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Abstract

We consider a clustered network where connections inside the cluster are dense and between clusters are sparse. This leads us to a classical
decoupling into fast (intra-cluster) and slow (inter-cluster) dynamics. Our objective is to provide a computationally efficient method to
design control strategies that guarantee a certain bound on the cost for each cluster. Basically, we design a composite synchronizing
controller with two terms: one responsible for the intra-cluster synchronization and the other achieving the synchronization between
clusters. The first one does not require much computational effort since an analytic expression describes it. The second term is designed
through a satisfaction equilibrium approach. In other words, the internal (fast) and external (slow) controllers are independently designed,
and they ensure a guaranteed satisfactory cost for each cluster. Moreover, we show that the internal control affects the cluster cost only
for a short time period. Finally, numerical simulations illustrate the theoretical results.
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1 Introduction

Due to its application in various domains such as power sys-
tems [11], wireless sensor networks [23], social networks
[30], and biology [4], analysis and control of network syn-
chronization have received significant attention in the lit-
erature. A particular case of the networked system is clus-
tered network where the network is divided into distinct
groups (clusters) and the communication inside these groups
are dense while the communication between these groups
is sparse, see e.g. [20]. Networks with such properties also
appear in various disciplines, such as energy systems [26],
physics [2], [28], biological systems [13], social networks
[7], [12] etc.

A majority of the publication on clustered networks propose
an analysis of networks in consensus framework, see, e.g.
[9], [8], [22]; while the problem of control design is less
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common in such a setting. A particular setup for synchroniz-
ing clustered networks using two time-scale is considered in
[5], [25]. In [5], the authors expressed the consensus prob-
lem in terms of the synchronization problem and proposed a
computationally efficient control design strategy using time-
scale separation. A distributed two time-scale consensus al-
gorithm is presented in [25] with an explicit formula for
the convergence rate. However, none of the previously men-
tioned works consider the problem where control objective
has a cost optimization requirement in addition to synchro-
nization. On the one hand, these requirements are timely,
and on the other, induce a high computational load, prevent-
ing the design of (sub-)optimal controllers in a centralized
manner.

A major problem related to the synchronization of large-
scale networks is the computational load associated with
the design of effective controllers. The cost related to the
synchronization is either considered to be global or not con-
sidered at all in most of the existing literature, for example
in [15], [6]. In [15], the authors propose an energy-aware
controller to minimize a global cost consisting of communi-
cation and controller parts. The control design with optimal
global cost in the framework of multi-agent systems is
presented in [6]. The computational effort required is very
high, and the problem is NP-hard due to the information
structure imposed by the graph.
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A computationally efficient decentralized control design ap-
proach is presented with global cost guarantees in [3]; how-
ever, the assumption of the same gain for all the agents in
the network is quite restrictive. This obstacle in [3] was
removed in [29] with individual cost guarantees for each
agent. The proposed strategy works well with small-scale
networks; however, the computational effort required to ob-
tain the gain is huge for large-scale networks. In this paper,
we aim to address this problem and provide an effective
control design strategy for large-scale networks that reduces
the computational effort while satisfying the performance
guarantees.

One methodology to address the synchronization of the
large-scale networks is by model reduction, which is based
on Singular Perturbation Theory (SPT) that exploits the
time-scale properties of clustered networks. The objective is
to decrease the size of the system state while approximating
its overall dynamic behavior. To the best of our knowledge,
the first time-scale analysis of the networked system dates
back to the 1980s, see [10], [11] . In these publications, the
consensus problem for linear systems was analyzed using a
singular perturbation approach, assuming that graphs were
undirected. Later on, these results were extended in [8] to
nonlinear networks. Furthermore, the results from [10], [11]
for the case time-varying directed graphs are extended in
[22]. In the synchronization framework, singular perturba-
tion analysis of heterogeneous network with fixed topology
is presented in [21], and for the time-varying case in [1].

In this paper, we consider the problem of a distributed con-
troller design for a clustered network that ensures synchro-
nization of the overall network while optimizing some cost
functions. We provide an approach that significantly reduces
the computational effort required to obtain the controller by
exploiting the clustered network structure. The dense inter-
connections result in a fast convergence inside the cluster
toward a local agreement and then slowly towards the global
consensus. We use this property to divide the control design
problem into computationally tractable sub-problems using
Time-Scale Separation (TSS). The fast variables represent
the synchronization error inside the clusters, whereas the
slow variables represent the aggregate behavior of the agent
states within each cluster.

The design of our controller is based on the two time-scale
behavior of the clustered network. First, we perform the
Time-Scale Modeling (TSM) to represent the network dy-
namics in Standard Singular Perturbation From (SSPF). As
a result of TSM, internal control is associated with fast dy-
namics, while external control is associated with slow dy-
namics. Then, using time-scale separation, we decouple the
dynamics into slow and fast subsystems, and this decoupling
allows us to independently design the internal and the ex-
ternal controller. The internal controller, associated with the
fast dynamics, is designed to achieve the consensus inside

Fig. 1. A network partitioned into 4 clusters.

the cluster while minimizing an internal cost. The conver-
gence of agents inside the cluster towards the consensus is
fast; the cluster roughly merges into a single node after the
fast transient and external behavior is defined by the slow
dynamics. The long-term behavior of the network depends
on this slow dynamics. Finally, the external control is de-
signed to synchronize all the clusters based on the satisfac-
tion equilibrium approach [29], i.e., external control is de-
signed such that the external cost associated with each clus-
ter is bounded under a given threshold. In addition, we also
provide an approximation of the cluster cost as a sum of
the internal and external costs associated with internal and
external control, respectively.

The main contributions of this paper can be outlined as fol-
lows, (1) we formulate a singular perturbation model of the
clustered network using time-scale modeling in the synchro-
nization framework, where each agent has its individual dy-
namics, (2) based on the obtained model in (1), we pro-
pose a computationally efficient sub-optimal control design
scheme that synchronizes the network by splitting the con-
trollers into two parts corresponding to the slow and fast
dynamics, and (3) finally, we provide an approximation of
the cluster cost bound induced by the time-scale separation.

The remainder of the paper is organized as follows. The
model and the control objectives are stated in Section 2.
The time-scale modeling and decoupling into slow and fast
dynamics using time-scale separation is described in detail
in Section 3. Then, the internal and external controller design
procedures are developed in Section 4. In Section 5, we
provide the global system analysis and an approximation of
the cluster cost. Finally, numerical results are presented in
Section 6 before concluding in Section 7. The proofs are
presented in the Appendix to make the paper easily readable.

1.1 Notation and Preliminaries

The symbol ⊗ represents the Kronecker product. Let
(x, y) ∈ Rn+m stand for [x>y>]>. The identity matrix
of size n is denoted by In and by 1n ∈ Rn, the col-
umn vector whose components are all 1. For a matrix
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A ∈ Rm×n, A> denotes the transpose of A. For a vec-
tor x ∈ Rn, we denote by ‖x‖2: =

√
x>x its Euclidean

norm and, for a matrix A, ‖A‖2: =
√
λmax(A>A). For

a square matrix M ∈ Rn×n, let λmin(M) and λmax(M)
be the minimum and the maximum eigenvalue, respec-
tively. The measure of the square matrix M is defined
as ν(M) = 1

2λmax(M + M>). We said that a matrix
M ∈ Rn×n is orthonormal if M>M = MM> = In. We
denote by M−k ∈ R(n−1)×(n−1) the matrix M with its k-th
row and column removed. By B = diag(B1, ..., BN ), we
denote a block-diagonal matrix with the entriesB1,...,BN on
the diagonal andB−k: = diag(B1, ..., Bk−1, Bk+1, ..., BN )
the block-matrix with the k-th block removed. A function
f(t) : (0,∞) → Rn is O(ε) iff there exists constant c > 0
such that ‖f(t)‖ ≤ cε. A connected, undirected graph is
represented as G: = (V, E), where V: = {1, 2, . . . , n} is
the agent set and E ⊆ V ×V is the edge set. The adjacency
matrix A = (aij)n×n is defined as: aij 6= 0 if (j, i) ∈ E and
aij = 0, otherwise. The Laplacian of the graph G is defined
as L, has −aij off-diagonal elements and

∑n
j=1 aij diag-

onal ones. Let G = (V, {Ki}i∈V , {ui}i∈V), be a strategic
form game, where V = {1, 2, . . . , n} is the set of players
(agents), Ki is the set of strategies of the player i , and ui
is a utility function of the player i and {f1, . . . , fn} be n
set-valued satisfaction functions. Then the strategy profile
K∗ = (K∗1, . . . ,K∗n) is a Satisfaction Equilibrium (SE) if
and only if, for all i ∈ V , we have, K∗i ∈ fi(K∗−i), where
K∗−i := (K∗1, . . . ,K∗i−1,K∗i+1, . . . ,K∗n) denotes the reduced
profile with the component K∗i removed.

