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We consider a clustered network where connections inside the cluster are dense and between clusters are sparse. This leads us to a classical decoupling into fast (intra-cluster) and slow (inter-cluster) dynamics. Our objective is to provide a computationally efficient method to design control strategies that guarantee a certain bound on the cost for each cluster. Basically, we design a composite synchronizing controller with two terms: one responsible for the intra-cluster synchronization and the other achieving the synchronization between clusters. The first one does not require much computational effort since an analytic expression describes it. The second term is designed through a satisfaction equilibrium approach. In other words, the internal (fast) and external (slow) controllers are independently designed, and they ensure a guaranteed satisfactory cost for each cluster. Moreover, we show that the internal control affects the cluster cost only for a short time period. Finally, numerical simulations illustrate the theoretical results.

Introduction

Due to its application in various domains such as power systems [START_REF] Chow | Time-scale modeling of dynamic networks with applications to power systems[END_REF], wireless sensor networks [START_REF] Mytum-Smithson | Wireless sensor networks: An information processing approach[END_REF], social networks [START_REF] Wasserman | Social Network Analysis: Methods and Applications[END_REF], and biology [START_REF] Bleibel | Two time scales for self and collective diffusion near the critical point in a simple patchy model for proteins with floating bonds[END_REF], analysis and control of network synchronization have received significant attention in the literature. A particular case of the networked system is clustered network where the network is divided into distinct groups (clusters) and the communication inside these groups are dense while the communication between these groups is sparse, see e.g. [START_REF] Lu | Cluster synchronization in networks of coupled nonidentical dynamical systems[END_REF]. Networks with such properties also appear in various disciplines, such as energy systems [START_REF] Romeres | Novel results on slow coherency in consensus and power networks[END_REF], physics [START_REF] Belykh | Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems[END_REF], [START_REF] Steur | Couplingmodulated multi-stability and coherent dynamics in directed networks of heterogeneous nonlinear oscillators with modular topology[END_REF], biological systems [START_REF] Andrew | Benefits to satellite members in mixed-species foraging groups: an experimental analysis[END_REF], social networks [START_REF] Ronald L Breiger | An algorithm for clustering relational data with applications to social network analysis and comparison with multidimensional scaling[END_REF], [START_REF] De | Consensus for clusters of agents with cooperative and antagonistic relationships[END_REF] etc.

A majority of the publication on clustered networks propose an analysis of networks in consensus framework, see, e.g. [START_REF] Chow | A decomposition of nearoptimum regulators for systems with slow and fast modes[END_REF], [START_REF] Bıyık | Area aggregation and timescale modeling for sparse nonlinear networks[END_REF], [START_REF] Martin | Time scale modeling for consensus in sparse directed networks with time-varying topologies[END_REF]; while the problem of control design is less This work was partially funded by CEFIPRA through the project number 6001-1 and by ANR under grants HANDY ANR-18-CE40-0010 and NICETWEET ANR-20-CE48-0009.

Email addresses: bikash.adhikari@univ-lorraine.fr (B. Adhikari), jomphop.veetaseveera@univ-lorraine.fr (J. Veetaseveera). 1 B. Adhikari and J. Veetaseveera contributed equally to this work as first authors. common in such a setting. A particular setup for synchronizing clustered networks using two time-scale is considered in [START_REF] Boker | On aggregate control of clustered consensus networks[END_REF], [START_REF] Thiem | Distributed two-time-scale methods over clustered networks[END_REF]. In [START_REF] Boker | On aggregate control of clustered consensus networks[END_REF], the authors expressed the consensus problem in terms of the synchronization problem and proposed a computationally efficient control design strategy using timescale separation. A distributed two time-scale consensus algorithm is presented in [START_REF] Thiem | Distributed two-time-scale methods over clustered networks[END_REF] with an explicit formula for the convergence rate. However, none of the previously mentioned works consider the problem where control objective has a cost optimization requirement in addition to synchronization. On the one hand, these requirements are timely, and on the other, induce a high computational load, preventing the design of (sub-)optimal controllers in a centralized manner.

A major problem related to the synchronization of largescale networks is the computational load associated with the design of effective controllers. The cost related to the synchronization is either considered to be global or not considered at all in most of the existing literature, for example in [START_REF] Jaleel | Decentralized energy aware co-optimization of mobility and communication in multiagent systems[END_REF], [START_REF] Borrelli | Distributed lqr design for identical dynamically decoupled systems[END_REF]. In [START_REF] Jaleel | Decentralized energy aware co-optimization of mobility and communication in multiagent systems[END_REF], the authors propose an energy-aware controller to minimize a global cost consisting of communication and controller parts. The control design with optimal global cost in the framework of multi-agent systems is presented in [START_REF] Borrelli | Distributed lqr design for identical dynamically decoupled systems[END_REF]. The computational effort required is very high, and the problem is NP-hard due to the information structure imposed by the graph.

A computationally efficient decentralized control design approach is presented with global cost guarantees in [START_REF] Ben Rejeb | Guaranteed cost control design for synchronization in networks of linear singularly perturbed systems[END_REF]; however, the assumption of the same gain for all the agents in the network is quite restrictive. This obstacle in [START_REF] Ben Rejeb | Guaranteed cost control design for synchronization in networks of linear singularly perturbed systems[END_REF] was removed in [START_REF] Veetaseveera | Decentralized control for guaranteed individual costs in a linear multi-agent system: A satisfaction equilibrium approach[END_REF] with individual cost guarantees for each agent. The proposed strategy works well with small-scale networks; however, the computational effort required to obtain the gain is huge for large-scale networks. In this paper, we aim to address this problem and provide an effective control design strategy for large-scale networks that reduces the computational effort while satisfying the performance guarantees.

One methodology to address the synchronization of the large-scale networks is by model reduction, which is based on Singular Perturbation Theory (SPT) that exploits the time-scale properties of clustered networks. The objective is to decrease the size of the system state while approximating its overall dynamic behavior. To the best of our knowledge, the first time-scale analysis of the networked system dates back to the 1980s, see [START_REF] Chow | Time scale modeling of sparse dynamic networks[END_REF], [START_REF] Chow | Time-scale modeling of dynamic networks with applications to power systems[END_REF] . In these publications, the consensus problem for linear systems was analyzed using a singular perturbation approach, assuming that graphs were undirected. Later on, these results were extended in [START_REF] Bıyık | Area aggregation and timescale modeling for sparse nonlinear networks[END_REF] to nonlinear networks. Furthermore, the results from [START_REF] Chow | Time scale modeling of sparse dynamic networks[END_REF], [START_REF] Chow | Time-scale modeling of dynamic networks with applications to power systems[END_REF] for the case time-varying directed graphs are extended in [START_REF] Martin | Time scale modeling for consensus in sparse directed networks with time-varying topologies[END_REF]. In the synchronization framework, singular perturbation analysis of heterogeneous network with fixed topology is presented in [START_REF] Maghenem | Singularperturbations-based analysis of synchronization in heterogeneous networks: A case-study[END_REF], and for the time-varying case in [START_REF] Adhikari | An emerging dynamics approach for synchronization of linear heterogeneous agents interconnected over switching topologies[END_REF].

In this paper, we consider the problem of a distributed controller design for a clustered network that ensures synchronization of the overall network while optimizing some cost functions. We provide an approach that significantly reduces the computational effort required to obtain the controller by exploiting the clustered network structure. The dense interconnections result in a fast convergence inside the cluster toward a local agreement and then slowly towards the global consensus. We use this property to divide the control design problem into computationally tractable sub-problems using Time-Scale Separation (TSS). The fast variables represent the synchronization error inside the clusters, whereas the slow variables represent the aggregate behavior of the agent states within each cluster.

The design of our controller is based on the two time-scale behavior of the clustered network. First, we perform the Time-Scale Modeling (TSM) to represent the network dynamics in Standard Singular Perturbation From (SSPF). As a result of TSM, internal control is associated with fast dynamics, while external control is associated with slow dynamics. Then, using time-scale separation, we decouple the dynamics into slow and fast subsystems, and this decoupling allows us to independently design the internal and the external controller. The internal controller, associated with the fast dynamics, is designed to achieve the consensus inside the cluster while minimizing an internal cost. The convergence of agents inside the cluster towards the consensus is fast; the cluster roughly merges into a single node after the fast transient and external behavior is defined by the slow dynamics. The long-term behavior of the network depends on this slow dynamics. Finally, the external control is designed to synchronize all the clusters based on the satisfaction equilibrium approach [START_REF] Veetaseveera | Decentralized control for guaranteed individual costs in a linear multi-agent system: A satisfaction equilibrium approach[END_REF], i.e., external control is designed such that the external cost associated with each cluster is bounded under a given threshold. In addition, we also provide an approximation of the cluster cost as a sum of the internal and external costs associated with internal and external control, respectively.

The main contributions of this paper can be outlined as follows, (1) we formulate a singular perturbation model of the clustered network using time-scale modeling in the synchronization framework, where each agent has its individual dynamics, [START_REF] Belykh | Hierarchy and stability of partially synchronous oscillations of diffusively coupled dynamical systems[END_REF] based on the obtained model in (1), we propose a computationally efficient sub-optimal control design scheme that synchronizes the network by splitting the controllers into two parts corresponding to the slow and fast dynamics, and (3) finally, we provide an approximation of the cluster cost bound induced by the time-scale separation.

