
HAL Id: hal-03594453
https://hal.science/hal-03594453

Submitted on 21 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A cross-technology benchmark for incremental graph
queries

Georg Hinkel, Antonio Garcia-Dominguez, René Schöne, Artur Boronat,
Massimo Tisi, Théo Le Calvar, Frederic Jouault, József Marton, Tamás Nyíri,

János Benjamin Antal, et al.

To cite this version:
Georg Hinkel, Antonio Garcia-Dominguez, René Schöne, Artur Boronat, Massimo Tisi, et al.. A
cross-technology benchmark for incremental graph queries. Software and Systems Modeling, 2022, 21
(April), pp.755-804. �10.1007/s10270-021-00927-5�. �hal-03594453�

https://hal.science/hal-03594453
https://hal.archives-ouvertes.fr

Software and Systems Modeling (2022) 21:755–804
https://doi.org/10.1007/s10270-021-00927-5

REGULAR PAPER

A cross-technology benchmark for incremental graph queries

Georg Hinkel1 · Antonio Garcia-Dominguez2 · René Schöne3 · Artur Boronat4 ·Massimo Tisi5 · Théo Le Calvar5,6 ·
Frederic Jouault7 · József Marton8 · Tamás Nyíri8 · János Benjamin Antal9 ·Márton Elekes9 · Gábor Szárnyas10

Received: 12 December 2020 / Revised: 31 August 2021 / Accepted: 14 September 2021 / Published online: 8 December 2021
© The Author(s) 2021

Abstract
To cope with the increased complexity of systems, models are used to capture what is considered the essence of a system. Such
models are typically represented as a graph, which is queried to gain insight into the modelled system. Often, the results of
these queries need to be adjusted according to updated requirements and are therefore a subject of maintenance activities. It is
thus necessary to support writing model queries with adequate languages. However, in order to stay meaningful, the analysis
results need to be refreshed as soon as the underlying models change. Therefore, a good execution speed is mandatory in
order to cope with frequent model changes. In this paper, we propose a benchmark to assess model query technologies in the
presence of model change sequences in the domain of social media. We present solutions to this benchmark in a variety of 11
different tools and compare them with respect to explicitness of incrementalization, asymptotic complexity and performance.

Keywords Graph queries · Graph analytics · Model-driven engineering · Performance benchmark · Graph databases ·
relational databases · Incremental queries · Incremental computing

Communicated by Alexander Egyed.

B Márton Elekes
elekes@mit.bme.hu

Georg Hinkel
georg.hinkel@gmail.com

Antonio Garcia-Dominguez
a.garcia-dominguez@aston.ac.uk

René Schöne
rene.schoene@tu-dresden.de

Artur Boronat
artur.boronat@leicester.ac.uk

Massimo Tisi
massimo.tisi@imt-atlantique.fr

Théo Le Calvar
theo.le-calvar@imt-atlantique.fr

Frederic Jouault
frederic.jouault@eseo.fr

József Marton
marton.jozsef@vik.bme.hu

Gábor Szárnyas
gabor.szarnyas@cwi.nl

1 Wiesbaden, Germany

2 Aston University, Birmingham, UK

1 Introduction

Models are a highly valuable asset in any engineering pro-
cess as they capture the knowledge of a system in a formal
abstraction. This abstraction allows to reason on properties
in order to obtain insights on the underlying physical system
through analysis.

These insights need to be refreshed as soon as the models
of the system change in order to stay meaningful. However,
for large systems it is often not viable to recalculate the entire
model analysis for every change. Rather, it is desirable to

3 Technische Universität Dresden, Software Technology Group,
Dresden, Germany

4 School of Informatics, University of Leicester, Leicester, UK

5 IMT Atlantique, LS2N (UMR CNRS 6004), Nantes, France

6 DIRO, Université de Montréal, Montreal, Canada

7 ERIS, ESEO-TECH, Angers, France

8 Department of Telecommunications and Media Informatics,
Budapest University of Technology and Economics,
Budapest, Hungary

9 Department of Measurement and Information Systems,
Budapest University of Technology and Economics,
Budapest, Hungary

10 CWI, Amsterdam, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00927-5&domain=pdf

756 G. Hinkel et al.

propagate these changes to the analysis results incrementally,
i.e. only recalculate those parts of the analysis results that are
affected by a given change.

Requirements regarding these insights often change over
time. Thismakes it very important to express such analyses in
a maintainable and understandable form. Recently, multiple
model query technologies [8,9,18,46,65] have been proposed
to aid this problem by deriving an incremental change prop-
agation from a declarative specification. Further, of course
one could also use existing and established non-incremental
query technology, particularly if some parts of the analysis
are more complex and may not be supported by tools that
target incremental change propagation. Finally, it is also an
option to translate the model into dedicated analysis meth-
ods to reuse query technology not based on models. Given
this plethora of options, it is difficult to estimate the differ-
ences and find the trade-offs between these approaches in
terms of understandability, conciseness, efficiency and oth-
ers. Does the tool fit into my technology space? Is it useful
to rely on the incrementalization of a tool or is it better—at
least performance-wise—to implement change propagation
explicitly? How long does it take to recover from an applica-
tion crash? How much development effort will be necessary
to implement change propagation? How does it scale? Can I
speed it up by adding more CPU cores? Is the tool extensible
or can it happen that my analysis is not supported at some
point?1

To aid this comparison and assess how current modelling
technologies are capable of offering a concise and under-
standable language for model analysis, yet still offer a good
performance in the presence of frequent model changes,
we propose the “Social Media” benchmark. In this bench-
mark, two queries should be formulated that analyse a model
of a social media network. In social networks, new Posts,
Comments and likes arrive at a very high frequency and thus
cause analyses of the entire network to invalidate quickly. In
our benchmark, the analyses shall find the most influential
posts and comments, according to selected criteria. While
the first query is rather simple in the sense that it can easily
be solved with standard query operators, the second query
is more complex as graph algorithms are used that are not
directly supported by query technologies.

Graph queries are difficult from an incrementalization
point of view [31] as they capture a rich family of algorithms
and they are often described in an imperative pseudo-code
that usually utilizes state. Using a generic incrementaliza-
tion system, this often spans a state space that is too large
for an incrementalization to be efficient. To aid this situa-
tion, dynamic algorithms are known for a number of graph

1 These questions have been selected by the authors. We do not claim
that this list of questions is complete and a proper analysis of the needs
of developers is out of scope for this paper.

Fig. 1 Metamodel (graph schema) of the social network model

problems that offer strategies to propagate graph changes
efficiently, often with a radically different approach than how
with the computation was performed in the batch (or initial)
scenario. However, there is no comparison yet how and how
efficient such dynamic algorithms can be included into incre-
mental query technologies.

We collected 11 implementations of this benchmark that
cover most of the possible approaches mentioned above and
have mostly been created by authors or active developers of
the respective tools. Therefore,we claim thatwe can compare
the tools through the solutions for this benchmark. The tools
cover a wide area of model query technology and database
management systems; thus, the analysis of the solutions using
those tools allows us to reason on the previously mentioned
questions.

The benchmark was originally proposed at the Transfor-
mation Tool Contest (TTC) 2018 as live contest [51]. At the
TTC, several solutions have been submitted [12,17,34,49,
78]. After the TTC, we invited further researchers working
in incremental query technology to provide solutions in their
favourite tools. In this paper, we present all of these solutions
and compare them with respect to their features, complexity
of change propagation and overall performance.

The remainder of this paper is structured as follows: Sect. 2
presents the benchmark and the queries that it consists of.
Section 3 explains the solutions. Section 4 compares the
solutions with respect to the declarativeness of the query
language, the used data model, the explicitness of the incre-
mentalization, the durability, support for parallelism and the
asymptotic complexity of change propagations. Section 5
presents experimental performance results and their analy-
sis. Section 6 discusses related work, and Sect. 7 concludes
the paper.

123

A cross-technology benchmark for incremental graph queries 757

2 The social media benchmark

In this section, we present the benchmark which we use
to compare existing incrementalization approaches. First,
Sect. 2.1 explains themetamodel thatweuse tomodel a social
network graph, and then, Sect. 2.2 presents the two queries
used in the benchmark. We describe the change sequences in
Sect. 2.3 and the phases of the benchmark in Sect. 2.4.