2 Problem Statement

2.1 Model Description

Consider a network of n agents partitioned into m non-
empty clusters C1, . . . , Cm ⊂ V . Clustered network refers
to a network that is divided into distinct groups of agents
having dense connection structure, whereas the connections
between the clusters are sparse. Let us denote by M: =
{1, 2, . . . ,m}, the set of clusters while nk represents the
cardinality of the cluster Ck and n =

∑m
k=1 nk. Each agent

in the network is identified by a couple (k, i) ∈ Ck, where,
k refers to the cluster Ck and i the index of the agent in
the cluster Ck. The notation (k, j) ∈ Nk,i represents the
neighbors of the agent (k, i) in the same cluster Ck. To each
agent (k, i) ∈ Ck, k ∈ M, one assigns a state xk,i ∈ Rnx

whose dynamics is

ẋk,i = Axk,i +Buk,i, (1)

where uk,i ∈ Rnu , A ∈ Rnx×nx and B ∈ Rnx×nu .

For each cluster Ck, let xk: = (xk,1, . . . , xk,nk
) ∈ Rnk·nx

be the cluster state and uk: = (uk,1, . . . , uk,nk
) ∈ Rnk·nu

the cluster control. Thus, the cluster dynamics takes the fol-
lowing form

ẋk = (Ink
⊗A)xk + (Ink

⊗B)uk, ∀k ∈M. (2)

Moreover, in the presence of clusters, the Laplacian of the
network can be written as L: = Lint + Lext. The internal
Laplacian of the network Lint: = diag(Lint1 , ...,Lintm ) is a
block-diagonal matrix, with each block Lintk referring to the
Laplacian of the cluster Ck excluding the external connec-
tions. The external Laplacian Lext represents the connec-
tions between agents from different clusters.

The next two assumptions are the necessary condition to
ensure the synchronization of the network and the presence
of the cluster in the network, respectively.

Assumption 1 The graph of clusters is connected.

Due to the dense communications between the agents in-
side the clusters, we make the following assumption on the
communications inside the cluster.

Assumption 2 The internal graphs are complete for all
clusters.

Remark 1 Under Assumption 2, the zero eigenvalue of the
internal Laplacian Lintk is simple and all the non-zero eigen-
values are nk for all k ∈ M. This assumption is imposed
only for the control design purpose, and the obtained con-
troller can be implemented even if Assumption 2 does not
hold. The main advantage of this assumption is that it greatly
reduces the computational effort required to obtain the con-
trol.

2.2 Control Design Outline

We consider the problem of network synchronization, and
the network is said to be asymptotically synchronized for all
(k, i) ∈ Ck, (l, j) ∈ Cl and k, l ∈M, when lim

t→+∞
‖xk,i(t)−

xl,j(t)‖ = 0. Our first objective is to design a distributed
control synchronizing the network while minimizing some
cost function.

If the network dimension is large, the control design prob-
lem under certain cost constraints becomes difficult as the
computational complexity increases with an increase in net-
work dimension. To simplify the calculations and minimize
the computational efforts, for each cluster Ck, k ∈ M, we
propose a composite control of the form:

uk: = uintk + uextk , ∀k ∈M, (3)

where uintk : = (uintk,1, ..., u
int
k,nk

), uextk : = (uextk,1 , ..., u
ext
k,nk

)
and {

uintk,i : = −Kint
k

∑
(k,j)∈Nk,i

(xk,i − xk,j),
uextk,i : = −Kext

k

∑
(l,p)∈Nk,i

(xk,i − xl,p),
(4)

where Kint
k ,Kext

k ∈ Rnu×nx .

The notation (l, p) ∈ Nk,i indicates the neighbors belonging
to a different cluster, that is l 6= k. The internal control uintk
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is the effort required to achieve local agreement, whereas the
external control uextk is the energy necessary to synchronize
the agents between the clusters.

Such a decomposition of the control allows us to decouple
the overall optimization in the following way. We split the
cost functions corresponding to the cluster into the sum of
internal, external, and cross term. First, we define the cluster
cost, Jk associated with each cluster Ck, k ∈M, is defined
as a

Jk =

+∞∫
0

x>k (t)(Lintk ⊗ Inx
)xk(t) + x>(t)(Lextk ⊗ Inx

)x(t)

+u>k (t)(Ink
⊗Rk)uk(t) dt, (5)

where the internal Laplacian Lintk ∈ Rnk×nk captures the
connections inside the cluster Ck, and the external Laplacian
Lextk ∈ Rn×n expresses the external connections between
Ck and the neighboring clusters. Then, substituting the com-
posite control (3), we recast the cost function (5) as the sum
of internal, external and a cross term as

Jk = J intk + Jextk + Jcrossk , (6)

where,
J int
k =

+∞∫
0

x>k (t)(Lint
k ⊗Inx)xk(t)+uint

k
>
(t)(Ink⊗Rk)uint

k (t) dt,

Jext
k =

+∞∫
0

x>(t)(Lext
k ⊗Inx)x(t) + uext

k
>
(t)(Ink⊗Rk)uext

k (t) dt,

Jcross
k = 2

+∞∫
0

uext
k
>

(t)(Ink ⊗Rk)uint
k (t) dt .

(7)
In this way, we replace the original problem of optimizing

the cost function for the overall network given (5) with the
problem of optimization of the internal and the external cost.
This way, the initial optimization problem is recast as a prob-
lem of finding the internal (Kint

k ) and external (Kext
k ) con-

trol gains. The internal and external gains are designed in-
dependently, and the obtained internal gain is optimal while
the external gain is sub-optimal because the internal cost is
minimized and the external cost is capped below a certain
threshold, respectively.

The next objective is to bound the total cluster cost with
the sum of internal (J intk ) and external (Jextk ) cost and a
constant term. The cross term in the equation (7) can be
bounded by a constant term multiplied by the norm of the
initial conditions (See Theorem 2).

To solve this problem, we propose an approach based on
time-scale separation that we describe in the following sec-
tion.

3 Time-scale Separation

This section provides a procedure to decouple the closed-
loop network dynamics into two subsystems, evolving on

different time-scales. First, we perform a coordinate trans-
formation to exhibit the collective dynamics of the network:
the average and the synchronization error dynamics. Then,
we apply the TSS to decouple the collective dynamics into
slow and fast subsystems. In two time-scale, the slow vari-
able corresponds to the average of the agent’s state while
the fast variable corresponds to the synchronization error.

3.1 Coordinate Transformation

Following from [24], we introduce the coordinate transfor-
mation for the cluster Ck based on the internal Laplacian
Lintk . For a connected graph, the Jordan decomposition of
the symmetric Laplacian matrix is,

Lintk = Tk

[
0 0

0 Λintk

]
T>k , ∀k ∈M, (8)

where Tk ∈ Rnk×nk is an orthonormal matrix and Λintk =

diag(λintk,2, . . . , λ
int
k,nk

) ∈ R(nk−1)×(nk−1) collects the nk−1

positive eigenvalues of Lintk . Moreover, the matrix Tk can
be expressed as

Tk =
[
vk,1 Vk

]
, ∀k ∈M, (9)

where v>k,1 = 1√
nk
1
>
nk

is the eigenvector associated with

the 0 eigenvalue and the matrix Vk ∈ Rnk×(nk−1) contains
the eigenvectors corresponding to the nonzero eigenvalues
of Lintk . Furthermore, it can be verified that, v>k,1Vk = 0 and
V >k Vk = Ink−1.

Now, we define the coordinate transformation as

xk :=

[
yk

ξk

]
= (

1
√
nk
T>k ⊗ Inx

)xk, ∀k ∈M. (10)

Then, from (9) and (10), the change of variables yields, for
all k ∈M,

yk :=

(
1
>
nk

nk
⊗ Inx

)
xk =: Hkxk ∈ Rnx (11)

ξk :=

(
V >k√
nk
⊗ Inx

)
xk =: Zkxk ∈ R(nk−1).nx . (12)

The first component yk corresponds to the average of the
respective agents’ states in the cluster Ck. The second com-
ponent, ξk corresponds to the synchronization error. Since
the matrix Tk is orthonormal i.e., T>k = T−1

k , the inverse of
the transformation (10), for all k ∈M yields,

xk = (1nk
⊗ Inx

)yk + (
√
nkVk ⊗ Inx

)ξk =: H̃kyk + Z̃kξk.
(13)

In vector form, let x: = (x1, . . . , xm) ∈ Rn.nx , y: =
(y1, . . . , ym) ∈ Rm.nx and ξ: = (ξ1, . . . , ξm) ∈ R(n−m).nx ,
respectively. Then for overall network, we obtain
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y = Hx, ξ = Zx and x = H̃y + Z̃ξ, (14)

where H = diag(H1, ...,Hm) and Z = diag(Z1, ..., Zm)

and H̃ = diag(H̃1, ..., H̃m) and Z̃ = diag(Z̃1, ..., Z̃m).
Now, we recast the overall network dynamics in terms of the
new coordinate variables. The overall network dynamics in
the presence of the control (3) is

ẋ = ((In ⊗A)− (In ⊗B)Kint(Lint ⊗ Inx
)

− (In ⊗B)Kext(Lext ⊗ Inx
))x,

(15)

where Kint = diag((In1
⊗Kint

1 ), . . . , (Inm
⊗Kint

m )) and
Kext = diag((In1

⊗Kext
1 ), . . . , (Inm

⊗Kext
m )). Then, using

(14), the overall dynamics (15) is recast in new coordinates
as follows, {

ẏ = Ā11y + Ā12ξ,

ξ̇ = Ā21y + (Ā1
22 + Ā2

22)ξ,
(16)

where

Ā11 = ((Im ⊗A)−H(In ⊗B)Kext(Lext ⊗ Inx
)H̃),

Ā12 = −H(In ⊗B)Kext(Lext ⊗ Inx
)Z̃,

Ā21 = −Z(In ⊗B)Kext(Lext ⊗ Inx)H̃,

Ā1
22 = −Z(In ⊗B)Kext(Lext ⊗ Inx

)Z̃,

Ā2
22 = ((In−m ⊗A)− (In ⊗B)Kint

n−m(Λint ⊗ Inx
)),

(17)
and Kint

n−m = diag((In1−1 ⊗Kint
1 ), . . . , (Inm−1 ⊗Kint

m ))

and Λint = diag(Λint1 , . . . ,Λintm ). We recall that y and ξ
corresponds to the average of the agents’ states and the syn-
chronization error, respectively.

