to construct discrimination models. In addition, nine pre-198 

processing procedures (spatial and spectral) were used and compared with raw data. Consequently, 199 

162 discriminations models were created for each sample to find the optimal sensor (of three), method 200 

(of six), and pre-processing procedure (of nine) as presented in Figure 3.  201 
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 202 

Figure 3: Data processing to create a classification model to predict each pixel: (1) Visualization with RGB images at both 203 

resolutions; (2) Manual labeling of the image; (3) Data pre-processing and (4) Creation of supervised classification models 204 

for each dataset (DT: Decision Tree, RF: Random Forest, ANN: Artificial Neural Network, LDA: Linear Discriminant Analysis, 205 

QDA: Quadratic Discriminant Analysis, PLS-DA: Partial Least Squares Discriminant Analysis); (5) Prediction for each image; 206 

(6) Estimation of the optimal model depending on the sensor, pre-processing procedure, and discrimination model 207 

2.3.1 Data labeling 208 

Hyperspectral VNIR data can be reduced to three planes that correspond to a Red-Green-Blue image 209 

from the VNIR sensor (611-549-464 nm, according to the RGB standard) (CIE, 1999). The RGB images 210 

are representation modes adapted for naked-eye assessment and were used to visualize the sample 211 

to label the sedimentary structures. Thus, the user must manually select rectangular areas that 212 

correspond to the different studied classes based on the known deposits characterized by 213 
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geochemical, textural, and mineralogical analysis. The resulting maps were used as a mask with 0 214 

values for non-labeled pixels and other values for labeled pixels (1: event layer, 2: continuous 215 

sedimentation). It was also used to extract the labeled pixels and their corresponding spectrum (Figure 216 

4). For the SWIR dataset, these maps were also made with VNIR data at 60 µm and resized at 200 µm. 217 

 218 

Figure 4: Spectral variations of labelled pixels for each class (blue = event layers; yellow = continuous sedimentation) and for 219 

the three cores: (a) Allos, (b) Bourget and (c) Geneva. The reflectance of the sediments depends on the specific sedimentary 220 

properties of the sites studied. It seems difficult to visually estimate specific discriminating spectral areas of the two classes 221 

studied, therefore statistical approaches will allow to find the discriminating variations 222 

2.3.2 Classification modeling 223 

Several methods commonly used in the literature were chosen for comparison because there is no 224 

universal method (Khaledian and Miller, 2020). Six methods were used to create a supervised 225 

classification model to discriminate the two sedimentary processes (Figure 5, Supplementary table 1).  226 

Decision trees are a rule-based approach to classification and regression problems (Breiman et al., 227 

1984). They use the values in each feature to split the dataset to a point where all data points that 228 
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have the same class are grouped together. A tall tree with multiple splits generates better 229 

classifications.  230 

The random forest is a classification algorithm consisting of many decisions trees (Ho, 1995). It uses 231 

bagging and features randomness when building each individual tree to try to create an uncorrelated 232 

forest of tree whose prediction by committee is more accurate than that of any individual tree. 233 

ANN is a set of connected input-output network in which weight is associated with each connection 234 

(Ivakhnenko and Lapa, 1965; McCulloch and Pitts, 1943; Rosenblatt, 1958). It consists of one input 235 

layer, one or more intermediate layers, and one output layer. Learning of neural network is 236 

performed by adjusting the weight of connection. By updating the weight iteratively performance of 237 

the network is improved. During training, the interconnection weights are optimized until the 238 

network reaches the specified level of accuracy. It has many advantages like parallelism, less affected 239 

with noise, good learning ability 240 

Linear discriminant analysis (LDA) is a straightforward method applying the generative approach for 241 

classification (Fisher, 1936). It is based on the assumption that each class can be modeled by a 242 

Gaussian distribution and that all the classes share the same covariance matrix. In practice, LDA 243 

requires few computations to estimate the classifier parameters that amount to computing 244 

percentages and means, plus a matrix inversion. 245 

Quadratic discriminant analysis (QDA) is similar to LDA but without the assumption that the classes 246 

share the same covariance matrix, i.e., each class has its own covariance matrix (Fisher, 1936). In this 247 

case, the boundary between classes is a quadratic surface instead of a hyperplane. 248 

Partial least squares-discriminant analysis (PLS-DA) is a versatile algorithm that is used for predictive 249 

and descriptive modeling as well as for discriminative variable selection (Wold et al., 1984). However, 250 

versatility needs to optimize a wealth of parameters before reaching reliable and valid outcomes. 251 
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Khaledian and Miller (2020) propose to consider different properties to define the optimal approach 252 

to answer the problem. These methods are based on common or specific assumptions as presented 253 

briefly above. Some require a large amount of data, such as ANN, while others are less sensitive to 254 

sample size. The computation time is also related to the amount of data, as well as to the complexity 255 

of the problem, the number of iterations, and the adjustments. Some are easily interpretable (DT, LDA, 256 

QDA, PLS-DA), or complex (RF, ANN with few neurons), and some are "black boxes" (ANN with many 257 

neurons). Here we use the ANN with few neurons to prioritize the spectral interpretability. Some 258 

require the user to define hyperparameters that are presented in Supplementary table 1. Thus, these 259 

different methods were chosen to see the effect of these properties on the different datasets (sensors, 260 

pre-processing) in predicting the two sedimentary deposit types for the three different sites.  261 

