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Introduction

Natural archives, such as sediment cores, are composed of a succession of deposits, so they record past climate and environment biological-physical-chemical variations. There are two main processes: continuous sedimentation and event layers, and the former can be interrupted by the latter. The continuous sedimentation enables one to create an age-depth model and infer the environment and climate conditions. Event layers, e.g., related to floods [START_REF] Gaume | A compilation of data on European flash floods[END_REF][START_REF] Glur | Frequent floods in the European Alps coincide with cooler periods of the past 2500 years[END_REF], storms [START_REF] Sabatier | 7000 years of paleostorm activity in the NW Mediterranean Sea in response to Holocene climate events[END_REF], landslides, earthquakes [START_REF] Wilhelm | Quantified sensitivity of small lake sediments to record historic earthquakes: Implications for paleoseismology[END_REF], tsunamis [START_REF] Chagué-Goff | Chemical signatures of palaeotsunamis: A forgotten proxy?[END_REF], and eruptions, are linked to some of the most damaging disasters in terms of economic and societal losses. Currently, in an overwhelming majority of laboratory studies on natural archives, sedimentary structures are first visually described; subsequently, numerous physical (X-ray imaging, computed tomography scan, grain-size) and chemical (X-ray fluorescence or diffraction, scanning electron microscopy) analyses are undertaken. From those results, the event layers are identified and described. Then, layers with identical characteristics (e.g., color and texture) are usually counted by naked-eye observation. This approach is time-consuming, characterized by a low spatial resolution and subject to high uncertainties due to human interpretation [START_REF] Lotter | Methods for preparing and counting biochemical varves[END_REF]. To overcome these limits, several semi-automatic methods were developed to discriminate these sedimentary deposits from RGB images. The main approaches study the strata from annually laminated sediment to create an age-depth model with their discretization, but they only use a line or a combination of segments, and a deposit is characterized by the detection of the maxima [START_REF] Meyer | The WinGeol Lamination Tool : new software for rapid, semi -automated analysis of laminated climate archives[END_REF][START_REF] Weber | BMPix and PEAK tools: new methods for automated laminae recognition and counting-application to glacial varves from Antarctic marine sediment[END_REF]. Similarly, for the automatic detection of event layers, [START_REF] Vannière | Orbital changes, variation in solar activity and increased anthropogenic activities: controls on the Holocene flood frequency in the Lake Ledro area, Northern Italy[END_REF] proposed to use a 1/Red signal and threshold. Some studies also used discrimination methods based on labeled pixels to create classification maps, e.g., an adaptive neuro-fuzzy inference system [START_REF] Ebert | Semi-automated detection of annual laminae (varves) in lake sediments using a fuzzy logic algorithm[END_REF] or K-nearest neighbor [START_REF] Ndiaye | A semi automated method for laminated sediments analysis[END_REF]. Thereby, only the color signal has been investigated, while many other parameters are potentially useful to distinguish event layers, such as the texture, grain size, and chemical composition [START_REF] Fouinat | A new CT scan methodology to characterize a small aggregation gravel clast contained in a soft sediment matrix[END_REF][START_REF] Gilli | Lake Sediments as Archives of Recurrence Rates and Intensities of Past Flood Events, in: Dating Torrential Processes on Fans and Cones: Methods and Their Application for Hazard and Risk Assessment[END_REF][START_REF] Wilhelm | Recent advances in paleoflood hydrology: From new archives to data compilation and analysis[END_REF]. A more relevant approach will automatically detect event layers considering all of these parameters.

In the current literature, a great number of works focus on the use of hyperspectral imaging (HSI) data for resource management. For instance, in agriculture applications [START_REF] Teke | A short survey of hyperspectral remote sensing applications in agriculture[END_REF] several works are focusing on the analysis of (i) environmental stress in crops and associated diseases [START_REF] Feng | Canopy vegetation indices from in situ hyperspectral data to assess plant water status of winter wheat under powdery mildew stress[END_REF], (ii) crops variability [START_REF] Rubwurm | Temporal Vegetation Modelling Using Long Short-Term Memory Networks for Crop Identification from Medium-Resolution Multi-spectral Satellite Images[END_REF], and (iii) soil erosion stages [START_REF] Chabrillat | Potential of hyperspectral imagery for the spatial assessment of soil erosion stages in agricultural semi-arid Spain at different scales[END_REF] among many others. In forestry and environmental management, relevant works care about analyzing the status and health of forests [START_REF] Shang | Classification of Australian native forest species using hyperspectral remote sensing and machine-learning classification algorithms[END_REF], and infestations in plantation forestry [START_REF] Peerbhay | Random Forests Unsupervised Classification: The Detection and Mapping of Solanum mauritianum Infestations in Plantation Forestry Using Hyperspectral Data[END_REF]. In geological exploration and mineralogy, HSI data have been used for detection and mapping of mineral deposits [START_REF] Contreras Acosta | A Machine learning framework for drill-core mineral mapping using hyperspectral and high-resolution mineralogical data fusion[END_REF][START_REF] Dumke | First hyperspectral imaging survey of the deep seafloor: High-resolution mapping of manganese nodules[END_REF] or soil composition analysis [START_REF] Shi | Incorporating spatial information in spectral unmixing: A review[END_REF]. HSI is a non-destructive high-resolution laboratory analysis that enables a semi-automatic description of the natural deposits based on their physical-chemical characterization. HSI can improve chemical knowledge by analyzing the sample surface. It has been used to characterize mineralogical fingerprints [START_REF] Feng | Comparison of lithological mapping results from airborne hyperspectral VNIR-SWIR, LWIR and combined data[END_REF][START_REF] Lorenz | Multi-Sensor Spectral Imaging of Geological Samples: A Data Fusion Approach Using Spatio-Spectral Feature Extraction[END_REF]Tusa et al., 2020b), organic matter (Jacq et al., 2019c;[START_REF] Van Exem | Reconstructions de changements environnementaux dans les archives lacustres par imagerie hyperspectrale[END_REF], pigments [START_REF] Butz | Hyperspectral imaging of sedimentary bacterial pigments: a 1700-year history of meromixis from varved Lake Jaczno, northeast Poland[END_REF][START_REF] Makri | Early human impact in a 15,000year high-resolution hyperspectral imaging record of paleoproduction and anoxia from a varved lake in Switzerland[END_REF][START_REF] Schneider | A high-resolution pigment and productivity record from the varved Ponte Tresa basin (Lake Lugano, Switzerland) since 1919: insight from an approach that combines hyperspectral imaging and high-performance liquid chromatography[END_REF], and particle size distribution (Jacq et al., 2019b). Some of these studies highlight sedimentary structures with proxy estimation but without spatially characterizing them. To describe these deposits, image or classification approaches were used with hyperspectral remote sensing imaging [START_REF] Ghamisi | Advanced Spectral Classifiers for Hyperspectral Images: A review[END_REF][START_REF] Li | Deep learning for hyperspectral image classification: An overview[END_REF]. These approaches have been used in the laboratory for mineralogical characterization of rock cores or for the detection of veins from other sensor data that require destructive sampling [START_REF] Contreras Acosta | Drill-core hyperspectral and geochemical data integration in a superpixel-based machine learning framework[END_REF], 2019;Tusa et al., 2020a[START_REF] Tusa | Mineral mapping and vein detection in hyperspectral drill-core scans: Application to porphyry-type mineralization[END_REF]. These works employ methods such as random forest (RF) or support vector machine (SVM) to classify each hyperspectral pixel into a dominant mineral class or for a mixture of minerals, they used visible and near-infrared (VNIR), short and long wave infrared (SWIR, LWIR) hyperspectral cameras.