3.2 Network Dynamics in Two time-scale

In the absence of agents’ individual dynamics in [10], [22],
the consensus dynamics is expressed in Standard Singular
Perturbation From (SSPF) based only on the density of con-
nections inside and between the clusters. This was sufficient
because the convergence required in [10], [22] is dictated
only by the density of the connections in the consensus
framework. However, in our case, the convergence towards
synchronization manifold depends also on the control gains
Kint and Kext and we need to take them into account for
the time-scale analysis i.e., while defining the network pa-
rameter (ε).

Thus, to study the time-scale behavior and analyze the syn-
chronizing behavior, we define the network parameters as
follows,

µext: = ‖(In ⊗B)Kext(Lext ⊗ Inx
)‖,

µint: = min
k∈M

‖(Λintk ⊗BKint
k )‖,

ε: = µext

µint .

(18)

The network parameter ε is the ratio of the strength of the
controls between and within the clusters. It’s worth noting,
in our case, the network parameter ε can be tuned by the
choice of the control gains.

Remark 2 For the rest of this section, we assume that ε is
small enough such that time-scale separation occurs, and
the control design presented in the following section will
serve, among others to ensure this property.

Upon analyzing the orders of the state matrices of the col-
lective dynamics (16), knowledge of the order of matrix A
is crucial for transformation in SSPF. In the following, we
state the following assumption on the order of the matrix
A which is necessary for representing the dynamics (16) in
SSPF.

Assumption 3 The state matrix A satisfies the following

‖A‖ ≤ O(µext).

We here note that since µext depends on Kext, we can al-
ways choose Kext sufficiently large such that the assump-
tion 3 is satisfied. In the following lemma, we analyze the
order of the matrices in equation (17) under Assumption 3.

Lemma 1 Under Assumption 3, the matrices in (17) satisfy
the following conditions,

• ‖Ā11‖, ‖Ā12‖, ‖Ā21‖, ‖Ā1
22‖ are of order O(εµint),

• ‖Ā2
22‖ is of order O(µint).

PROOF. See Appendix. �

As a consequence of the Assumption 3, all the matrices in
(17) are of order O(εµint) except Ā2

22, which is of order
O(µint). Since the dynamics of the variables y and ξ are
dominated by the matrix Ā11 and Ā2

22, the variables y and
ξ behaves as a slow and fast variables, respectively.

Now, to reveal the TSS, following the idea of [10], we re-
scale the time with µint to obtain a fast time-scale as tf =
µintt, and a slow time-scale ts = εtf . This allows us to
represent the overall dynamics (16) in SSPF as follows,

dy

dts
= A11y +A12ξ, (19a)

ε
dξ

dts
= εA21y + (εA1

22 +A2
22)ξ. (19b)

where,

A11 =
Ā11

εµint
, A12 =

Ā12

εµint
, A21 =

Ā21

εµint
,

A1
22 =

Ā1
22

εµint
, A2

22 =
Ā2

22

µint
. (20)

Next, we analyze the slow and fast dynamics of the singu-
larly perturbed system (19).
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3.3 Slow Dynamics

To define the slow dynamics of the system (19), we fol-
low the standard approach of singular perturbation analysis
[17]. Setting ε = 0 in (19), we obtain that equation (19b)
degenerates into equation ξs(ts) = 0. Substituting this into
equation (19a), we obtain the slow dynamics as

dys
dts

= A11ys. (21)

where ys and ξs are the slow parts of the variables y and ξ,
respectively. Equivalently, since ts = εtf = εµintt, it yields,

ẏs(t) = (Im ⊗A)ys(t) + (Im ⊗B)us(t), (22)

where us(t) = −HKext(Lext⊗Inx
)H̃ys(t). Notice that in

our setting the slow dynamics (22) represents the collective
behavior of the cluster and it may or may not be stable.

3.4 Fast Dynamics

Now, representing the dynamics (19) in fast time scale tf
and setting ε = 0, we have dyf/dtf = 0 and we obtain the
fast dynamics as follows,

dξf
dtf

= A2
22ξf . (23)

where yf and ξf are fast parts of the corresponding variable
in (19). The fast dynamics (23) in original time-scale t is

ξ̇f (t) = (In−m ⊗A)ξf (t) + (In−m ⊗B)uf (t), (24)

where uf (t) = −Kint
n−m(Λint ⊗ Inx)ξf (t).

The fast dynamics (24) corresponds to the intra-cluster dy-
namics, and hence the dynamics is dominated by the inter-
nal gain and the eigenvalues of the intra-cluster Laplacian.
With the suitable choice of the internal gain Kint

k , the sys-
tem (24) is exponentially stable.

Remark 3 We note that the stabilization of the synchro-
nization error dynamics, i.e., the stabilization of dynamics
ξ implies the synchronization inside the cluster.

Note that we use slow (ts) and fast (tf ) time-scales for the
analysis while the original time-scale (t) for the control de-
sign. This is possible because the transformations are invert-
ible, and it can be verified by the definition of tf and ts.

3.5 Singular Perturbation Approximation

Now, we provide an approximation of the original system by
the reduced-order subsystems in the following theorem. The
proof follows from Theorem 5.1, [17]. But before stating the
result, we make the following assumption on the existence
of the control gains.

Assumption 4 There exists an internal gain Kint and an
external gain Kext such that the slow dynamics (22) is syn-
chronized and the fast dynamics (24) is stabilized.

Remark 4 Although we assume the existence of the syn-
chronizing internal and external gain, it will be ensured by
design in the next section that such gains exist.

Theorem 1 Under the Assumption 3 and 4, if Re λ(A2
22) <

0, there exists a ε∗ > 0 such that, for all ε ∈ (0, ε∗], the
original system (19) starting from any bounded initial con-
ditions y0 and ξ0, is approximated for all finite time t ≥ t0
by {

y = ys(ts) +O(ε)

ξ = ξf (tf ) +O(ε),
(25)

where ys ∈ Rm.nx and ξf ∈ R(n−m).nx are the respective
slow and the fast variables.

PROOF. See Appendix. �

In the next section, we present the control design strat-
egy i.e., the design of gains Kint and Kext, to stabilize
the fast subsystems and synchronize the slow subsystems,
respectively.

4 Control Design Scheme

In this section, we present a controller design strategy for
the system (16). Using the idea of timescale separation, we
split the design procedure into two parts corresponding to
the internal and the external control.

First, based on the fast dynamics (24) we design an internal
control using the local information that ensures the synchro-
nization inside the cluster. Then, we use the slow dynamics
(22) for the design of external control to achieve the syn-
chronization between the clusters. While the internal con-
troller is optimal, the external control is designed to ensure
the cost is below a given threshold. Finally, Theorem 1 is
used to justify such a separation of the system analysis in
two steps and to approximate overall network behavior in
terms of fast and slow dynamics.

In what follows, we first address the internal control design
and give an analytical gain expression for the case of com-
plete graph inside clusters. The fast dynamics obtained after
the time-scale separation represent the synchronization dy-
namics of an isolated cluster. Under assumption 2, i.e., the
graph is complete, this dynamics can be further decoupled.

4.1 Internal (Fast) Control Design

As the fast variable ξf is an approximation of the synchro-
nization error ξ inside the clusters, it is still relevant to con-
sider the fast subsystems (24) for the internal control de-
sign. We denote by ξf,k ∈ R(nk−1).nx the component of

6



ξf : = (ξf,1, ..., ξf,m) corresponding to the k-th cluster. For
each cluster Ck, for k ∈M, we have the following dynamics{

ξ̇f,k(t) = (Ink−1 ⊗A)ξf,k(t) + (Ink−1 ⊗B)uf,k(t),

uf,k(t) = −(Λintk ⊗Kint
k )ξf,k(t).