 262 

Figure 5: Schematic representation of the machine learning methods used in this study depending on their basis: (a) rules; 263 

(b) neurons; and (c) functions 264 

The models were fitted with a randomly selected 70% of the data during calibration, and the remaining 265 

data were used in the test set (Supplementary table 2). This ratio was applied to the class with fewer 266 

labeled pixels to have a consistent number in each group in the calibration step. The same calibration 267 

and test sets were used for each classification method, but they were different for each pre-processing 268 

procedure. The labeled pixel number depends on the ability of the user to precisely see the deposits; 269 

then, only pixels that certainly belong to these classes are labeled to avoid introducing uncertainty by 270 
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uncertain labeling. Due to the compression of the labeled high-resolution map, the pixels of the 271 

contours may have been removed as being uncertain, which slightly changes the labeling percentages 272 

between the two resolutions. That change explains the difference between the cores with labeled 273 

pixels of between 0.45% and 15.71% for one class It also allows visualization of the learning capacity 274 

depending on the number of calibration pixels. 5% of the Allos lake image was labeled, against 1.1% 275 

for the Bourget lake or 16% for the Geneva lake. 276 

2.3.3 Quantitative and qualitative assessments of model classification 277 

The quantitative performances of the classification models were estimated by the overall accuracy, 278 

precision and recall in calibration and prediction: 279 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
   (1) 280 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
       (2) 281 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+ 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
       (3) 282 

Given a classifier and an instance, there are four possible outcomes. If the instance is positive and it is 283 

classified as positive, it is counted as a “true positive”; if it is classified as negative, it is counted as a 284 

“false negative”. If the instance is negative and it is classified as negative, it is counted as a “true 285 

negative”; if it is classified as positive, it is counted as a “false positive”.  286 

The overall accuracy is the proportion of correct predictions (both “true positives” and “true 287 

negatives”) among the total number of cases examined. The precision corresponds to the fraction of 288 

first class correct predictions (only “true positives”) among the retrieved first class. The recall is the 289 

fraction of relevant first-class predictions that were retrieved. Thus, a value closer to 1 indicates 290 

better predictive ability. 291 

Once a model is considered relevant, it is used on each pixel of the hyperspectral image to classify 292 

them and estimate a classification map. An expert must then visually and qualitatively evaluate its 293 
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spatial coherence, using the different successive deposits and its noise level. Hence, a qualitative index 294 

with values between 0 and 5 (arbitrary) is used. A value of 0 corresponds to an irrelevant classification 295 

map induced by a model that cannot generalize (under or over-fitting); a value of 5 shows globally 296 

relevant classifications on the whole image; whereas a value in this interval indicates more or less 297 

relevant predictions but with defects (noise, mispredicted deposits). Moreover, it is important to 298 

understand the models on the importance they give to different wavelengths. Complex models like RF 299 

and neural networks with a large number of neurons are not easily interpretable. 300 

3 Results and interpretations 301 

3.1 Comparison of the classification methods and pre-processing procedures 302 

Nine pre-processing procedures were tested on each sample, each sensor, and each discrimination 303 

method to find the optimal combination (Figure 6). As shown in Figure 4, the spectra of the two classes 304 

overlap partially or totally, so the pre-processing step must highlight the wavelengths with 305 

discriminating variations to create performant and robust models. PCA and second derivatives (D2) 306 

had the lowest prediction accuracies for each sensor and sample (Figure 6). The PCA reduction may 307 

not maintain the discriminant information in the main PCs and D2. Raw, CLAHE, autoscaled, and 308 

detrended data had the highest discriminant properties in all cases (Figure 6). Some pre-processing 309 

procedures are sensor-dependent, such as SNV and MSC, which presented low accuracy for the VNIR 310 

sensor and high accuracy for the SWIR sensor. The first derivative (D1) had intermediate accuracy for 311 

all cases except for the SWIR sensor and Allos sample, for which good performances were obtained. 312 

Among the discriminant methods, DT had the lowest prediction accuracy in most cases, whereas ANN, 313 

QDA, and RF had the highest accuracy. For the ANN, few neurons (2-3) appeared to be better than 314 

more neurons. The latter has many more parameters and may overfit the small amount of training 315 

data, which limits its generalization capability on the test set. The accuracies of the optimal methods 316 

are close and must be discussed with all quantitative values and interpretations of their discriminant 317 
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spectral properties. It is important to consider that the results are sample- and site-specific. 318 

 319 

Figure 6: Radar charts of the impact of pre-processing on the overall prediction accuracy of each classification method and 320 

lake core hyperspectral image (a-c: Lake Allos; d-f: Lake Bourget; g-i: Lake Geneva; a, d, g: VNIR sensor; b, e, h: SWIR sensor; 321 

c, f, i: VNIR-SWIR sensor) 322 

3.2 Optimal models for each image type 323 

The calibration and prediction accuracies, precisions and recalls of the optimal models were higher 324 

than 0.8 and mainly 0.9, which highlights the presence of spectral discriminant information in both 325 

sensors (Table 1, Supplementary table 3Supplementary table 5). Nevertheless, it also highlights that 326 

the best discriminant capacity derived from the SWIR sensor and therefore the VNIR sensor does not 327 
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contain as much discriminating information. The combination of the two sensors, which should present 328 

a better discriminant capacity through the greater amount of spectral information, presents an 329 

intermediate discriminant ability. Thus, the predictions are certainly biased by some VNIR data 330 

variations.  331 

Among all the models developed, some observations have been made (Supplementary table 3-332 

