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Abstract. Discrete mathematics brings interesting problems to teach and learn proof with 

accessible objects such as integers (arithmetic), graphs (modeling, order) or polyominoes 

(geometry). A lot of still open problems can be explained to a large public. The objects can be 

manipulated by simple dynamic operations (removing, adding, “gluing”, contracting, splitting, 

decomposing, etc.). All these operations can be seen as tools for proving. This article particularly 

explores the field of “discrete optimization”. A theoretical background is defined by taking two 

main axes into account: the epistemological analysis of discrete problems studied by contemporary 

researchers in discrete optimization and the design of adidactical situations for classrooms in the 

frame of the Theory of Didactical Situations. Two problems coming from ongoing research in 

discrete optimization (the Pentamino Exclusion and the Eight Queens problems) are developed. 

They underscore the learning potentialities of discrete mathematics and epistemological obstacles 

about proving processes. They emphasize the understanding of a necessary condition and a 

sufficient condition and problematize the difference between optimal and optimum. They provide 

proofs involving partitioning strategies, greedy algorithms but also primal-dual methods leading to 

the concept of duality. The way such problems can be implemented in the classrooms is described 

in a collaborative work between mathematicians and mathematics education researchers (Maths à 

Modeler Research Federation) through the Research Situations for the Classrooms. 

Keywords: discrete mathematics, optimization, proving processes, research 

situations for the classrooms, polyominoes, eight queens problem. 
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Introduction 

Since 1999, the French Maths à Modeler Research Federation has promoted a 

collaborative work between mathematicians in discrete mathematics and 

mathematics education researchers. We design innovative Research Situations for 

the Classroom (RSCs) from real problems coming from the ongoing mathematical 

research (Grenier & Payan 2003; Ouvrier-Buffet 2009). The aims of RSCs are to 

put students in the role of a researcher and to engage them in a proving process or 

more generally in an inquiry process including several transversal skills such as 

making conjecture, modeling, defining etc. Several RSCs have been designed and 

implemented in different contexts by Maths à Modeler with the help of the Theory 

of Didactical Situations (TDS, Brousseau 1997). All these experiments are based 

on a strong epistemological analysis of discrete problems taking into account the 

needs of proof. 

The literature in mathematics education about proof has produced fundamental 

findings regarding the epistemological, philosophical and didactical aspects of 

proof (e.g. Hanna & De Villiers 2012; Hanna, Jahnke & Pulte 2010; Mariotti et al. 

2018; Stylianides 2016). New perspectives for education also emerge from the 

research based on interviews with active mathematicians (e.g. Ouvrier-Buffet 2015; 

Weber 2011). In all the research about proof, the fields of arithmetic, number theory 

and combinatorics are often used. Such discrete mathematics (DM) clearly favors 

an “authentic mathematical activity” (Lampert 1990) with a work on heuristics in 

non-routine problem solving (e.g. Mousoulides & Sriraman 2020). It also brings a 

new beginning for students and teachers (Goldin 2010). The concepts involved 

(mainly integers) are not an obstacle to the solving process, the students “come to 

the problem fresh” (Maher et al., 2010, p.10), the proof is therefore central.  

All the research dealing specifically with the teaching of DM at different school 

levels (e.g. Rosenstein et al. 1997; Heinze et al. 2004; Hart & Sandefur 2018) has 

pointed out the advantages of DM to teach and learn proof, with the use of problems 

whose resolution mobilizes notions and skills such as implication, induction, etc. 

(e.g. Grenier & Payan 1998, 1999; Ouvrier-Buffet 2020). Nevertheless, few of the 

research works have characterized precisely proving processes which are specific 

to DM from the epistemological point of view. Thus, the didactical transposition of 

such proving processes in the classrooms must be questioned. That is why we will 

focus on the following research questions: what kinds of proving processes are 
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specific to DM from the epistemological point of view? Are these proving processes 

accessible for students from the didactical transposition’s perspective?  

We chose the field of discrete optimization to explore these questions. 

Discrete optimization or combinatorial optimization is a part of mathematical 

programming which is “everything of direct or indirect use concerning the problem 

of optimizing a function of many variables, often subject to a set of constraints”1. 

We will explore its epistemological features through the following topics: 

- Concepts of bound, framing optimal values, in particular: lower and upper 

bounds versus necessary condition and sufficient condition 

- Minimal, minimum: local versus global optimality 

- Dual problems 

- Algorithmic approach and heuristics. 

Note that the word heuristic is often used in mathematics education as Polyá (1954) 

defined it. In problem-solving, it includes, for instance, analogy, generalization, 

induction, decomposing and recombining, working backward. We will keep in 

mind the definition of heuristic coming from operations research, which is non-

contradictory with that of Polyá: “In general, for a given problem, a heuristic 

procedure is a collection of rules or steps that guide one to a solution that may or 

may not be the best (optimal) solution” (Laguna & Marti 2013). 

In this article, we will present our background designed collaboratively by discrete 

mathematicians and didacticians: the Maths à Modeler Research Federation and the 

didactical features of RSCs (Section 1). Then, we will develop two problems in 

discrete optimization (the Pentamino Exclusion and the Eight Queens problems) 

(Section 2) and their transpositions for the classrooms (Section 3). From an 

epistemological point of view, it will allow us to highlight and formalize proving 

processes which are transversal to DM and specific to discrete optimization such as 

partitioning strategies, greedy algorithms, primal-dual methods (Sections 4 and 5). 

The aim is to provide a refined theoretical mathematical background for these 

proving processes and the epistemological obstacles they imply for an educational 

perspective. Indeed, discrete optimization is less studied for itself in mathematics 

education than other fields of DM (see for instance the main view of the teaching 

and learning of DM worldwide in Hart & Sandefur 2018 or Heinze et al. 2004). It 

is also an ongoing contemporary field with proving processes and open problems 

 
1 Aims and scope of the journal Mathematical Programming, Springer. 
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in constant evolution. During the mathematical developments, we will mention 

students’ works coming from several experiments designed with a common 

methodology (RSCs) to illustrate the above-mentioned epistemological features of 

discrete optimization. The conclusion will open perspectives regarding the teaching 

and learning of proof through DM and RSCs. 