2.1 Metamodel and change sequences

In this benchmark, we use the data from the 2016 DEBS
Grand Challenge,2 adapted from the LDBC Social Network
Benchmark [5,30] and the SIGMOD 2014 Programming
Contest [27]. For this versionof the benchmark,we created an
Ecore metamodel to describe the social network, translated
the series of events in the original data sources to models and
change sequences and manually tuned the obtained change
sequences.3

The metamodel of the social network is depicted in Fig. 1.
The social network consists of Users, Posts and Comments.
Users may have friends, which is a unidirectional edge (i.e.
it behaves as a symmetric relationship). Submissions form a
tree with a Post in its root and Comments as the rest of its
nodes. Users may like Comments (likes edge).

2.2 Queries

In the scope of the proposed benchmark, we focus on two
model queries. The first query (Q1) is rather easy and is
expected to be directly supported by the tools. It shall return
themost controversial Posts in the socialmedia network. The
second query (Q2) is more sophisticated, and we expected it
not to be directly supported by tools and force the solutions
into case-specific extensions. It shall return the most influen-
tial Comments. The results of both queries are concatenated
to strings in order to use them for automated correctness
checks.

2.2.1 Query 1: Most controversial posts

We consider a Post as controversial, if it starts a debate
through its Comments. For this, we assign a score of 10 for
each Comment that belongs to a Post. Hereby, we consider a
Comment belonging to a Post, if it is a reply to either (1) the
Post itself or (2) another Comment that already belongs to
the Post. In addition, we also value ifUsers likedComments,
so we additionally assign a score of 1 for each User that

2 https://web.archive.org/web/20190131182518/https://debs.org/
debs-2016-grand-challenge-social-networks/.
3 We introduced changes that would actually affect the results of the
queries defined in Sect. 2.2.

Fig. 2 Graph pattern for Q1

Fig. 3 Graph pattern for Q2

has liked a Comment (Users are counted per Comment
liked, i.e. a User can contribute multiple times to the overall
score). In short, the score of a Post is calculated by taking
all Comments which are in the Submission tree rooted in
the Post, and scoring each of them as the 10 plus the number
of Users that liked the Comment, then summing up these
scores.

The goal of the query is to find the three Posts with the
highest score. Ties are broken by timestamps, i.e.more recent
Posts should take precedence over older Posts. The result
string of this query is a concatenation of the Posts ids, sepa-
rated by the character | (Fig. 2).

2.2.2 Query 2: Most influential comments

In this query, we aim to find Comments that are liked by
groups of Users. We identify groups through the friendship
relation. Hereby, Users that liked a specific Comment form
an induced subgraph where two Users are connected if they
are friends (but still, onlyUserswho have liked theComment
are considered). The goal of the second query is to find con-
nected components in that graph. We assign a score to each
Comment which is the sum of its squared component sizes.

Similarly to the previous query, we aim to find the three
Comments with the highest score. Ties are broken by times-
tamps, i.e. more recent Comments should take precedence
over older Comments. The result string is again a concate-
nation of the Comment IDs, separated by the character |
(Fig. 3).

2.3 Change sequences

To measure the incremental performance of solutions, the
benchmark uses generated change sequences. The changes
are available in the form of models. An excerpt of the change

123

https://web.archive.org/web/20190131182518/https://debs.org/debs-2016-grand-challenge-social-networks/
https://web.archive.org/web/20190131182518/https://debs.org/debs-2016-grand-challenge-social-networks/

758 G. Hinkel et al.

Fig. 4 Metamodel of model changes (simplified)

metamodel is depicted in Fig. 4. There are classes for each
elementary change operation that distinguish between the
type of a feature, whether it is an attribute, association or
composition change. Subclasses further specify the kind
of operation, i.e. whether elements are added, removed or
changed. In these concrete classes, the added, deleted or
assigned items are included.4 The change metamodel also
supports change transactions where a source change implies
someother changes, for example, setting opposite references.

The elementary changes can be categorized into the fol-
lowing five change types:

– A new User is added
– A new Post is added
– A new Comment is added as a reply to an existing
Submission

– A Comment is liked
– Two existing Users become friends

The changes are always additive, i.e. nodes or edges are
never deleted. During the contest, these change sequences
were made available in NMF and EMF. However, solutions
are also allowed to transform the change models into their
own, internal change representation. In such case, the trans-
formation of the change representation is excluded from the
time measurements.

An example of an update consisting of five elementary
changes is depicted in Fig. 5.

4 In a composite insertion, the added element is contained, otherwise
only referenced.

(a)

(b)

Fig. 5 Example model: initial and updated state with expected query
results. The undirected friends edges are denoted with dashed lines

2.4 Benchmark phases

The benchmark consists of the following execution phases:

1. Initialization: Setup modelling framework.
2. Loading: Load initial models.
3. Initial evaluation: Compute selected query for initial

model.
4. Updates: Change sequences are applied to the model.

Each change sequence consists of several elementary
change operations. After each change sequence, the query
result must be consistent with the changed source models,
either by entirely creating the view from scratch (batch

123

A cross-technology benchmark for incremental graph queries 759

evaluation) or by propagating changes to the view result
(incremental evaluation).

Solutions are mainly competing on their update perfor-
mance, but are also expected to keep the times of the loading
and initial evaluation at a reasonable level.

3 Solutions

In this section, we present the solutions developed for the
Social Media benchmark from Sect. 2. We present the fol-
lowing solutions:

– Modelling tools and graph databases running in a man-
aged runtime (JVM5 or CLR6):

– A solution using the plain .NET query API and NMF
to represent the models in memory (Sect. 3.2) and a
solution using the incrementalization system of NMF
(Sect. 3.3).

– Multiple solutions using the model management sys-
tem Hawk (Sect. 3.4).

– A solution using the incremental reference attribute
grammar tool JastAdd (Sect. 3.5).

– A solution using the model transformation language
YAMTL (Sect. 3.6), with a batch variant and two
incremental variants (implicit/explicit incremental-
ity).

– A batch solution using theATLmodel transformation
language with the EMFTVM batch execution engine
(Sect. 3.7).

– A solution written in Xtend (Sect. 3.8).
– Two incremental solutions based on AOF (Sect. 3.9):

(1) the AOF solution with Xtend surface language,
(2) the ATL Incremental solution with ATL surface
language.

– Batch and incremental solutions using the Neo4j
graph DBMS (Sects. 3.10–3.11).

– Tools using relational or matrix-based representations,
running on native runtimes:

– Batch and incremental solutions using the Post-
greSQL relational DBMS (Sects. 3.12–3.13).

– Batch and incremental solutions formulated in lin-
ear algebra using the GraphBLAS API and the
SuiteSparse:GraphBLAS library (Sects. 3.14–3.15),
implemented in C++.

– A solution using the Differential Dataflow program-
ming model implemented in Rust (Sect. 3.16).

5 Java Virtual Machine, the Java runtime.
6 Common Language Runtime, the .NET runtime.

In broad terms, there have been recurrent approaches for
solving the two queries. To help reduce the length of the
solution descriptions, a first subsection will provide a broad
categorization of the approaches followed by the various
solutions for each query. This will be followed by a sub-
section for each solution: it will start with a description of
the used tool, followed by detailed explanations on how they
implemented the queries. Given that most solutions have
been developed by the tool authors or expert developers, we
assume that the solutions represent the best or close to opti-
mal solution possible for each tool.

Solutions created during the contest were described in
the proceedings of the event [35]. Preliminary version of
the Neo4j and GraphBLAS solutions was discussed in [29]
and [28], respectively.

3.1 Common solution approaches

Further examination of the various solutions showed that sev-
eral common patterns were recurrent through the approaches
chosen to solve the two queries. In this section, we will
provide a broad classification that will be used in the solu-
tion descriptions, in order to allow them to focus on their
technology-specific aspects.

3.1.1 Query 1: Most controversial posts

The solutions for this query can largely be characterized
across two dimensions: whether they were incremental in
their maintenance of the scores, and how they maintained
the set of the top three elements. Table 1 summarizes this
classification.