Supplementary table 5). ANNs with two neurons are often the optimal discriminant method based on 333 

the prediction accuracy and parsimonious because adding neurons does not improve the accuracy. 334 

However, for the qualitative index, discriminant analysis methods (LDA, QDA, PLS-DA) generally had 335 

the best performance levels. The computation time is lower for the LDA, PLS-DA, and DT methods, and 336 

all of these methods are fast to compute, so the computation time was not used to select the optimal 337 

model. It is also more important when there is more data to learn which is the case for the Allos section 338 

compared to the others.  Based on a compromise between these two first properties (quantitative and 339 

qualitative index), the optimal methods in most cases were LDA or PLS-DA. Table 1 highlights an 340 

optimal pre-processing procedure that mainly depends on the sample. The discrimination methods 341 

appear to have had a low impact on it, which suggests that an optimal pre-processing procedure can 342 

highlight the discriminant wavelengths.  343 

Table 1: Optimal models for each sample and based on the parameters indicating their performance and robustness 344 

 345 

Site Allos Bourget Geneva 

Sensor SWIR SWIR SWIR 

Method PLS-DA PLS-DA LDA 

Processing SNV Detrend SNV 

Accuracycal 0.900 0.969 0.992 

Precisioncal 0.908 0.988 0.996 
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Recallcal 0.890 0.951 0.989 

Accuracypred 0.902 0.958 0.989 

Precisionpred 0.785 0.996 1.000 

Recallpred 0.885 0.949 0.989 

Qualitative 5 5 5 

Computation time (s) 0.800 0.219 0.113 

 346 

The classification map comparison of the optimal and worst models highlights that the VNIR sensor is 347 

more sensitive to surface reliefs, as observed in Figure 7.a-b with fissures and holes due to sampling 348 

or Figure 7.d-e with shadows. Darker laminated areas are noticeable on the Bourget and Geneva 349 

sediment sections (on the left of the picture), which were not initially labeled because of the non-350 

possibility of precisely labeling the two classes. In these areas, the VNIR sensor predicted that most of 351 

the pixels in the event layer class might be due to the similar color with this class. In contrast, the SWIR 352 

data correctly predicted the two groups due to the additional spectral discriminant information. For 353 

the Allos sediment section (Figure 7.a-c), the event layers are easily distinguishable from the 354 

continuous sedimentation due to their darker colors. However, there is also a color gradient linked to 355 

a grain size gradient that is spectrally registered in the SWIR range (Jacq et al., 2019b), which explains 356 

the wider layers estimated from the SWIR data than from the VNIR data, and the lightest layers are 357 

not visible with the VNIR data.  358 

All of these observations and the quantitative validation are consistent with the greatest discriminant 359 

capacities being associated with the SWIR sensor for separating event layers from continuous 360 

sedimentation. Thus, the combination of the two sensors is not better, as we expected due to the VNIR 361 

data sensitivity to surface roughness, and the combination will not be used further.  362 
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 363 

Figure 7: Optimal (c, f, i) and worst (b, e, h) models for each sediment core sample (a, b, c: Allos; d, e, f: Bourget; h, i, j: 364 

Geneva) and labeled areas (blue = event layers; yellow = continuous sedimentation) 365 
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3.3 Spectral signatures 366 

Figure 4 shows the spectra corresponding to the two classes. For lakes Allos and Bourget, both classes 367 

partially overlap, and the event layers show a lower reflectance that can be due to a darker color of 368 

the layers. The overlap is more important for Lake Geneva. The color of the sediment is obviously 369 

dependent on the sedimentary properties that are specific to the study sites. It is therefore difficult to 370 

visually estimate discriminating spectral areas.  371 

The different statistical approaches used will allow to estimate automatically the spectral areas 372 

allowing to separate the two classes. The estimation of SWIR wavelength cumulative occurrence allows 373 

to identify the discriminant wavelengths and to characterize them (Figure 8). It is interesting to observe 374 

that the five approaches discussed in this figure show similar discriminating spectral areas, which 375 

indicates that despite their differences they can adapt to the problematic. Five main discriminant 376 

spectral areas present high cumulative values and can be associated with chemical properties. Organic 377 

components can be related to spectral wavelengths between (1) 1 050-1 200 nm and (2) 1 650-1 750 378 

nm (Cloutis, 1989; Viscarra Rossel and Behrens, 2010). The three others correspond to spectral ranges 379 

with possible overlaps: (3-4) organic compounds and hydroxyl bonds (moisture, organic matter or 380 

mineral) between 1 350-1 500 nm and 1 800-1 950 nm, and (5) mineral (clay) and organic compounds 381 

between 2 150-2 300 nm (Krupnik and Khan, 2019; Verpoorter et al., 2014; Viscarra Rossel and 382 