(26)
The cluster cost associated with the cluster Ck takes the form

Jf,k=

+∞∫
0

ξ>f,k(Λintk ⊗ Inx
)ξf,k + u>f,k(Ink−1 ⊗Rk)uf,k dt .

(27)
Instead of considering the internal cluster cost (7), we ap-
proximate the internal cost by the cost function (27) and
the validity of the approximation is justified in the Proposi-
tion 3. Since, the matrices in equations (26) and (27) have
block-diagonal form, they can decoupled into nk − 1 in-
dependent subsystems. For each cluster Ck, similarly to ξk
defined in equation (12), let us denote the fast subsystems
and the associated control by ξf,k: = (ξf,k,1, ..., ξf,k,nk−1)
and uf,k: = (uf,k,1, ..., uf,k,nk−1), respectively. Then, for
i = 1, ..., nk − 1 and for all k ∈M, the dynamics are{

ξ̇f,k,i(t) = Aξf,k,i(t) + nkBuf,k,i(t),

uf,k,i(t) = −Kint
k ξf,k,i(t),

(28)

and the associated individual cost is

Jf,k,i =

∫ +∞

0

nkξ
>
f,k,iξf,k,i + n2

ku
>
f,k,iRkuf,k,i dt . (29)

Thus, the cost (27) can be expressed as the sum of individual
costs (29) as follows, Jf,k =

∑nk−1
i=1 Jf,k,i, ∀k ∈M.

Remark 5 The decoupling of dynamics (26) into nk − 1
subsystems (28) is not only limited to all-to-all connections.
In the case, where we know the eigenvalues of the Laplacian
or the Laplacian eigenvalues can be characterized in terms
of nk (for example, star graph), similar decoupling can be
achieved.

Remark 6 It is noteworthy that the gain Kint
k is the same

for all the agents belonging to the same cluster Ck. As a
result, the rewriting of (27) as a sum of individual cost
(29) reduces the computational effort for the control design.
Indeed, one can solve only one optimization problem (28)-
(29) for each cluster and it is equivalent to optimizing the
cluster cost (27).

Next, we show that the system (28) is stabilizable with a
simple linear controller, while we recall that the system (28)
corresponds to fast dynamics of our original system. Finally,
we apply the LQ-control [16] to stabilize (28) while mini-
mizing the cost (29).

Lemma 2 Consider the system (28), under assumption 1,
if the pair (A,B) is stabilizable and (A, (Rk)1/2) is de-

tectable, then for every k ∈ M, the system (28) is sta-
bilizable while minimizing the cost (29) by a controller
uf,k,i(t) = −Kint

k ξf,k,i(t) with the gain

Kint
k =

R−1
k

nk
B>P intk , k ∈M, (30)

where P intk is the solution of the Algebraic Riccati Equation
(ARE)

P intk A+A>P intk − P intk BR−1
k B>P intk + nkInx

= 0.(31)

From Lemma 2, we observe that the fast dynamics (28) is
exponentially stable i.e., ξf (t)→ 0 as t→∞ and we pass
to the design of the external controller.

4.2 External (Slow) Control Design

In this sub-section, we present the external controller design
based on the slow dynamics (22). To achieve the synchro-
nization between the clusters, we propose a method based on
[29]. First, the synchronization problem is transformed into
a stabilization problem using a change of variable. Then,
we design the control to stabilize the system while upper
bounding the associated cost.

Recall that if the clusters are synchronized, each cluster be-
have like a single node, and the number of nodes represent-
ing the external network equals the number of clusters. Thus,
the external graph of agents between clusters is only con-
nected, and hence the standard optimization or the optimal
control approaches cannot be applied directly. In this con-
text, inspired by the notion in game theory, we use the sat-
isfaction equilibrium approach, and satisfaction games [27].
A set of actions are said to be in satisfaction equilibrium
when the individual cost for each agent is upper-bounded
by a given threshold.

4.2.1 Average Dynamics

The slow dynamics obtained after time-scale separation in
equation (22) defines the dynamics of the average of each
cluster. Following from equation (22), the average dynamics
can be written as

ẏs(t) =((Im ⊗A)− (Im ⊗B)K
ext

(Lext ⊗ Inx
))ys(t),

(32)

whereK
ext

= diag (Kext
1 , ...,Kext

m ) is the external gain and

(Lext ⊗ Inx
) = H(Lext ⊗ Inx

)H̃ with the following form

Lext =


∑m
l=2

aext
1l

n1
−a

ext
12

n1
. . . −a

ext
1m

n1

...
...

. . .
...

−a
ext
m1

nm
−a

ext
m2

nm
. . .
∑m−1
l=1

aext
ml

nm

 ∈ Rm×m,
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is the average Laplacian matrix related to (32). In average
Laplacian, Lext the diagonal elements represent the total
number of external connections from a cluster k ∈ M to
the rest of the network and the non-diagonal entries aextkl
represents the total number of connections between cluster
Ck and Cl.

Let us denote by ys,k ∈ Rnx the k-th component of the
variable ys. Then, the average dynamics of each cluster Ck,
for k ∈M, based on equation (32) is

ẏs,k = Ays,k +Buexts,k ,

uexts,k = −Kext
k

∑
l∈NCk

aext
kl

nk
(ys,k − ys,l) (33)

where, uexts,k can be viewed as the control on the cluster
level, since it represents the sum of the individual controllers.
For system (33) we define the average cost for each cluster
Ck, k ∈M, as

J
ext

k =

+∞∫
0

∑
l∈NCk

aextkl

nk
(ys,k−ys,l)2+nk

nk∑
i=1

ûext>k,i Rkû
ext
k,i dt

(34)

where
ûextk,i : = −Kext

k

∑
l∈NCk

aext(k,i)↔Cl

nk
(ys,k − ys,l) ∀i ∈ Ck,

(35)
and aext(k,i)↔Cl is the total number of connections between
the i-th agent belonging to Ck and the cluster Cl and clearly
aext(k,i)↔Cl ≤ nk. The control ûextk,i is the external control (4)
expressed in the average variable ys. In addition, we have
the relation uexts,k =

∑nk

i=1 û
ext
k,i and aextkl =

∑nk

i=1 a
ext
(k,i)↔Cl .

Notice that the average cost (34) is different from the external
cost function that appears in equation (7) in several ways:

• the average variable ys,k is used instead of the original
state variables xk for each cluster, and
• although the clusters have merged into a single node, the

agents still apply the individual control (4) rather than the
average control (33). Thus, we express the individual ex-
ternal control (4) in average variables ys in equation (35)
and define the average cost (34) in terms of the original
control. It is possible to define the cost function as a func-
tion of average control uexts,k as follows,

J
ext

k =

+∞∫
0

∑
l∈NCk

aextkl

nk
(ys,k − ys,l)2 + uexts,k

>
Rku

ext
s,k dt,

(36)
however, we remark that optimization of the average cost
does not necessarily imply optimization of individual cost.

In the following, we perform the change of variables to de-
sign an external gain synchronizing the network of clusters.

4.2.2 Change of Variables

To study the consensus between the clusters, we define the
external error variable for each cluster Ck, k ∈M as follows,

Yk: =



ys,1 − ys,k
. . .

ys,k−1 − ys,k
ys,k+1 − ys,k

. . .

ys,m − ys,k


∈ R(m−1).nx . (37)

Then, based on equation (33), the corresponding external
error dynamics is

Ẏk = AkYk + Bku
ext
s,k , ∀k ∈M,

where,

Ak = (Im−1 ⊗A)− (Im−1 ⊗B)K
ext

−k (Lext−k ⊗ Inx
),

Bk = −(1m−1 ⊗B).

(38)

Here,K
ext

−k = diag(Kext
1 , . . . ,Kk−1,Kk+1, . . . ,Km) is not

a control action, but it represents the behavior of the network.

To recast the average cost function (34) in terms of new
variables Yk, we introduce the following notations. First we
look into the structure of the external Laplacian which have
the block form as follows,

Lext =


Lext1,1 Lext1,2 . . . Lext1,m

Lext2,1 Lext2,2 . . . Lext2,m

...
...

...

Lextm,1 Lextm,2 . . . Lextm,m

 ∈ Rn×n, (39)

whereLextp,q ∈ Rnp×nq for p, q ∈M. We denote byLextk,row ∈
Rnk×n the k-th row of the block-matrix (39) for all k ∈M.
It describes the connections of the cluster Ck with the rest of
the agents in the network. The matrix Lextk,red ∈ Rnk×(n−nk)

is obtained by removing the Lextk,k block from the Lextk,row.
For example, Lext2,row = [Lext2,1 Lext2,2 . . . Lext2,m] and Lext2,red =

[Lext2,1 Lext2,3 . . . Lext2,m]. Then, we rewrite the external cost
(34) in terms of new variables as

J
ext

k =

∫ +∞

0

Y >k Q
ext
k,1Yk + Y >k

Qextk,2

nk
Yk dt (40)

where

Qextk,1=

(
diag

(
aextk,1

nk
, ...,

aextk,k−1

nk
,
aextk,k+1

nk
, ...,

aextk,m

nk

)
⊗ Inx

)
,

Qextk,2 = U>−k(Lext>k,redLextk,red ⊗Kext>
k RkK

ext
k )U−k, (41)

U = (diag(1n1 , . . . ,1nm)⊗ Inx),

Rk > 0.
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The matrices Qextk,1 and Qextk,2 simplify the expressions in

(34) such that Y >k Q
ext
k,1Yk =

∑
l∈NCk

aextkl

nk
(ys,k − ys,l)2 and

Y >k
Qextk,2

nk
Yk = nk

nk∑
i=1

ûext>k,i Rkû
ext
k,i .