Regarding the first dimension, we acknowledge similarly
to Giese and Wagner [36] that there can be different degrees
of incrementality in a transformation.7 Specifically, we con-
sider these three variants:

– Non-incremental or batch solutions, which re-compute
the scores from scratch after each change.

– Partially incremental solutions, which re-compute scores
of Posts impacted by changes from scratch.

– Fully incremental solutions that update the scores of the
Posts impacted by changes as needed, without recom-
puting them from scratch (for instance, a new like would
simply increase the previous score by 1).

In regard to the second dimension, four broad variants
were found:

7 While there are some similarities between our “partially/fully” incre-
mental labels and the “effectively/fully incremental” labels of Giese and
Wagner, we do not claim our definitions to be equivalent, as they are
specific to these queries.

123

760 G. Hinkel et al.

Table 1 Classification of approaches for Q1, ordered by solution name
and support for incrementality

Solution Incrementality Sorting

AOF ⊗ Incremental

ATL ◯ Full

ATL incremental ⊗ Incremental

Differential Dataflow ⊗ Full

GraphBLAS ◯ Offline top-x

GraphBLAS incremental ⊗ Offline top-x

Hawk ⊘ Full

Hawk (IU) ⊘ Full

Hawk (IUQ) ⊘ Online top-x

JastAdd ⊘ Offline top-x

Neo4j ◯ Offline top-x

Neo4j incremental ⊗ Incremental

NMF reference ◯ Full

NMF incremental ⊗ Incremental

PostgreSQL ◯ Online top-x

PostgreSQL incremental ⊗ Online top-x

Xtend ◯ Online top-x

YAMTL-B ◯ Online top-x

YAMTL-II ⊘ Online top-x

YAMTL-EI ⊗ Online top-x

Notation: ⊗ yes; ⊘ to some extent; ◯ no

– Full sorting solutions, which use a standard sorting algo-
rithm (typically the one in the standard libraries for the
chosen language) to sort the elements by score, incurring
a cost of O(n log n).

– Incremental sorting solutions, which use a dedicated data
structure to maintain the elements sorted as they appear
and as their individual scores change (e.g. a balanced
search tree).

– Offline top-x solutions, which keep in memory the full
list of scores and do a single pass over the elements,
maintaining only the top-x elements in an auxiliary list.
This has a reduced cost of O(n).

– Online top-x solutions, which only keep in memory the
Posts with the top-x scores at any time. This effectively
has the same sorting cost of O(n), but reduces the amount
of memory needed.

Note that the online top-x is only feasible due to the fact
that the possible changesmentioned inSect. 2.3 never remove
likes or delete comments: this means that scores are mono-
tonically increasing. This optimization will typically be one
that a generic “top-x” incremental operator would not do, as
the sorting key could go down as well as up in value in the
general case.

3.1.2 Query 2: Most influential comments

The solutions can be characterized across three dimensions:
whether they maintained the set of connected components in
the graph incrementally, the approach used to compute the
set of connected components, and how they sorted the scored
results. The general classification is summarized in Table 2.

For the first dimension of incrementality, this is generally
easier than in the previous solution, as it is simply whether
after each change, they update the set of connected compo-
nents, or re-compute it. For the second dimension, five broad
approaches were followed:

– The most popular approach was to reuse Tarjan’s algo-
rithm for computing the set of connected components
in a graph [84], which has a worst-case performance of
O(|V | + |E |).

– The next most popular approach was a naive recomputa-
tion of the component that each node belonged to after
each change, by using breadth-first or depth-first traver-
sals from that node.

– Some solutions took advantage of the fact that the
changes never remove links, using a simpler union-find
data structure and using the union operation whenever a
new edgewas added. In a way, this is similar to how some
solutions of query 1 used this “monotonically growing”
graph to simplify the way to maintain the top-x elements.

– There were a few individual solutions that used special-
ized algorithms, such as FastSV [88], or label propaga-
tion.

The third dimension is the approach followed to compute
the top scoring results, which uses the same four broad vari-
ants as in Sect. 3.1.1.

3.2 Reference solution: C# query syntax

As reference, we use a solution using NMF [45,50] for the
model representation and the standard .NET collection oper-
ators through the C# query syntax. During the TTC and
throughout the remainder of this paper, this solution is used
as a reference in terms of performance and understandability
as it represents a solution if one just uses what mainstream
programming languages (in this case C#) can provide with-
out a dedicated incremental model query technology.

3.2.1 Tool description

The query syntax and the underlying collection operators are
features built into theC# programming language and actively
used by millions of developers.

123

A cross-technology benchmark for incremental graph queries 761

Table 2 Classification of approaches for Q2, sorted by tool and incrementality

Solution Incremental conn. components Algorithm Sorting

AOF ⊗ Breadth-first traversal Incremental

ATL ◯ Depth-first traversal Full

ATL incremental ⊗ Breadth-first traversal Incremental

Differential Dataflow ⊗ Fixed-point label propagation Full

GraphBLAS ◯ FastSV Offline top-x

GraphBLAS incremental ⊘ FastSV on overestimation + merge Online top-x

Hawk ◯ Tarjan Full

Hawk (IU) ◯ Tarjan Full

Hawk (IUQ) ◯ Tarjan Online top-x

JastAdd ⊘ Depth-first/Kosaraju Offline top-x

Neo4j ◯ Union-find variant Offline top-x

Neo4j incremental ⊗ Breadth-first traversal Incremental

NMF reference ◯ Tarjan Full

NMF incremental ⊗ Edge changes Incremental

PostgreSQL ◯ Breadth-first traversal Online top-x

PostgreSQL incremental ⊘ Overestimation + breadth-first traversal Online top-x

Xtend ◯ Tarjan Online top-x

YAMTL-B ◯ Weighted quick-union-find with path compression Online top-x

YAMTL-II ⊗ Weighted quick-union-find with path compression Online top-x

YAMTL-EI ⊗ Weighted quick-union-find with path compression Online top-x

Notation—⊗ yes; ⊘ to some extent; ◯ no. Overestimation means that all connected components are re-computed that might be affected by the
changes

3.2.2 Query 1

1 string.Join('|',
2 (from post in SocialNetwork.Posts
3 let score = post.Descendants().OfType<Comment>()
4 .Sum(c => 10 + c.LikedBy.Count)
5 orderby (score, post.Timestamp) descending
6 select post.Id).Take(3));

Listing 1 A solution for Q1 using the standard collection operators of
.NET.

The reference solution for Q1 is depicted in Listing 1. It is
a full sorting batch implementation. Lines 3–4 of this listing
compute the score of a given Post by summing up the scores
for the Comments of a given Post. To get all Comments of a
Post, the solution simply uses the Descendants operation
available to any NMF model element and combines it with
a simple type filter. This implicitly utilizes the composition
hierarchy to obtain a collection of all elements contained
somewhere in the given Post. Line 5 simply states that the
collection of Posts should be ordered by the score and the
timestamp, before Line 6 specifies that we are only interested
in the first three entries.

3.2.3 Query 2

1 string.Join('|',

2 (from comment in SocialNetwork.Descendants().OfType<Comment>()

3 let layering = Layering<IUser>.CreateLayers(

4 comment.LikedBy,

5 u => u.Friends.Intersect(comment.LikedBy))

6 let score = layering.Sum(l => Square(l.Count))

7 orderby (score, comment.Timestamp) descending

8 select comment.Id).Take(3));

Listing 2 A solution for Q2 using the standard collection operators of
.NET and an implementation of Tarjan’s algorithm.

The reference solution for Q2 is depicted in Listing 2, a full
sorting batch implementation using Tarjan’s algorithm. It is
very similar to Listing 1 in its overall structure except for the
slightly more complex score calculation due to the required
computation of connected components. For this, we are
using the class Layering, an implementation of Tarjan’s
algorithm [84]. This implementation requires specifying the
underlying graph through its nodes (for each Comment, this
is the set of Users that have liked the Comment) and a func-
tion obtaining incident nodes of a given node (in this case the
friends of a given User that have also liked the Comment).
The result of the scoring computation is then again ordered
and the IDs of the first three elements are returned.