Behrens, 2010).  383 
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 384 

Figure 8: Comparison of the normalized coefficients (coefficient weights normalized to one for each method) used by the 385 

optimal SWIR models to highlight the discriminant wavelengths: (a) Allos, (b) Bourget, and (c) Geneva samples 386 

The three optimal core models use similar discriminant wavelengths but have different importance 387 

depending on the sediment properties. The two hydroxyl bond spectral areas have important 388 

implications in the three models and could be due to interstitial moisture that may be associated with 389 

coarser particles present in the event layers. The model estimated for Lake Allos highlights another 390 

spectral area characteristic of clays (2 150-2 200 nm) associated with continuous sedimentation. 391 

Whereas Lake Bourget and Lake Geneva models use specific areas of organic matter (1 050-1 150 nm, 392 

1 350-1 400 nm, 1 650-1 750 nm) due to higher organic matter concentration in both sediment 393 

sequences. Thus we can see that the SWIR sensor allows to highlight several sedimentary properties 394 
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that can differentiate the two types of deposits. It should be noted that the sedimentary properties 395 

highlighted differ and are dependent on the studied site.  396 

4 Discussion 397 

4.1 Generalization of the model on the other sites 398 

Optimal SWIR models developed on each core were used to produce the classification maps of the 399 

other cores and to observe the model generalization capability. Table 2 and Supplementary figure 1 400 

show the results of these classifications with the test accuracies and qualitative indicators. Most of the 401 

models agree on the difficulty of generalizing the model to other cores, which is explained by the 402 

differences in reflectance and thus in sediment composition of the sediment sequences as shown in 403 

Figure 4. As the continuous sedimentation of Lake Bourget and Lake Geneva is more organic than the 404 

one of Lake Allos, or the granulometry and interstitial humidity allowing to trace textural changes in 405 

the event deposits that are more significant for Lake Allos than the other. Unfortunately, mineralogical 406 

changes (silicates and carbonates) do not show marked absorptions in the spectral domains studied. 407 

Only the model developed with the Bourget data could estimate the classification maps for the other 408 

cores, possibly since it has less spectrally localized discriminant wavelengths than the other two models 409 

(Allos: 2 100-2 200 nm; Geneva: 1 650-1 700 nm). 410 

Table 2: Comparison of site-specific models for the generalization to the other cores 411 

 Samples 

Allos Bourget Geneva 

Models 

Allos 

Accuracypred  0.367 0.043 

Qualitative  0 0 

Bourget Accuracypred 0.973  0.365 
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Qualitative 3  1 

Geneva 

Accuracypred 0.433 0.644  

Qualitative 0 0  

Based on these results, the estimation of a classification model is sample-specific. It can be made with 412 

a linear discriminant method such as LDA or PLS-DA with the raw SWIR dataset, even if some 413 

pretreatment slightly improves the performance. 414 

4.2 Event layer classification with classical images 415 

The true RGB image can also be converted into HSV (Hue, Saturation, Lightness) or L*a*b* (lightness, 416 

color) color spaces and reduced to a grayscale level. The HSV and L*a*b* transformations have been 417 

proven to be more adaptable for classification purposes (Bora et al., 2015; Hernández-Hernández et 418 

al., 2016). The grayscale levels are the most straightforward color space. 419 

Table 3 and Supplementary figure 2 show that the conventional image presents slightly lower 420 

performances with the VNIR data and has the same mispredictions in terms of surface variations, 421 

shadows, and laminated areas (Supplementary table 3). All of these observations highlight that these 422 

methods learn the color of the deposits too well with VNIR data and do not learn enough from the 423 

chemical composition. Then, machine learning and a conventional image can be used in the case of a 424 

clean image and sample with only color differences between the classes and learning of all types of 425 

sample events and defects. 426 

Table 3: Comparison of the conventional image discriminant models with the optimal predictions being estimated by the 427 

hyperspectral images 428 

Sample Performance Grayscale RGB HSV L*a*b* 
VNIR 

HSI 

SWIR 

HSI 

Allos Method ANN – 2 neurons PLS-DA 
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Accuracycal 0.966 0.821 0.817 0.821 0.889 0.900 

Accuracypred 0.963 0.824 0.808 0.823 0.890 0.902 

Qualitative 4 4 4 4 3 5 

Bourget 

Method ANN – 2 neurons RF PLS-DA 

Accuracycal 0.995 0.903 0.904 0.906 0.996 0.969 

Accuracypred 0.994 0.898 0.899 0.903 0.995 0.958 

Qualitative 2 2 2 2 3 5 

Geneva 

Method ANN – 2 neurons LDA LDA 

Accuracycal 0.911 0.976 0.976 0.975 0.987 0.992 

Accuracypred 0.884 0.979 0.983 0.982 0.989 0.989 

Qualitative 1 2 2 2 4 5 

4.3 Comparison between HSI and naked-eye chronicles 429 

The discretization of the event layers allows for estimation of event layer occurrence along the 430 

sediment section and comparison of the event layers with naked-eye event chronicle. The classification 431 

map was reduced to a summed profile, with pixels equal to 0 for continuous sedimentation and 1 for 432 

an event layer. We assume that the deposits are parallel; if this is not the case, image processing must 433 

be used to correct the deformation when possible. This profile can also be used as an event occurrence 434 