The remainder of the paper is organized as follows. The model and the control objectives are stated in Section 2. The time-scale modeling and decoupling into slow and fast dynamics using time-scale separation is described in detail in Section 3. Then, the internal and external controller design procedures are developed in Section 4. In Section 5, we provide the global system analysis and an approximation of the cluster cost. Finally, numerical results are presented in Section 6 before concluding in Section 7. The proofs are presented in the Appendix to make the paper easily readable.

Notation and Preliminaries

The symbol ⊗ represents the Kronecker product. Let (x, y) ∈ R n+m stand for [x y ] . The identity matrix of size n is denoted by I n and by 1 n ∈ R n , the column vector whose components are all 1. For a matrix A ∈ R m×n , A denotes the transpose of A. For a vector x ∈ R n , we denote by x 2 : =

√

x x its Euclidean norm and, for a matrix A, A 2 : = λ max (A A). For a square matrix M ∈ R n×n , let λ min (M ) and λ max (M ) be the minimum and the maximum eigenvalue, respectively. The measure of the square matrix M is defined as ν(M ) = 1 2 λ max (M + M ). We said that a matrix M ∈ R n×n is orthonormal if M M = M M = I n . We denote by M -k ∈ R (n-1)×(n-1) the matrix M with its k-th row and column removed. By B = diag(B 1 , ..., B N ), we denote a block-diagonal matrix with the entries B 1 ,...,B N on the diagonal and B -k : = diag(B 1 , ..., B k-1 , B k+1 , ..., B N ) the block-matrix with the k-th block removed. A function

f (t) : (0, ∞) → R n is O( ) iff there exists constant c > 0 such that f (t) ≤ c . A connected, undirected graph is represented as G: = (V, E)
, where V: = {1, 2, . . . , n} is the agent set and E ⊆ V × V is the edge set. The adjacency matrix A = (a ij ) n×n is defined as: a ij = 0 if (j, i) ∈ E and a ij = 0, otherwise. The Laplacian of the graph G is defined as L, has -a ij off-diagonal elements and n j=1 a ij diagonal ones. Let G = (V, {K i } i∈V , {u i } i∈V ), be a strategic form game, where V = {1, 2, . . . , n} is the set of players (agents), K i is the set of strategies of the player i , and u i is a utility function of the player i and {f 1 , . . . , f n } be n set-valued satisfaction functions. Then the strategy profile 

K * = (K * 1 , . . . , K * n ) is a Satisfaction Equilibrium (SE) if and only if, for all i ∈ V, we have, K * i ∈ f i (K * -i ), where K * -i := (K * 1 , . . . , K * i-1 , K * i+1 , . . . , K * n ) denotes the reduced profile with the component K * i removed.
k . To each agent (k, i) ∈ C k , k ∈ M, one assigns a state x k,i ∈ R nx whose dynamics is ẋk,i = Ax k,i + Bu k,i , (1) 
where

u k,i ∈ R nu , A ∈ R nx×nx and B ∈ R nx×nu .
For each cluster C k , let x k : = (x k,1 , . . . , x k,n k ) ∈ R n k •nx be the cluster state and u k : = (u k,1 , . . . , u k,n k ) ∈ R n k •nu the cluster control. Thus, the cluster dynamics takes the following form

ẋk = (I n k ⊗ A)x k + (I n k ⊗ B)u k , ∀k ∈ M. (2) 
Moreover, in the presence of clusters, the Laplacian of the network can be written as L: = L int + L ext . The internal Laplacian of the network L int : = diag(L int 1 , ..., L int m ) is a block-diagonal matrix, with each block L int k referring to the Laplacian of the cluster C k excluding the external connections. The external Laplacian L ext represents the connections between agents from different clusters.

The next two assumptions are the necessary condition to ensure the synchronization of the network and the presence of the cluster in the network, respectively.

Assumption 1

The graph of clusters is connected.

Due to the dense communications between the agents inside the clusters, we make the following assumption on the communications inside the cluster.

Assumption 2

The internal graphs are complete for all clusters.

Remark 1 Under Assumption 2, the zero eigenvalue of the internal Laplacian L int k is simple and all the non-zero eigenvalues are n k for all k ∈ M. This assumption is imposed only for the control design purpose, and the obtained controller can be implemented even if Assumption 2 does not hold. The main advantage of this assumption is that it greatly reduces the computational effort required to obtain the control.

Control Design Outline

We consider the problem of network synchronization, and the network is said to be asymptotically synchronized for all (k, i) ∈ C k , (l, j) ∈ C l and k, l ∈ M, when lim t→+∞ x k,i (t)x l,j (t) = 0. Our first objective is to design a distributed control synchronizing the network while minimizing some cost function.

If the network dimension is large, the control design problem under certain cost constraints becomes difficult as the computational complexity increases with an increase in network dimension. To simplify the calculations and minimize the computational efforts, for each cluster C k , k ∈ M, we propose a composite control of the form:

u k : = u int k + u ext k , ∀k ∈ M, (3) 
where

u int k : = (u int k,1 , ..., u int k,n k ), u ext k : = (u ext k,1 , ..., u ext k,n k ) and u int k,i : = -K int k (k,j)∈N k,i (x k,i -x k,j ), u ext k,i : = -K ext k (l,p)∈N k,i (x k,i -x l,p ), (4) 
where

K int k , K ext k ∈ R nu×nx .
The notation (l, p) ∈ N k,i indicates the neighbors belonging to a different cluster, that is l = k. The internal control u int k is the effort required to achieve local agreement, whereas the external control u ext k is the energy necessary to synchronize the agents between the clusters. Such a decomposition of the control allows us to decouple the overall optimization in the following way. We split the cost functions corresponding to the cluster into the sum of internal, external, and cross term. First, we define the cluster cost, J k associated with each cluster C k , k ∈ M, is defined as a

J k = +∞ 0 x k (t)(L int k ⊗ I nx )x k (t) + x (t)(L ext k ⊗ I nx )x(t) +u k (t)(I n k ⊗ R k )u k (t) dt, (5) 
where the internal Laplacian L int k ∈ R n k ×n k captures the connections inside the cluster C k , and the external Laplacian L ext k ∈ R n×n expresses the external connections between C k and the neighboring clusters. Then, substituting the composite control (3), we recast the cost function [START_REF] Boker | On aggregate control of clustered consensus networks[END_REF] as the sum of internal, external and a cross term as

J k = J int k + J ext k + J cross k , (6) 
where,

J int k = +∞ 0 x k (t)(L int k ⊗In x )x k (t)+u int k (t)(In k ⊗R k )u int k (t) dt, J ext k = +∞ 0 x (t)(L ext k ⊗In x )x(t) + u ext k (t)(In k ⊗R k )u ext k (t) dt, J cross k = 2 +∞ 0 u ext k (t)(In k ⊗ R k )u int k (t) dt . (7) 
In this way, we replace the original problem of optimizing the cost function for the overall network given [START_REF] Boker | On aggregate control of clustered consensus networks[END_REF] with the problem of optimization of the internal and the external cost. This way, the initial optimization problem is recast as a problem of finding the internal (K int k ) and external (K ext k ) control gains. The internal and external gains are designed independently, and the obtained internal gain is optimal while the external gain is sub-optimal because the internal cost is minimized and the external cost is capped below a certain threshold, respectively.

The next objective is to bound the total cluster cost with the sum of internal (J int k ) and external (J ext k ) cost and a constant term. The cross term in the equation ( 7) can be bounded by a constant term multiplied by the norm of the initial conditions (See Theorem 2).

To solve this problem, we propose an approach based on time-scale separation that we describe in the following section.

Time-scale Separation

This section provides a procedure to decouple the closedloop network dynamics into two subsystems, evolving on different time-scales. First, we perform a coordinate transformation to exhibit the collective dynamics of the network: the average and the synchronization error dynamics. Then, we apply the TSS to decouple the collective dynamics into slow and fast subsystems. In two time-scale, the slow variable corresponds to the average of the agent's state while the fast variable corresponds to the synchronization error.