123

762 G. Hinkel et al.

3.3 NMF incremental

3.3.1 Tool description

NMF Expressions [46,52] is an incrementalization system
that uses the feature of the C# language to compile lambda
expressions intomodels of the code, instead ofmachine code.
These models are then used to derive a dynamic dependency
graph (DDG) from a given expression and observe changes.
These changes originate from elementary update notifica-
tions and are propagated through the dependency graph.

Based on the underlying formalization as a categorial
functor, NMF Expressions is able to include custom incre-
mentalizations of functions and includes a library of such
manually incrementalized operators, including most of the
Standard Query Operators (SQO).8

3.3.2 Query 1

While NMF Expressions includes an incrementalization of
most SQOs, the Takemethod used in the reference solution
for Q1 is not supported, same as any other query operators of
the SQO that deal with indices. The reason for this is that it
is costly to find out the index of an element in, for example,
a filtered, unsorted list given the index in the source collec-
tion. This always requires a linear scan; meanwhile, the SQO
implementations generally try to propagate changes in con-
stant or near constant time (logarithmic effort for updating
sorted lists). Therefore, the fact that Take is not supported is
simply because it cannot be implemented efficiently, at least
not in the general case.

However, we identified top-x queries, i.e. analyses that
sort elements for a given criteria and then report on a small
number of elements with the best scores, as a rather com-
mon pattern. Therefore, we added dedicated support for this
kind of analysis operators into NMF. This operator is called
TopX. It is essentially a combination of an incremental sort
(using balanced binary search trees) and a simple poll for
the first x elements upon any change of the balanced binary
search tree, assuming that x is small (in comparison with
the size of the search tree). The computation of the scores
is, however, using the incrementalization system and fully
incremental.

8 http://msdn.microsoft.com/en-us/library/bb394939.aspx. Even
though the term SQO may not be common to many developers, the
syntax is very commonly used in the .NET community, in particular
through the LINQ technology that translates queries to SQL or other
declarative languages.

1 query = Observable.Expression(() =>
2 SocialNetwork.Posts.TopX(3,
3 post => ValueTuple.Create(
4 post.Descendants().OfType<Comment>()
5 .Sum(c => 10 + c.LikedBy.Count),
6 post.Timestamp))
7);

Listing 3 Incremental NMF Solution for Q1.

The solution to Q1 is shown in Listing 3.We simply calculate
the top-3 Posts where the score of a Post is calculated as a
tuple of the score and the timestamp in order to break ties. The
result of the lambda expression in Line 2 is an array of tuples
of the Posts and their scores (actual score and timestamp).
Lines 3 to 6 determine how this tuple is created: we iterate
over all Comments in a Post and, for each, sum up 10 plus
the number of Users that have liked the Comment.

Lines 1 and 7 surround this lambda expression with a call
to NMF Expressions to obtain an incrementalization of this
analysis. With that call, we tell NMF Expressions to create
a DDG for us. The return value of this function is the root
node of this DDG. This node implements a generic interface
INotifyValue that provides the current analysis result as
well as an event to notify clients when the analysis result
changes. In the benchmark solution, we do not make use of
this event but repeatedly query the current value of the DDG
node. This call is fast, because each node in the DDG always
references its current value.

3.3.3 Query 2

The solution for Q2 is very similar to the solution of Q1,
except for the fact that for each Comment, it involves find-
ing connected components in a graph spanned by Users that
liked the Comment and their friendship relations. There is
no incremental implementation for finding connected com-
ponents available that is built into NMF.

From an algorithmic point of view, the incrementalization
of the connected components will be rather simple: we cache
the current set of connected components and re-compute
whenever an edge is added to the graph between two nodes
of different components. This incremental algorithm can be
isolated into a class ConnectedComponents that is the-
oretically reusable in different contexts.

With this algorithmics class, we can solve Q2 as in List-
ing 4. Similar to Q1, the solution is an incremental solution
with incrementally maintained full sort and an incremental
version of Tarjan’s algorithm. In Lines 1 and 2, we create
a function that, given a Comment and a User, creates the
collection of Users who (1) are friends with the given User
and (2) like the Comment. Because we do not care about
changes of the incident function, the function to get the con-
nectedUsers is used as compiled code, using the Func class.
This is slightly more efficient than the format of lambda

123

http://msdn.microsoft.com/en-us/library/bb394939.aspx

A cross-technology benchmark for incremental graph queries 763

1 Func<IComment, Func<IUser, IEnumerableExpression<IUser>>>
2 friendsBuilder = c => (u =>

u.Friends.Intersect(c.LikedBy));
3
4 query = Observable.Expression(() =>
5 SocialNetwork.Descendants().OfType<IComment>()
6 .TopX(3, comment => ValueTuple.Create(
7 ConnectedComponents<IUser>.Create(
8 comment.LikedBy,
9 friendsBuilder(comment))

10 .Sum(group => Squared(group.Count())),
11 comment.Timestamp))
12);

Listing 4 Incremental NMF Solution for Q2.

expressions that NMF Expressions can use for the incremen-
talization. However, NMF Expressions currently has some
problems to integrate compiled lambda expressions, so we
need to specify this function separately, outside the scope of
NMF Expressions.

In Lines 4 and 12, we frame the actual analysis with
NMF Expressions, allowing it to create the DDG for the
inner analysis that is in Lines 5 to 11. In particular, we first
iterate all elements in the social network model and filter
for Comments in Line 5. From these, we pick the topmost
elements according to the tuple of scores and timestamps,
similar to the solution of Q1. To calculate the score of a Post,
we simply run the analysis of connected components where
the incident nodes of a givenUser are the subset of his friends
that also liked that Comment (Lines 7 to 9). Given these con-
nected components, we calculate the sumof the squared sizes
(Line 10) and break ties using the timestamps (Line 11).

3.3.4 Transactions and parallelism

NMF Expressions has some support for transactions and par-
allelism. The support for transactionsmeans that aDDGnode
is only processed if all of its dependencies have been pro-
cessed. Because each transaction may invalidate a different
set of DDG nodes, this implies that changes in the DDG need
to be processed in a two-pass fashion: in the first pass, the set
of potentially affected DDG nodes is calculated, while in the
second pass, the changes are actually propagated. Because
the transactional behaviour guarantees that each DDG node
is only updated atmost once in each transaction, the overhead
of two passes may be saved. However, whether or not this
is the case largely depends on the analysis and the change
sequence.

Q1 cannot profit from transactions at all, because whether
the changes to any DDG node come at once or one after
another does not matter. For Q2, this is slightly different
because we are recalculating the connected components in
multiple cases. If a change sequence contained multiple
events that would cause to re-compute the connected com-

ponents for a Comment, this calculation is only needed once
if the changes are propagated in a transaction.

The transactional support inNMFExpressions is very easy
for a developer to use: all that needs to be done is to put
the changes inside a transaction. Because in the scope of
the benchmark, these changes come in a dedicated change
sequence object, we just need to wrap the application of such
a change sequence in a transaction as done in Listing 5.

1 ExecutionEngine.Current.BeginTransaction();
2 changes.Apply();
3 ExecutionEngine.Current.CommitTransaction();

Listing 5 Wrapping the application of the change sequence in a
transaction.

Lastly, NMF Expressions also allows to propagate the
changes within such a transaction in parallel. This is done by
changing the execution engine implementation as depicted
in Listing 6.

1 ExecutionEngine.Current = new ParallelExecutionEngine();

Listing 6 Enabling parallel change propagation in NMF.

The parallel change propagation then allows changes
within a transaction to be propagated in parallel on differ-
ent threads, synchronizing at each DDG node.

3.4 Hawk

3.4.1 Tool description

Eclipse Hawk is a tool to manage models that have been
fragmented (e.g. for versioning purposes) by incrementally
indexing the various connected fragments into a common
graph database [8]. Hawk can watch over a local folder or
a version control system and update the graph whenever the
model files change. For this case study, Hawk was config-
ured with the ability to index EMF models, maintain a graph
database using one of three backends (Neo4j, SQLite, or
Greycat [42]) and run queries in a dialect of the Epsilon
Object Language (EOL) [61]. Greycat implements a graph-
oriented data model on top of existing key-value stores, such
as LevelDB or RocksDB. For the present work, LevelDBwas
chosen as the underlying key-value store.