1. Features of discrete mathematics and the frame 
of Maths à Modeler  

1.1. Discrete objects and proving processes in DM 
The etymology of the word discrete leads to the word countable but also separable: 

DM deals with countable objects which have the property of splitting such as 

integers, graphs, sets, relations, orders, words, automata, language etc. In this way, 

DM contains finite mathematics.  

In mathematics education, DM arouses unanimous interest because it offers a new 

field with non-routine problem solving for the learning and the teaching of different 

kinds of proof (e.g. Grenier & Payan 1999; Heinze et al. 2004; Hart & Sandefur 

2018). Proofs by exhaustion, proofs by induction, algorithmic proofs, generic 

proofs but also probabilistic methods, decomposition techniques, and structuration 

of objects (such as coloration in graph theory) are applied to solve various kinds of 

problems in DM: existence, characterization, recognition, optimization and 

extremal problems. The accessibility of discrete objects by their representations, 

and the importance of the defining process linked to proof (e.g. Lakatos 1976; 

Ouvrier-Buffet 2015) complete this variety of proof techniques. The representation 

of a discrete object can spread a generic characteristic which facilitates the 

production of proofs. Moreover, discrete objects generally admit several equivalent 

definitions involving different representations, some of them being ‘natural’ and 

close to the formal definition. However, this seemingly accessibility of discrete 

concepts does not mean that solving discrete problems and searching proofs is easy. 

Besides, in contemporary mathematics, basic definitions are not stabilized yet for 

some discrete objects. For instance, there is no standard definition of either 

orientation or cycle for the hypergraphs (collection of finite sets of a given vertex 

set) (e.g. Berge 1973), or of objects in discrete geometry leading to complex 

questionings related to axiomatic theory (e.g. Reveillès 1991). This fact is 

particularly interesting to engage students in a wider mathematical activity.  
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1.2. A collaboration between researchers in DM and in 
mathematics education 

In France, at the beginning of the 90s, a desire to promote ‘doing maths’ within 

school led to the creation of two main actions in education. A group working on 

open problems in Lyon initiated by G.Arsac (Arsac & Mante 2007) has developed 

didactic engineerings (Artigue 2014) for primary and secondary schools. 

Simultaneously, the Math.en.Jeans project2 was initiated by a discrete 

mathematician, P.Duchet, in order to set up research groups in mathematics for 

middle and high school.  

The research team Maths à Modeler supported by the French Ministry of Research 

was structured in 1999 by the discrete mathematicians S.Gravier and C.Payan in 

Grenoble. The research developed in Maths à Modeler is based on a close 

collaboration between didacticians and mathematicians, generating co-supervision 

of 11 PhD theses in didactic of mathematics and several implementations of 

research activities in the classrooms and in teacher training. It extends the research 

in mathematics education about proof and proving in the specific field of DM. 

Maths à Modeler has become a Research Federation led by the University of 

Grenoble Alps with antennas in France, Belgium, Brazil and Algeria, furthering the 

research on the teaching and popularization of mathematics through RSCs. 

1.3. The definition of Research Situations for the 
Classrooms (RSCs) 

In Maths à Modeler, innovative RSCs from real problems coming from the ongoing 

mathematical research are designed (e.g. Grenier & Payan 1999; Ouvrier-Buffet 

2009) and implemented mainly in secondary and university levels, and also in 

popularization events. 

The aim of RSCs is to put students in the role of a mathematical researcher. From 

a didactical point of view, RSCs are designed in the frame of the TDS (Brousseau 

1997) and mainly mobilize the concepts of didactical variables, the devolution and 

the dialectics of the situations of action, formulation and validation. In this 

theoretical framework, notice that some research about proof have pointed out the 

difficult shift in the validation process (Balacheff 2010), the crucial role of the 

 
2 https://www.mathenjeans.fr 
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teacher’s guidance (Mariotti et al. 2018; Stylianides 2016), and the difficulties in 

institutionalizing (Stylianides, 2007).  

RSCs must fulfill the six following criteria (derived from Grenier & Payan 1999, 

2003; Ouvrier-Buffet 2009). Some of them are close to problem solving.  

● Firstly, the research field should be ‘huge’, have roots in mathematical 

ongoing research: a large part of it should be accessible to the students. 

● Secondly, the mathematical problem should be easily understood. 

● Thirdly, there should be few notional traps to start the research. Initial 

strategies without pre-requisites exist. These criteria foster the devolution of 

the mathematical problem. Therefore, there are only criteria of local 

resolution (local ending criteria) and possibly no final ending: an answered 

question often leads to a new question.  

● Fourthly, the students should manage their research themselves: among the 

didactical variables, at least one of them, called a research variable, is left 

to the students, while the others can be set by the teacher. These variables 

are chosen depending on the didactical interest of the questions they can 

generate for the mathematical processes. 

● Fifthly, many strategies may put the research forward and several 

developments are possible to enable the research process and the emergence 

of mathematical skills (such as proof, modeling etc.) and knowledge. 

● Sixthly, at the end of the research process, students are invited to share their 

results, e.g. through posters in their school or a presentation at university (in 

front of other school students, who are also there to present their results, and 

researchers from university).  

We underline that research is an activity that requires a big amount of time, so if 

one expects students to do research, one must grant them enough time to search: a 

long-term situation is essential.  

1.4. Experiments with RSCs in the frame of the TDS 

The TDS (Brousseau 1997) is used in order to design, analyze and implement RSCs. 

In Brousseau’s engineering, the situation is divided into three adidactical phases 

(action, formulation, validation) to “foster the discovery and demonstration, by the 

children, of a sequence of theorems” (ibid. p.4). The interactions between the 

student(s) and the environment (milieu) constitutes the dialectic of action. This 

production of a set of experiences and results should be rich enough to nourish the 
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collective discussion in the next phase. The dialectic of formulation consists in 

“progressively establishing a shared language”, making “possible the explanation 

of actions and modes of action”. During the validation phase, students “have to put 

forward propositions and to prove to an opponent that they are either true or false” 

(ibid. p.4). 