These approaches are therefore interesting for the problem of detecting sedimentary deposits, but sediments from aquatic environments are moreover more complex than those from rocks because of the presence of moisture and particles that will interfere in the hyperspectral signal [START_REF] Verpoorter | Visible, near-infrared spectrometry for simultaneous assessment of geophysical sediment properties (water and grain size) using the Spectral Derivative-Modified Gaussian Model[END_REF]. To this day, only one study based on lake or marine sediments employs HSI to characterize spatial variations in volcanic tephra layers with a VNIR camera using a supervised classification method based on an artificial neural network and manual non-destructive labeling [START_REF] Aymerich | Detection of tephra layers in Antarctic sediment cores with hyperspectral imaging[END_REF].

As we have just seen, in the literature many hyperspectral image classification methods have been applied on remote sensing, but few to sedimentary images. Therefore, to classify sediments from cores to know their composition, we want to study three supervised classification methods (decision tree DT, random forest RF, and artificial neural network ANN) and three parametric methods (linear and quadratic discriminant analysis LDA/QDA, partial least-square discriminant analysis PLS-DA). These six methods are problematically specific [START_REF] Khaledian | Selecting appropriate machine learning methods for digital soil mapping[END_REF]. The hyperspectral images used in this study come from a visible and near-infrared camera (VNIR, pixel size: 60 μm) and a shortwave infrared sensor (SWIR, pixel size: 200 μm). The two sensors can also be combined to estimate a VNIR-SWIR composite sensor (pixel size: 200 μm) or reduced to create composite RGB images. Several spectral and spatial pre-processing and compression algorithms were compared. Thus this study proposes to compare numerous approaches (the type of image, pre-processing, and discrimination) to separate and characterize the sedimentary structures of three different samples and provide a simplified methodology for its application to other sites. Three sediment cores were selected from three lakes located in the western French Alps (Figure 1) in different watersheds, representing different geological contexts and surface areas that present event layers with different geochemical compositions. The studied cores were retrieved from Lake Allos (ALO09_P13, IGSN: IEFRA08JN, coring year: 2009) [START_REF] Wilhelm | Is a regional flood signal reproducible from lake sediments?[END_REF][START_REF] Wilhelm | 1400 years of extreme precipitation patterns over the Mediterranean French Alps and possible forcing mechanisms[END_REF], the deep basin of Lake Le Bourget (LDB17_P11, coring year: 2017, water inflow: 10.65 m.an -1 ) [START_REF] Jenny | Réponses des grands lacs périalpins aux pressions anthropiques et climatiques récentes : reconstitutions spatio-temporelles à partir d'archives sédimentaires[END_REF][START_REF] Jenny | A 4D sedimentological approach to reconstructing the flood frequency and intensity of the Rhône River (Lake Bourget, NW European Alps)[END_REF], and Lake Geneva (LEM10_P6, IGSN: IEFRA008N, coring year: 2010, water inflow: 13.07 m.an -1 ) [START_REF] Jenny | Réponses des grands lacs périalpins aux pressions anthropiques et climatiques récentes : reconstitutions spatio-temporelles à partir d'archives sédimentaires[END_REF][START_REF] Rapuc | XRF and hyperspectral analyses as an automatic way to detect flood events in sediment cores[END_REF]. The sediment from the three selected cores was first described and logged after naked-eye observations. When they were present, the event layers were distinguished from the continuous sedimentation by using sedimentological and geochemical results; for these three cores X-ray fluorescence, particle size distribution, and total organic carbon were made. Lake Allos sediment sequence (ALO09_P13) presents two different sedimentary units. The upper part is enriched in organic matter and presents Total Organic Carbon (TOC) values > 1.5% [START_REF] Wilhelm | 1400 years of extreme precipitation patterns over the Mediterranean French Alps and possible forcing mechanisms[END_REF]. The rest of the sequence is composed of light-gray homogeneous silty clay (median = 10 µm), corresponding to the continuous sedimentation, which is interrupted by coarser (median = 40 µm) normally graded beds [START_REF] Wilhelm | 1400 years of extreme precipitation patterns over the Mediterranean French Alps and possible forcing mechanisms[END_REF]. These beds present higher values of dry bulk density, lower TOC values (< 1%), and are enriched in calcium contents (Figure 2). XRF signals also show peaks of Zr/K and low Ti values due to an increase of the grain size at the base of the layers and a depletion in silicate particles, respectively. The graded beds were interpreted as linked to turbidity currents triggered by gravity reworking or flood events [START_REF] Wilhelm | 1400 years of extreme precipitation patterns over the Mediterranean French Alps and possible forcing mechanisms[END_REF]. Lake Bourget sediment sequence (LDB17_P11) presents two main units. The first one (0-10 cm) is laminated with an alternation of white/light-gray and dark-gray/brown laminae. These laminae are mainly composed of diatoms, micrite, organic matter (TOC > 2.5%), and autochthonous calcite with a mean grain size comprise between 15 and 30 µm [START_REF] Giguet-Covex | Sedimentological and geochemical records of past trophic state and hypolimnetic anoxia in large, hard-water Lake Bourget, French Alps[END_REF]. The second unit is nonlaminated and corresponds to homogeneous light-gray sediment composed of carbonate particles, silts, clays, and a few diatoms. The mean grain size of this unit is almost constant and is comprised between 4 and 9 µm. The organic matter content is under 5% [START_REF] Giguet-Covex | Sedimentological and geochemical records of past trophic state and hypolimnetic anoxia in large, hard-water Lake Bourget, French Alps[END_REF], and carbonate particles represent at least half of the total sediment [START_REF] Arnaud | Discriminating Bio-Induced and Detrital Sedimentary Processes from Particle Size Distribution of Carbonates and Non-Carbonates in Hard Water Lake Sediments[END_REF]. Several darker deposits, enriched in detrital silicate and carbonate particles, interrupted the continuous sedimentation and were interpreted as underflow deposits linked to flood events [START_REF] Giguet-Covex | Sedimentological and geochemical records of past trophic state and hypolimnetic anoxia in large, hard-water Lake Bourget, French Alps[END_REF][START_REF] Jenny | A 4D sedimentological approach to reconstructing the flood frequency and intensity of the Rhône River (Lake Bourget, NW European Alps)[END_REF]. These deposits present peaks of Ti and Zr/K signals at their base (Figure 2), which support the higher detrital content and the increase of grain size within these layers.