Coordinate Transformation

Following from [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF], we introduce the coordinate transformation for the cluster C k based on the internal Laplacian L int k . For a connected graph, the Jordan decomposition of the symmetric Laplacian matrix is,

L int k = T k 0 0 0 Λ int k T k , ∀k ∈ M, (8) 
where

T k ∈ R n k ×n k is an orthonormal matrix and Λ int k = diag(λ int k,2 , . . . , λ int k,n k ) ∈ R (n k -1)×(n k -1) collects the n k -1 positive eigenvalues of L int k .
Moreover, the matrix T k can be expressed as

T k = v k,1 V k , ∀k ∈ M, (9) 
where v k,1 = 1

√ n k 1 n k is the eigenvector associated with the 0 eigenvalue and the matrix

V k ∈ R n k ×(n k -1) contains the eigenvectors corresponding to the nonzero eigenvalues of L int k . Furthermore, it can be verified that, v k,1 V k = 0 and V k V k = I n k -1 .
Now, we define the coordinate transformation as

x k := y k ξ k = ( 1 √ n k T k ⊗ I nx )x k , ∀k ∈ M. (10) 
Then, from ( 9) and ( 10), the change of variables yields, for all k ∈ M,

y k := 1 n k n k ⊗ I nx x k =: H k x k ∈ R nx (11) 
ξ k := V k √ n k ⊗ I nx x k =: Z k x k ∈ R (n k -1).nx . ( 12 
)
The first component y k corresponds to the average of the respective agents' states in the cluster C k . The second component, ξ k corresponds to the synchronization error. Since the matrix T k is orthonormal i.e., T k = T -1 k , the inverse of the transformation [START_REF] Chow | Time scale modeling of sparse dynamic networks[END_REF], for all k ∈ M yields,

x k = (1 n k ⊗ I nx )y k + ( √ n k V k ⊗ I nx )ξ k =: H k y k + Z k ξ k . (13 
) In vector form, let x: = (x 1 , . . . , x m ) ∈ R n.nx , y: = (y 1 , . . . , y m ) ∈ R m.nx and ξ: = (ξ 1 , . . . , ξ m ) ∈ R (n-m).nx , respectively. Then for overall network, we obtain y = Hx, ξ = Zx and x = Hy + Zξ, [START_REF] Erdos | On the evolution of random graphs[END_REF] where H = diag(H 1 , ..., H m ) and Z = diag(Z 1 , ..., Z m ) and H = diag( H 1 , ..., H m ) and Z = diag( Z 1 , ..., Z m ). Now, we recast the overall network dynamics in terms of the new coordinate variables. The overall network dynamics in the presence of the control (3) is

ẋ = ((I n ⊗ A) -(I n ⊗ B)K int (L int ⊗ I nx ) -(I n ⊗ B)K ext (L ext ⊗ I nx ))x, (15) 
where

K int = diag((I n1 ⊗ K int 1 ), . . . , (I nm ⊗ K int m )) and K ext = diag((I n1 ⊗K ext 1 ), . . . , (I nm ⊗K ext m )
). Then, using ( 14), the overall dynamics ( 15) is recast in new coordinates as follows,

ẏ = Ā11 y + Ā12 ξ, ξ = Ā21 y + ( Ā1 22 + Ā2 22 )ξ, (16) 
where

                 Ā11 = ((I m ⊗ A) -H(I n ⊗ B)K ext (L ext ⊗ I nx ) H), Ā12 = -H(I n ⊗ B)K ext (L ext ⊗ I nx ) Z, Ā21 = -Z(I n ⊗ B)K ext (L ext ⊗ I nx ) H, Ā1 22 = -Z(I n ⊗ B)K ext (L ext ⊗ I nx ) Z, Ā2 22 = ((I n-m ⊗ A) -(I n ⊗ B)K int n-m (Λ int ⊗ I nx )), (17) and 
K int n-m = diag((I n1-1 ⊗ K int 1 ), . . . , (I nm-1 ⊗ K int m )) and Λ int = diag(Λ int 1 , . . . , Λ int m ).
We recall that y and ξ corresponds to the average of the agents' states and the synchronization error, respectively.

Network Dynamics in Two time-scale

In the absence of agents' individual dynamics in [START_REF] Chow | Time scale modeling of sparse dynamic networks[END_REF], [START_REF] Martin | Time scale modeling for consensus in sparse directed networks with time-varying topologies[END_REF], the consensus dynamics is expressed in Standard Singular Perturbation From (SSPF) based only on the density of connections inside and between the clusters. This was sufficient because the convergence required in [START_REF] Chow | Time scale modeling of sparse dynamic networks[END_REF], [START_REF] Martin | Time scale modeling for consensus in sparse directed networks with time-varying topologies[END_REF] is dictated only by the density of the connections in the consensus framework. However, in our case, the convergence towards synchronization manifold depends also on the control gains K int and K ext and we need to take them into account for the time-scale analysis i.e., while defining the network parameter ( ).

Thus, to study the time-scale behavior and analyze the synchronizing behavior, we define the network parameters as follows,

       µ ext : = (I n ⊗ B)K ext (L ext ⊗ I nx ) , µ int : = min k∈M (Λ int k ⊗ BK int k ) , : = µ ext µ int . (18) 
The network parameter is the ratio of the strength of the controls between and within the clusters. It's worth noting, in our case, the network parameter can be tuned by the choice of the control gains.

Remark 2 For the rest of this section, we assume that is small enough such that time-scale separation occurs, and the control design presented in the following section will serve, among others to ensure this property.

Upon analyzing the orders of the state matrices of the collective dynamics [START_REF] Emil | Contributions to the theory of optimal control[END_REF], knowledge of the order of matrix A is crucial for transformation in SSPF. In the following, we state the following assumption on the order of the matrix A which is necessary for representing the dynamics ( 16) in SSPF.

Assumption 3

The state matrix A satisfies the following

A ≤ O(µ ext ).
We here note that since µ ext depends on K ext , we can always choose K ext sufficiently large such that the assumption 3 is satisfied. In the following lemma, we analyze the order of the matrices in equation ( 17) under Assumption 3.

Lemma 1 Under Assumption 3, the matrices in (17) satisfy the following conditions,

• Ā11 , Ā12 , Ā21 , Ā1 22 are of order O( µ int ), • Ā2 22 is of order O(µ int ).
PROOF. See Appendix.

As a consequence of the Assumption 3, all the matrices in (17) are of order O( µ int ) except Ā2 22 , which is of order O(µ int ). Since the dynamics of the variables y and ξ are dominated by the matrix Ā11 and Ā2

22 , the variables y and ξ behaves as a slow and fast variables, respectively. Now, to reveal the TSS, following the idea of [START_REF] Chow | Time scale modeling of sparse dynamic networks[END_REF], we rescale the time with µ int to obtain a fast time-scale as t f = µ int t, and a slow time-scale t s = t f . This allows us to represent the overall dynamics [START_REF] Emil | Contributions to the theory of optimal control[END_REF] in SSPF as follows,

dy dt s = A 11 y + A 12 ξ, (19a) 
dξ dt s = A 21 y + ( A 1 22 + A 2 22 )ξ. ( 19b 
)
where,

A 11 = Ā11 µ int , A 12 = Ā12 µ int , A 21 = Ā21 µ int , A 1 22 = Ā1 22 µ int , A 2 22 = Ā2 22 µ int . (20) 
Next, we analyze the slow and fast dynamics of the singularly perturbed system (19).

Slow Dynamics

To define the slow dynamics of the system (19), we follow the standard approach of singular perturbation analysis [START_REF] Kokotović | Singular Perturbation Methods in Control: Analysis and Design[END_REF]. Setting = 0 in [START_REF] Laub | Matrix analysis for scientists and engineers[END_REF], we obtain that equation (19b) degenerates into equation ξ s (t s ) = 0. Substituting this into equation (19a), we obtain the slow dynamics as

dy s dt s = A 11 y s . ( 21 
)
where y s and ξ s are the slow parts of the variables y and ξ, respectively. Equivalently, since t s = t f = µ int t, it yields,

ẏs (t) = (I m ⊗ A)y s (t) + (I m ⊗ B)u s (t), (22) 
where u s (t) = -HK ext (L ext ⊗ I nx ) Hy s (t). Notice that in our setting the slow dynamics [START_REF] Martin | Time scale modeling for consensus in sparse directed networks with time-varying topologies[END_REF] represents the collective behavior of the cluster and it may or may not be stable.

Fast Dynamics

Now, representing the dynamics [START_REF] Laub | Matrix analysis for scientists and engineers[END_REF] in fast time scale t f and setting = 0, we have dy f /dt f = 0 and we obtain the fast dynamics as follows,

dξ f dt f = A 2 22 ξ f . (23) 
where y f and ξ f are fast parts of the corresponding variable in [START_REF] Laub | Matrix analysis for scientists and engineers[END_REF]. The fast dynamics [START_REF] Mytum-Smithson | Wireless sensor networks: An information processing approach[END_REF] in original time-scale t is

ξf (t) = (I n-m ⊗ A)ξ f (t) + (I n-m ⊗ B)u f (t), (24) 
where

u f (t) = -K int n-m (Λ int ⊗ I nx )ξ f (t).
The fast dynamics [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF] corresponds to the intra-cluster dynamics, and hence the dynamics is dominated by the internal gain and the eigenvalues of the intra-cluster Laplacian.

With the suitable choice of the internal gain K int k , the system ( 24) is exponentially stable.

Remark 3

We note that the stabilization of the synchronization error dynamics, i.e., the stabilization of dynamics ξ implies the synchronization inside the cluster.

Note that we use slow (t s ) and fast (t f ) time-scales for the analysis while the original time-scale (t) for the control design. This is possible because the transformations are invertible, and it can be verified by the definition of t f and t s .

Singular Perturbation Approximation

Now, we provide an approximation of the original system by the reduced-order subsystems in the following theorem. The proof follows from Theorem 5.1, [START_REF] Kokotović | Singular Perturbation Methods in Control: Analysis and Design[END_REF]. But before stating the result, we make the following assumption on the existence of the control gains.

Assumption 4 There exists an internal gain K int and an external gain K ext such that the slow dynamics [START_REF] Martin | Time scale modeling for consensus in sparse directed networks with time-varying topologies[END_REF] is synchronized and the fast dynamics (24) is stabilized.