In the case of RSCs, a specific research contract is implemented to avoid the bias 

of the usual didactical contract. The main idea is to encourage students’ research 

processes and to foster a mathematical community, close to the sociomathematical 

norms where the criteria for acceptability of arguments are negotiated in the 

classroom (e.g. Lampert 1990; Yackel & Cobb 1996). In RSCs, the initial problem 

comes from mathematical research, and nobody (neither the students nor the 

teacher) knows the solution. The teacher’s reactions should not be an implicit 

indicator for the students of the value of their processes. Besides, the social 

dimension of exploratory proving remains fundamental (e.g. Balacheff 2010; 

Stylianides 2016). After the devolution of a RSC, the action phase engages students 

in the exploration of the problem, often with manipulatives. The formulation phase 

has an explicit social dimension: it allows to make the actions explicit. Validation 

takes place when interactions with peers include explanations and parts of proofs. 

The implementation of RSCs should preserve the dialectics of action, formulation 

and validation (Grenier & Payan 2003). The closure of a RSC with posters and/or 

oral presentation by students of their results ends the research process of the 

students and contributes to the institutionalization process (even if students’ 

resolutions lead to new research questions). 

Most of the PhD theses defended in Maths à Modeler offer RSCs with didactic 

engineerings in the frame of TDS with an epistemological background in DM: 

Colipan (combinatorial games) (2014), Deloustal-Jorrand (implication and 

necessary and sufficient conditions) (2004), Dissa (arithmetic and geometry) 

(2020), Giroud (modeling) (2011), Godot (open-problems and RSCs) (2005), 

Modeste (algorithm) (2012), Ouvrier-Buffet (defining) (2003). Several RSCs have 

been designed and implemented in different contexts: elementary and secondary 

levels, university level, pre-service and in-service teacher training, popularization 

events, and also with autistic children in a medical environment (e.g. Coffin et al. 

2006). In this article, we will use students’ works from all these experiments 
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implemented in various contexts to illustrate specific proving processes and skills 

in discrete optimization. 

2. Two problems and their theoretical mathematical 
framework 

2.1. Hunting the Beast! based on the Pentamino 
Exclusion problem 

The Hunting the beast! problem involves polyominoes popularized by the game 

Tetris and the Martin Gardner’s puzzles. A polyomino is a shape “made by 

connecting certain numbers of equal-sized squares, each joined together with at 

least 1 other square along an edge” (Golomb, 1966, p.19). 

Here is the usual way to present the problem to students (Figure 1) in Maths à 

Modeler: 
Your garden is a collection of adjacent squares and a beast is a collection of squares. 

Your objective is to prevent a beast from entering your garden. To do this, you can buy 

traps. A trap is represented by a single square that can be placed on any square of the 

garden. The question is: what is the minimum number of traps you need to place so 

that no beast can land on your garden? 

These rules allow the beast to be rotated (90,180 or 270 degrees) or reflected 

(flipped over) at will. 

 

Fig.1. A garden, a beast and a trap 

In this problem, placing a trap on each square is clearly not optimal, except if the 

beast is reduced to a single square (monomino). The difficulty thus lies in finding a 

configuration with the smallest number of traps. In the literature, this problem can 

be seen as a variation of the Pentomino Exclusion problem introduced by Golomb 

(1966). In the latter problem, the garden is a k×n rectangular board and the aim is 

to minimize the number of monominoes so that no pentomino can be placed on it. 

For both problems, it turns out that the computation of the minimum number of 
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traps is NP-complete3 in terms of algorithmic complexity. However, for some 

special cases of the board and the beast, results exist about the minimum number of 

traps (e.g. Dorbec 2007; Gravier & Payan 2001). Such problem leads to new 

research questionings in graph theory (e.g. Gravier, Moncel & Payan 2007) so as 

to new integer programming models still in progress (e.g. Kartak & Fabarisova 

2019). 

2.2. Fireworks (based on the Eight Queens problem) 

Here is the usual way to present the problem to students in Maths à Modeler: 
In a warehouse, we try to store the maximum number of cases of fireworks under the 

following constraint: if one case explodes, it does not damage any other case.  

For our purpose, the warehouse will be a subset of the grid. A case of fireworks consists 

of a single cell of the grid for which we attached a security zone depending on the 

explosion mode. A placed case of fireworks in the warehouse can therefore prohibit a 

certain set of cells (Figure 2). 

 

 
Fig.2. Example of a warehouse and a security zone 

If the warehouse is the 8×8 chessboard and the security zone of a case of fireworks 

placed on a cell is the set of cells on the same row, column and the two diagonals, 

then we get the so-called well-known Eight Queens problem. One attributes this 

problem to the German chessman M. Bezzel (1848). It was generalized for n queens 

by the mathematician F. Nauck (see for historical references Campbell 1977). Lucas 

(1882) published the first complete solutions of this problem. Since then, several 

extensions of this problem have still been studied such as dominating and stable 

sets in grid-like graphs, generalized Latin squares, etc.  

2.3. General mathematical problem 

 
3 i.e. there is no known algorithm that computes an optimal solution with a polynomial number of 
elementary operations. 
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A lot of problems of discrete optimization consists of finding a subset of a given 

ground set satisfying some given constraints with maximum or minimum 

cardinality (called OPT).  

A feasible solution is a set satisfying the required constraints. Finding a feasible 

solution of cardinality k is an existence problem (P1) which gives an upper bound 

OPT ≤ k whenever OPT is a minimum. Analogously, it gives a lower bound OPT 

≥ k whenever OPT is a maximum. 

For instance, a feasible solution of Hunting the beast! is a set of cells of the 

garden (the ground set) where one places traps with the following constraint: 

each beast in the garden contains at least one cell with a trap. 

Similarly, for Fireworks, a feasible solution consists of storing a set of cells 

of the warehouse (the ground set) where one places cases of fireworks with 

the following constraint: if one case explodes, it does not damage any other 

case.  