Materials and methods

Sample site descriptions

Like the two other sediment sequences, the Lake Geneva sequence (LEM10_P6) presents two principal sedimentary units. The upper laminated unit corresponds to an alternation of light and dark-gray laminae, enriched in organic matter (TOC values > 5%; [START_REF] Jenny | Réponses des grands lacs périalpins aux pressions anthropiques et climatiques récentes : reconstitutions spatio-temporelles à partir d'archives sédimentaires[END_REF]). This unit is followed by homogeneous light-gray silty clay identified as a non-laminated unit [START_REF] Jenny | Réponses des grands lacs périalpins aux pressions anthropiques et climatiques récentes : reconstitutions spatio-temporelles à partir d'archives sédimentaires[END_REF], which presents lower organic content (TOC values < 2%) and higher values of calcium (Figure 2). The mean grain size of these two units is higher (> 25 µm) than Lake Bourget sediment sequence values. The lower unit is interrupted by thick and coarse graded beds that show peaks of Zr/K, and higher values of Ti (Figure 2) are linked to increased detrital silicates compared to the continuous sedimentation. These deposits present similarities with those observed in the two other sequences and were interpreted as flood layers.

Once clearly identified, those layers were visually counted. The data sets will be referred to using the name of the lake, but it must be understood that there may be differences (color, chemical, physical) among different sequences from the same lake.

VNIR and SWIR hyperspectral image acquisition

Two hyperspectral reflectance cameras were used to analyze these cores at the UMR CNRS M2C lab facilities, University of Normandie-Rouen (France). They cover two consecutive spectral ranges: 400-1 000 nm (visible and near-infrared, Specim VNIR PFD OLE23) and 968-2 574 nm (shortwave infrared, Specim SWIR OLES22.5). They have a theoretical spatial pixel size of 60 μm and 200 μm, respectively.

The real resolution may vary due to surface roughness. Relevant data were obtained with a flattening and a cleaning of the core to have a plane surface that revealed sediment structures [START_REF] Butz | Hyperspectral imaging spectroscopy: a promising method for the biogeochemical analysis of lake sediments[END_REF][START_REF] Jacq | Hyperspectral core-logger image acquisition[END_REF]. Then, the camera was calibrated with a spectral acquisition on a reference, as the image of a known object has squared pixels (true shape) and relevant reflectance intensities (color and signal-to-noise ratio).

The resolution of the two datasets (VNIR and SWIR) was also homogenized at a common spatial resolution of 200 μm to obtain a VNIR-SWIR composite sensor. The two hyperspectral images were combined into a unique one (i.e., VNIR-SWIR) with image registration [START_REF] Liu | SIFT flow: dense correspondence across scenes and its applications[END_REF] adapted to HSI on a wavelength plane characteristic of a similar chemical compound. In previous work, we found that the 970 nm (VNIR) and 1 200 nm (SWIR) wavelengths were optimal for combining (Jacq et al., 2019a).

They are related to hydroxyl chemical bonds mostly associated with moisture in sediment cores [START_REF] Bull | Wavelength selection for near-infrared reflectance moisture meters[END_REF][START_REF] Viscarra Rossel | Using data mining to model and interpret soil diffuse reflectance spectra[END_REF]. Therefore, a composite sensor was created to merge the VNIR and SWIR datasets to cover the range of 400-2 500 nm. No reflectance adjustment was used to correct for shifts in the spectral overlap range between the two sensors. In this study, we compare the classification performances of three datasets: VNIR at a spatial resolution of 60 μm, SWIR at a resolution of 200 µm, and VNIR-SWIR at a resolution of 200 μm.

Pre-processing can be used to correct the data from noise or aberrant values and highlight discriminant wavelengths. The three dimensions of the HSI, spectral, and spatial pre-processing procedures can be used [START_REF] Rinnan | Review of the most common pre-processing techniques for near-infrared spectra[END_REF][START_REF] Vidal | Pre-processing of hyperspectral images. Essential steps before image analysis[END_REF]. The spectral pre-processing procedures compared in this study are normalization (autoscale), linear baseline correction (detrend), scattering effect correction (Standard Normal Variate (SNV) and Multiplicative Scatter Correction (MSC)) [START_REF] Barnes | Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra[END_REF], and Savitzky-Golay first and second derivatives (D1 and D2) [START_REF] Savitzky | Smoothing and Differentiation of Data by Simplified Least Squares Procedures[END_REF]. The derivatives use second-order polynomial fitting and a window of 7 and 13 wavelengths for the first and second derivatives respectively. Principal component analysis (PCA) was also used as a compression of the spectral dimension [START_REF] Pearson | On lines and planes of closest fit to systems of points in space[END_REF]. Contrast limited adaptive histogram equalization (CLAHE) was used on the spatial dimensions with an estimation based on the grayscale image levels and applied to each image wavelength [START_REF] Zuiderveld | Contrast Limited Adaptive Histogram Equalization[END_REF]. Thus, nine datasets per sensor were used for training in an independent way.