probability with normalization by the image width in pixels. It was smoothed with a second-order 435 

polynomial Savitzky-Golay filter to reduce misclassifications (Savitzky and Golay, 1964). A low 436 

threshold (below 20%) allows the separation of all deposits but also the discovery of some artifacts, 437 

and the boundaries can be overestimated due to curvatures. Conversely, a high threshold (above 70%) 438 

only finds the large deposits, but close ones can be fused. Thus, a double threshold was used. First, 439 
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using the half-width of the image to classify each column to one class allowed discovery of the most 440 

relevant deposits, but close layers could be observed as a large one. The second threshold of 15% of 441 

the image width was used for event layers thicker than 5 mm to potentially divide them. Finally, the 442 

chronicle can be reconstructed with the depth and thickness of each event layer. Naked-eye chronicles 443 

of the three cores were estimated and can be compared with the hyperspectral ones (Jenny et al., 444 

2014; Rapuc et al., 2020; Wilhelm et al., 2012).  445 

Figure 9 compares the identification of event layers in terms of depth and thickness between the HSI 446 

and naked-eye approaches. In general, HSI results in thicker event layers than naked-eye observations. 447 

This result can be explained by the limited ability of the eyes to characterize the event limits (resolution 448 

grain) or its curvature (misidentification). Machine learning also enables one to identify new deposits 449 

that were not visually detected (due to their small thickness or texture or color differences). They must 450 

be assessed by other high-resolution techniques such as microscopy to verify their relevance. The 451 

number of detected event layers was high (Table 4) due to the detection of supplementary thinner 452 

layers. 453 

Initially, this work was developed to study only flood events that were manually labeled. Nonetheless, 454 

HSI does not appear to have sufficient discriminant spectral information to distinguish different 455 

triggering mechanisms for the event layers (e.g., flood, slumps induced by seismic-shaking, etc.). 456 

However, the HSI model is the first fast and non-destructive method to semi-automatically detect 457 

event layers in different sedimentary contexts and represents a clear improvement in sedimentology.  458 
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 459 

Figure 9: Comparison of the naked-eye and HSI estimated chronicles for the three samples: (a) Allos; (b) Bourget; (c) Geneva 460 

Table 4: Statistics from the naked-eye and HIS event layer detections. N is the number of event layers identified in each lake 461 

core, and the other variables are statistics about the layer thickness  462 

  N N<1 

mm 

Average 

(mm) 

Standard deviation 

(mm) 

Minimum 

(mm) 

Maximum 

(mm) 

Allos 

Naked 

eye 

69 0 7.44 5.73 1.00 39.00 

HSI 88 12 9.64 13.51 0.32 68.19 
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Bourget 

Naked 

eye 

56 0 3.41 2.17 1.00 11.00 

HSI 72 19 4.24 4.28 0.20 22.31 

Geneva 

Naked 

eye 

15 0 15.93 21.97 3.00 88.00 

his 26 11 11.37 23.81 0.22 109.01 

4.4 Perspectives 463 

It is worth noting that we only focused on event layers, and the models are site-specific. Some 464 

strategies can be tested in future works. The first strategy would be to create a multi-site database to 465 

learn several event types and include continuous sedimentation cases (strata or homogeneous). A 466 

second strategy could be to use complementary information estimated by other sensors, such as XRF 467 

spectroscopy, which is also a non-destructive high-resolution (up to 200 µm) analysis, for elemental 468 

composition (Rapuc et al., 2020).  469 

It would also be interesting to use a spatial-spectral approach to add information contained in both 470 

dimensions, such as the color and grain size gradient, along a flood event. Deep learning with a 471 

convolutional neural network (CNN) uses this type of approach and could be interesting for a large 472 

multi-site database. This method introduces multi-scale local feature learning and some translation 473 

and rotation invariance, which are of interest for image classification (Schmidhuber, 2015). We have 474 

tested a CNN1D that uses only the spectral dimension, but it has poor performance that may be due 475 

to too small of a database and a too simple of a problem that an ANN with few neurons could model. 476 

In future work, we will use a CNN3D that uses a spatial-spectral approach (Ben Hamida et al., 2018). 477 

We have shown that the combination of VNIR and SWIR does not increase the discriminating capacity. 478 

Improvements can be made with surface defect correction before data acquisition or with pre-479 

processing after data acquisition, or the defects can be detected and removed from the classification 480 

map. Another method could be to make two separate classifications with both sensors and 481 
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subsequently combine them with different weights using, for example, fuzzy or belief function 482 

methods to improve the certainty of the predictions (Lian et al., 2019; Tehrani et al., 2019). 483 