A solution of the optimization problem is a feasible solution with optimal 

cardinality. Proving that a feasible solution of cardinality k is optimal is a difficult 

non-existence problem (P2) which involves an universal quantifier (∀). Indeed, if 

OPT is a minimum, we have to prove that any set of size n, with n < k, is not a 

feasible solution. This leads to the lower bound OPT ≥ k. 

A weak version of the problem could be to determine OPT.  

This would be interesting if, for instance, we had a proof4 of the optimality value 

without an explicit description of a solution. Since we are interested in proposing 

this kind of problem for a wide public, it is easier to ask to exhibit an optimal 

solution.  

We will highlight which kinds of proofs and proof techniques might be involved in 

finding solutions. In discrete optimization, (P1) and (P2) are usually explicitly 

stated and their proofs are distinct, whereas in continuous optimization problems, 

the resolutions of (P1) and (P2) are often put together in an asymptotic argument. 

It is particularly interesting to clearly distinguish these two problems since the 

notions of upper and lower bounds are related to sufficient and necessary 

conditions. Proposing discrete optimization problems allows us to work on 

sufficient and necessary conditions in a ‘concrete’ way.  

 
4 For instance, probabilistic methods bring such proofs. 



Dec 2021  11 

Indeed, for minimizing optimization problems, the lower bound OPT ≥ k shows that 

k elements are necessary to satisfy all constraints. Moreover, exhibiting a feasible 

solution of cardinality k shows that k elements are sufficient to satisfy all 

constraints. 

For a lot of combinatorial optimization problems, the constraints can be expressed 

as an intersection’s condition between a feasible solution X and a given family ℱ of 

subsets of the ground set. We will focus on the condition on cardinality of this 

intersection. Let us now define two problems (P1) as follows: 

(𝑇) Find a subset X of the ground set of cardinality k such that |𝑋 ∩ 𝐶| ≥ 1 for 

all 𝐶 ∈ ℱ. 

(𝑀) Find a subset X of the ground set of cardinality k such that |𝑋 ∩ 𝐶| ≤ 1 for 

all 𝐶 ∈ ℱ. 

A feasible solution of (𝑇) is called a transversal of ℱ and a feasible solution of (𝑀) 

is called a matching.  

Observe that the ground set is a feasible solution of (𝑇) and the empty-set ones of 

(𝑀). Therefore, it is interesting to minimize the set of feasible solutions of (𝑇) and 

to maximize those of (𝑀). Therefore, for the rest of the paper, one considers that a 

(𝑇) (resp. (𝑀)) problem is a minimizing (resp. maximizing) problem. 

Hunting the beast! is a (𝑇) problem with ℱ be the set of all beasts in 

the ground set. Fireworks is a (𝑀) problem with ℱ be the set of all 

security zones. 

3. Towards Research Situations for the Classrooms 

3.1. The RSC Hunting the beast! 
Presenting the problem in a general context leads to discussions to reduce the space 

of research. One may simplify the problem by setting the following didactical 

variables.  

● The number of squares used to define the beast: naturally, hunting small 

beasts appears to be more accessible. A beast is connected but not 

necessarily convex. To hunt convex beasts is a simplification of the 

problem.  

● The shape of the beast plays an important part: for example, hunting a 

rectangle (whatever its size) is a problem that is completely solvable through 

elementary considerations. On the contrary, the problems may become 
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harder if the beast is a non-connected set of squares. Several beasts are given 

considering the topology of the beasts below. 

  
Fig.3. A connected but not convex beast, a convex beast, a non-connected beast 

● The number of types of beasts that are simultaneously excluded 

complexifies the research: in the initial case, we consider only one type of 

beast. In the Pentomino Exclusion Problem, all the polyominoes of size 5 

are hunted, which is very complex. After having considered each type of 

polyomino separately, excluding all of them simultaneously is also 

interesting.  

● The size and the topology of the board are also important: it may be relevant 

to let the students work on larger sizes, or also play on rectangular boards. 

During experiments (from elementary to university levels), we set the didactical 

variables in order to imply the devolution of the problem and an effective search of 

optimal configurations and proofs. It appears that playing on a rectangular board is 

reasonable. A first possible step may consist in letting the students choose a 

reasonable sized beast (consisting of less than 6 squares) and a 8×8 or a 7×7 board. 

The shape of the beast is then a research variable. After this first step, three kinds 

of polyominoes are chosen for the experiments in the classrooms to make the 

proving process evolve. We usually choose a 5×5 garden, a monomino for a trap 

and three kinds of beast (Fig. 4). We will use this configuration in the following 

analysis of proving processes at stake. Considering a 5×5 board is already enough 

to do nontrivial effective search of optimal configurations and to formulate 

arguments and proofs. It is also possible to open the problem with other values of 

the didactical variables and then to question the generalization of the results. For 

instance, for rectangular gardens n×m with the straight tromino, the whole part of 

nm/3 is the optimal value (Dorbec 2007).  
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Fig.4. The beasts 

3.2. The RSC Fireworks 

We propose simpler formulations of the problem so that it is accessible at 

elementary school. Even in the simplified formulations, interesting proving 

processes arise. In a similar manner as for Hunting the beast!, the didactical 

variables of Fireworks concern the shape and the size of the warehouse and the 

characterization of the security zone. The topology of a case of fireworks can also 

be a didactical variable, but here we only consider a single cell.  

From now on, the warehouse will be a n×n grid. To build a RSC based on this 

problem, we leave n as a research variable available to the students.  

This RSC is usually scheduled with a first step which enables the devolution. We 

ask students to set a (reasonable) security zone and solve the problem on a set 

warehouse (generally a 8×8 or 7×7 grid). During this step, symmetric properties on 

the security zone are discussed: for example, if the cell (i,j+t) is in the security zone 

of cell (i,j), then one may assume that cell (i,j-t) also belongs to its security zone. 