Data Analysis

Six commonly used machine learning algorithms were used to create classification models with three types of spectral data (VNIR, SWIR, and VNIR-SWIR) (Figure 3). First, an RGB image was made from the VNIR HSI to visually and manually label continuous sedimentation and event layer pixels by an expert.

Then, machine learning methods were used to construct discrimination models. In addition, nine preprocessing procedures (spatial and spectral) were used and compared with raw data. Consequently, 162 discriminations models were created for each sample to find the optimal sensor (of three), method (of six), and pre-processing procedure (of nine) as presented in Figure 3. (6) Estimation of the optimal model depending on the sensor, pre-processing procedure, and discrimination model

Data labeling

Hyperspectral VNIR data can be reduced to three planes that correspond to a Red-Green-Blue image from the VNIR sensor (611-549-464 nm, according to the RGB standard) (CIE, 1999). The RGB images are representation modes adapted for naked-eye assessment and were used to visualize the sample to label the sedimentary structures. Thus, the user must manually select rectangular areas that correspond to the different studied classes based on the known deposits characterized by geochemical, textural, and mineralogical analysis. The resulting maps were used as a mask with 0 values for non-labeled pixels and other values for labeled pixels (1: event layer, 2: continuous sedimentation). It was also used to extract the labeled pixels and their corresponding spectrum (Figure 4). For the SWIR dataset, these maps were also made with VNIR data at 60 µm and resized at 200 µm. 

Classification modeling

Several methods commonly used in the literature were chosen for comparison because there is no universal method [START_REF] Khaledian | Selecting appropriate machine learning methods for digital soil mapping[END_REF]. Six methods were used to create a supervised classification model to discriminate the two sedimentary processes (Figure 5, Supplementary table 1).

Decision trees are a rule-based approach to classification and regression problems [START_REF] Breiman | Classification And Regression Trees[END_REF]. They use the values in each feature to split the dataset to a point where all data points that have the same class are grouped together. A tall tree with multiple splits generates better classifications.

The random forest is a classification algorithm consisting of many decisions trees [START_REF] Ho | Random decision forests[END_REF]. It uses bagging and features randomness when building each individual tree to try to create an uncorrelated forest of tree whose prediction by committee is more accurate than that of any individual tree.

ANN is a set of connected input-output network in which weight is associated with each connection [START_REF] Ivakhnenko | Cybernetic predicting devices[END_REF][START_REF] Mcculloch | A logical calculus of the ideas immanent in nervous activity[END_REF][START_REF] Rosenblatt | The Perceptron: A Probabilistic Model for Information Storage and Organization in The Brain[END_REF]. It consists of one input layer, one or more intermediate layers, and one output layer. Learning of neural network is performed by adjusting the weight of connection. By updating the weight iteratively performance of the network is improved. During training, the interconnection weights are optimized until the network reaches the specified level of accuracy. It has many advantages like parallelism, less affected with noise, good learning ability Linear discriminant analysis (LDA) is a straightforward method applying the generative approach for classification [START_REF] Fisher | The Use of Multiple Measurements in Taxonomic Problems[END_REF]. It is based on the assumption that each class can be modeled by a Gaussian distribution and that all the classes share the same covariance matrix. In practice, LDA requires few computations to estimate the classifier parameters that amount to computing percentages and means, plus a matrix inversion.

Quadratic discriminant analysis (QDA) is similar to LDA but without the assumption that the classes share the same covariance matrix, i.e., each class has its own covariance matrix [START_REF] Fisher | The Use of Multiple Measurements in Taxonomic Problems[END_REF]. In this case, the boundary between classes is a quadratic surface instead of a hyperplane. Partial least squares-discriminant analysis (PLS-DA) is a versatile algorithm that is used for predictive and descriptive modeling as well as for discriminative variable selection [START_REF] Wold | The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses[END_REF]. However, versatility needs to optimize a wealth of parameters before reaching reliable and valid outcomes. [START_REF] Khaledian | Selecting appropriate machine learning methods for digital soil mapping[END_REF] propose to consider different properties to define the optimal approach to answer the problem. These methods are based on common or specific assumptions as presented briefly above. Some require a large amount of data, such as ANN, while others are less sensitive to sample size. The computation time is also related to the amount of data, as well as to the complexity of the problem, the number of iterations, and the adjustments. Some are easily interpretable (DT, LDA, QDA, PLS-DA), or complex (RF, ANN with few neurons), and some are "black boxes" (ANN with many neurons). Here we use the ANN with few neurons to prioritize the spectral interpretability. Some require the user to define hyperparameters that are presented in Supplementary table 1. Thus, these different methods were chosen to see the effect of these properties on the different datasets (sensors, pre-processing) in predicting the two sedimentary deposit types for the three different sites. The models were fitted with a randomly selected 70% of the data during calibration, and the remaining data were used in the test set (Supplementary table 2). This ratio was applied to the class with fewer labeled pixels to have a consistent number in each group in the calibration step. The same calibration and test sets were used for each classification method, but they were different for each pre-processing procedure. The labeled pixel number depends on the ability of the user to precisely see the deposits; then, only pixels that certainly belong to these classes are labeled to avoid introducing uncertainty by uncertain labeling. Due to the compression of the labeled high-resolution map, the pixels of the contours may have been removed as being uncertain, which slightly changes the labeling percentages between the two resolutions. That change explains the difference between the cores with labeled pixels of between 0.45% and 15.71% for one class It also allows visualization of the learning capacity depending on the number of calibration pixels. 5% of the Allos lake image was labeled, against 1.1% for the Bourget lake or 16% for the Geneva lake.

Quantitative and qualitative assessments of model classification

The quantitative performances of the classification models were estimated by the overall accuracy, precision and recall in calibration and prediction:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (1) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (2) 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+ 𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (3)
Given a classifier and an instance, there are four possible outcomes. If the instance is positive and it is classified as positive, it is counted as a "true positive"; if it is classified as negative, it is counted as a "false negative". If the instance is negative and it is classified as negative, it is counted as a "true negative"; if it is classified as positive, it is counted as a "false positive".