This study has shown that event layers can be estimated at high resolution with hyperspectral imaging 484 

in the cores used in the calibration. A first discriminant model based on LDA or PLS-DA, which is 485 

estimated with raw hyperspectral data, will enable one to determine the possibility of discrimination 486 

among different classes. A similar method has already been used to detect tephra layers (Aymerich et 487 

al., 2016). Then, our proposed method may be applied to case studies to detect any type of events 488 

such as tsunamis, earthquakes, landslides, storms, and any other laminae. Thus, thanks to a precise 489 

manual labeling that includes as much visual and spectral variability as possible, it will be possible to 490 

build an automatic log-stratigraphy. This method will be very useful for paleoenvironmental and 491 

paleoclimate studies to define the strategy to subsample cores for further analysis to validate 492 

predictions or for any other purposes, and it will allow to create event chronicles or to correct the 493 

observations from specific events.   494 

5 Conclusions 495 

We studied the potential of three hyperspectral sensors (VNIR, SWIR, VNIR-SWIR) to image three 496 

sediment cores and created machine learning models. This study aimed to automatically discriminate 497 

different types of sedimentation (continuous versus event layer) with non-destructive, high-resolution, 498 

time-saving methods. Six discrimination methods coupled with raw data or eight pre-processing 499 

procedures were used to find an optimal model. We found that the SWIR sensor enabled one to create 500 

the most robust models with discriminant analysis (LDA, PLS-DA). Raw data presented relevant 501 

predictions (0.87-0.95 but qualitative index 2-3), but the use of a pre-processing procedure can slightly 502 

improve the performance (0.90—0.98) and robustness (4-5) of the model. The models were 503 

quantitatively assessed with prediction accuracies for the three cores of 0.90, 0.95, and 0.98 and 504 

qualitative index of 4-5. For the qualitative model, event layers presented colors and textures that 505 

differed from those of continuous sedimentation and could be identified with naked-eye observation 506 
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to check the relevance of the prediction maps. The discriminant wavelengths are associated with 507 

organic matter, some mineral bands, and moisture. This information is not recorded by the VNIR sensor 508 

or RGB images, which explains their lower performance, its models seem to rely mainly on the color 509 

which is not sufficiently discriminating information. Finally, event chronicles could be estimated from 510 

the classification maps by calculating the depth and thickness of each deposit and seem relevant with 511 

naked eye chronicles. Unfortunately, the hyperspectral sensors used in this study do not have sufficient 512 

spectral discriminant information to characterize the trigger of the event layer and whether different 513 

types of events were present in the same sediment core. Future work will enable the characterization 514 

of the triggers by combining hyperspectral imaging with other sensors or using spatial-spectral 515 

machine learning methods. This study highlights the sediment lithology discrimination capacity of 516 

hyperspectral imaging with manual labeling. Future application of this method on sediment sections 517 

will allow the creation of robust chronicles of events with characteristic wavelengths and enhance the 518 

knowledge about the evolution of the frequency of extreme geodynamic events. 519 
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9 List of captions 772 

9.1 Figures 773 

Figure 1: Locations, tributaries and effluents of the lakes: (a) Bourget and Geneva, (b) Allos.  774 

Figure 2: XRF analysis for Ti, Zr/K, and Ca of the three cores: (a) Allos, (b) Bourget, and (c) Geneva 775 

Figure 3: Data processing to create a classification model to predict each pixel: (1) Visualization with 776 

RGB images at both resolutions; (2) Manual labeling of the image; (3) Data pre-processing and (4) 777 

Creation of supervised classification models for each dataset (DT: Decision Tree, RF: Random Forest, 778 

ANN: Artificial Neural Network, LDA: Linear Discriminant Analysis, QDA: Quadratic Discriminant 779 

Analysis, PLS-DA: Partial Least Squares Discriminant Analysis); (5) Prediction for each image; (6) 780 

Estimation of the optimal model depending on the sensor, pre-processing procedure and 781 

discrimination model 782 

Figure 4: Spectral variations of labelled pixels for each class (blue = event layers; yellow = continuous 783 

sedimentation) and for the three cores: (a) Allos, (b) Bourget and (c) Geneva. The reflectance of the 784 

sediments depends on the specific sedimentary properties of the sites studied. It seems difficult to 785 

visually estimate specific discriminating spectral areas of the two classes studied 786 

Figure 5: Schematic representation of the machine learning methods used in this study depending on 787 

their basis: (a) rules; (b) neurons; and (c) functions 788 

Figure 6: Radar charts of the impact of pre-processing on the overall prediction accuracy of each 789 

classification method and lake core hyperspectral image (a-c: Lake Allos; d-f: Lake Bourget; g-i: Lake 790 

Geneva; a, d, g: VNIR sensor; b, e, h: SWIR sensor; c, f, i: VNIR-SWIR sensor) 791 

Figure 7: Optimal (c, f, i) and worst (b, e, h) models for each sediment core sample (a, b, c: Allos; d, e, 792 

f: Bourget; h, i, j: Geneva) and labeled areas (blue = event layers; yellow = continuous sedimentation) 793 
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Figure 8: Comparison of the normalized coefficients (coefficient weights normalized to one for each 794 

method) used by the optimal SWIR models to highlight the discriminant wavelengths: (a) Allos, (b) 795 

Bourget, and (c) Geneva samples 796 

Figure 9: Comparison of the naked-eye and HSI estimated chronicles for the three samples: (a) Allos; 797 

(b) Bourget; (c) Geneva 798 

9.2 Tables 799 

Table 1: Optimal models for each sensor depending on the sample and discrimination method and 800 

based on the parameters indicating their performance and rubustness 801 

Table 2: Comparison of site-specific models for the generalization to the other cores 802 