Indeed, in a feasible solution, cells (i,j-t) and (i,j) can occur simultaneously. This 

first step mainly allows us to identify the questions which are problems (P1) and 

(P2). As it appears that finding answers for these problems seems difficult with 

original security zones, we propose to study special security zones such as those of 

chess moves.  

We refer to Gandit et al. (2014) for a detailed resolution of this problem when the 

security zone is defined as the king’s move in chess. Later, we will use the king’s 

move to illustrate a less effective general method for the other moves.  

From now on, we consider the security zone defined by the fool’s move in chess, 

that is the set of cells belonging to the same diagonals of the place where the case 

of fireworks (fool) is. Formally, if we place a case of fireworks on the cell of 

coordinates (i, j), then its security zone is the set {(a, b) | a+b=i+j or a-b=i-j}. We 
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note the diagonals Di+j = {(a, b) | a+b=i+j} and Di-j = {(a, b) | a-b=i-j}. Students 

often used a graphical register to represent the security zone or the diagonals instead 

of a formal one (Figure 5). 

 
Fig.5. The diagonals 

In the following sections, we will describe the main phases which occur in proofs 

when solving combinatorial optimization problems. We will analyze the 

construction of feasible solutions (P1) (§4) and the proof of the optimality of our 

best feasible solution or the proof of the bound of the optimal value (P2) (§5). The 

described strategies will be illustrated with students’ works. 

4. Construction of feasible solutions – Existence 
problem (P1) 

We will develop a mathematical analysis of both problems (§4.1 & 4.2) and 

illustrate it with students’ works. The aim is twofold: to reach an overview of the 

general mathematical framework (§4.3) and to point out the accessibility of such 

problems and proving processes in the classrooms. 

4.1. Hunting the beast! Local arguments and difference 
between minimal and minimum 

We remind the reader that to solve the problem, it is necessary to exhibit a way of 

placing a certain number of traps on the garden so as to exclude the given 

polyomino (P1). 

One can develop local strategies of optimality when searching for the use of a 

minimum of traps. Additionally, the symmetry of the ground set suggests finding a 

symmetrical feasible solution as well. We will give an example of such a strategy 

(which often occurs in the classrooms) with the straight tromino.  

To exclude a beast of a single row off a 5×5 garden, we need at least one trap. This 

trap must be on the middle square. The same is true for columns. Consider the first 
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row and the last row by symmetry, on the one hand, and the first and the last 

columns on the other hand: we obtain the partial selection of the traps in Figure 6a. 

Still by symmetric argument, we choose the midpoint of the 5×5 garden (Fig. 6b).  

The cell (2;2) is one of the remaining cells of the garden which contains the greatest 

number of straight trominoes (Fig. 6c), then we select this cell by a local optimality 

argument. Finally, by symmetry, we obtain the solution of Figure 6d. 

    
Fig.6. Strategy based on symmetrical and local arguments 

Such a strategy is usable for any shape of the beast. It generates a feasible solution 

which can have the following property of minimality: if one removes any trap from 

such a feasible solution, then one gets a set of traps which is not a feasible solution 

(Figures 7). 

  
Fig.7. Minimality of feasible solutions for the straight tromino and the L-tromino 

This kind of argument is used by students to claim the optimality of a solution: “If 

I remove any trap, a beast can land in the garden. Therefore, my value is optimal.” 

But it only proves that the feasible solution cannot be improved by removing certain 

traps: it means that this feasible solution is minimal (not necessarily minimum). 

Students may be convinced that this argument fails because they get a better 

solution after a few trials (Figure 8).  
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Fig.8. Students’ works of feasible solutions [straight tromino (left) and L-tromino (right)] 

4.2. Fireworks - Partitioning strategy and difference between 
maximal and maximum 

To generate a feasible solution for Fireworks, we can use a heuristic (local strategy) 

consisting in placing one case of fireworks, removing its security zone, choosing 

another one and iterating this process until there are no more cells. This strategy is 

often used by students even if it is not explicitly stated. The choice of the first 

element is not necessarily justified. Some geometrical arguments may be proposed 

(corner or center) without a clear relationship with the problem. 

An example of such a strategy for the security zone defined by the fool’s move 

whenever n=8 is given in Figure 9. Then, with this heuristic, we obtain a maximal 

solution with 9 cases of fireworks. Here, maximal means that if we add another case 

of fireworks, then we get a non-feasible set i.e. this new case of fireworks will 

damage another one if it explodes. So, we get the first bound OPT≥9. 

 
Fig.9. Local strategy for fool’s move on a 8×8 chessboard 
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A new investigation gives a solution with 14 fools (2n-2 in the general case) in 

Figure 10. This allows us to discuss the difference between maximal and maximum. 

 
Fig.10. Solution with 14 fools 

After more attempts, we fail to improve this solution, so the conjecture that we have 

reached the optimal value can be formulated.  

When the security zone is bounded (not depending on n) such as for the king’s move 

(left, right, up, bottom), then it may induce a partitioning strategy: it consists in 

tiling the ground set (by translation) with tiles with one marked cell corresponding 

to the place of the king. We have to make sure that this tiling provides a feasible 

solution. This strategy is illustrated for n=8 in Figure 11.  

 
Fig.11. Partitioning strategy to get a feasible solution with 14 kings 

4.3. Proving processes: the greedy algorithm and the primal-
dual method 

4.3.1. A heuristic: the greedy algorithm 

For both problems, we have described local strategies to build feasible solutions. 

These strategies are particular cases of the heuristic so-called greedy algorithm. It 

consists in building a feasible solution, element by element, following local choice 
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at each step to try to reach the optimality of the solution obtained i.e. always 

choosing the next element that offers an immediate benefit. This approach never 

reconsiders the choices taken previously. 

It means: 

- a trap which excludes a beast not excluded by the other selected traps 

in Hunting the beast! 

- a new firework which does not damage another one if it explodes in 

Fireworks. 

When the algorithm stops, we get a feasible solution.  