The overall accuracy is the proportion of correct predictions (both "true positives" and "true negatives") among the total number of cases examined. The precision corresponds to the fraction of first class correct predictions (only "true positives") among the retrieved first class. The recall is the fraction of relevant first-class predictions that were retrieved. Thus, a value closer to 1 indicates better predictive ability.

Once a model is considered relevant, it is used on each pixel of the hyperspectral image to classify them and estimate a classification map. An expert must then visually and qualitatively evaluate its spatial coherence, using the different successive deposits and its noise level. Hence, a qualitative index with values between 0 and 5 (arbitrary) is used. A value of 0 corresponds to an irrelevant classification map induced by a model that cannot generalize (under or over-fitting); a value of 5 shows globally relevant classifications on the whole image; whereas a value in this interval indicates more or less relevant predictions but with defects (noise, mispredicted deposits). Moreover, it is important to understand the models on the importance they give to different wavelengths. Complex models like RF and neural networks with a large number of neurons are not easily interpretable.

Results and interpretations

3.1 Comparison of the classification methods and pre-processing procedures Nine pre-processing procedures were tested on each sample, each sensor, and each discrimination method to find the optimal combination (Figure 6). As shown in Figure 4, the spectra of the two classes overlap partially or totally, so the pre-processing step must highlight the wavelengths with discriminating variations to create performant and robust models. PCA and second derivatives (D2) had the lowest prediction accuracies for each sensor and sample (Figure 6). The PCA reduction may not maintain the discriminant information in the main PCs and D2. Raw, CLAHE, autoscaled, and detrended data had the highest discriminant properties in all cases (Figure 6). Some pre-processing procedures are sensor-dependent, such as SNV and MSC, which presented low accuracy for the VNIR sensor and high accuracy for the SWIR sensor. The first derivative (D1) had intermediate accuracy for all cases except for the SWIR sensor and Allos sample, for which good performances were obtained.

Among the discriminant methods, DT had the lowest prediction accuracy in most cases, whereas ANN, QDA, and RF had the highest accuracy. For the ANN, few neurons (2-3) appeared to be better than more neurons. The latter has many more parameters and may overfit the small amount of training data, which limits its generalization capability on the test set. The accuracies of the optimal methods are close and must be discussed with all quantitative values and interpretations of their discriminant spectral properties. It is important to consider that the results are sample-and site-specific.

Figure 6: Radar charts of the impact of pre-processing on the overall prediction accuracy of each classification method and lake core hyperspectral image (a-c: Lake Allos; d-f: Lake Bourget; g-i: Lake Geneva; a, d, g: VNIR sensor; b, e, h: SWIR sensor; c, f, i: VNIR-SWIR sensor)

Optimal models for each image type

The calibration and prediction accuracies, precisions and recalls of the optimal models were higher than 0.8 and mainly 0.9, which highlights the presence of spectral discriminant information in both sensors (Table 1, Supplementary table 3Supplementary table 5). Nevertheless, it also highlights that the best discriminant capacity derived from the SWIR sensor and therefore the VNIR sensor does not contain as much discriminating information. The combination of the two sensors, which should present a better discriminant capacity through the greater amount of spectral information, presents an intermediate discriminant ability. Thus, the predictions are certainly biased by some VNIR data variations.

Among all the models developed, some observations have been made (Supplementary table 3-Supplementary table 5). ANNs with two neurons are often the optimal discriminant method based on the prediction accuracy and parsimonious because adding neurons does not improve the accuracy.

However, for the qualitative index, discriminant analysis methods (LDA, QDA, PLS-DA) generally had the best performance levels. The computation time is lower for the LDA, PLS-DA, and DT methods, and all of these methods are fast to compute, so the computation time was not used to select the optimal model. It is also more important when there is more data to learn which is the case for the Allos section compared to the others. Based on a compromise between these two first properties (quantitative and qualitative index), the optimal methods in most cases were LDA or PLS-DA. Table 1 highlights an optimal pre-processing procedure that mainly depends on the sample. The discrimination methods appear to have had a low impact on it, which suggests that an optimal pre-processing procedure can highlight the discriminant wavelengths. The classification map comparison of the optimal and worst models highlights that the VNIR sensor is more sensitive to surface reliefs, as observed in Figure 7.a-b with fissures and holes due to sampling or Figure 7.d-e with shadows. Darker laminated areas are noticeable on the Bourget and Geneva sediment sections (on the left of the picture), which were not initially labeled because of the nonpossibility of precisely labeling the two classes. In these areas, the VNIR sensor predicted that most of the pixels in the event layer class might be due to the similar color with this class. In contrast, the SWIR data correctly predicted the two groups due to the additional spectral discriminant information. For the Allos sediment section (Figure 7.a-c), the event layers are easily distinguishable from the continuous sedimentation due to their darker colors. However, there is also a color gradient linked to a grain size gradient that is spectrally registered in the SWIR range (Jacq et al., 2019b), which explains the wider layers estimated from the SWIR data than from the VNIR data, and the lightest layers are not visible with the VNIR data.

All of these observations and the quantitative validation are consistent with the greatest discriminant capacities being associated with the SWIR sensor for separating event layers from continuous sedimentation. Thus, the combination of the two sensors is not better, as we expected due to the VNIR data sensitivity to surface roughness, and the combination will not be used further. 

Spectral signatures

Figure 4 shows the spectra corresponding to the two classes. For lakes Allos and Bourget, both classes partially overlap, and the event layers show a lower reflectance that can be due to a darker color of the layers. The overlap is more important for Lake Geneva. The color of the sediment is obviously dependent on the sedimentary properties that are specific to the study sites. It is therefore difficult to visually estimate discriminating spectral areas.