Further,Hawk provides the concept of “derived attributes”,
which extend a type with pre-computed expressions which
are updated incrementally as the graph changes. These
attributes are also indexed for fast lookup.

3.4.2 Query 1

Several versions of the first query were implemented. For
the sake of clarity, we will call these “batch”, “incremental
update” (IU) and “incremental update and query” (IUQ). As

123

764 G. Hinkel et al.

mentioned in Table 1, all Hawk variants have partial incre-
mentality. Batch and IU use full result sorting, and IUQ uses
an “online top-x” approach.

The batch mode is the most direct use of Hawk. In this
version, the tool is told to watch a folder that contains the ini-
tial version of the model. An EOL script replays the change
sequences on the model, and Hawk updates the graph based
on the new versions of the model. The Post type is extended
with the score derived attribute, which is updated incre-
mentally by Hawk. The definition of score is as follows,
using self as the Post being extended:

1 return self.closure(s | s.comments).flatten
2 .collect(s | 10 + s.likedBy.size).sum();

Listing 7 Hawk Q1: Derived attribute score for Post.

With this derived attribute, it is simple to implement the
main query itself. However, in order to sort the Posts with
the Java Collections sortmethod, a native Java class imple-
menting the Comparator interface is needed:

1 var scored = Post.all.collect(p | Sequence {

2 p.id, p.score, p.timestamp}).asSequence;

3 Native('java.util.Collections').sort(scored,

4 new Native('org.hawk.ttc2018.queries.ResultComparator'));

5 return scored.subList(0, scored.size.min(3));

Listing 8 Hawk Q1: Use of derived attribute score in the batch and
incremental update solutions.

The incremental update mode uses an alternative graph
update class, ChangeSequenceAwareUpdater. This
speeds up the process by directly applying the change
sequence on the graph, without touching the original model
file. The query itself remains the same as the one in the batch
mode, using the same derived attribute.

Finally, the incremental update and query mode reuses the
same custom updater, while changing the way the query is
run.Agraph change listener is attached toHawk: on each new
model version, only the updated Posts are re-scored before
selecting the new top-3 elements. The re-scoring is done by
invoking the expression in Listing 7 on each Post that has
been updated.

3.4.3 Query 2

The second query goes through the same three versions:
batch, incremental update and incremental update and query.

The actual query is noticeably more complex, since it essen-
tially requires implementing Tarjan’s strongly connected
components algorithm [84] in about 37 lines of EOL. As
indicated in Table 2, Tarjan is re-run after each change, and
IUQuses an “online top-x” sorting approach instead of doing
a full sort.

In this case, theComment class is extendedwith a score
derived attribute. A high-level view of the query shows how
it loops over the Users that liked the Comment, detecting
connected components in each of them and computing the
score of the Comment as the sum of the squares of the sizes
of each component:

1 var components : Sequence;
2 var indexes : Map;
3 for (user in self.likedBy) {
4 if (not indexes.containsKey(user.id)) {
5 // strongconnect is 37 lines of EOL code
6 user.strongconnect(self);
7 }
8 }
9 return components.collect(c | c.size * c.size).sum();

Listing 9 Hawk Q2: Outline of the derived attribute score for
Comment.

The queries for the batch and incremental update mode
are the same, with a collection of all the IDs, scores and
timestamps, and sorting to get the top-3 elements:

1 var scored = Comment.all.collect(c | Sequence {

2 c.id, c.score, c.timestamp }).asSequence;

3 Native('java.util.Collections').sort(scored,

4 new Native('org.hawk.ttc2018.queries.ResultComparator'));

5 return scored.subList(0, scored.size.min(3));

Listing 10 Hawk Q2: Use of derived attribute score in the batch and
incremental update solutions.

The incremental update and query mode works the same
as in the previous query. A graph change listener detects the
Comments that should be re-scored, and the new scores are
merged with the old ones to keep the top-3 elements up to
date.

3.5 JastAdd

3.5.1 Tool description

AttributeGrammars [60] can be used to describe the structure
of context-free data along with their static semantics. Refer-
ence Attribute Grammars (RAGs) [43] extend this paradigm
such that attributes are allowed to return other nodes of the
abstract syntax tree (AST) as a result of their computation.

The tool JastAdd [44] is based on Reference Attribute
Grammars and offers non-terminal attributes [86] and circu-
lar attributes [62], used to represent a part of themodel and to
compute parts of the second query, respectively. In JastAdd,
a grammar specified in BNF with inheritance and attributes
specified written in Java are woven together to generate plain

123

A cross-technology benchmark for incremental graph queries 765

Java code. It contains a Java class for every non-terminal
specified within the grammar, uses the code of the attributes
inside its methods and has additional boilerplate code, e.g.
to handle caching.

JastAdd does not work with EMF models directly, but
requires users to transform the input metamodel into an AST
representation using a dedicated syntax [67].

1 abstract ModelElement ::= <Id:Long> ;

2 SocialNetwork : ModelElement ::= User* Post* ;

3 User : ModelElement ::= <Name:String> ;

4 abstract Submission : ModelElement ::= <Timestamp:Long>

<Content:String> Comment* ;

5 Comment : Submission ::= /<Post:Post>/ ;

6 Post : Submission ::= ;

7 rel User.friends* -> User ;

8 rel User.submissions* -> Submission ;

9 rel User.likes* <-> Comment.likedBy* ;

Listing 11 JastAdd Grammar for a SocialNetwork.

Listing 11 shows the grammar representing themetamodel
ofFig. 1.All identifiable nodes inherit fromModelElement
giving them a unique number. Also, the root node
SocialNetwork is identifiable to later be able to insert
new Users and Posts. The two non-containment references
friends and submissions are replaced by explicit unidirec-
tional relations, whereas the likes and likedBy edges are
modelled using an explicit bidirectional relation (Line 9 in
Listing 11).

3.5.2 Query 1

To solve the first query, all Comments referring to a Post
are computed, and afterwards, the score of this Post can be
calculated with the following attribute:

1 syn int Post.score() {
2 int result = 0;
3 for (Comment comment :

commentsForPost()) {
4 result += 10 +

comment.likedBy().size();
5 }
6 return result;
7 }

After gathering all scores, a simple iteration over all Posts
and keeping the top-3 is performed to get the final result.

3.5.3 Query 2

For the second query, two variants are evaluated, show-
ing two different approaches within the JastAdd solution.
Those variants differ in the way how the Users liking
the same Comment are calculated. For the first variant,
a circular attribute User.getCommentLikerFriends
(shown below) is used.

1 syn Set<User> User.getCommentLikerFriends(Comment comment) circular

[new HashSet<User>()];

2 eq User.getCommentLikerFriends(Comment comment) {

3 Set<User> s = new HashSet<>();

4 s.add(this);

5 for (User f : friends()) {

6 for (Comment otherComment : f.likes()) {

7 if (otherComment == comment) {

8 s.add(f);

9 for (User commentLikerFriend :

10 f.getCommentLikerFriends(comment)) {

11 s.add(commentLikerFriend);

12 }

13 }

14 }

15 }

16 return s;

17 }

This attribute will start with the set containing the User it
should compute the friends for. Then, if another friend likes
the Comment, it adds this friend and calls itself recursively.
The recursion always terminates as the number of Users is
finite and the circular attribute is only invoked again if the
returned set has changed.

The second variant follows the approach described in
[66] highlighting reuse of application-independent analy-
sis. In fact, the algorithm for computing an SCC presented
in that work was reused without modification for solving
the subproblem of query 2 to compute Users liking the
same Comment. To integrate it, a mapping from User to
Component was established, while the friend relation-
ship served as a basis to connect those components.

To compute the score of aComment using the secondvari-
ant, the squared size of every set of components is summed:

1 refine Queries eq Comment.score() {

2 int score = 0;

3 Set<Set<Component>> sccs = this.toDependencyGraph().SCC();

4 for (Set<Component> userSet : sccs) {

5 int usize = userSet.size();

6 score += usize * usize;

7 }

8 return score;

9 }

To get the final result, the same iteration as for the first
query is used (not shown here).