Remark 4 Although we assume the existence of the synchronizing internal and external gain, it will be ensured by design in the next section that such gains exist.

Theorem 1 Under the Assumption 3 and 4, if Re λ(A 2 22 ) < 0, there exists a * > 0 such that, for all ∈ (0, * ], the original system [START_REF] Laub | Matrix analysis for scientists and engineers[END_REF] starting from any bounded initial conditions y 0 and ξ 0 , is approximated for all finite time t ≥ t 0 by y = y s (t s ) + O( )

ξ = ξ f (t f ) + O( ), (25) 
where y s ∈ R m.nx and ξ f ∈ R (n-m).nx are the respective slow and the fast variables.

PROOF. See Appendix.

In the next section, we present the control design strategy i.e., the design of gains K int and K ext , to stabilize the fast subsystems and synchronize the slow subsystems, respectively.

Control Design Scheme

In this section, we present a controller design strategy for the system [START_REF] Emil | Contributions to the theory of optimal control[END_REF]. Using the idea of timescale separation, we split the design procedure into two parts corresponding to the internal and the external control.

First, based on the fast dynamics [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF] we design an internal control using the local information that ensures the synchronization inside the cluster. Then, we use the slow dynamics [START_REF] Martin | Time scale modeling for consensus in sparse directed networks with time-varying topologies[END_REF] for the design of external control to achieve the synchronization between the clusters. While the internal controller is optimal, the external control is designed to ensure the cost is below a given threshold. Finally, Theorem 1 is used to justify such a separation of the system analysis in two steps and to approximate overall network behavior in terms of fast and slow dynamics.

In what follows, we first address the internal control design and give an analytical gain expression for the case of complete graph inside clusters. The fast dynamics obtained after the time-scale separation represent the synchronization dynamics of an isolated cluster. Under assumption 2, i.e., the graph is complete, this dynamics can be further decoupled.

Internal (Fast) Control Design

As the fast variable ξ f is an approximation of the synchronization error ξ inside the clusters, it is still relevant to consider the fast subsystems [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF] for the internal control design. We denote by ξ f,k ∈ R (n k -1).nx the component of

ξ f : = (ξ f,1 , ..., ξ f,m
) corresponding to the k-th cluster. For each cluster C k , for k ∈ M, we have the following dynamics

ξf,k (t) = (I n k -1 ⊗ A)ξ f,k (t) + (I n k -1 ⊗ B)u f,k (t), u f,k (t) = -(Λ int k ⊗ K int k )ξ f,k (t). ( 26 
)
The cluster cost associated with the cluster C k takes the form

J f,k = +∞ 0 ξ f,k (Λ int k ⊗ I nx )ξ f,k + u f,k (I n k -1 ⊗ R k )u f,k dt .
(27) Instead of considering the internal cluster cost [START_REF] Ronald L Breiger | An algorithm for clustering relational data with applications to social network analysis and comparison with multidimensional scaling[END_REF], we approximate the internal cost by the cost function [START_REF] Ross | Satisfaction equilibrium: Achieving cooperation in incomplete information games[END_REF] and the validity of the approximation is justified in the Proposition 3. Since, the matrices in equations ( 26) and ( 27) have block-diagonal form, they can decoupled into n k -1 independent subsystems. For each cluster C k , similarly to ξ k defined in equation ( 12), let us denote the fast subsystems and the associated control by ξ f,k : = (ξ f,k,1 , ..., ξ f,k,n k -1 ) and u f,k : = (u f,k,1 , ..., u f,k,n k -1 ), respectively. Then, for i = 1, ..., n k -1 and for all k ∈ M, the dynamics are

ξf,k,i (t) = Aξ f,k,i (t) + n k Bu f,k,i (t), u f,k,i (t) = -K int k ξ f,k,i (t), (28) 
and the associated individual cost is

J f,k,i = +∞ 0 n k ξ f,k,i ξ f,k,i + n 2 k u f,k,i R k u f,k,i dt . (29) 
Thus, the cost ( 27) can be expressed as the sum of individual costs (29) as follows,

J f,k = n k -1 i=1 J f,k,i , ∀k ∈ M. Remark 5
The decoupling of dynamics [START_REF] Romeres | Novel results on slow coherency in consensus and power networks[END_REF] into n k -1 subsystems (28) is not only limited to all-to-all connections. In the case, where we know the eigenvalues of the Laplacian or the Laplacian eigenvalues can be characterized in terms of n k (for example, star graph), similar decoupling can be achieved.

Remark 6

It is noteworthy that the gain K int k is the same for all the agents belonging to the same cluster C k . As a result, the rewriting of (27) as a sum of individual cost (29) reduces the computational effort for the control design. Indeed, one can solve only one optimization problem (28)- [START_REF] Veetaseveera | Decentralized control for guaranteed individual costs in a linear multi-agent system: A satisfaction equilibrium approach[END_REF] for each cluster and it is equivalent to optimizing the cluster cost [START_REF] Ross | Satisfaction equilibrium: Achieving cooperation in incomplete information games[END_REF].

Next, we show that the system (28) is stabilizable with a simple linear controller, while we recall that the system (28) corresponds to fast dynamics of our original system. Finally, we apply the LQ-control [START_REF] Emil | Contributions to the theory of optimal control[END_REF] to stabilize (28) while minimizing the cost [START_REF] Veetaseveera | Decentralized control for guaranteed individual costs in a linear multi-agent system: A satisfaction equilibrium approach[END_REF].

Lemma 2 Consider the system (28), under assumption 1, if the pair (A, B) is stabilizable and (A, (R k ) 1/2 ) is de-tectable, then for every k ∈ M, the system (28) is stabilizable while minimizing the cost (29) by a controller u f,k,i (t) = -K int k ξ f,k,i (t) with the gain

K int k = R -1 k n k B P int k , k ∈ M, (30) 
where P int k is the solution of the Algebraic Riccati Equation (ARE)

P int k A + A P int k -P int k BR -1 k B P int k + n k I nx = 0.( 31 
)
From Lemma 2, we observe that the fast dynamics ( 28) is exponentially stable i.e., ξ f (t) → 0 as t → ∞ and we pass to the design of the external controller.

External (Slow) Control Design

In this sub-section, we present the external controller design based on the slow dynamics [START_REF] Martin | Time scale modeling for consensus in sparse directed networks with time-varying topologies[END_REF]. To achieve the synchronization between the clusters, we propose a method based on [START_REF] Veetaseveera | Decentralized control for guaranteed individual costs in a linear multi-agent system: A satisfaction equilibrium approach[END_REF]. First, the synchronization problem is transformed into a stabilization problem using a change of variable. Then, we design the control to stabilize the system while upper bounding the associated cost.

Recall that if the clusters are synchronized, each cluster behave like a single node, and the number of nodes representing the external network equals the number of clusters. Thus, the external graph of agents between clusters is only connected, and hence the standard optimization or the optimal control approaches cannot be applied directly. In this context, inspired by the notion in game theory, we use the satisfaction equilibrium approach, and satisfaction games [START_REF] Ross | Satisfaction equilibrium: Achieving cooperation in incomplete information games[END_REF].

A set of actions are said to be in satisfaction equilibrium when the individual cost for each agent is upper-bounded by a given threshold.

Average Dynamics

The slow dynamics obtained after time-scale separation in equation ( 22) defines the dynamics of the average of each cluster. Following from equation ( 22), the average dynamics can be written as

ẏs (t) =((I m ⊗ A) -(I m ⊗ B)K ext (L ext ⊗ I nx ))y s (t), (32) 
where

K ext = diag (K ext 1 , ..., K ext m )
is the external gain and Let us denote by y s,k ∈ R nx the k-th component of the variable y s . Then, the average dynamics of each cluster C k , for k ∈ M, based on equation ( 32) is

(L ext ⊗ I nx ) = H(L ext ⊗ I nx ) H with the following form L ext =     m l=2 a ext
     ẏs,k = Ay s,k + Bu ext s,k , u ext s,k = -K ext k l∈N C k a ext kl n k (y s,k -y s,l ) (33) 
where, u ext s,k can be viewed as the control on the cluster level, since it represents the sum of the individual controllers. For system (33) we define the average cost for each cluster C k , k ∈ M, as

J ext k = +∞ 0 l∈N C k a ext kl n k (y s,k -y s,l ) 2 +n k n k i=1 u ext k,i R k u ext k,i dt (34) 
where

u ext k,i : = -K ext k l∈N C k a ext (k,i)↔C l n k (y s,k -y s,l ) ∀i ∈ C k , (35) 
and a ext (k,i)↔C l is the total number of connections between the i-th agent belonging to C k and the cluster C l and clearly a ext (k,i)↔C l ≤ n k . The control u ext k,i is the external control (4) expressed in the average variable y s . In addition, we have the relation

u ext s,k = n k i=1 u ext k,i and a ext kl = n k i=1 a ext (k,i)↔C l .
Notice that the average cost (34) is different from the external cost function that appears in equation [START_REF] Ronald L Breiger | An algorithm for clustering relational data with applications to social network analysis and comparison with multidimensional scaling[END_REF] in several ways:

• the average variable y s,k is used instead of the original state variables x k for each cluster, and • although the clusters have merged into a single node, the agents still apply the individual control (4) rather than the average control (33). Thus, we express the individual external control (4) in average variables y s in equation ( 35) and define the average cost (34) in terms of the original control. It is possible to define the cost function as a function of average control u ext s,k as follows,

J ext k = +∞ 0 l∈N C k a ext kl n k (y s,k -y s,l ) 2 + u ext s,k R k u ext s,k dt, (36 
) however, we remark that optimization of the average cost does not necessarily imply optimization of individual cost.