The different statistical approaches used will allow to estimate automatically the spectral areas allowing to separate the two classes. The estimation of SWIR wavelength cumulative occurrence allows to identify the discriminant wavelengths and to characterize them (Figure 8). It is interesting to observe that the five approaches discussed in this figure show similar discriminating spectral areas, which indicates that despite their differences they can adapt to the problematic. Five main discriminant spectral areas present high cumulative values and can be associated with chemical properties. Organic components can be related to spectral wavelengths between (1) 1 050-1 200 nm and (2) 1 650-1 750 nm [START_REF] Cloutis | Spectral reflectance properties of hydrocarbons: Remote-sensing implications[END_REF][START_REF] Viscarra Rossel | Using data mining to model and interpret soil diffuse reflectance spectra[END_REF]. The three others correspond to spectral ranges with possible overlaps: (3-4) organic compounds and hydroxyl bonds (moisture, organic matter or mineral) between 1 350-1 500 nm and 1 800-1 950 nm, and ( 5) mineral (clay) and organic compounds between 2 150-2 300 nm [START_REF] Krupnik | Close-range, ground-based hyperspectral imaging for mining applications at various scales: Review and case studies[END_REF][START_REF] Verpoorter | Visible, near-infrared spectrometry for simultaneous assessment of geophysical sediment properties (water and grain size) using the Spectral Derivative-Modified Gaussian Model[END_REF][START_REF] Viscarra Rossel | Using data mining to model and interpret soil diffuse reflectance spectra[END_REF]. The three optimal core models use similar discriminant wavelengths but have different importance depending on the sediment properties. The two hydroxyl bond spectral areas have important implications in the three models and could be due to interstitial moisture that may be associated with coarser particles present in the event layers. The model estimated for Lake Allos highlights another spectral area characteristic of clays (2 150-2 200 nm) associated with continuous sedimentation.

Whereas Lake Bourget and Lake Geneva models use specific areas of organic matter (1 050-1 150 nm, 1 350-1 400 nm, 1 650-1 750 nm) due to higher organic matter concentration in both sediment sequences. Thus we can see that the SWIR sensor allows to highlight several sedimentary properties that can differentiate the two types of deposits. It should be noted that the sedimentary properties highlighted differ and are dependent on the studied site.

Discussion

Generalization of the model on the other sites

Optimal SWIR models developed on each core were used to produce the classification maps of the other cores and to observe the model generalization capability. Table 2 and Supplementary figure 1 show the results of these classifications with the test accuracies and qualitative indicators. Most of the models agree on the difficulty of generalizing the model to other cores, which is explained by the differences in reflectance and thus in sediment composition of the sediment sequences as shown in Figure 4. As the continuous sedimentation of Lake Bourget and Lake Geneva is more organic than the one of Lake Allos, or the granulometry and interstitial humidity allowing to trace textural changes in the event deposits that are more significant for Lake Allos than the other. Unfortunately, mineralogical changes (silicates and carbonates) do not show marked absorptions in the spectral domains studied.

Only the model developed with the Bourget data could estimate the classification maps for the other cores, possibly since it has less spectrally localized discriminant wavelengths than the other two models (Allos: 2 100-2 200 nm; Geneva: 1 650-1 700 nm). Based on these results, the estimation of a classification model is sample-specific. It can be made with a linear discriminant method such as LDA or PLS-DA with the raw SWIR dataset, even if some pretreatment slightly improves the performance.

Event layer classification with classical images

The true RGB image can also be converted into HSV (Hue, Saturation, Lightness) or L*a*b* (lightness, color) color spaces and reduced to a grayscale level. The HSV and L*a*b* transformations have been proven to be more adaptable for classification purposes [START_REF] Bora | Comparing the performance of L*A*B* and HSV color spaces with respect to color image segmentation[END_REF][START_REF] Hernández-Hernández | Optimal color space selection method for plant/soil segmentation in agriculture[END_REF]. The grayscale levels are the most straightforward color space.

Table 3 and Supplementary figure 2 show that the conventional image presents slightly lower performances with the VNIR data and has the same mispredictions in terms of surface variations, shadows, and laminated areas (Supplementary table 3). All of these observations highlight that these methods learn the color of the deposits too well with VNIR data and do not learn enough from the chemical composition. Then, machine learning and a conventional image can be used in the case of a clean image and sample with only color differences between the classes and learning of all types of sample events and defects. 

Comparison between HSI and naked-eye chronicles

The discretization of the event layers allows for estimation of event layer occurrence along the sediment section and comparison of the event layers with naked-eye event chronicle. The classification map was reduced to a summed profile, with pixels equal to 0 for continuous sedimentation and 1 for an event layer. We assume that the deposits are parallel; if this is not the case, image processing must be used to correct the deformation when possible. This profile can also be used as an event occurrence probability with normalization by the image width in pixels. It was smoothed with a second-order polynomial Savitzky-Golay filter to reduce misclassifications [START_REF] Savitzky | Smoothing and Differentiation of Data by Simplified Least Squares Procedures[END_REF]. A low threshold (below 20%) allows the separation of all deposits but also the discovery of some artifacts, and the boundaries can be overestimated due to curvatures. Conversely, a high threshold (above 70%) only finds the large deposits, but close ones can be fused. Thus, a double threshold was used. First, using the half-width of the image to classify each column to one class allowed discovery of the most relevant deposits, but close layers could be observed as a large one. The second threshold of 15% of the image width was used for event layers thicker than 5 mm to potentially divide them. Finally, the chronicle can be reconstructed with the depth and thickness of each event layer. Naked-eye chronicles of the three cores were estimated and can be compared with the hyperspectral ones [START_REF] Jenny | A 4D sedimentological approach to reconstructing the flood frequency and intensity of the Rhône River (Lake Bourget, NW European Alps)[END_REF][START_REF] Rapuc | XRF and hyperspectral analyses as an automatic way to detect flood events in sediment cores[END_REF][START_REF] Wilhelm | 1400 years of extreme precipitation patterns over the Mediterranean French Alps and possible forcing mechanisms[END_REF].

Figure 9 compares the identification of event layers in terms of depth and thickness between the HSI and naked-eye approaches. In general, HSI results in thicker event layers than naked-eye observations. This result can be explained by the limited ability of the eyes to characterize the event limits (resolution grain) or its curvature (misidentification). Machine learning also enables one to identify new deposits that were not visually detected (due to their small thickness or texture or color differences). They must be assessed by other high-resolution techniques such as microscopy to verify their relevance. The number of detected event layers was high (Table 4) due to the detection of supplementary thinner layers.

Initially, this work was developed to study only flood events that were manually labeled. Nonetheless, HSI does not appear to have sufficient discriminant spectral information to distinguish different triggering mechanisms for the event layers (e.g., flood, slumps induced by seismic-shaking, etc.).

However, the HSI model is the first fast and non-destructive method to semi-automatically detect event layers in different sedimentary contexts and represents a clear improvement in sedimentology. 