4.2.3 Control Design

We will use the error dynamics (38) to design the external
gain profile using satisfaction equilibrium approach. It char-
acterizes the external gain profile synchronizing the network
in such a way that each cost (34) is bounded, i.e.,

J
ext

k ≤ γext‖Yk(0)‖2, for k ∈M. (42)

The term ‖Yk(0)‖ represents the initial condition of the clus-
ter Ck while γext is a given threshold. In particular, the fol-
lowing proposition is valid.

Proposition 1 (Prop 1, [29]) Let a gain profile K
ext

=
diag

(
Kext

1 , ...,Kext
m

)
be given. The following statements

are equivalent,

(1) The gain profile K
ext

is an SE of the satisfaction game
(38) for all k ∈M.

(2) For all k ∈ M, there exists a positive-definite matrix
P extk > 0 such that{

P extk Ak,cl(K
ext
k )+A>k,cl(K

ext
k )P extk +Qext

k (Kext
k ) < 0,

P extk − γextI(m−1).nx
< 0,

(43)
where

Ak,cl(K
ext
k ) = Ak + BkK

ext
k (Fk ⊗ Inx

),

Fk =
(
aext
k,1

nk
, ...,

aext
k,k−1

nk
,
aext
k,k+1

nk
, ...,

aext
k,m

nk

)
,

Qext
k =

(
Qextk,1 +

Qext
k,2

nk

)
.

(44)

Next, we present the algorithm that allows us to obtain
the gain (Kext) in satisfaction equilibrium. This algorithm
greatly reduces the computational effort of obtaining the
synchronizing gain for large-scale networks.

4.3 Algorithm

Consider a network of m clusters (the number of clusters
in our case) with their respective dynamics. We aim to de-
sign a synchronizing gain profile Kext = (Kext

1 , ...,Kext
m )

satisfying the cost constraints.

In the following algorithm, we first calculate the internal gain
by solving the algebraic Riccati equation (31). To design the
external gain (Kext), we start with the initial gain profile

that satisfies the LMI (43). Then we multiply the gain from
the previous iteration with a scalar αext ∈ R+ \ {0} and
check if it satisfies the LMI (43), to obtain the sub-optimal
gain. One approach could be to start with a high gain and
decrease αext until the condition (43) is not satisfied and
use the smallest gain that satisfied the condition.

Furthermore, we should also make sure the network param-
eter ε is small so that control design using time-scale sepa-
ration holds. Thus, to ensure this, we multiply the internal
gain Kint

k with ε/ε∗ to obtain the new internal gain such
that ε ≤ ε∗.

Algorithm 1 Sequential Satisfaction Algorithm
Data: A,B and nk, k ∈M;
Set: iterations itr = 1, maximum number of it-
erations itrmax, 0 < ε∗ � 1 and Kext(0) =
(Kext

1 (0), ...,Kext
m (0)) initial gain profile synchronizing

the system ;
Calculate: P intk and Kint

k using equation (31) and (30)
for all k ∈M, respectively;
while LMIs (43) not satisfied OR itr ≤ itrmax do
Kext(itr + 1)← αextKext(itr), αext ∈ R+ \ {0};
Calculate: ε;
if ε > ε∗ then
Kint
k (itr + 1)← ε

ε∗K
int
k (itr);

else
Kint
k (itr + 1)← Kint

k (itr);
end if

end while

Remark 7 Notice that with such an approach, we only scale
the whole matrix Kint

k and Kext
k on each step while keeping

the structure of the matrix intact.

In the algorithm 1, to obtain the initial gain profile Kext(0)
we use the algorithm in [3] which has the computational
complexity ofO(m) form clusters. Then, the computational
complexity to obtain the internal gain is of order O(m).
Notice that the dimension of the matrix P intk in equation
(31) does not depend on the number of agent (nk) in the
cluster, thus the problem of finding the internal control Kint

k
is independent of the number of agents in the cluster. To
obtain the external gain, Kext we use the SeDuMi [18]. The
computational complexity of verifying, if the gain profile
satisfies the LMI condition (50) using SeDuMi is O(m5.5).
Thus, the overall computational complexity of the Algorithm
1 is O(m) + O(m) + O(m5.5). Moreover, from Lemma
2 we obtain the stabilizing internal gain Kint and if the
algorithm successfully converges to synchronizing external
gain (Kext) that satisfies LMI conditions (43), then they will
satisfy the Assumption 4.

5 Global System Analysis

In this section, we analyze the overall networked system with
the controller gains Kint and Kext defined by the Algo-
rithm 1 and designed for reduced slow and fast subsystems.
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First, we present the proposition which ensures that the slow
and fast controllers, designed independently of each other,
synchronize the overall network. And finally, we prove that
the cluster cost Jk(T,+∞) is approximated only by the ex-
ternal cost Jextk (T,+∞), where T > 0 is a finite time at
which each cluster has reached internal synchronization.

5.1 Overall Network Behavior

Based on the controller design procedure presented in sec-
tion 4, we ensure that Assumption 4 is satisfied, i.e., the
internal gain stabilizing the fast dynamics and the external
gain synchronizing the slow dynamics exists. Note that the
presented design strategy optimizes the cost function (27)
associated with the internal controller and upper bound the
cost function (34) corresponding to the external controller.
Hence, the obtained internal control gain is optimal while the
external control gain is sub-optimal. We apply these gains
to achieve synchronization in the overall network, and the
following proposition ensures synchronization.

Proposition 2 Consider the closed-loop network dynamics
(15), and equivalently, the dynamics in new coordinates (16).
Let the internal and external control gains are chosen based
on Lemma 2 and Proposition 1, then the overall network
synchronizes and satisfies the following bounds,

y(t) = ys(t) +O(ε)

ξ(t) = ξf (µintt) +O(ε).
(45)

PROOF. The proof follows from Theorem 2. �

5.2 Cost Approximation

In this subsection, we prove that the cluster cost can be
approximated by the average cost after finite time T . The
motivation is derived from the fact that the internal dynamics
converge rapidly to the consensus, and external dynamics
exhibit the dominating network behavior. We prove that for
the time t ∈ [T,+∞), the cluster cost Jk is approximated
by nk times the average external cost, i.e., nkJ

ext

k .

To provide this approximation result, we first define the inter-
nal error bound, which helps us characterize the time T > 0.
And secondly, we ensure that the exponential stability of the
fast dynamics (24) implies the exponential stability of the
error dynamics (16).

The necessity of the internal error bound arises in the ap-
proximation of the cluster cost. During the control design,
we recall that the internal consensus is considered to be
achieved before designing the external control. Thus, we
need to characterize an error bound for the internal cost in
finite time T , at which the cluster is very close to the inter-
nal consensus. More precisely, the bound at the time T > 0
such that |ξf,k(T )| ≤ ε for all k ∈M.

The closed-loop fast dynamics is

ξ̇f,k(t) =
(
(Ink−1 ⊗A)− (Λintk ⊗BKint

k )
)
ξf,k(t),

and
ξf,k(t) = eClf,ktξf,k(0),

where Clf,k :=
(
(Ink−1 ⊗ A) − (Λintk ⊗ BKint

k )
)

and
Clf,k < 0 due to Lemma 2. Now, taking norm on both sides
and from the definition of the measure of the matrix (see
notations and preliminaries), we obtain,

‖ξf,k(t)‖ = eν(Clf,k)t‖ξf,k(0)‖ ≤ eν(Clf )t‖ξf,k(0)‖

where ν(Clf ) = max
k∈M

ν(Clf,k). Then, as an internal error

bound, we choose smallest T ≥ 0 such that

‖ξf,k(T )‖ ≤ eν(Clf )Tmax
k∈M

‖ξf,k(0)‖ ≤ ε.

This bound characterizes the local consensus inside each
cluster in the finite time T . And hence, it yields

‖ξf,k(t)‖ ≤ εeν(Clf )(t−T ) ∀k ∈M,

and
‖ξf (t)‖ ≤ ε

√
n−m.eν(Clf )(t−T ). (46)

Next, in equation (25), we notice that the approximation of
ξ defined in equation (16) depends on the fast variable ξf
and the slow variable ys, but the slow variable may or may
not be stable. For the network to achieve synchronization,
ξ should be stable. Thus, we prove the following lemma,
which ensures the exponential stability of ξ provided that ξf
is exponentially stable.

Lemma 3 The exponential stability of the fast dynamics
(24) and the external error dynamics (38) implies the expo-
nential stability of the error dynamics in (16).