In the following, we perform the change of variables to design an external gain synchronizing the network of clusters.

Change of Variables

To study the consensus between the clusters, we define the external error variable for each cluster C k , k ∈ M as follows,

Y k : =             y s,1 -y s,k . . . y s,k-1 -y s,k y s,k+1 -y s,k . . . y s,m -y s,k             ∈ R (m-1).nx . (37) 
Then, based on equation (33), the corresponding external error dynamics is

Ẏk = A k Y k + B k u ext s,k , ∀k ∈ M, where, A k = (I m-1 ⊗ A) -(I m-1 ⊗ B)K ext -k (L ext -k ⊗ I nx ), B k = -(1 m-1 ⊗ B). (38) Here, K ext -k = diag(K ext 1 , . . . , K k-1 , K k+1 , . . . , K m )
is not a control action, but it represents the behavior of the network.

To recast the average cost function (34) in terms of new variables Y k , we introduce the following notations. First we look into the structure of the external Laplacian which have the block form as follows,

L ext =        L ext 1,1 L ext 1,2 . . . L ext 1,m L ext 2,1 L ext 2,2 . . . L ext 2,m . . . . . . . . . L ext m,1 L ext m,2 . . . L ext m,m        ∈ R n×n , (39) 
where L ext p,q ∈ R np×nq for p, q ∈ M. We denote by L ext k,row ∈ R n k ×n the k-th row of the block-matrix (39) for all k ∈ M. It describes the connections of the cluster C k with the rest of the agents in the network. The matrix

L ext k,red ∈ R n k ×(n-n k ) is obtained by removing the L ext k,k block from the L ext k,row . For example, L ext 2,row = [L ext 2,1 L ext 2,2 . . . L ext 2,m ] and L ext 2,red = [L ext 2,1 L ext 2,3 . . . L ext 2,m ]
. Then, we rewrite the external cost (34) in terms of new variables as

J ext k = +∞ 0 Y k Q ext k,1 Y k + Y k Q ext k,2 n k Y k dt (40) 
where

Q ext k,1 = diag a ext k,1 n k , ..., a ext k,k-1 n k , a ext k,k+1 n k , ..., a ext k,m n k ⊗ I nx , Q ext k,2 = U -k (L ext k,red L ext k,red ⊗ K ext k R k K ext k )U -k , (41) U = (diag(1 n1 , . . . , 1 nm ) ⊗ I nx ), R k > 0.
The matrices Q ext k,1 and Q ext k,2 simplify the expressions in

(34) such that Y k Q ext k,1 Y k = l∈N C k a ext kl n k (y s,k -y s,l ) 2 and Y k Q ext k,2 n k Y k = n k n k i=1 u ext k,i R k u ext k,i .

Control Design

We will use the error dynamics (38) to design the external gain profile using satisfaction equilibrium approach. It characterizes the external gain profile synchronizing the network in such a way that each cost (34) is bounded, i.e.,

J ext k ≤ γ ext Y k (0) 2 , for k ∈ M. ( 42 
)
The term Y k (0) represents the initial condition of the cluster C k while γ ext is a given threshold. In particular, the following proposition is valid. 

P ext k A k,cl (K ext k )+A k,cl (K ext k )P ext k +Q ext k (K ext k ) < 0, P ext k -γ ext I (m-1).nx < 0, (43) where 
         A k,cl (K ext k ) = A k + B k K ext k (F k ⊗ I nx ), F k = a ext k,1 n k , ..., a ext k,k-1 n k , a ext k,k+1 n k , ..., a ext k,m n k , Q ext k = Q ext k,1 + Q ext k,2 n k . ( 44 
)
Next, we present the algorithm that allows us to obtain the gain (K ext ) in satisfaction equilibrium. This algorithm greatly reduces the computational effort of obtaining the synchronizing gain for large-scale networks.

Algorithm

Consider a network of m clusters (the number of clusters in our case) with their respective dynamics. We aim to design a synchronizing gain profile K ext = (K ext 1 , ..., K ext m ) satisfying the cost constraints.

In the following algorithm, we first calculate the internal gain by solving the algebraic Riccati equation (31). To design the external gain (K ext ), we start with the initial gain profile that satisfies the LMI (43). Then we multiply the gain from the previous iteration with a scalar α ext ∈ R + \ {0} and check if it satisfies the LMI (43), to obtain the sub-optimal gain. One approach could be to start with a high gain and decrease α ext until the condition (43) is not satisfied and use the smallest gain that satisfied the condition. Furthermore, we should also make sure the network parameter is small so that control design using time-scale separation holds. Thus, to ensure this, we multiply the internal gain K int k with / * to obtain the new internal gain such that ≤ * .

Algorithm 1 Sequential Satisfaction Algorithm

Data: A, B and n k , k ∈ M; Set: iterations itr = 1, maximum number of iterations itr max , 0 < * 1 and K ext (0) = (K ext 1 (0), ..., K ext m (0)) initial gain profile synchronizing the system ; Calculate: P int k and K int k using equation ( 31) and ( 30) for all k ∈ M, respectively; while LMIs (43) not satisfied OR itr ≤ itr max do

K ext (itr + 1) ← α ext K ext (itr), α ext ∈ R + \ {0}; Calculate: ; if > * then K int k (itr + 1) ← * K int k (itr); else K int k (itr + 1) ← K int k (itr); end if end while
Remark 7 Notice that with such an approach, we only scale the whole matrix K int k and K ext k on each step while keeping the structure of the matrix intact.

In the algorithm 1, to obtain the initial gain profile K ext (0) we use the algorithm in [START_REF] Ben Rejeb | Guaranteed cost control design for synchronization in networks of linear singularly perturbed systems[END_REF] which has the computational complexity of O(m) for m clusters. Then, the computational complexity to obtain the internal gain is of order O(m). Notice that the dimension of the matrix P int k in equation (31) does not depend on the number of agent (n k ) in the cluster, thus the problem of finding the internal control K int k is independent of the number of agents in the cluster. To obtain the external gain, K ext we use the SeDuMi [START_REF] Labit | Sedumi interface 1.02: a tool for solving lmi problems with sedumi[END_REF]. The computational complexity of verifying, if the gain profile satisfies the LMI condition (50) using SeDuMi is O(m 5.5 ). Thus, the overall computational complexity of the Algorithm 1 is O(m) + O(m) + O(m 5.5 ). Moreover, from Lemma 2 we obtain the stabilizing internal gain K int and if the algorithm successfully converges to synchronizing external gain (K ext ) that satisfies LMI conditions (43), then they will satisfy the Assumption 4.

Global System Analysis

In this section, we analyze the overall networked system with the controller gains K int and K ext defined by the Algorithm 1 and designed for reduced slow and fast subsystems.

First, we present the proposition which ensures that the slow and fast controllers, designed independently of each other, synchronize the overall network. And finally, we prove that the cluster cost J k (T, +∞) is approximated only by the external cost J ext k (T, +∞), where T > 0 is a finite time at which each cluster has reached internal synchronization.

Overall Network Behavior

Based on the controller design procedure presented in section 4, we ensure that Assumption 4 is satisfied, i.e., the internal gain stabilizing the fast dynamics and the external gain synchronizing the slow dynamics exists. Note that the presented design strategy optimizes the cost function ( 27) associated with the internal controller and upper bound the cost function (34) corresponding to the external controller. Hence, the obtained internal control gain is optimal while the external control gain is sub-optimal. We apply these gains to achieve synchronization in the overall network, and the following proposition ensures synchronization.

Proposition 2 Consider the closed-loop network dynamics [START_REF] Jaleel | Decentralized energy aware co-optimization of mobility and communication in multiagent systems[END_REF], and equivalently, the dynamics in new coordinates [START_REF] Emil | Contributions to the theory of optimal control[END_REF]. Let the internal and external control gains are chosen based on Lemma 2 and Proposition 1, then the overall network synchronizes and satisfies the following bounds,

y(t) = y s (t) + O( ) ξ(t) = ξ f (µ int t) + O( ). (45) 
PROOF. The proof follows from Theorem 2.

Cost Approximation

In this subsection, we prove that the cluster cost can be approximated by the average cost after finite time T . The motivation is derived from the fact that the internal dynamics converge rapidly to the consensus, and external dynamics exhibit the dominating network behavior. We prove that for the time t ∈ [T, +∞), the cluster cost J k is approximated by n k times the average external cost, i.e., n k J ext k .

To provide this approximation result, we first define the internal error bound, which helps us characterize the time T > 0.

And secondly, we ensure that the exponential stability of the fast dynamics [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF] implies the exponential stability of the error dynamics [START_REF] Emil | Contributions to the theory of optimal control[END_REF].