Table 3: Comparison of the conventional image discriminant models with the optimal predictions 803 

being estimated by the hyperspectral images 804 

Table 4: Statistics from the naked-eye and HSI event layer detections. N is the number of event layers 805 

identified in each lake core, and the other variables are statistics about the layer thickness   806 
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10 Supplementary Material 807 

10.1 Figures 808 

 809 

Supplementary figure 1: Classification maps estimated by model re-using: (d-e-f): Allos model; (g-h-i): Bourget model; (j-k-l): 810 

Geneva model; (d-g-j): Allos data; (e-h-k): Bourget data; (f-i-l): Geneva data. 811 



44 

 

 812 

Supplementary figure 2: Comparison of the classification maps estimated by the learning of the conventional images and 813 

HSI 814 

10.2 Tables 815 

Supplementary table 1: Parameters of each machine learning method 816 

Method Parameters 

DT Split predictor: Standard CART 

Split criterion: Gini's diversity index 

Decision tree pruning based on error criterion 

RF Ensemble-aggregation method: Adaptive logistic regression 

Number of ensemble learning cycles: 100 

ANN Number of neurons: 2-10 

Training function: Scaled conjugate gradient backpropagation 

Performance function: Cross-Entropy 
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LDA Discriminant type: Linear 

QDA Discriminant type: Quadratic 

PLS-DA Latent variable estimation method: NIPALS 

Maximum number of latent variables: 15 

Selection of the number of latent variables: R² differences between two consecutive 

latent variables are less than 2%  

 817 

Supplementary table 2: The number of pixels for each sediment core image and the number of labeled pixels for the 818 

calibration and validation sets for each class (1=event layer; 2=continuous sedimentation) 819 

Sample Sensors Total pixels Class 
Number of areas 

labeled and pixels 

Calibration 

pixels 

Validation 

pixels 

Allos 

VNIR 30 433 152 

1 
8 areas,  

598 722 (1.97%) 

419 105  

(1.38%) 

179 617  

(0.59%) 

2 
6 areas,  

961 079 (3.16%) 

419 105  

(1.38%) 

541 974  

(1.78%) 

SWIR,  

VNIR-SWIR 
1 702 476 

1 
8 areas,  

35 364 (2.08%) 

24 755  

(1.45%) 

10 609  

(0.62%) 

2 
8 areas,  

56 261 (3.30%) 

24 755  

(1.45%) 

31 506  

(1.85%) 

Bourget 

 

VNIR 21 096 723 

1 
12 areas,  

155 876 (0.74%) 

68 636  

(0.33%) 

87 240  

(0.41%) 

2 
9 areas, 

98 051 (0.46%) 

68 636  

(0.33%) 

29 415  

(0.14%) 

SWIR,  

VNIR-SWIR 
1 806 624 1 

12 areas, 

12 975 (0.72%) 

5 709  

(0.32%) 

7 266  

(0.40%) 



46 

 

2 
9 areas, 

8 156 (0.45%) 

5 709  

(0.32%) 

2 447  

(0.14%) 

 

Geneva 

VNIR 13 711 712 

1 

8 areas, 

2 034 596 

(14.84%) 

65 769  

(0.48%) 

1 968 827  

(14.36%) 

2 
3 areas, 

93 956 (0.69%) 

65 769  

(0.48%) 

28 187  

(0.21%) 

SWIR,  

VNIR-SWIR 
865 234 

1 
8 areas, 

135 933 (15.71%) 

4 078  

(0.47%) 

131 855  

(15.24%) 

2 
3 areas, 

5 826 (0.67%) 

4 078  

(0.47%) 

1 748  

(0.20%) 

Supplementary table 3: Optimal models for the VNIR data depending on the sample and discrimination method 820 

Sample Performances DT RF ANN LDA QDA PLS-DA 

Allos 

Processing CLAHE Detrend CLAHE CLAHE CLAHE CLAHE 

Neurons   2    

Accuracycal 0.978 0.886 0.889 0.863 0.860 0.840 

Precisioncal 0.977 0.883 0.889 0.904 0.906 0.902 

Recallcal 0.980 0.890 0.888 0.811 0.803 0.762 

Accuracypred 0.828 0.882 0.890 0.889 0.889 0.879 

Precisionpred 0.614 0.710 0.728 0.759 0.764 0.755 

Recallpred 0.834 0.888 0.889 0.812 0.804 0.763 

Qualitative 3 3 3 2 2 2 
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Computation time (s) 42.544 1272.513 263.840 8.086 251.592 12.975 

Bourget 

 

Processing Raw Raw Raw Raw Raw Raw 

Neurons   2    

Accuracycal 0.999 0.996 0.996 0.994 0.994 0.993 

Precisioncal 0.999 0.996 0.996 0.998 0.997 0.997 

Recallcal 0.999 0.996 0.996 0.990 0.991 0.988 

Accuracypred 0.994 0.995 0.996 0.993 0.992 0.991 

Precisionpred 0.998 0.998 0.998 0.999 0.999 0.999 

Recallpred 0.993 0.995 0.996 0.991 0.991 0.988 

Qualitative 2 3 2 2 2 2 

Computation time (s) 1.817 139.542 5.174 1.216 54.210 2.057 

Geneva 

Processing Detrend Detrend Detrend Detrend Detrend Detrend 

Neurons   2    

Accuracycal 0.998 0.990 0.992 0.987 0.987 0.985 

Precisioncal 0.998 0.985 0.989 0.985 0.985 0.984 

Recallcal 0.999 0.995 0.994 0.988 0.988 0.985 

Accuracypred 0.987 0.993 0.994 0.989 0.989 0.985 

Precisionpred 1.000 1.000 1.000 1.000 1.000 1.000 

Recallpred 0.987 0.993 0.994 0.989 0.989 0.986 
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Qualitative 2 2 2 3 3 3 