PROOF. See Appendix. �

Next, with error bound for a finite time, T we present the
cluster cost approximation for t ∈ [T,+∞). The proposi-
tion is stated as follows:

Proposition 3 During the time interval [T,+∞), the fol-
lowing approximation holds,

Jk(T,+∞) = nkJ
ext

k (T,+∞) +O(ε), ∀k ∈M. (47)

PROOF. See Appendix. �

Finally, we present the following theorem that bounds the
total cluster cost with the sum of internal, external and the
constant term.
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Theorem 2 The total cluster cost for all clusters Ck, k ∈M
satisfy the following bound:

Jk ≤ (‖P intk ‖+ nkγk + Ck)‖x(0)‖2 +O(ε) (48)

where P intk is the solution of the Riccati equation (31) and
Ck is a constant.

PROOF. See Appendix. �

6 Simulation

This section provides numerical results to illustrate the ef-
fectiveness of the control procedure and the cost approxima-
tion using three scenarios. The agent’s dynamics are given
by (1), where

A =

(
0.15 0.98

−0.98 0.15

)
, B =

(
1

1

)
. (49)

The external graph between the agents in different clusters
is generated using Erdos-Renyi [14] random graph genera-
tor. Then the internal graph with all-to-all connections for
each cluster is generated and added to the external graph to
obtain the network graph. For the numerical illustration, we
consider the multiple scenarios.

• Scenario 1: Graph G1 with four clusters m = 4 with
630 agents in total. Each cluster has all-to-all internal
connections and 299 external connections between the
clusters in total. The threshold for the external cost is
γext = 0.8.
• Scenario 2: Same as Scenario 1 with dense internal con-

nections instead of all-to-all internal connections.
• Scenario 3: Comparison of control design presented in

this paper with the satisfactory control approach in [29]
and guaranteed cost approach proposed in [3].

The details of the simulations are present in Tables 2 - 5.
In the tables, nk represent the number of agents in cluster

Ck, error(k) =
|Jk−nkJ

ext

k |
Jk

× 100, is the error percentage
between the total cost and the external cost after time T , and
Kext andKint are the respective external and internal gains.

6.1 Scenario 1: All-to-all connections in Clusters

The Figure 2 represents the synchronization of the agents in
a network with graph G1 . For the graph G1, the network pa-
rameter is ε1 = 0.06. In the figure, we can observe the four
branches appearing and merging into one. Each branch rep-
resents the local agreement within the clusters. Next, Fig-
ure 3 illustrates the cost approximation for the cluster C4
by comparing the total cluster cost J4 and the external cost
n4J̄

ext
4 , after finite time T = 2s. More details of the simu-

lations are presented in the table.

Fig. 2. Evolution of the error between the agents’ state in graph
G1 with all-to-all connections inside clusters.
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Fig. 3. Evolution of the costs J4 and n4J̄
ext
4 with all-to-all con-

nections inside clusters.

Clusters Kint Kext

C1 [1.5352,−0.1102] [0.85, 0.16]

C2 [1.5349,−0.1114] [1.17, 0.22]

C3 [1.5346,−0.1128] [0.59, 0.11]

C4 [1.5344,−0.1137] [1.05, 0.2]

Table 1
Internal and External gains

6.2 Scenario 2: Connected Clusters

In this scenario, we consider the graph where the clusters
have dense interconnections instead of the all-to-all con-
nections compared to Scenario 1. However, the number of
agents and number of external connections remain the same
as in the graph G1. Let us denote this graph as G2. The same
gains from Scenario 1 (Table 1) are applied to the network
system with the graph G2. The details of the simulation are
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ε = 0.06, γ = 0.8

nk Jk(×105) error(k)

C1 120 0.8966 0.45%

C2 140 0.5768 0.86%

C3 170 1.8950 0.24%

C4 200 0.6405 0.65%

Table 2
Network with 630 agents and 299 external connections with dense
connections in clusters.

presented in table 3.

ε = 0.06, γ = 0.8

nk Jk(×105) error(k)

C1 120 0.8983 0.64%

C2 140 0.5780 1.07%

C3 170 1.8975 0.37%

C4 200 0.6415 0.81%

Table 3
Network with 630 agents and 299 external connections, with all-
to-all connections inside every cluster.

6.3 Scenario 3

In the last scenario, we consider a network of m = 4 clus-
ters with nk = 10 agents in each. We recall that γext = 1
is chosen for both controls. A comparison is made between
the composite control proposed in this paper and the satis-
factory control approach proposed in [29]. The design pro-
cedure in [29] needs 13752 seconds (3.8 hours) to compute
the gains for n = 40 agents, while the composite design in
this paper requires 13 seconds. However, we can observe an
incontestable difference in performance on the cluster costs
due to satisfactory control, as shown in table 4. This empha-
sizes the trade-off between the computing time/resources to
obtain the required controller. Despite being less effective,
we must keep in mind that the composite control suits better
for large-scale networks and presents an essential benefit in
computation loads and time.

C1 C2 C3 C4
nk 10 10 10 10

Jk 17204 5452 6943 16949

J∗k 10164 3303 3080 9714

Table 4
Comparison of cost.

Next, we compare the strategy in [3] with the composite
control. In [3], each of the agents applies the same gain
independently of their neighborhoods and aims to bound a
global cost. Applying the control [3] on the graph G1, it
results in a cluster cost, which we label by J†k . From Table
5, we observe that our strategy significantly outperforms

the approach in [3], the first cluster cost obtained via the
composite control is 20 times smaller. One may observe the
same for the other clusters.

C1 C2 C3 C4
nk 120 140 170 200

Jk(×106) 0.385 0.269 0.689 0.262

J†k(×106) 6.7 8.1 16.7 20.5

Table 5
Comparison of the cost.

7 Conclusion

In this paper, we propose a distributed composite control de-
sign strategy for the clustered network. Using a coordinate
transformation, the network dynamics is transformed into
standard singular perturbation form and decoupled into slow
and fast dynamics using time-scale separation. This decou-
pling of the network dynamics also decouple the control into
fast (internal) and slow (external). The internal control is
responsible for intra-cluster synchronization, while the ex-
ternal synchronize the network while satisfying the imposed
cost criterion. This independent design greatly reduces the
computational effort required to obtain the control. Finally,
we show that the cluster cost is approximated only by the
external cost after a short time period.

A Proofs

Proof of Lemma 1
We know from [19] ‖(A⊗ B)‖ = ‖A‖‖B‖ for any matrix
A ∈ Rn×n, B ∈ Rm×m. Let us define n̄ = maxk nk and
n = mink nk. In addition, ‖H‖ = 1√

n , ‖H̃‖ =
√
n̄ and

‖Z‖ = 1√
n , ‖Z̃‖ =

√
n̄. From the Assumption 3, there exists

a strictly positive constant c1 ∈ R such that ‖A‖ = c1µ
ext.

It follows that,

‖Ā11‖ = ‖(Im ⊗A)−H(In ⊗B)Kext(Lext ⊗ Inx
)H̃‖

≤ ‖A‖+ ‖H‖.‖(In ⊗B)Kext(Lext ⊗ Inx)‖.‖H̃‖
= (c1 +

√
n̄
n )µext = (c1 +

√
n̄
n )εµint.

(A.1)
The bounds of Ā12, Ā21 and Ā1

22 are derived similarly, that’s
why we only prove for Ā12,

‖Ā12‖ = ‖H(In ⊗B)Kext(Lext ⊗ Inx
)Z̃‖

≤
√

n̄
nµ

ext = ε
√

n̄
nµ

int.
(A.2)

Then, we lower-bound the matrix Ā2
22 such that

‖Ā2
22‖ = ‖(In−m ⊗A)− (In−m ⊗B)Kint

n−m(Λint ⊗ Inx)‖
≥ |‖A‖ − ‖(In−m ⊗B)Kint

n−m(Λint ⊗ Inx
)‖|. (A.3)
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From (18), we understand that the second term in (A.3) is
much larger than the first one. Thus, by taking the difference
between the largest value of the first term and the smallest
value of the second term, it yields a lower-bound as

‖Ā2
22‖ ≥ |c1εµint − µint| = |1− c1ε|µint, (A.4)

where µint = min
k∈M

‖(Λintk ⊗BKint
k )‖.

Proof of Theorem 1
The proof of Theorem 1 follows the block-diagonalization
technique provided in [17]. The singularly perturbed system
dynamics (19) is slightly different from the one in the [17]
thus we adapt the result to our system model to obtain the
approximation results. Using the following transformation[
y

ξ

]
=

[
Im.nx

εΨ(ε)

−Ω(ε) Inx(n−m) − εΩ(ε)Ψ(ε)

][
ys

ξf

]
[
ys

ξf

]
=

[
Im.nx − εΨ(ε)Ω(ε) −εΨ(ε)

Ω(ε) Inx(n−m)

][
y

ξ

]
, (A.5)

where the functions Ω and Ψ should satisfy the following,

R(Ω(ε), ε) = εA21 − εA1
22Ω(ε)−A2

22Ω(ε)

+εΩ(ε)A11 − εΩ(ε)A12Ω(ε) = 0,

S(Ψ(ε), ε) = εA11Ψ(ε) +A12 − εA12Ω(ε)Ψ(ε)

−εΨ(ε)A1
22 −Ψ(ε)A2

22 − εΨ(ε)Ω(ε)A12 = 0

the dynamics (19) can be decoupled into two independent
two time-scale slow and fast subsystems.