The necessity of the internal error bound arises in the approximation of the cluster cost. During the control design, we recall that the internal consensus is considered to be achieved before designing the external control. Thus, we need to characterize an error bound for the internal cost in finite time T , at which the cluster is very close to the internal consensus. More precisely, the bound at the time T > 0 such that |ξ f,k (T )| ≤ for all k ∈ M.

The closed-loop fast dynamics is

ξf,k (t) = (I n k -1 ⊗ A) -(Λ int k ⊗ BK int k ) ξ f,k (t), and ξ f,k (t) = e Cl f,k t ξ f,k (0), where Cl f,k := (I n k -1 ⊗ A) -(Λ int k ⊗ BK int k )
and Cl f,k < 0 due to Lemma 2. Now, taking norm on both sides and from the definition of the measure of the matrix (see notations and preliminaries), we obtain,

ξ f,k (t) = e ν(Cl f,k )t ξ f,k (0) ≤ e ν(Cl f )t ξ f,k (0)
where ν(Cl f ) = max k∈M ν(Cl f,k ). Then, as an internal error bound, we choose smallest T ≥ 0 such that

ξ f,k (T ) ≤ e ν(Cl f )T max k∈M ξ f,k (0) ≤ .
This bound characterizes the local consensus inside each cluster in the finite time T . And hence, it yields

ξ f,k (t) ≤ e ν(Cl f )(t-T ) ∀k ∈ M, and ξ f (t) ≤ √ n -m.e ν(Cl f )(t-T ) . (46) 
Next, in equation ( 25), we notice that the approximation of ξ defined in equation ( 16) depends on the fast variable ξ f and the slow variable y s , but the slow variable may or may not be stable. For the network to achieve synchronization, ξ should be stable. Thus, we prove the following lemma, which ensures the exponential stability of ξ provided that ξ f is exponentially stable.

Lemma 3

The exponential stability of the fast dynamics [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF] and the external error dynamics (38) implies the exponential stability of the error dynamics in [START_REF] Emil | Contributions to the theory of optimal control[END_REF].

PROOF. See Appendix.

Next, with error bound for a finite time, T we present the cluster cost approximation for t ∈ [T, +∞). The proposition is stated as follows:

Proposition 3 During the time interval [T, +∞), the following approximation holds,

J k (T, +∞) = n k J ext k (T, +∞) + O( ), ∀k ∈ M. (47) 
PROOF. See Appendix.

Finally, we present the following theorem that bounds the total cluster cost with the sum of internal, external and the constant term.

Theorem 2 The total cluster cost for all clusters C k , k ∈ M satisfy the following bound:

J k ≤ ( P int k + n k γ k + C k ) x(0) 2 + O( ) (48) 
where P int k is the solution of the Riccati equation (31) and C k is a constant. PROOF. See Appendix.

Simulation

This section provides numerical results to illustrate the effectiveness of the control procedure and the cost approximation using three scenarios. The agent's dynamics are given by ( 1), where A = 0.15 0.98 -0.98 0.15

, B = 1 1 . ( 49 
)
The external graph between the agents in different clusters is generated using Erdos-Renyi [START_REF] Erdos | On the evolution of random graphs[END_REF] random graph generator. Then the internal graph with all-to-all connections for each cluster is generated and added to the external graph to obtain the network graph. For the numerical illustration, we consider the multiple scenarios.

• Scenario 1: Graph G 1 with four clusters m = 4 with 630 agents in total. Each cluster has all-to-all internal connections and 299 external connections between the clusters in total. The threshold for the external cost is γ ext = 0.8. • Scenario 2: Same as Scenario 1 with dense internal connections instead of all-to-all internal connections. • Scenario 3: Comparison of control design presented in this paper with the satisfactory control approach in [START_REF] Veetaseveera | Decentralized control for guaranteed individual costs in a linear multi-agent system: A satisfaction equilibrium approach[END_REF] and guaranteed cost approach proposed in [START_REF] Ben Rejeb | Guaranteed cost control design for synchronization in networks of linear singularly perturbed systems[END_REF].

The details of the simulations are present in Tables 2345.

In the tables, n k represent the number of agents in cluster

C k , error(k) = |J k -n k J ext k | J k
× 100, is the error percentage between the total cost and the external cost after time T , and K ext and K int are the respective external and internal gains.

Scenario 1: All-to-all connections in Clusters

The Figure 2 with all-to-all connections inside clusters. 

Clusters

Scenario 2: Connected Clusters

In this scenario, we consider the graph where the clusters have dense interconnections instead of the all-to-all connections compared to Scenario 1. However, the number of agents and number of external connections remain the same as in the graph G 1 . Let us denote this graph as G 2 . The same gains from Scenario 1 (Table 1) are applied to the network system with the graph G 2 . The details of the simulation are = 0.06, γ = 0.8 3 Network with 630 agents and 299 external connections, with allto-all connections inside every cluster.

n k J k (×10

Scenario 3

In the last scenario, we consider a network of m = 4 clusters with n k = 10 agents in each. We recall that γ ext = 1 is chosen for both controls. A comparison is made between the composite control proposed in this paper and the satisfactory control approach proposed in [START_REF] Veetaseveera | Decentralized control for guaranteed individual costs in a linear multi-agent system: A satisfaction equilibrium approach[END_REF]. The design procedure in [START_REF] Veetaseveera | Decentralized control for guaranteed individual costs in a linear multi-agent system: A satisfaction equilibrium approach[END_REF] needs 13752 seconds (3.8 hours) to compute the gains for n = 40 agents, while the composite design in this paper requires 13 seconds. However, we can observe an incontestable difference in performance on the cluster costs due to satisfactory control, as shown in table 4. This emphasizes the trade-off between the computing time/resources to obtain the required controller. Despite being less effective, we must keep in mind that the composite control suits better for large-scale networks and presents an essential benefit in computation loads and time. Next, we compare the strategy in [START_REF] Ben Rejeb | Guaranteed cost control design for synchronization in networks of linear singularly perturbed systems[END_REF] with the composite control. In [START_REF] Ben Rejeb | Guaranteed cost control design for synchronization in networks of linear singularly perturbed systems[END_REF], each of the agents applies the same gain independently of their neighborhoods and aims to bound a global cost. Applying the control [START_REF] Ben Rejeb | Guaranteed cost control design for synchronization in networks of linear singularly perturbed systems[END_REF] on the graph G 1 , it results in a cluster cost, which we label by J † k . From Table 5, we observe that our strategy significantly outperforms the approach in [START_REF] Ben Rejeb | Guaranteed cost control design for synchronization in networks of linear singularly perturbed systems[END_REF], the first cluster cost obtained via the composite control is 20 times smaller. One may observe the same for the other clusters. 

Conclusion

In this paper, we propose a distributed composite control design strategy for the clustered network. Using a coordinate transformation, the network dynamics is transformed into standard singular perturbation form and decoupled into slow and fast dynamics using time-scale separation. This decoupling of the network dynamics also decouple the control into fast (internal) and slow (external). The internal control is responsible for intra-cluster synchronization, while the external synchronize the network while satisfying the imposed cost criterion. This independent design greatly reduces the computational effort required to obtain the control. Finally, we show that the cluster cost is approximated only by the external cost after a short time period.

A Proofs

Proof of Lemma 1

We know from [START_REF] Laub | Matrix analysis for scientists and engineers[END_REF] 

Ā11 = (I m ⊗ A) -H(I n ⊗ B)K ext (L ext ⊗ I nx ) H ≤ A + H . (I n ⊗ B)K ext (L ext ⊗ I nx ) . H = (c 1 + n n )µ ext = (c 1 + n n ) µ int . (A.
1) The bounds of Ā12 , Ā21 and Ā1

22 are derived similarly, that's why we only prove for Ā12 ,

Ā12 = H(I n ⊗ B)K ext (L ext ⊗ I nx ) Z ≤ n n µ ext = n n µ int . (A.2)
Then, we lower-bound the matrix Ā2 22 such that

Ā2 22 = (I n-m ⊗ A) -(I n-m ⊗ B)K int n-m (Λ int ⊗ I nx ) ≥ | A -(I n-m ⊗ B)K int n-m (Λ int ⊗ I nx ) |. (A.3)
From ( 18), we understand that the second term in (A.3) is much larger than the first one. Thus, by taking the difference between the largest value of the first term and the smallest value of the second term, it yields a lower-bound as

Ā2 22 ≥ |c 1 µ int -µ int | = |1 -c 1 |µ int , (A.4)
where

µ int = min k∈M (Λ int k ⊗ BK int k ) .

Proof of Theorem 1

The proof of Theorem 1 follows the block-diagonalization technique provided in [START_REF] Kokotović | Singular Perturbation Methods in Control: Analysis and Design[END_REF]. The singularly perturbed system dynamics ( 19) is slightly different from the one in the [START_REF] Kokotović | Singular Perturbation Methods in Control: Analysis and Design[END_REF] thus we adapt the result to our system model to obtain the approximation results. Using the following transformation

y ξ = I m.nx Ψ( ) -Ω( ) I nx(n-m) -Ω( )Ψ( )
y s ξ f y s ξ f = I m.nx -Ψ( )Ω( ) -Ψ( ) Ω( ) I nx(n-m) y ξ , (A.5)
where the functions Ω and Ψ should satisfy the following,

R(Ω( ), ) = A 21 -A 1 22 Ω( ) -A 2 22 Ω( ) + Ω( )A 11 -Ω( )A 12 Ω( ) = 0, S(Ψ( ), ) = A 11 Ψ( ) + A 12 -A 12 Ω( )Ψ( ) -Ψ( )A 1 22 -Ψ( )A 2 22 -Ψ( )Ω( )A 12 = 0
the dynamics [START_REF] Laub | Matrix analysis for scientists and engineers[END_REF] can be decoupled into two independent two time-scale slow and fast subsystems.