To choose the next element, some heuristics may be used. For instance, in the case 

of a minimization problem: if, at some step, one has chosen a subset X of elements, 

then one chooses a new element e such that the set X+e satisfies a maximum number 

of constraints. One can still get a minimal feasible solution which is not necessarily 

optimal even if at each step the heuristic chooses an optimal element. The solution 

can then be locally optimal5 but not necessarily globally optimal. It is not natural at 

all and appears as an epistemological obstacle: “Doing the best at each step does 

not guarantee the best at the end”. 

It is worth pointing out that greedy algorithms are intensively studied because they 

are simple and practical. A first application of such algorithms was used by Dijkstra 

for a graph theoretical problem (Dijkstra 1959). Ongoing research of 

mathematicians is to understand for which problems there is an effective greedy 

algorithm. Matroids theory has attempted to provide an axiomatic framework 

describing the problems for which a greedy algorithm applied with any order of 

selection of the elements guarantees the optimality of the result (Welsh 2010). 

4.3.2. The primal-dual method - towards duality 

For Fireworks, we have explained a partitioning strategy based on 

the description of a tiling into parts containing exactly one element 

of the feasible solution.  

We remind that a partition is a collection of subsets (parts) which have two 

properties: 

• They are pairwise disjoint. Such a collection is called a Packing. 

• Their union contains the ground set. Such a collection is called a Covering. 

 
5 Sometimes the heuristic gives a minimal or a maximal solution (as described in Fireworks). 
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To obtain a generalization of the partitioning strategy, we first need to determine, 

for a given (P1) problem, denoted (𝑄), a collection of subsets ℬ (the parts) of the 

ground set satisfying the following property (*): 

If (𝑄) is a problem of maximization, then any feasible solution of (Q) 

contains at most one element in each subset of ℬ. 

Else any feasible solution of (𝑄) contains at least one element in each subset 

of ℬ. 

If (𝑄) is the Fireworks problem with king’s move, then let ℬ be the 

set of 2×2 squares of the warehouse. Since at most one king can be 

placed on a 2×2 square in a feasible solution of (𝑄), then ℬ satisfies 

(*). 

If (𝑄) is the Hunting the beast! problem, then let ℬ be the set of all 

beasts of the garden. Since at least one trap must be placed on each 

beast in a feasible solution of (𝑄), then ℬ satisfies (*). 

Secondly, we define the problem (𝐷) of ℬ, or (𝐷) if there is no ambiguity, as 

follows: 

If (𝑄) is a problem of maximization, then (𝐷) is “Find a covering of the 

ground set using only sets of ℬ”. 

Else (𝐷) is “Find a packing of the ground set using only sets of ℬ”. 

Suppose now that (𝑄) is a maximization problem (𝑀) or a minimization problem 

(𝑇) of a given collection ℱ, i.e: 

(𝑀) Find a subset X of ground set of cardinality k such that |𝑋 ∩ 𝐶| ≤ 1 for all 

𝐶 ∈ ℱ, or  

(T) Find a subset X of ground set of cardinality k such that |𝑋 ∩ 𝐶| ≥ 1 for all 

𝐶 ∈ ℱ. 

In both cases, the collection ℱ satisfies (*). The problem (D) of ℱ is called the dual 

of (𝑄) and denoted by (𝑄)∗: 

If (𝑄) is a (𝑀) problem, then (𝑄)∗ is a Covering problem (restricted to subsets 

in ℱ). 

If (𝑄) is a (𝑇) problem, then (𝑄)∗ is a Packing problem (restricted to subsets in 

ℱ). 

In that case, we have that (𝑄) = ((𝑄)∗)∗. 

Furthermore, a feasible solution of such a Packing problem is a sub-collection 𝒞 of 

ℱof pairwise disjoint sets which can be rewritten as: |𝒞 ∩ 𝑒| ≤ 1 for all elements e 
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of the ground set. Therefore, if you (re)define the element e of the ground set as the 

“set of all subsets in ℱ which contains e”, then the Packing problem can be seen as 

a Matching problem. 

Similarly, a Covering problem can be seen as a Transversal problem.  

We obtain that (𝑀) and (𝑇) are dual problems as well as covering and packing. 

We can prove that the word duality has the same meaning in geometry, algebra and 

combinatorics: it is linked to the notions of respectively sphere covering, generating 

set and transversal for (Q) and sphere packing, independent set and matching for 

(Q)*. 

From this terminology, the partitioning strategy can be seen as a primal-dual 

method by solving at the same time the primal and the dual problems. Such methods 

consist in using a dual solution to build a feasible solution of the primal problem 

which satisfies optimally each (or a maximum of) constraint(s) of the dual solution. 

The primal-dual method, proposed by Egerváry in the early 1930s in combinatorial 

optimization and then by Dantzig, Ford, and Fulkerson in 1956 in linear 

programming, is nowadays modified to deal with NP-hard problems (Goemans & 

Williamson 1996). 

From a didactical point of view, this approach should be carefully checked since it 

could reveal a confusion between necessary and sufficient conditions. 

5. Proof of optimality (P2) 

5.1. Hunting the beast! 
In the previous section, we have exhibited strategies to construct feasible solutions 

of (P1). We now prove that no fewer traps could have been used for the same 

purpose “by whatever combinatorial reasoning or tricks suggest themselves” 

(Golomb, 1966, p.42). 

Proof by exhaustion (also called proof by cases, or by case analysis)  

Examining all possible cases is always possible, mainly for small cases, but remains 

laborious and leads to combinatorial explosion phenomenon in the general cases. It 

motivates the use of another kind of reasoning. 

Necessity and sufficient proof 

The manipulation of beasts brings the necessity proof, accessible in primary 

schools, and questions the sufficient proof. Observe that any beast in the garden 
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forces to place a trap on at least one of the cells occupied by it. This observation 

may suggest considering the dual packing problem i.e. to fill all the garden with 

disjoint beasts. 

 
Fig.12. Proof illustrations for Hunting the beast! 

For the domino (resp. straight tromino), the packing technique proves that 12 

nonoverlapping dominoes (resp. 8 straight trominoes) are necessary to cover the 

garden. Then, a minimum of 12 traps (resp. 8) is necessary to exclude the domino 

(resp. straight tromino): it is a lower bound. To exhibit a placement of 12 traps (resp. 