Computation time (s) 2.615 200.019 16.167 1.142 52.417 2.814 

Supplementary table 4: Optimal models for the SWIR data depending on the sample and discrimination method 821 

Sample Performances DT RF ANN LDA QDA PLS-DA 

Allos 

Processing Raw SNV Autoscale Raw Raw SNV 

Neurons   3    

Accuracycal 0.982 0.925 0.922 0.920 0.920 0.900 

Precisioncal 0.982 0.949 0.944 0.933 0.933 0.908 

Recallcal 0.982 0.898 0.896 0.905 0.904 0.890 

Accuracypred 0.876 0.928 0.935 0.927 0.926 0.902 

Precisionpred 0.725 0.853 0.869 0.840 0.840 0.785 

Recallpred 0.882 0.888 0.895 0.904 0.903 0.885 

Qualitative 3 5 5 5 5 5 

Computation time (s) 1.214 95.740 6.989 0.664 39.287 0.800 

Bourget 

 

Processing Detrend Detrend Detrend Detrend Detrend Detrend 

Neurons   2    

Accuracycal 0.994 1.000 0.976 0.971 0.972 0.969 

Precisioncal 0.995 1.000 0.994 0.993 0.994 0.988 

Recallcal 0.993 1.000 0.958 0.949 0.949 0.951 
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Accuracypred 0.952 0.959 0.967 0.954 0.955 0.958 

Precisionpred 0.984 0.986 0.997 0.997 0.997 0.996 

Recallpred 0.953 0.961 0.960 0.944 0.944 0.949 

Qualitative 2 3 4 5 5 5 

Computation time (s) 0.266 10.402 0.402 0.167 24.268 0.219 

Geneva 

Processing SNV SNV SNV SNV SNV SNV 

Neurons   2    

Accuracycal 0.998 1.000 0.996 0.992 0.992 0.991 

Precisioncal 0.998 1.000 0.998 0.996 0.996 0.996 

Recallcal 0.999 1.000 0.994 0.989 0.988 0.985 

Accuracypred 0.991 0.993 0.993 0.989 0.988 0.987 

Precisionpred 1.000 1.000 1.000 1.000 1.000 1.000 

Recallpred 0.991 0.993 0.993 0.989 0.988 0.987 

Qualitative 3 4 4 5 5 5 

Computation time (s) 0.155 5.436 0.255 0.113 21.478 0.163 

Supplementary table 5: Optimal models for the VNIR-SWIR data depending on the sample and discrimination method 822 

Sample Performances DT RF ANN LDA QDA PLS-DA 

Allos 

Processing CLAHE SNV SNV Raw Raw SNV 

Neurons   2    



50 

 

Accuracycal 0.984 0.943 0.933 0.931 0.931 0.901 

Precisioncal 0.983 0.961 0.952 0.940 0.940 0.943 

Recallcal 0.984 0.924 0.912 0.921 0.921 0.855 

Accuracypred 0.877 0.931 0.940 0.935 0.935 0.921 

Precisionpred 0.726 0.854 0.875 0.856 0.856 0.857 

Recallpred 0.886 0.899 0.911 0.918 0.918 0.855 

Qualitative 3 5 4 5 5 5 

Computation time (s) 2.726 86.900 15.562 1.097 49.604 1.206 

Bourget 

 

Processing Raw Raw Raw Detrend Detrend Raw 

Neurons   2    

Accuracycal 0.993 1.000 0.981 0.979 0.979 0.979 

Precisioncal 0.995 0.999 0.998 0.997 0.997 0.997 

Recallcal 0.992 1.000 0.963 0.960 0.960 0.960 

Accuracypred 0.966 0.967 0.970 0.969 0.969 0.968 

Precisionpred 0.990 0.995 1.000 0.999 0.999 0.999 

Recallpred 0.965 0.963 0.962 0.960 0.961 0.959 

Qualitative 1 2 2 3 4 4 

Computation time (s) 0.372 15.082 0.672 0.265 26.742 0.276 

Geneva Processing Raw Raw Raw Raw Raw Raw 



51 

 

Neurons   2    

Accuracycal 0.999 1.000 0.998 0.997 0.993 0.991 

Precisioncal 1.000 1.000 1.000 1.000 0.995 0.990 

Recallcal 0.999 1.000 0.996 0.994 0.992 0.992 

Accuracypred 0.996 0.996 0.996 0.993 0.991 0.993 

Precisionpred 1.000 1.000 1.000 1.000 1.000 1.000 

Recallpred 0.996 0.996 0.996 0.993 0.991 0.993 

Qualitative 2 2 4 4 4 4 

Computation time (s) 0.223 17.307 0.758 0.437 52.612 0.404 

 823 