The approximation of Ω and Ψ, obtained with the Taylor development w.r.t. , are

Ω( ) = (A 2 22 ) -1 A 21 + O( 2 ), Ψ( ) = A 12 (A 2 22 ) -1 + ((A 2 22 ) -1 A 11 A 12 (A 2 22 ) -1 -A 12 ) +O( 2 ).
(A.6) From Lemma (3), we know that ξ(t) and ξ f (t f ) converge to zero exponentially as t and t f tend to +∞, respectively. Thus, we can claim that Ω( )y s (t) has an exponential decrease to zero w.r.t. t. Finally, from the above transformation (A.5), we have,

y = y s (t s ) + Ψ( )ξ f (A.7) ξ = ξ f (t f ) -Ω( )y s (t s ) -Ω( )Ψ( )ξ f . (A.8)
Then from (A.6), we have that Ω( ) = O( ) and we obtain the approximations [START_REF] Thiem | Distributed two-time-scale methods over clustered networks[END_REF].

Proof of Lemma 3

Integrating the error dynamics in [START_REF] Emil | Contributions to the theory of optimal control[END_REF], we obtain

ξ(t) = e Ā22t ξ(0) + t 0 e Ā22(t-τ ) Ā21 y(τ ) dτ = e Ā22t ξ(0) + t 0 e Ā22(t-τ ) Ā21 (y s (τ ) + Ψ( )ξ f (τ )) dτ = e Ā22t ξ(0) + t 0 e Ā22(t-τ ) Z T M Y (τ ) dτ + t 0 e Ā22(t-τ ) Ā21 Ψ( )ξ f (τ ) dτ where M = diag(M 1 , ..., M m ) and M k = (L ext k,red ⊗ BK ext k )U -k
. By taking norm on both sides, we have

ξ(t) ≤ e Ā22t ξ(0) + Z T M t 0 e Ā22(t-τ ) Y (τ ) dτ + Ā21 Ψ( ) t 0 e Ā22(t-τ ) ξ f (τ ) dτ
(A.9) Also, from the design of internal and external control, we know that, for all t ≥ 0,

Y (t) = e A cl t Y (0) ξ f (t) = e Ā2 22 t ξ f (0) ⇒ Y (t) ≤ e ν(A cl )t Y (0) ξ f (t) ≤ e ν( Ā2 22 )t ξ f (0) (A.10) where A cl = diag(A 1,cl , ..., A m,cl
) is the closed-loop dynamics of the external error (38). Then, it follows that ξ(t) ≤ e ν( Ā22)t ξ(0)

+ Z T M Y (0) t 0 e ν( Ā22)(t-τ ) e ν(A cl )τ dτ + Ā21 Ψ( ) ξ f (0) t 0 e ν( Ā22)(t-τ ) e ν( Ā2 22 )τ dτ .
By integrating the second term in (A.9), we have

Z T M Y (0) t 0 e ν( Ā22)(t-τ ) e ν(A cl )τ dτ = Z T M Y (0) e ν( Ā22)t t 0 e (ν(A cl )-ν( Ā22))τ dτ = Z T M Y (0)
ν(A cl )-ν( Ā22) e ν(A cl )t -e ν( Ā22)t .

In the same manner, the third term is

Ā21 Ψ( ) ξ f (0) t 0 e ν( Ā22)(t-τ ) e ν( Ā2 22 )τ dτ = Ā21 Ψ( ) ξ f (0) ν( Ā2 22 ) -ν( Ā22 ) e ν( Ā2 22 )t -e ν( Ā22)t . (A.11)
Finally, we have

ξ(t) ≤ C 1 e ν(A cl )t + C 2 e ν( Ā2 
22 )t + ( ξ(0) -C 1 -C 2 ) e ν( Ā22)t , (A.12)
where

C 1 = Z T M Y (0) ν(A cl )-ν( Ā22) and C 2 = Ā21Ψ( ) ξ f (0) ν( Ā2 22 
)-ν( Ā22) . Moreover, we know that ν( Ā2 22 ) < ν( Ā22 ) < ν(A cl ) < 0. Thus, we conclude that ξ converges exponentially to zero and the rate of convergence can be bounded as ξ(t) ≤ ξ(0) e ν(A cl )t .

(A.13)

Proof of Proposition 3

The cost J k is split into the sum of the internal and external costs and composite term, as shown in equation [START_REF] Ronald L Breiger | An algorithm for clustering relational data with applications to social network analysis and comparison with multidimensional scaling[END_REF]. Then, we bound the internal and external costs from time T to infinity. We proceed similarly with the composite term. Internal Cost: Substituting x k = H k y k + Z k ξ k from equation (13) into J int k in equation [START_REF] Ronald L Breiger | An algorithm for clustering relational data with applications to social network analysis and comparison with multidimensional scaling[END_REF] and with H k (L int k ⊗ I nx ) = 0, it yields

J int k (T, +∞) = +∞ T ξ k Z k ((L int k ⊗ I nx ) +(L int k L int k ⊗ K int k R k K int k )) Z k ξ k dt, = +∞ T n k ξ k (Λ int k ⊗ I nx ) + Λ int k 2 ⊗ P int k B R -1 k n 2 k B P int k ξ k dt, = +∞ T n k ξ k (Λ int k ⊗ I nx ) + I n k -1 ⊗ P int k BR -1 k B P int k ξ k dt, ≤ C 3,k +∞ T ξ k 2 dt ≤ C 3,k +∞ T ξ(t) 2 dt .
where,

C 3,k = n k (Λ int k ⊗I nx )+ I n k -1 ⊗ P int k BR -1 k B P int k .
From Lemma 3 and equation (A.13), we have ξ(t) ≤ ξ(T ) e ν(A cl )(t-T ) , for all t ∈ [T, +∞). Thus, with ν(A cl ) < 0, we have,

+∞ T ξ(t) 2 dt ≤ - ξ(T ) 2 2ν(A cl ) = C 4 ξ(T ) 2 (A.14)
where C 4 := -1 2ν(A cl ) . Thus, from (A.14)-(A.14) and the approximation of ξ in equation [START_REF] Thiem | Distributed two-time-scale methods over clustered networks[END_REF],

J int k (T, +∞) ≤ C 3,k C 4 ξ f (T ) + O( ) 2 ≤ C 3,k C 4 ξ f (T ) 2 + 2O( ) ξ f (T ) + O( 2 ) .
Finally, replacing ξ f (T ) ≤ √ n -m from (46) we have

J int k (T, +∞) ≤ O( 2 ). (A.15)
External cost: First, we recast the collective external control (4) in the external error variable Y k , as follows 

u ext k (t) = -(I n k ⊗ K ext k )(L ext k,row ⊗ I nx )x(t) = -(L ext k,row ⊗ K ext k )( Hy(t) + Zξ(t)) = -(L ext k,row ⊗ K ext k )( Hy s (t) + HΨ( )ξ f (t f ) + Zξ(t)) = (L ext k,red ⊗ K ext k )U -k Y k (t) -(L ext k,row ⊗ K ext k )( HΨ( )ξ f (t f ) + Zξ(t)), ( 
(t)(I n k ⊗ R k )u ext k (t) (A.17) = Y k (t)Q ext k,2 Y k (t) + 2 ξ f (t f )D 1,k ξ f (t f ) + ξ (t)D 2,k ξ(t) -Y k (t)D 3,k ξ f (t f ) -Y k (t)D 4,k ξ(t) + ξ (t)D 5,k ξ f (t f ), where                        Q ext k,2 = U -k (L ext k,red L ext k,red ⊗ K ext k R k K ext k )U -k , D 1,k = Ψ( ) H (L ext k,row L ext k,row ⊗ K ext k R k K ext k ) HΨ( ), D 2,k = Z (L ext k,row L ext k,row ⊗ K ext k R k K ext k ) Z, D 3,k = 2U -k (L ext k,red L ext k,row ⊗ K ext k R k K ext k ) HΨ( ), D 4,k = 2U -k (L ext k,red L ext k,row ⊗ K ext k R k K ext k ) Z, D 5,k = 2 Z (L ext k,row L ext k,row ⊗ K ext k R k K ext k ) HΨ( ).
Secondly, let consider the state part in the external cost. Then, replacing (A.17) and (A.18) into the external cost (J ext k ) in equation ( 7), we get

= n k Y k (t)Q ext k,1 Y k (t) + 2 ξ f (t f ) M 1,k ξ f (t f ) +ξ (t)M 2,k ξ(t) -Y k (t)M 3,k ξ f (t f ) -Y k (t)M
J ext k (T, +∞) = n k +∞ T Y k (t)Q ext k,1 Y k (t) + Y k (t) Q ext k,2 n k Y k (t) dt +∆ 1 = n k J ext k (T, +∞) + ∆ 1 , (A.19)
where 

∆ 1 = ∆ 1 1 + ∆ 2 1 + ∆ 3 1 + ∆ 4 1 + ∆ 5 1 and                  ∆ 1 1 = 2 +∞ T ξ f (t f ) (M 1,k + D 1,k ) ξ f (t f ) dt, ∆ 2 
∆ 1 1 ≤ 2 M 1,k + D 1,k +∞ T ξ f (t f ) 2 dt ≤ -2 M 1,k +D 1,k ξ f (0) 2 2ν( Ā2 22 )
e 2ν( Ā2 22 )T = O( 2 ). (A.24)

Finally, from (7), (A.15), (A.21) and (A.24), we conclude the proof.