Perspectives

It is worth noting that we only focused on event layers, and the models are site-specific. Some strategies can be tested in future works. The first strategy would be to create a multi-site database to learn several event types and include continuous sedimentation cases (strata or homogeneous). A second strategy could be to use complementary information estimated by other sensors, such as XRF spectroscopy, which is also a non-destructive high-resolution (up to 200 µm) analysis, for elemental composition [START_REF] Rapuc | XRF and hyperspectral analyses as an automatic way to detect flood events in sediment cores[END_REF].

It would also be interesting to use a spatial-spectral approach to add information contained in both dimensions, such as the color and grain size gradient, along a flood event. Deep learning with a convolutional neural network (CNN) uses this type of approach and could be interesting for a large multi-site database. This method introduces multi-scale local feature learning and some translation and rotation invariance, which are of interest for image classification [START_REF] Schmidhuber | Deep Learning in Neural Networks: An Overview[END_REF]. We have tested a CNN1D that uses only the spectral dimension, but it has poor performance that may be due to too small of a database and a too simple of a problem that an ANN with few neurons could model.

In future work, we will use a CNN3D that uses a spatial-spectral approach [START_REF] Ben Hamida | 3-D Deep Learning Approach for Remote Sensing Image Classification[END_REF].

We have shown that the combination of VNIR and SWIR does not increase the discriminating capacity.

Improvements can be made with surface defect correction before data acquisition or with preprocessing after data acquisition, or the defects can be detected and removed from the classification map. Another method could be to make two separate classifications with both sensors and subsequently combine them with different weights using, for example, fuzzy or belief function methods to improve the certainty of the predictions [START_REF] Lian | Joint Tumor Segmentation in PET-CT Images Using Co-Clustering and Fusion Based on Belief Functions[END_REF][START_REF] Tehrani | Color Image Segmentation Using a Fuzzy Inference System[END_REF].

This study has shown that event layers can be estimated at high resolution with hyperspectral imaging in the cores used in the calibration. A first discriminant model based on LDA or PLS-DA, which is estimated with raw hyperspectral data, will enable one to determine the possibility of discrimination among different classes. A similar method has already been used to detect tephra layers [START_REF] Aymerich | Detection of tephra layers in Antarctic sediment cores with hyperspectral imaging[END_REF]. Then, our proposed method may be applied to case studies to detect any type of events such as tsunamis, earthquakes, landslides, storms, and any other laminae. Thus, thanks to a precise manual labeling that includes as much visual and spectral variability as possible, it will be possible to build an automatic log-stratigraphy. This method will be very useful for paleoenvironmental and paleoclimate studies to define the strategy to subsample cores for further analysis to validate predictions or for any other purposes, and it will allow to create event chronicles or to correct the observations from specific events.

Conclusions

We studied the potential of three hyperspectral sensors (VNIR, SWIR, VNIR-SWIR) to image three sediment cores and created machine learning models. This study aimed to automatically discriminate different types of sedimentation (continuous versus event layer) with non-destructive, high-resolution, time-saving methods. Six discrimination methods coupled with raw data or eight pre-processing procedures were used to find an optimal model. We found that the SWIR sensor enabled one to create the most robust models with discriminant analysis (LDA, PLS-DA). Raw data presented relevant predictions (0.87-0.95 but qualitative index 2-3), but the use of a pre-processing procedure can slightly improve the performance (0.90-0.98) and robustness (4-5) of the model. The models were quantitatively assessed with prediction accuracies for the three cores of 0.90, 0.95, and 0.98 and qualitative index of 4-5. For the qualitative model, event layers presented colors and textures that differed from those of continuous sedimentation and could be identified with naked-eye observation to check the relevance of the prediction maps. The discriminant wavelengths are associated with organic matter, some mineral bands, and moisture. This information is not recorded by the VNIR sensor or RGB images, which explains their lower performance, its models seem to rely mainly on the color which is not sufficiently discriminating information. Finally, event chronicles could be estimated from the classification maps by calculating the depth and thickness of each deposit and seem relevant with naked eye chronicles. Unfortunately, the hyperspectral sensors used in this study do not have sufficient spectral discriminant information to characterize the trigger of the event layer and whether different types of events were present in the same sediment core. Future work will enable the characterization of the triggers by combining hyperspectral imaging with other sensors or using spatial-spectral machine learning methods. This study highlights the sediment lithology discrimination capacity of hyperspectral imaging with manual labeling. Future application of this method on sediment sections will allow the creation of robust chronicles of events with characteristic wavelengths and enhance the knowledge about the evolution of the frequency of extreme geodynamic events.
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Figure 1 :

 1 Figure 1: Locations, tributaries, and effluents of the lakes: (a) Bourget and Geneva, (b) Allos

Figure 2 :

 2 Figure 2: XRF analysis for Ti, Zr/K, and Ca of the three cores: (a) Allos, (b) Bourget, and (c) Geneva

Figure 3 :

 3 Figure 3: Data processing to create a classification model to predict each pixel: (1) Visualization with RGB images at both resolutions; (2) Manual labeling of the image; (3) Data pre-processing and (4) Creation of supervised classification models for each dataset (DT: Decision Tree, RF: Random Forest, ANN: Artificial Neural Network, LDA: Linear Discriminant Analysis, QDA: Quadratic Discriminant Analysis, PLS-DA: Partial Least Squares Discriminant Analysis); (5) Prediction for each image;

Figure 4 :

 4 Figure 4: Spectral variations of labelled pixels for each class (blue = event layers; yellow = continuous sedimentation) and for the three cores: (a) Allos, (b) Bourget and (c) Geneva. The reflectance of the sediments depends on the specific sedimentary properties of the sites studied. It seems difficult to visually estimate specific discriminating spectral areas of the two classes studied, therefore statistical approaches will allow to find the discriminating variations

Figure 5 :

 5 Figure 5: Schematic representation of the machine learning methods used in this study depending on their basis: (a) rules; (b) neurons; and (c) functions

Figure 7 :

 7 Figure 7: Optimal (c, f, i) and worst (b, e, h) models for each sediment core sample (a, b, c: Allos; d, e, f: Bourget; h, i, j: Geneva) and labeled areas (blue = event layers; yellow = continuous sedimentation)

Figure 8 :

 8 Figure 8: Comparison of the normalized coefficients (coefficient weights normalized to one for each method) used by the optimal SWIR models to highlight the discriminant wavelengths: (a) Allos, (b) Bourget, and (c) Geneva samples