The approximation of Ω and Ψ, obtained with the Taylor
development w.r.t. ε, are

Ω(ε) = ε(A2
22)−1A21 +O(ε2),

Ψ(ε) = A12(A2
22)−1+ ε((A2

22)−1A11A12(A2
22)−1 −A12)

+O(ε2).

(A.6)
From Lemma (3), we know that ξ(t) and ξf (tf ) converge
to zero exponentially as t and tf tend to +∞, respectively.
Thus, we can claim that Ω(ε)ys(t) has an exponential de-
crease to zero w.r.t. t. Finally, from the above transformation
(A.5), we have,

y = ys(ts) + εΨ(ε)ξf (A.7)
ξ = ξf (tf )− Ω(ε)ys(ts)− εΩ(ε)Ψ(ε)ξf . (A.8)

Then from (A.6), we have that Ω(ε) = O(ε) and we obtain
the approximations (25).

Proof of Lemma 3
Integrating the error dynamics in (16), we obtain

ξ(t) = eĀ22tξ(0) +
∫ t

0
eĀ22(t−τ)Ā21y(τ) dτ

= eĀ22tξ(0) +
∫ t

0
eĀ22(t−τ)Ā21(ys(τ) + εΨ(ε)ξf (τ)) dτ

= eĀ22tξ(0) +
∫ t

0
eĀ22(t−τ)ZTMY (τ) dτ

+ε
∫ t

0
eĀ22(t−τ)Ā21Ψ(ε)ξf (τ) dτ

where M = diag(M1, ...,Mm) and Mk = (Lextk,red ⊗
BKext

k )U−k. By taking norm on both sides, we have

‖ξ(t)‖ ≤ ‖eĀ22t‖‖ξ(0)‖+ ‖ZTM‖
∫ t

0
‖eĀ22(t−τ)‖‖Y (τ)‖dτ

+ε‖Ā21Ψ(ε)‖
∫ t

0
‖eĀ22(t−τ)‖‖ξf (τ)‖ dτ

(A.9)
Also, from the design of internal and external control, we
know that, for all t ≥ 0,{

Y (t) = eAcltY (0)

ξf (t) = eĀ
2
22tξf (0)

⇒

{
‖Y (t)‖ ≤ eν(Acl)t‖Y (0)‖
‖ξf (t)‖ ≤ eν(Ā2

22)t‖ξf (0)‖
(A.10)

where Acl = diag(A1,cl, ...,Am,cl) is the closed-loop dy-
namics of the external error (38). Then, it follows that

‖ξ(t)‖ ≤ eν(Ā22)t‖ξ(0)‖
+‖ZTM‖‖Y (0)‖

∫ t
0
eν(Ā22)(t−τ)eν(Acl)τ dτ

+ε‖Ā21Ψ(ε)‖‖ξf (0)‖
∫ t

0
eν(Ā22)(t−τ)eν(Ā2

22)τ dτ .

By integrating the second term in (A.9), we have

‖ZTM‖‖Y (0)‖
∫ t

0
eν(Ā22)(t−τ)eν(Acl)τ dτ

= ‖ZTM‖‖Y (0)‖eν(Ā22)t
∫ t

0
e(ν(Acl)−ν(Ā22))τ dτ

= ‖ZTM‖‖Y (0)‖
ν(Acl)−ν(Ā22)

[
eν(Acl)t − eν(Ā22)t

]
.

In the same manner, the third term is

ε‖Ā21Ψ(ε)‖‖ξf (0)‖
∫ t

0

eν(Ā22)(t−τ)eν(Ā2
22)τ dτ

=
ε‖Ā21Ψ(ε)‖‖ξf (0)‖
ν(Ā2

22)− ν(Ā22)

[
eν(Ā2

22)t − eν(Ā22)t
]
. (A.11)

Finally, we have

‖ξ(t)‖ ≤ C1e
ν(Acl)t + εC2e

ν(Ā2
22)t

+ (‖ξ(0)‖ − C1 − εC2) eν(Ā22)t,
(A.12)

where C1 = ‖ZTM‖‖Y (0)‖
ν(Acl)−ν(Ā22)

and C2 =
‖Ā21Ψ(ε)‖‖ξf (0)‖
ν(Ā2

22)−ν(Ā22)
.

Moreover, we know that ν(Ā2
22) < ν(Ā22) < ν(Acl) < 0.

Thus, we conclude that ξ converges exponentially to zero
and the rate of convergence can be bounded as

‖ξ(t)‖ ≤ ‖ξ(0)‖eν(Acl)t. (A.13)
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Proof of Proposition 3
The cost Jk is split into the sum of the internal and external
costs and composite term, as shown in equation (7). Then,
we bound the internal and external costs from time T to in-
finity. We proceed similarly with the composite term.
Internal Cost: Substituting xk = H̃kyk+ Z̃kξk from equa-
tion (13) into J intk in equation (7) and with H̃>k (Lintk ⊗
Inx) = 0, it yields

J intk (T,+∞) =
∫ +∞
T

ξ>k Z̃k((Lintk ⊗ Inx
)

+(Lint>k Lintk ⊗Kint>
k RkK

int
k ))Z̃kξk dt,

=
∫ +∞
T

nkξ
>
k

(
(Λintk ⊗ Inx

)

+

(
Λintk

2 ⊗ P int>k B
R−1

k

n2
k

B>P intk

))
ξk dt,

=

∫ +∞

T

nkξ
>
k

(
(Λintk ⊗ Inx

)

+
(
Ink−1 ⊗ P int>k BR−1

k B>P intk

) )
ξk dt,

≤ C3,k

∫ +∞
T
‖ξk‖2 dt ≤ C3,k

∫ +∞
T
‖ξ(t)‖2 dt .

where,
C3,k =‖nk

(
(Λintk ⊗Inx

)+
(
Ink−1 ⊗ P int>k BR−1

k B>P intk

))
‖.

From Lemma 3 and equation (A.13), we have ‖ξ(t)‖ ≤
‖ξ(T )‖eν(Acl)(t−T ), for all t ∈ [T,+∞). Thus, with
ν(Acl) < 0, we have,∫ +∞

T

‖ξ(t)‖2 dt ≤ −‖ξ(T )‖2

2ν(Acl)
= C4‖ξ(T )‖2 (A.14)

where C4 :=
(
− 1

2ν(Acl)

)
. Thus, from (A.14)-(A.14) and

the approximation of ξ in equation (25),

J intk (T,+∞) ≤ C3,kC4‖ξf (T ) +O(ε)‖2

≤ C3,kC4

(
‖ξf (T )‖2 + 2O(ε)‖ξf (T )‖+O(ε2)

)
.

Finally, replacing ‖ξf (T )‖ ≤ ε
√
n−m from (46) we have

J intk (T,+∞) ≤ O(ε2). (A.15)

External cost: First, we recast the collective external control
(4) in the external error variable Yk, as follows

uextk (t) = −(Ink
⊗Kext

k )(Lextk,row ⊗ Inx
)x(t)

= −(Lextk,row ⊗Kext
k )(H̃y(t) + Z̃ξ(t))

= −(Lextk,row ⊗Kext
k )(H̃ys(t) + εH̃Ψ(ε)ξf (tf ) + Z̃ξ(t))

= (Lextk,red ⊗Kext
k )U−kYk(t)

− (Lextk,row ⊗Kext
k )(εH̃Ψ(ε)ξf (tf ) + Z̃ξ(t)),

(A.16)
where Lextk,row is the k-th block-row of Lext and Lextk,red is
obtained by removing the Lextk,k block from Lextk,row. Then, it
yields

uextk
>

(t)(Ink
⊗Rk)uextk (t) (A.17)

= Y >k (t)Qextk,2Yk(t) + ε2ξ>f (tf )D1,kξf (tf ) + ξ>(t)D2,kξ(t)

−εY >k (t)D3,kξf (tf )− Y >k (t)D4,kξ(t) + εξ>(t)D5,kξf (tf ),

where

Qextk,2 = U>−k(Lext>k,redLextk,red ⊗Kext>
k RkK

ext
k )U−k,

D1,k = Ψ(ε)>H̃>(Lext
>

k,rowLextk,row ⊗Kext>

k RkK
ext
k )H̃Ψ(ε),

D2,k = Z̃>(Lext
>

k,rowLextk,row ⊗Kext>

k RkK
ext
k )Z̃,

D3,k = 2U>−k(Lext
>

k,redLextk,row ⊗Kext>

k RkK
ext
k )H̃Ψ(ε),

D4,k = 2U>−k(Lext>k,redLextk,row ⊗Kext
k
>
RkK

ext
k )Z̃,

D5,k = 2Z̃>(Lext>k,rowLextk,row ⊗Kext
k
>
RkK

ext
k )H̃Ψ(ε).