Proof of Theorem 2

Internal Cost: Following the similar approximation as the approximation of the internal cost in Proposition 3, we obtain the following approximation for the internal cost for

J int k = n k J f,k + O( ) (A.25)
Moreover, due to LQ-control design, the optimal fast cost J f,k = ξ f,k (0) (I n k-1 ⊗ P int k )ξ f,k (0). The substituting the approximation ξ k = ξ f,k + O( ), we get, J f,k = ξ k (0) (I n k-1 ⊗ P int k )ξ k (0) + O( ). Then, from the transformation [START_REF] De | Consensus for clusters of agents with cooperative and antagonistic relationships[END_REF], it yields, 

Fig. 1 .

 1 Fig. 1. A network partitioned into 4 clusters.

  Consider a network of n agents partitioned into m nonempty clusters C 1 , . . . , C m ⊂ V. Clustered network refers to a network that is divided into distinct groups of agents having dense connection structure, whereas the connections between the clusters are sparse. Let us denote by M: = {1, 2, . . . , m}, the set of clusters while n k represents the cardinality of the cluster C k and n = m k=1 n k . Each agent in the network is identified by a couple (k, i) ∈ C k , where, k refers to the cluster C k and i the index of the agent in the cluster C k . The notation (k, j) ∈ N k,i represents the neighbors of the agent (k, i) in the same cluster C

  m×m , is the average Laplacian matrix related to (32). In average Laplacian, L ext the diagonal elements represent the total number of external connections from a cluster k ∈ M to the rest of the network and the non-diagonal entries a ext kl represents the total number of connections between cluster C k and C l .

4

 4 represents the synchronization of the agents in a network with graph G 1 . For the graph G 1 , the network parameter is 1 = 0.06. In the figure, we can observe the four branches appearing and merging into one. Each branch represents the local agreement within the clusters. Next, Figure 3 illustrates the cost approximation for the cluster C 4 by comparing the total cluster cost J 4 and the external cost n Jext 4 , after finite time T = 2s. More details of the simulations are presented in the table.

Fig. 2 .

 2 Fig. 2. Evolution of the error between the agents' state in graphG1 with all-to-all connections inside clusters.

Fig. 3 .

 3 Fig. 3. Evolution of the costs J4 and n4 Jext

4

 4 

  (A ⊗ B) = A B for any matrix A ∈ R n×n , B ∈ R m×m . Let us define n = max k n k and n = min k n k . In addition, H = 1 √ n , H = √ n and Z = 1 √ n , Z = √ n. From the Assumption 3, there exists a strictly positive constant c 1 ∈ R such that A = c 1 µ ext . It follows that,

  4,k ξ(t) + ξ (t)M 5,k ξ f (t f ) k = Ψ( ) H (L ext k ⊗ I nx ) HΨ( ) M 2,k = Z (L ext k ⊗ I nx ) Z M 3,k = 2U -k (L ext k,col ⊗ I nx ) HΨ( ) M 4,k = 2U -k (L ext k,col ⊗ I nx ) Z M 5,k = 2 Z (L ext k ⊗ I nx ) HΨ( ).

1 =YYξ

 1 +∞ T ξ (t) (M 2,k + D 2,k ) ξ(t) dt, k (t) (M 3,k + D 3,k ) ξ f (t f ) dt, k (t) (M 4,k + D 4,k ) ξ(t) dt, (t) (M 5,k + D 5,k ) ξ f (t f ) dt . (A.20) 

∆ 2 1 ≤

 1 C 3,k M 2,k +D 2,k +∞ T ξ(t) 2 ξ(T ) 2 dt ≤ C 3,k M 2,k +D 2,k ξ f (T ) 2 +2O( ) ξ f (T ) +O( 2 )≤ O( 2 ).

∆ 3 1 ≤

 1 M 3,k +D 3,k Y (0) ξ f (0) +∞ T e ν(A cl )t e ν( Ā2 22 )t dt = -M 3,k +D 3,k Y (0) ξ f (0) ν(A cl )+ν( Ā2 22 )e (ν(Acl)+ν( Ā222))T = O( ).Similarly, ∆ 4 1 and ∆ 5 1 are of order O( ). Finally, from (A.[START_REF] Laub | Matrix analysis for scientists and engineers[END_REF]) and bounds in (A.20) for ∆ 1 , we obtainJ ext k (T, +∞) = n k Jext k (T, +∞) + O( ). (A.21)Composite term: We rewrite the external control (A.[START_REF] Emil | Contributions to the theory of optimal control[END_REF]) and the internal control (4) asu ext k (t) = -C 5,k Y k (t) -C 6,k ξ f (t f ) -C 7,k ξ(t) u int k (t) = (L int k ⊗ K int k ) Z k ξ k (t) =: C 8,k ξ k (t). (A.22)whereC 5,k = (L ext k,red ⊗ K ext k )U -k , C 6,k = (L ext k,row ⊗ K ext k ) HΨ( ) and C 7,k = (L ext k,row ⊗ K ext k ) Z.Then, taking the norm and substituting from equations (A.22) into the J cross k term in equation (7), we get, k Y k (t) + C 6,k ξ f (t f ) +C 7,k ξ(t) .

C 8 ,

 8 k ξ k (t) dt (A.[START_REF] Mytum-Smithson | Wireless sensor networks: An information processing approach[END_REF]) With simple calculation it can be shown that the first integral in the above equation is of order O( ) and the second and the third integrals are of order O( 2 ). Thus, we have, J cross k (T, +∞) ≤ O( ).

=

  n k .x k (0) Z k (I n k-1 ⊗ P int k )Z k x k (0) + O( ) = x k (0) (I n k ⊗ P int k )x k (0) + O( ) ≤ P int k x k (0) 2 + O( ).(A.26)External Cost: Substituting x k = Hy + Zξ in the external cost J ext k in equation[START_REF] Ronald L Breiger | An algorithm for clustering relational data with applications to social network analysis and comparison with multidimensional scaling[END_REF], and performing the similar operation as in the approximation of the external cost in Proposition 3, we obtain, ext k ⊗ I nx )+(L ext k,row L ext k,row ⊗ K ext k R k K ext k ) Z ξ dt . (A.28) Furthermore, substituting (L ext k ⊗ I nx ) Hy s = -(L ext k,col ⊗ I nx )U -k Y k and (L ext k,row ⊗ I nx ) Hy s = -(L ext k,red ⊗ I nx )U -k Y k in equation (A.[START_REF] Steur | Couplingmodulated multi-stability and coherent dynamics in directed networks of heterogeneous nonlinear oscillators with modular topology[END_REF]) and taking the norm we have,Π 1 ≤ C 9,k x(0) 2 + O( ) (A.29)whereC 9,k := C 4 Z Y k (0) 2 Z (L ext k,col ⊗ I nx ) + (L ext k,row L ext k,red ⊗ K ext k R k K ext k ) U -k + Z (L ext k ⊗ I nx ) + (L ext k,row L ext k,row ⊗ K ext k R k K ext k ) Z C 4 .Cross Term: Substituting from equation (A.22) and from Theorem 1 into the cross term in equation (7) and after further calculation, we get,J cross k ≤ 2 R k C 5,k C 8,k C 4 Y k (0) Z x(0) +2 R k C 7,k C 8,k C 4 Z 2 x(0) 2 + O( ) By definition of the variable Y k in equation (37), it satisfies Y k ≤ √ n k H x(0) + O() and substituting it in the above equation leads toJ cross k ≤ C 10,k x(0) 2 + O( ),(A.30)whereC 10,k := 2 R k C 8,k C 4 √ n k H C 5,k + C 7,k Z Z .Then from equation (7), (A.26), (A.27), (A.29) and (A.30), we have,J k ≤ P int k x k (0) 2 + n k J ext k + C k x(0) 2 + O( ) where C k := (C 9,k + C 10,k ). Moreover, we have Y k (0) ≤ x(0) 2 + O() and substituting from equation (42),J k ≤ P int k x k (0) 2 + n k γ k x(0) 2 + C k x(0) 2 + O( ) ≤ ( P int k + n k γ k + C k ) x(0) 2 + O( ) (A.31) 

  To simplify the expression, we use(L ext k ⊗ I nx ) Hy s (t) = -(L ext k,col ⊗ I nx )U -k Y k (t) where L ext k,col is the matrix L ext kwith its k-th block-column removed. Then, we obtainx (t)(L ext k ⊗ I nx )x(t) = (L ext k ⊗ I nx )( Hy s (t) + HΨ( )ξ f (t f ) + Zξ(t))
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