8) is sufficient to end the proof. Domino and tromino can be seen as generic 

examples and can lead to a generic argument linked to the following proposition 

(which can be proved): “If one covers the garden with n non-overlapping beasts, 

then at least n traps are needed to exclude the beast.” For the L-tromino, this kind 

of proof is not enough. Indeed, only 8 L-trominoes cover the 5×5 garden, but 10 

traps are needed to exclude the L-tromino. Then, the optimal value is framed 

between 8 and 10. 
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In some experiments, it appears that after solving the problem with straight tromino, 

the students started to solve the problem with L-tromino by placing beasts in the 

garden and they claimed “the minimum of traps is 8 since there are 8 beasts” (Figure 

13). Clearly, there is a confusion here between necessary and sufficient conditions. 

Then, one may ask students to give a solution with 8 beasts.  

  
Fig.13. Students’ slides for an oral presentation at the end of an experiment 

So, studying L-tromino enables work on the differences between necessary and 

sufficient conditions. In any case, whenever the beast is the L-tromino, one may 

study smaller gardens. This may allow us to remark that 2 traps are needed to 

keep the L-tromino off a 2×2 garden (Figure 14). Then, one trap is needed for the 

beast landed on this garden and one more trap on the cell not covered by a beast in 

order to keep another neighboring beast off the 2×2 garden. 

 
Fig.14. Students’ representation of the lower bound to exclude the L-tromino 

So, for each 2×2 garden, 2 traps are needed. When one structures the 5×5 garden 

with 2×2 squares (Figure 15), four 2×2 squares ‘at worst’ appear and two other 

beasts can come: then, 4 times 2 traps and 2 traps are required, so 10 traps in order 
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to keep the beast off the 5×5 garden. We have solved Hunting the beast! on the 5×5 

garden.  

Induction 

If we generalize the problem to rectangular k×n gardens (with a fixed small k), this 

problem leads to reasoning related to induction. 

 

Other very interesting mathematical proofs exist, exploring rows and columns 

arguments (Ouvrier-Buffet et al. 2017) or covering numbers, but are too long to be 

included in this article. Another perspective is to exclude both straight and L-

trominoes. 

5.2. Fireworks  

We remind that for the fool’s move, we have built a solution with 14 fools on the 

8×8 board. After several attempts, we failed to improve this solution, so the 

conjecture that we reached the optimal value can be formulated. At this stage, the 

students tried a case analysis, but there were too many cases to consider, and they 

failed to find a full proof. One suggested studying the smallest warehouses and 

therefore a partitioning strategy could appear and then a work on the dual covering 

problem: to place the smallest number of diagonals whose union covers the entire 

8×8 board.  

As for Hunting the beast! the students used partitioning strategy as a proof 

argument, but they did not see it as a new problem.  

Quickly, the students placed 2n such diagonals: D1-1, …, D1-n, D2-1, …, Dn-1 

((1, 1) corresponds to the cell on the top left on the n×n board).  

  
Fig.15. 2n diagonals on a n×n board 

So, we got the closest frame on optimal value: 2n-2 ≤ OPT ≤ 2n-1. 
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To conclude, it is enough to observe that diagonals Dn-1 and D1-n are reduced to one 

cell. Moreover, the security zone of Dn-1 contains D1-n and vice-versa. So any 

solution of (P2) has at most one of the cells Dn-1 and D1-n. This property is 

sometimes expressed in terms of contradiction: “If there is a case of fireworks in 

Dn-1 and D1-n then D1+1 contains 2 fools”. Finally, we get the desired upper bound 

OPT ≤ 2n-2, which corresponds to a necessary condition on the value of OPT. 

To continue the mathematical problem and the RSC, we can change the value of 

some didactical variables. For instance, we could propose other chess moves to 

investigate and propose forthcoming works with a n×m board (m ≠ n). 

5.3. General proving process for (P2) 

To solve (P2) for a given problem (𝑄), the exhaustive methods are quickly given 

up on because of the combinatorial explosion phenomenon. 

Another strategy consists in determining a problem (𝐷) as described in §4.3.2. The 

goal is to find constraints defined by subsets ℬ for which any feasible solution of 

(P1) has a bounded intersection such that: 

If (𝑄) is a problem of maximization, then any feasible solution of (Q) contains 

at most one element in each subset of ℬ. 

Else any feasible solution of (𝑄) contains at least one element in each subset of 

ℬ. 

Remember that the problem (𝐷) of ℬ, or (𝐷), is defined by: 

If (𝑄) is a problem of maximization, then (𝐷) is “Find a covering of the ground 

set using only sets of ℬ”. 

Else (𝐷) is “Find a packing of the ground set using only sets of ℬ”. 

This will help to solve (P2) since (𝐷) has the following property (**): 

If (𝑄) is a maximization problem, then the cardinality of a feasible solution of 

(𝐷) is greater than that of a feasible solution of (𝑄). 

Else the cardinality of a feasible solution of (𝐷) is smaller than that of a feasible 

solution of (𝑄). 

In particular, if (𝑄) is a maximization problem, then the minimum of (𝐷) is greater 

than the maximum of (𝑄). Else, the maximum of (𝐷) is smaller than the minimum 

of (𝑄). This relation between optimal values of (𝑄) and (𝐷) is called weak duality 

whenever (𝐷) = (𝑄)∗. 
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Besides, as shown in §4.3.2, packing and covering problems are existence problems 

(P1) for which we know effective procedures to get feasible solutions. So, the 

challenge to solve (P2) now is to look for a suitable collection ℬ. 

One way is to study small ground sets and exhaustively prove the required 

intersection constraint for these subsets. 

For instance, diagonals in Fireworks with fool allowed to define a 

covering problem. 

When (𝐷) is defined, solving it is now an existence problem like (P1). Thus, the 

universal quantifier of (P2) is only needed to determine the constraints defining 

(𝐷). 