3.6 YAMTL

3.6.1 Tool description

YAMTL [16] is a model transformation language for EMF
models,with support for incremental execution [18], designed
as an internal DSL of Xtend. The solution to the Social
Media benchmark uses query rules that only consist of
input patterns, whose filters define the queries, and uses the
YAMTL pattern matcher for evaluating them. Queries are
defined using Xtend and the Java Collections Framework.
TheYAMTL solutions implement the online top-x approach,
keeping the best three candidates at all times, with the oper-
ation bestThreeCandidates.

123

766 G. Hinkel et al.

Three variants of the solutions have been implemented:
batch (YAMTL-B), implicitly incremental (YAMTL-II) and
explicitly incremental (YAMTL-EI). YAMTL-B disables
dependency tracking enabling a faster initial transforma-
tion but subsequent updates compute queries from scratch.
YAMTL-II detects which matches need to be re-computed
according to updates to the input model, without requiring
additional logic in the queries. For each impacted match, the
filter expression is re-evaluated from scratch, and the solution
is therefore partially incremental. YAMTL-EI exposesmodel
updates affecting an impactedmatch so that these can be pro-
cessed explicitly in the filter expression, and the solution is
therefore fully incremental. The additional logic that handles
incremental updates explicitly in YAMTL-EI has been high-
lighted in grey. YAMTL-B and YAMTL-II solutions can be
obtained by deleting this code. Enabling incremental evalua-
tion and explicit handling of updates is done via configuration
parameters.

3.6.2 Query 1

Q1 is implemented as a query rule, whose input pattern is
formed by an in element that will match Posts that con-
tain Comments as indicated in the filter. In particular, the
EMF method post.eAllContents() fetches all contained
Comments within the matched Post. The implementation of
the query is shown in Listing 12.

1 rule('Q1').in('post', SN.post).filter[
2 val post = 'post'.fetch as Post
3 var score = 0
4 if (post.comments?.size > 0) {

5 val map = this.fetch(’dirtyObjects’)

6 as Map<EObject,List<YAMTLChangeType»

7 if (map === null || map.isEmpty) {

8 val allComments = post.eAllContents
9 while (allComments.hasNext) {

10 score += 10 + (allComments.next
as Comment).likedBy.size

11 }

12 }

13 else {

14 for (comment: map.keySet) {

15 score += 10 + (comment as Comment).likedBy.size

16 }

17 }

18 threeBestCandidates.addIfIsThreeBest(post,
score)

19 return true
20 }
21 false
22].query

Listing 12 Q1 in YAMTL.

The expression this.fetch('dirtyObjects') returns
the objects that are added under the Post object being
matched. For each such added object that is a Comment,

the score is computed. The solution to Q2 shows how this
case could be handled.

3.6.3 Query 2

The computation of connected components has been imple-
mented usingSedgewick andWayne’sweighted quick union-
find with path compression algorithm [80].9 The query,
including logic handling updates explicitly, is shown in
Listing 13. The instantiation of the class
FriendComponentUtil_UF computes the connected com-
ponents of the graph whose nodes are the set of Users
who liked the Comment, i.e.comment.likedBy. Comment
scores are stored so that they can be subject to updates.

The expressionthis.fetch('dirtyFeatures') returns
the collection of features for the Comment being matched,
which have been updated so that they can be handled explic-
itly. The original union find algorithm has been extended
to enable incremental updates of the computed components
when a Comment is liked by a User (addLikedBy()) and
when a new friendship is declared (addFriendship()).
When there are less than threeCommentswith a score differ-
ent from zero, Comments from candidatesWithNilScore

are used to complete the list.

1 rule('Q2').in('comment', SN.comment).filter[

2 val comment = 'comment'.fetch as Comment

3 var score = 0

4 var matches = false

5 if (comment.likedBy.size > 0) {

6 var FriendComponentUtil_UF fc

7 fc = componentMap.get(comment)

8 if (fc === null) {

9 fc = new FriendComponentUtil_UF(comment.likedBy)

10 componentMap.put(comment, fc)

11 } else {

12 val map = this.fetch(’dirtyFeatures’)

13 as Map<EObject,List<YAMTLFeatureValueChange»

14 for (e: map.entrySet) {

15 for (fv: e.value) {

16 switch(fv.featureName) {

17 case ’likedBy’: fc.addLikedBy(fv.value as User)

18 case ’friends’: fc.addFriendship(e.key as User,

19 fv.value as User)

20 }

21 }

22 }

23 }

24 score = fc.score

25 threeBestCandidates.addIfIsThreeBest(comment, score)

26 matches = true

27 } else {

28 if (threeBestCandidates.size <= 3)

29 candidatesWithNilScore.add(comment)

30 }

31 matches

32].query

Listing 13 Q2 in YAMTL.

9 This solution is different from the one presented at the contest [17]
and has been developed to facilitate the analysis together with the other
tools involved in this study.

123

A cross-technology benchmark for incremental graph queries 767

1 query topPosts = SN!Post.allInstances()->sortedBy(e | e.timestamp)->sortedBy(e |
e.score)->reverse()->subSequence(1, 3);

2 helper context SN!Submission def : allComments : Sequence(SN!Comment) =
3 self.comments->union(self.comments->collect(e | e.allComments)->flatten());
4 helper context SN!Post def : countLikes : Integer = self.allComments->collect(e | e.likedBy.size())->sum();
5 helper context SN!Post def : score : Integer = 10*self.allComments->size() + self.countLikes;

Listing 14 Q1 in ATL.

1 query topComments = SN!Comment.allInstances()->sortedBy(e | e.timestamp)->sortedBy(e | e.score)->reverse()->subSequence(1,
3);

2 helper context SN!Comment def : score : Integer = self.allComponents->collect(c | c.size()*c.size())->sum();
3 helper def : allFriends(u: SN!User, s:Sequence(SN!User)) : TupleType(component : Sequence(SN!User), remaining :

Sequence(SN!User)) = ...
4
5 helper context SN!Comment def : allComponents : Sequence(Sequence(SN!User)) =
6 self.likedBy->iterate(u;
7 acc : TupleType(components : Sequence(Sequence(SN!User)), visited : Sequence(SN!User)) =
8 Tuple{components=Sequence{}, visited=Sequence{}} |
9 if (acc.visited->includes(u))

10 then acc
11 else let component : TupleType(component : Sequence(SN!User), remaining : Sequence(SN!User)) =
12 thisModule.allFriends(u, self.likedBy->excluding(acc.visited)).
13 component in
14 Tuple{components = acc.components.append(component), visited = acc.visited->union(component)}
15 endif).components;

Listing 15 Q2 in ATL.

3.7 ATL

3.7.1 Tool description

ATL [55] is one of the most common model transformation
languages. The solution to the Social Media benchmark only
uses ATL queries, i.e. the ATL constructs that allow users to
define expressions in the ATL flavour of OCL. ATL queries
can call helper OCL functions and libraries and are evaluated
over the source model(s) by the ATL virtual machine, that is
optimized for model operations.

The vanilla ATL that was used to implement the bench-
mark does not have support for incremental execution.
Classical engines that execute ATL incrementally [56,63] do
not support the incremental evaluation of OCL expressions.
Changes on the source model trigger the recomputation only
of the impacted OCL expressions, but the whole expressions
are re-computed. In Sect. 3.9, we describe a solution that
achieves incremental OCL expression evaluation for ATL
code, by compiling it towards AOF.

The solution is a pure ATL query and executed on the
most recent ATL virtual machine (EMFTVM). Since ATL
queries are OCL expressions, this solution includes a com-
plete encoding of the case study as declarative and functional
OCL code.

3.7.2 Query 1

The full code for Q1 is presented in Listing 14. The recursive
allComments helper gathers the set of Comment for a
given Post, and a score for the Post is computed by the given
formula (Line 11) considering the number of Comments and
likes to these Comments. The main query topPosts sorts
the set of Posts by score (and timestamp) and picks the top-3
Posts.

3.7.3 Query 2

The code for Q2 is shown in Listing 15. In particular,
the allComponents helper implements a one-pass algo-
rithm for the detection of all the connected components.
The algorithm iterates on the liker Users: if the liker has
not been visited, then compute a new component by the
allFriends helper. The allFriends helper (whose
implementation is not shown in the listing) is just a stan-
dard depth-first traversal, limited to the subgraph s. Finally,
a score is computed for each Comment (Line 5), and the
top-3 Comments are identified similarly to Q1 (Lines 1–2).