Figure 9 :

 9 Figure 9: Comparison of the naked-eye and HSI estimated chronicles for the three samples: (a) Allos; (b) Bourget; (c) Geneva
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 1 Figure 1: Locations, tributaries and effluents of the lakes: (a) Bourget and Geneva, (b) Allos.
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 2346789 Figure 2: XRF analysis for Ti, Zr/K, and Ca of the three cores: (a) Allos, (b) Bourget, and (c) Geneva

  

  

  

  

Table 1 :

 1 Optimal models for each sample and based on the parameters indicating their performance and robustness

	Site	Allos	Bourget Geneva
	Sensor	SWIR	SWIR	SWIR
	Method	PLS-DA PLS-DA	LDA
	Processing	SNV	Detrend	SNV
	Accuracycal	0.900	0.969	0.992
	Precisioncal	0.908	0.988	0.996

Table 2 :

 2 Comparison of site-specific models for the generalization to the other cores

	Samples	
	Allos	Bourget Geneva

Table 3 :

 3 Comparison of the conventional image discriminant models with the optimal predictions being estimated by the

			hyperspectral images
					VNIR	SWIR
	Sample Performance Grayscale RGB	HSV	L*a*b*
					HSI	HSI
	Allos	Method	ANN -2 neurons		PLS-DA

Table 4 :

 4 Statistics from the naked-eye and HIS event layer detections. N is the number of event layers identified in each lake core, and the other variables are statistics about the layer thickness

			N N<1	Average	Standard deviation	Minimum	Maximum
			mm	(mm)	(mm)	(mm)	(mm)
		Naked	69 0	7.44	5.73	1.00	39.00
	Allos	eye				
		HSI	88 12	9.64	13.51	0.32	68.19

Table 2 :

 2 Comparison of site-specific models for the generalization to the other cores

Table 3 :

 3 Comparison of the conventional image discriminant models with the optimal predictions being estimated by the hyperspectral images

Table 4 :

 4 Statistics from the naked-eye and HSI event layer detections. N is the number of event layers identified in each lake core, and the other variables are statistics about the layer thickness

	LDA	Discriminant type: Linear
	QDA	Discriminant type: Quadratic
	PLS-DA Latent variable estimation method: NIPALS
		Maximum number of latent variables: 15
		Selection of the number of latent variables: R² differences between two consecutive
		latent variables are less than 2%
	817	
	Supplementary table 2

:

  The number of pixels for each sediment core image and the number of labeled pixels for the 818 calibration and validation sets for each class (1=event layer; 2=continuous sedimentation) Supplementary table 3: Optimal models for the VNIR data depending on the sample and discrimination method

		Computation time (s) 42.544	9 areas, 1272.513 263.840 8.086 5 709	2 447 251.592 12.975
				2				
		Processing	Raw		8 156 (0.45%) Raw Raw	(0.32%) Raw	Raw	(0.14%) Raw
					8 areas,			
		Neurons		1	2 034 596 2	65 769		1 968 827
							(0.48%)		(14.36%)
		VNIR Accuracycal	13 711 712 0.999	(14.84%) 0.996	0.996	0.994	0.994	0.993
		Precisioncal	2 0.999	3 areas, 0.996	0.996	65 769 0.998	0.997	28 187 0.997
					93 956 (0.69%)	(0.48%)		(0.21%)
	Geneva Bourget	Recallcal	0.999	0.996	0.996	0.990	0.991	0.988
					8 areas,		4 078		131 855
	819	SWIR, Accuracypred	1 0.994	135 933 (15.71%) 0.995 0.996	(0.47%) 0.993	0.992	(15.24%) 0.991
			865 234					
	Sample Sensors VNIR-SWIR Precisionpred Recallpred	0.998 2 Total pixels Class 0.993	Number of areas 3 areas, 0.998 0.998 labeled and pixels 5 826 (0.67%) 0.995 0.996	Calibration 4 078 0.999 0.999 pixels (0.47%) 0.991 0.991	Validation 1 748 0.999 (0.20%) pixels 0.988
	820				8 areas,		419 105		179 617
		Qualitative	2	1	3	2	2	2	2
	Sample Performances	DT		598 722 (1.97%) RF ANN	(1.38%) LDA	QDA	(0.59%) PLS-DA
		VNIR Processing Computation time (s) 1.817 30 433 152 2 CLAHE	6 areas, Detrend CLAHE 139.542 5.174	419 105 CLAHE 1.216	CLAHE 54.210	CLAHE 541 974 2.057
	Allos	Neurons Processing	8 areas, 961 079 (3.16%) 2 Detrend Detrend Detrend Detrend Detrend Detrend 24 755 10 609 (1.38%) (1.78%)
		Neurons		1		2		
		SWIR, Accuracycal	0.978	35 364 (2.08%) 0.886 0.889	(1.45%) 0.863	0.860	(0.62%) 0.840
		VNIR-SWIR Precisioncal Accuracycal	1 702 476 0.977 2 0.998	8 areas, 0.883 0.990	0.889 0.992	24 755 0.904 0.987	0.906 0.987	0.902 31 506 0.985
		Precisioncal	0.998	56 261 (3.30%) 0.985 0.989	(1.45%) 0.985	0.985	(1.85%) 0.984
	Allos Geneva	Accuracypred Recallcal Recallcal	0.828 1 0.980 0.999	155 876 (0.74%) 0.882 0.890 12 areas, 0.890 0.888 0.995 0.994	(0.33%) 0.889 68 636 0.811 0.988	0.889 0.803 0.988	(0.41%) 0.879 0.762 87 240 0.985
	Bourget	VNIR Precisionpred Accuracypred	21 096 723 0.614 2 0.987	9 areas, 0.710 0.993	0.728 0.994	68 636 0.759 0.989	0.764 0.989	0.755 29 415 0.985
		Precisionpred	1.000	98 051 (0.46%) 1.000 1.000	(0.33%) 1.000	1.000	(0.14%) 1.000
		Recallpred	0.834	0.888	0.889	0.812	0.804	0.763
		SWIR, VNIR-SWIR Qualitative Recallpred	1 806 624 3 0.987 1	12 975 (0.72%) 3 12 areas, 0.993 3 0.994	(0.32%) 2 5 709 0.989	2 0.989	(0.40%) 2 7 266 0.986