Secondly, let consider the state part in the external cost.
To simplify the expression, we use (Lextk ⊗ Inx

)H̃ys(t) =
−(Lextk,col ⊗ Inx

)U−kYk(t) where Lextk,col is the matrix Lextk

with its k-th block-column removed. Then, we obtain

x>(t)(Lextk ⊗ Inx
)x(t)

= ?>(Lextk ⊗ Inx
)(H̃ys(t) + εH̃Ψ(ε)ξf (tf ) + Z̃ξ(t))

= nkY
>
k (t)Qextk,1Yk(t) + ε2ξf (tf )>M1,kξf (tf )

+ξ>(t)M2,kξ(t)− εY >k (t)M3,kξf (tf )− Y >k (t)M4,kξ(t)

+εξ>(t)M5,kξf (tf )

(A.18)
where 

M1,k = Ψ(ε)>H̃>(Lextk ⊗ Inx
)H̃Ψ(ε)

M2,k = Z̃>(Lextk ⊗ Inx
)Z̃

M3,k = 2U>−k(Lext>k,col ⊗ Inx
)H̃Ψ(ε)

M4,k = 2U>−k(Lext>k,col ⊗ Inx)Z̃

M5,k = 2Z̃>(Lextk ⊗ Inx
)H̃Ψ(ε).

Then, replacing (A.17) and (A.18) into the external cost
(Jextk ) in equation (7), we get

Jextk (T,+∞)

= nk

∫ +∞

T

Y >k (t)Qextk,1Yk(t) + Y >k (t)
Qextk,2

nk
Yk(t) dt +∆1

= nkJ
ext

k (T,+∞) + ∆1, (A.19)

where ∆1 = ∆1
1 + ∆2

1 + ∆3
1 + ∆4

1 + ∆5
1 and

∆1
1 = ε2

∫ +∞
T

ξf (tf )> (M1,k +D1,k) ξf (tf ) dt,

∆2
1 =

∫ +∞
T

ξ>(t) (M2,k +D2,k) ξ(t) dt,

∆3
1 = −ε

∫ +∞
T

Y >k (t) (M3,k +D3,k) ξf (tf ) dt,

∆4
1 = −

∫ +∞
T

Y >k (t) (M4,k +D4,k) ξ(t) dt,

∆5
1 = ε

∫ +∞
T

ξ>(t) (M5,k +D5,k) ξf (tf ) dt .

(A.20)
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∆1
1 ≤ ε2‖M1,k +D1,k‖

∫ +∞
T
‖ξf (tf )‖2 dt

≤ −ε2 ‖M1,k+D1,k‖‖ξf (0)‖2

2ν(Ā2
22)

e2ν(Ā2
22)T = O(ε2).

∆2
1 ≤ C3,k‖M2,k+D2,k‖

∫ +∞
T
‖ξ(t)‖2‖ξ(T )‖2 dt

≤ C3,k‖M2,k+D2,k‖
(
‖ξf (T )‖2+2O(ε)‖ξf (T )‖+O(ε2)

)
≤ O(ε2).

∆3
1 ≤ ε‖M3,k+D3,k‖‖Y (0)‖‖ξf (0)‖

∫ +∞
T

eν(Acl)teν(Ā2
22)t dt

= −ε‖M3,k+D3,k‖‖Y (0)‖‖ξf (0)‖
ν(Acl)+ν(Ā2

22)
e(ν(Acl)+ν(Ā2

22))T = O(ε).

Similarly, ∆4
1 and ∆5

1 are of orderO(ε). Finally, from (A.19)
and bounds in (A.20) for ∆1, we obtain

Jextk (T,+∞) = nkJ̄
ext
k (T,+∞) +O(ε). (A.21)

Composite term: We rewrite the external control (A.16)
and the internal control (4) as

uextk (t) = −C5,kYk(t)− εC6,kξf (tf )− C7,kξ(t)

uintk (t) = (Lintk ⊗Kint
k )Z̃kξk(t) =: C8,kξk(t). (A.22)

where C5,k = (Lextk,red ⊗ Kext
k )U−k, C6,k = (Lextk,row ⊗

Kext
k )H̃Ψ(ε) and C7,k = (Lextk,row ⊗Kext

k )Z̃. Then, taking
the norm and substituting from equations (A.22) into the
Jcrossk term in equation (7), we get,

Jcrossk (T,+∞) ≤ 2‖Rk‖
∫ +∞
T
‖uextk

>
(t)‖‖uintk (t)‖ dt

≤ 2‖Rk‖
+∞∫
T

‖C5,kYk(t) + εC6,kξf (tf ) +C7,kξ(t)‖.

‖C8,kξk(t)‖ dt

(A.23)
With simple calculation it can be shown that the first integral
in the above equation is of order O(ε) and the second and
the third integrals are of order O(ε2). Thus, we have,

Jcrossk (T,+∞) ≤ O(ε). (A.24)

Finally, from (7), (A.15), (A.21) and (A.24), we conclude
the proof.

Proof of Theorem 2
Internal Cost: Following the similar approximation as the
approximation of the internal cost in Proposition 3, we obtain
the following approximation for the internal cost for

J intk = nkJf,k +O(ε) (A.25)

Moreover, due to LQ-control design, the optimal fast
cost Jf,k = ξf,k(0)>(Ink−1

⊗ P intk )ξf,k(0). The sub-
stituting the approximation ξk = ξf,k + O(ε), we get,
Jf,k = ξk(0)>(Ink−1

⊗P intk )ξk(0) +O(ε). Then, from the
transformation (12), it yields,

J intk = nk.xk(0)>Z>k (Ink−1
⊗ P intk )Zkxk(0) +O(ε)

= xk(0)>(Ink
⊗ P intk )xk(0) +O(ε)

≤ ‖P intk ‖‖xk(0)‖2 +O(ε). (A.26)

External Cost: Substituting xk = H̃y + Z̃ξ in the external
cost Jextk in equation (7), and performing the similar oper-
ation as in the approximation of the external cost in Propo-
sition 3, we obtain,

Jextk ≤ nkJ
ext

k + Π1 +O(ε) (A.27)

with

Π1 = 2
+∞∫
0

ξ>Z̃>
(
(Lextk ⊗ Inx)+

(Lextk,row
>Lextk,row ⊗Kext

k
>
RkK

ext
k )

)
H̃y dt

+
+∞∫
0

ξ>
(
Z̃>(Lextk ⊗ Inx)

+(Lextk,row
>Lextk,row ⊗Kext

k
>
RkK

ext
k )Z̃

)
ξ dt .

(A.28)

Furthermore, substituting (Lextk ⊗ Inx
)H̃ys = −(Lextk,col ⊗

Inx)U−kYk and (Lextk,row ⊗ Inx)H̃ys = −(Lextk,red ⊗
Inx)U−kYk in equation (A.28) and taking the norm we have,

Π1 ≤ C9,k‖x(0)‖2 +O(ε) (A.29)

where C9,k := C4‖Z‖
(
‖Yk(0)‖‖2Z̃>

(
(Lextk,col ⊗ Inx) +

(Lextk,row
>Lextk,red ⊗Kext

k
>
RkK

ext
k )

)
U−k‖ + ‖

(
Z̃>(Lextk ⊗

Inx
) + (Lextk,row

>Lextk,row ⊗Kext
k
>
RkK

ext
k )Z̃

)
C4

)
.

Cross Term: Substituting from equation (A.22) and from
Theorem 1 into the cross term in equation (7) and after fur-
ther calculation, we get,

Jcrossk ≤ 2‖Rk‖‖C5,k‖‖C8,k‖‖C4‖‖Yk(0)‖‖Z‖‖x(0)‖
+2‖Rk‖‖C7,k‖‖C8,k‖‖C4‖‖Z‖2‖x(0)‖2 +O(ε)

By definition of the variable Yk in equation (37), it satisfies
‖Yk‖ ≤

√
nk‖H‖‖x(0)‖ + O(ε) and substituting it in the

above equation leads to

Jcrossk ≤ C10,k‖x(0)‖2 +O(ε), (A.30)

where C10,k := 2‖Rk‖‖C8,k‖‖C4‖
(√
nk‖H‖‖C5,k‖ +

‖C7,k‖‖Z‖
)
‖Z‖. Then from equation (7), (A.26), (A.27),

(A.29) and (A.30), we have,

Jk ≤ ‖P intk ‖‖xk(0)‖2 + nkJ
ext

k + Ck‖x(0)‖2 +O(ε)

where Ck := (C9,k+C10,k). Moreover, we have ‖Yk(0)‖ ≤
‖x(0)‖2 +O(ε) and substituting from equation (42),

Jk ≤ ‖P intk ‖‖xk(0)‖2 + nkγk‖x(0)‖2 + Ck‖x(0)‖2 +O(ε)

≤ (‖P intk ‖+ nkγk + Ck)‖x(0)‖2 +O(ε) (A.31)
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