123

768 G. Hinkel et al.

3.8 Xtend

3.8.1 Tool description

Xtend10 [13] is a modern Java dialect suited for rapid proto-
typing thanks to its flexibility and expressiveness. Like ATL,
the vanilla Xtend does not support incremental execution.

3.8.2 Query 1

We have written a first batch implementation of Q1 andQ2 in
pure Xtend using the Eclipse Modeling Framework (EMF)
plugin to perform loading and navigation into models. In a
second step,we optimize this solution using Java 8Streams to
parallelize some operations on collections. The Xtend code
used for the implementation of Q1 (Listing 16) shows that
this mechanism is used two times: (1) to process all Posts in
parallel and (2) to compute the sum of all likes received by
Comments of a Post in the computeScoremethod. For bet-
ter performance, we have also implemented a specific stream
operation, called Greatest3, to avoid sorting the whole list
of Posts while only the top-3 Posts can be considered.

1 def private queryQ1() {

2 return socialNetwork.posts.parallelStream.collect(Collector.of([

3 new Greatest3(Comparator.comparingInt[

4 if(it === null) { Integer.MIN_VALUE } else { computeScore}

5].thenComparing(Comparator.comparing[timestamp])

6)

7], [$0.add($1)], [$0.merge($1)], [asList])).map[id].join("|")

8 }

9 def private computeScore(Post p) {

10 val comments = p.eAllContents.filter(Comment).toList

11 return comments.size*COMMENT_SCORE +

12 comments.parallelStream.mapToInt[likedBy.size].sum*LIKE_SCORE

13 }

Listing 16 Q1 in Xtend with Java Streams.

3.8.3 Query 2

The code of Q2 (Listing 17) is similar to the implementation
of Q1 except for the computeScoremethod. Indeed, the sec-
ond query requires to find connected groups ofUsers through
the friend relationship. For this purpose, the computeScore

method uses a connected components algorithm based on
Tarjan’s algorithm [84].

3.9 AOF and ATL incremental

3.9.1 Tool description

Active operations [9] are OCL-like operations equipped with
incremental propagation algorithms. They may thus be used
to incrementally evaluate OCL expressions [19, Section 5]
such as the one found in ATL-like model transformations. It

10 https://www.eclipse.org/xtend/.

is therefore possible to use active operations to write incre-
mental queries and transformations.

1 def private queryQ2() {

2 return socialNetwork.posts

3 .map[eAllContents.filter(Comment).toList]

4 .flatten.toList.parallelStream

5 .collect(Collector.of([

6 new Greatest3(Comparator.comparingInt[

7 if(it === null) {Integer.MIN_VALUE} else {computeScore}

8].thenComparing(Comparator.comparing[timestamp]))

9], [$0.add($1)], [$0.merge($1)], [asList])).map[id].join("|")

10 }

11 def private computeScore(Comment c) {

12 val layering = new Layering[User u |

13 u.friends.filter[likes.contains(c)]]

14 return layering.CreateLayers(c.likedBy).

15 map[size*size].reduce[$0+$1] ?: 0

16 }

Listing 17 Q2 in Xtend with Java Streams.

The AOF implementation [53] of active operations sup-
ports EMF models and is based on the Observer design
pattern, although alternative execution strategies [22] have
been explored. It is implemented in Java and can be used from
Java, Xtend, or ATL code. Each mutable value is wrapped in
an observable box, which is either a collection, or a singleton
value.

Though AOF provides enough basic active operations to
implement the case study, creating specific operations some-
times helps [54] achieve a better performance. For this case
study, we developed four new operations:

1. sortedBy returns a sorted copy of its source collection
using one or more criteria using balanced binary trees.

2. take returns the n first elements of a collection.
3. allContents retrieves all model elements contained in a

given source element, filtering them by type.
4. layering implements an incremental connected compo-

nent algorithm.

From these, layering is more specific to some graph-related
transformations, and the others are relatively generic.

We present two variants of this solution:

1. The AOF solution is written in Xtend, as shown in List-
ings 18 and 19.

2. TheATL Incremental solution is written inATL and lever-
ages theATOL [23] compiler that translates it to Java code
that makes use of AOF. It is basically a transliteration of
the Xtend code from Listings 18 and 19 into ATL syntax,
The main advantage of this variant w.r.t. the AOF vari-
ant is that it makes it possible to use the declarative ATL
syntax.

3.9.2 Query 1

The implementation of Q1 in AOF is depicted in Listing 18.
The actual computation is stored in a hash table such that it

123

https://www.eclipse.org/xtend/

A cross-technology benchmark for incremental graph queries 769

does not have to be computed repeatedly. Within the score
calculation, we use a method that iterates through the con-
tainment hierarchy in conjunction with a type filter, similar
to the NMF solution. To calculate the score based on likes,
we use the lifting mechanism of OCL that implicitly lifts the
property likedBy to collections.

1 def private queryQ1() {

2 return socialNetwork._posts

3 .sortedBy([computeScore], [_timestamp.asOne(null)])

4 .take(3).collect[id]

5 }

6 val scoreByPost = new HashMap<Post, IOne<Integer>>

7 def private computeScore(Post p) {

8 return scoreByPost.get(p) ?: {

9 val comments = p._allContents(Comment)

10 val score = comments.size * COMMENT_SCORE +

11 comments.likedBy.size.sum * LIKE_SCORE

12 val r = score.asOne(0)

13 scoreByPost.put(p, r)

14 r

15 }

16 }

Listing 18 Q1 in Xtend using AOF.

The ATL Incremental implementation of Q1 is shown
in [23, Listing 6]. It is very similar to the code from List-
ing 14, with the most notable difference being that the ATOL
compiler does not support the query keyword.

3.9.3 Query 2

The solution for Q2 is depicted in Listing 19. Again, the
actual score calculation is moved to a helper method. The
score calculation itself is then making use of the layering
operation.

1 def private queryQ2() {

2 return socialNetwork._allContents(Comment)

3 .sortedBy([computeScore], [_timestamp.asOne(null)])

4 .take(3).collect[id]

5 }

6 val scoreByComment = new HashMap<Comment, IOne<Integer>>

7 def computeScore(Comment c) {

8 return scoreByComment.get(c) ?: {

9 val s = c._likedBy.layering[u |

10 u._friends

11 .selectMutable[f | f._likes.select[it == c].notEmpty]

12].collectMutable[it?.size?.square ?: emptyOne].sum

13 scoreByComment.put(c, s)

14 s

15 }

16 }

Listing 19 Q2 in Xtend using AOF.

3.10 Neo4j Batch

3.10.1 Tool description

Neo4j is a graph database management system using the
property graph data model. Such graphs consist of labelled
entities, i.e. nodes and edges, which can be described with
properties encoded as key-value pairs. Neo4j uses theCypher
query language [33] which offers both read and update con-
structs [37]. While the main focus of Neo4j is to run graph

queries in an online transaction processing (OLTP) setup,
it also supports graph analytical algorithms with the Graph
Data Science library11 [71].

1 MATCH (p:Post)

2 OPTIONAL MATCH (p)<-[:COMMENTED*]-(c:Comment)

3 OPTIONAL MATCH (c)<-[:LIKES]-(u:User)

4 RETURN p.id AS id, 10*count(DISTINCT c) + count(u) AS score,

5 p.timestamp AS timestamp

6 ORDER BY score DESC, timestamp DESC LIMIT 3

Listing 20 Neo4j batch implementation of Q1.

3.10.2 Query 1

Q1 c Cypher query in Listing 20. The Cypher language uses
node labels (e.g. Post, Comment, User), edge types (e.g.
COMMENTED, LIKES) to express graph patterns. The query
matches every node with label Post, then all its Comments
via a series of COMMENTED edges, then the Users via direct
LIKES edges. The OPTIONAL MATCH clause denotes an
optional pattern, where variables are set to NULL values if
there is no match. The RETURN clause is used to group and
aggregate. The results are grouped by the id and timestamp
properties of the Posts, aggregated, and then, the top-3 scores
are returned. The aggregation counts the likes using the num-
ber ofUsers (aUser can likemultipleComments) and counts
the number of Comments (DISTINCT is used to remove
duplicate Comments).