For Hunting the beast! problem (𝑇), the problem (P2) is directly 

transformed, by duality, into an existence (𝑇)∗ = find a packing of the 

ground set with beast.  

Now, to solve (P2), it is enough to use (**) relation between (𝐷) and (𝑄). 

For Hunting the beast! with domino and straight tromino, the inequality 

is an equality.  

In that case, we say that the primal and dual problems have a strong duality 

relationship. 

Now, to solve Hunting the beast! with L-tromino, we considered more 

restrictive constraints (2 traps are necessary to exclude all the beasts off 

a 2×2 square). 

In general, suppose that we find a subset A of X not in ℱ such that any solution of 

(P1) contains at least a (≥ 1) elements of A. So, one may add this constraint in (𝐷) 

as follows: 

Find a sub-collection 𝒞 of pairwise disjoint sub-subsets of ℱ ∪ 𝐴 which 

maximizes |𝒞| + |𝒞 ∩ 𝐴|. (𝑎 − 1).  

A solution of this new problem is one of (𝐷) and has a greater or equal cardinality. 

This technique may improve the upper bound on the size of a solution of (P1). 

Similarly, for Fireworks, the subsets ℱ = {𝐷"#", . . . , 𝐷"#$} ∪

{𝐷%#", . . . , 𝐷$#"} were not sufficient to solve (P2). So, it was proved 

that adding subset 𝐴 = 𝐷"#" ∪ 𝐷$#" (with 𝑎 = 1) allowed to get the 

optimal value.  

Of course, this process can be repeated. We obtain a weighted version of (D).  
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For instance, for Hunting the beast! the sub-collection 𝒞 is composed 

of disjoint subsets of ℱ ∪ 𝐴 where ℱ are the beasts and A are the 2×2 

squares in the ground set. Figure 14 illustrates such a feasible solution. 

This technique of adding new constraints is classical in combinatorial optimization 

and can be seen in the case of linear programming as the cutting plane method 

introduced by Gomory (1960). The idea is to attain a new problem (D)’ for which 

the size of an optimal solution is equal to one of (P1). 

Conclusion and perspectives 

Discrete mathematics has a huge potential to design learning situations of proof and 

proving processes and, more generally, mathematical inquiry. Even if a lot of 

discrete mathematics problems can be easily explained, most of them are really 

difficult to solve. A non-trivial selection of “good” mathematical problems for 

classrooms has to be validated by epistemological and didactical a priori analysis, 

but also by several experiments in classrooms in a long-time process. 

Exploiting two contemporary problems, we have emphasized several proving 

processes used in discrete optimization. From the mathematical point of view, we 

have underscored specific proving processes and heuristics, mainly: partitioning 

strategies, greedy algorithms, primal-dual methods, weak and strong duality 

between packing and covering problems, cutting planes method. In such discrete 

problems, more classical proving processes such as proof by exhaustion or proof 

by induction can also be used. In all these proving processes, we have also pointed 
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out epistemological obstacles which lie in confusions or misunderstandings of the 

following topics:  

- Necessary and sufficient conditions can make sense through the notions of 

lower and upper bounds.  

- Definition of dual problems gives a general framework to obtain these 

bounds. 

- The distinction between optimal and optimum appears during a problem of 

optimizing the cardinality of a set when the students are used to optimizing 

numerical functions. 

- Again, the distinction between local and global optimality arises when the 

students produce feasible solutions with simple algorithms like greedy ones. 

Using the TDS to transpose mathematical research activities developed in Maths à 

Modeler, we have designed two RSCs (Hunting the beast! and Fireworks) with the 

Pentamino Exclusion and the Eight Queens problems. Several experiments, mainly 

realized in action-research contexts but carefully planned and implemented with the 

help of TDS, have revealed regularities in students’ processes at all school levels 

(from primary school to university) (e.g. Gandit et al. 2014; Ouvrier-Buffet et al. 

2017). Most of these regularities were predicted in the a priori analysis whose 

mathematical components are developed in Sections 3, 4 and 5. In particular, the 

two RSCs are particularly efficient to work on the distinction between necessary 

and sufficient conditions and on optimality (local versus global, optimal versus 

optimum). In the experiments, the proof of the sufficient condition which 

corresponds to solving an existence problem involved strategies, sometimes even 

algorithms, to produce a ‘good’ solution i.e. a solution that students cannot improve. 

Greedy algorithms emerged in students’ works. They are also used by 

mathematicians. Students generally adopted a partitioning strategy to prove the 

necessary condition: this technique allowed them to prove that the previously 

obtained solution could not be improved. There are two clearly distinct ways to 

prove the sufficient condition and the necessary condition respectively. 

Nevertheless, the students did not see that their partitioning strategy could be seen 

as a new problem i.e. the dual and/or detected this new problem as the solution to 

the previous one. This points out the limits of adidactical situations for proving 

processes and transversal concepts such as primal-dual methods and duality. 

Indeed, in an educational context, and nowadays in the frame of Inquiry Based 
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Mathematics Education (Artigue & Blomhøj 2013), researchers in mathematics 

education must question the relevant skills at stake in a mathematical inquiry. In 

the examples developed in this paper, it leads to the following new questions: How 

to choose proving processes to teach for curricula in mathematics? How to 

transpose such processes which are relevant in a mathematical inquiry to the 

classrooms? How to institutionalize such processes which a priori required a long-

term process in the classrooms? Finally how to redesign teacher training? Such 

questions are crucial at the international level both for DM (Rosenstein 2018) and 

mathematics in general. 

It is obvious that a collaborative work with research-active mathematicians can 

generate frameworks and tools for education at the interplay between mathematics 

education and mathematics (e.g. Alcock & Simpson 2009). The research dealing 

with proof and ongoing mathematics using interviews with mathematicians (e.g. 

Lockwood et al. 2016; Ouvrier-Buffet 2015; Weber 2011) and the RSCs clearly 

open new perspectives for the teaching and learning of proving processes in DM: 

the mathematical background developed in this paper allows the design of new 

didactic engineerings in discrete optimization, including teacher training. 
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