1 MATCH (c:Comment) WHERE (c)<-[:LIKES]-(:User)

2 CALL gds.wcc.stream({

3 nodeQuery: "MATCH (c:Comment)<-[:LIKES]-(u:User)(**)

4 WHERE id(c)=" + id(c) + "

5 RETURN id(u) AS id",

6 relationshipQuery: "MATCH (u1:User)<-[:FRIEND]->(u2:User)

7 RETURN id(u1) AS source, id(u2) AS target",(**)

8 validateRelationships: false})

9 YIELD componentId

10 WITH c, componentId, count(componentId) AS componentSize(**)

11 WITH c, componentSize * componentSize AS componentSize_2

12 RETURN c.id AS id, sum(componentSize_2) AS score, c.timestamp

13 ORDER BY score DESC, c.timestamp DESC LIMIT 3(**)

14 UNION ALL

15 MATCH (c:Comment)(**)

16 WHERE NOT (c)<-[:LIKES]-(:User)

17 RETURN c.id AS id, 0 AS score, c.timestamp

18 ORDER BY c.timestamp DESC LIMIT 3(**)

Listing 21 Neo4j batch implementation of Q2.

3.10.3 Query 2

Listing 21 shows the batch solution for Q2 using the variant
of the union-find algorithm [68] implemented in the Neo4j
GraphDataScience library. Theproceduregds.wcc.stream
is used to find connected components of the subgraph given
by Cypher queries matching the nodes and the edges. For
each Commentwith likes, the first Cypher query in Lines 3-
7 selectsUsers who like the Comment, and the second query
selects all FRIEND edges as pairs ofUsers. The library loads

11 https://neo4j.com/docs/graph-data-science/1.5/.

123

https://neo4j.com/docs/graph-data-science/1.5/

770 G. Hinkel et al.

each subgraph into an in-memory projected subgraph before
running the computations.Theprocedure returns the IDof the
component containing the User node. Lines 10–13 calculate
the squared sum of the component sizes and select the top-
3 scores. On Lines 15–18, the query enumerates the top-3
Comments without likes and the UNION of the two sets are
returned. For a detailed comparison of strategies to compute
Q2, we refer the reader to [29].

3.11 Neo4j incremental

3.11.1 Tool description

The incremental solution for Neo4j uses node properties and
new nodes to materialize the result of previous iterations. For
every batch of updates these elements are refreshed, then the
top-3 scores are collected. While Q1 can be computed effi-
ciently with only Cypher constructs, the solution for Q2 uses
the fixed-point calculation, dynamic node manipulation and
reachability procedures of Neo4j’s APOC stored procedure
library.12

3.11.2 Query 1

To incrementally evaluate Q1, we initially compute the score
for each Post as in the Neo4j Batch solution but, instead of
returning it, we store it in the score property as shown in List-
ing 22. Based on this property, the current top-3 scores can
be computed using Listing 25. The score property is indexed
to improve lookup times. After new elements of an update
are inserted, the score property of new Posts is initialized to
zero, Listings 23-24maintain the property for newComment
nodes and LIKES edges, and then, Listing 25 is used to get the
top-3 elements.

1 MATCH (p:Post)
2 OPTIONAL MATCH (p)<-[:COMMENTED*]-(c:Comment)
3 OPTIONAL MATCH (c)<-[:LIKES]-(u:User)
4 WITH p, 10*count(DISTINCT c) + count(u) AS score
5 SET p.score = score

Listing 22 Neo4j incremental implementation ofQ1– initial evaluation.

1 WITH $commentVertex AS c
2 MATCH (p:Post)<-[:COMMENTED*]-(c:Comment)
3 SET p.score = p.score + 10

Listing 23 Neo4j incremental implementation of Q1 – maintenance
after the insertion of new Comment nodes.

1 WITH $likesEdge AS l

2 MATCH (p:Post)<-[:COMMENTED*]-(:Comment)<-[l:LIKES]-(:User)

3 SET p.score = p.score + 1

Listing 24 Neo4j incremental implementation of Q1 – maintenance
after the insertion of new LIKES edges.

12 https://neo4j.com/labs/apoc/.

Fig. 6 ER diagram of the database schema

1 MATCH (p:Post)

2 WHERE p.score >= 0 // query hint to use index

3 RETURN p.id AS id, p.score AS score, p.timestamp AS timestamp

4 ORDER BY score DESC, timestamp DESC LIMIT 3

Listing 25 Neo4j incremental implementation of Q1 – get top-3 results.

3.11.3 Query 2

The incremental Neo4j solution for Q2 materializes the
components of the subgraph for each Comment comm by

converting the ◯
LIKES−−−→◯User Comment

comm edges to a Component

node and inserting two edges:

– ◯
COMPONENT−−−−−−−→◯Comment Component

comm ,

– ◯
USER−−−→◯Component User,

where the Component node connects all Users who know
each other directly or via friends who also liked the
Comment comm. The conversion is executed for each com-
ponent one by one using the fixed-point query execution
mechanism of APOC. To achieve this, first the solution
marks the nodes of each subgraph with dynamically named
labels (Listing 41) and finds reachable nodes using theAPOC
library (Listing 42). The incremental evaluation is performed
by merging the components then maintaining their sizes and
the resulting scores (Listings 43–44).

3.12 PostgreSQL Batch

3.12.1 Tool description

To study the usability and performance of relational database
management systems (RDBMSs), we implemented a batch
solution in PostgreSQL. Figure 6 shows the database schema
capturing the social network model. Instances of each node
type (e.g. Comment) and the edge type with many-to-many
cardinality (friends) are stored in relations (tables) with the
following schemas:

123

https://neo4j.com/labs/apoc/

A cross-technology benchmark for incremental graph queries 771

– comments(id, ts, content, submitterid,parentid)

– posts(id, ts, content, submitterid)

– likes(userid, commentid)

– users(id,name)
– friends(user1id, user2id)

Each relation representing a node has a primary key.
Many-to-many edges are represented in association tables
with two foreign keys. Many-to-one edges are stored as a
foreign key in the table representing the node at the end-
point of the edge with a cardinality of “one”. Additionally,
indexes were defined on the foreign keys. This supports the
SQL optimizer in choosing arbitrary join orders.

Evaluating both Q1 and Q2 require checking transi-
tive reachability between nodes, a common recursive query
which cannot be expressed in first-order logic or relational
algebra [4]. However, it is possible to express such queries
using a relational database by

1. either defining additional data structures and running a
sequence of SQL queries in a loop until reaching a fixed
point [26] or

2. or using SQL:1999’s WITH RECURSIVE construct, which
allows the formulation of recursive queries.

In this solution, we use WITH RECURSIVE as it is widely
available in modern SQL implementations [89].

3.12.2 Query 1

To evaluate Q1, for each Comment, we need to first
find the root Post of the Comment-chain, which is com-
puted as the transitive closure of the Comment–parentid–
Comment/Post edge type.

Having the transitive closure enables us to match the
corresponding 〈Post,Comment,User〉 triples, where the
Comment is a response rooted in the Post and the User is
someone who liked the Comment. We use two left outer
joins to ensure thatPostswithoutComments andComments
without likes are kept with NULLs. This is followed by an
aggregation computing the score and finalized with a top-3
selection as shown in Listing 26.

3.12.3 Query 2

To evaluate Q2, we need to determine the connected com-
ponents of the induced subgraphs on the User–friends–User
edge type, which is computed using the transitive closure on
the graph.

1 with recursive

2 comments_with_ancestors(id, ancestorid) as (

3 select c.id, c.parentid AS ancestorid

4 from comments c

5 union

6 select cr.id, c.parentid AS ancestorid

7 from comments_with_ancestors cr

8 , comments c

9 where cr.ancestorid = c.id

10)

11 select p.id, 10*count(distinct c.id) + count(l.userid) as score

12 from posts p

13 left join comments_with_ancestors c on (p.id = c.ancestorid)

14 left join likes l on (c.id = l.commentid)

15 group by p.id, p.ts

16 order by score desc, p.ts desc limit 3

Listing 26 Batch PostgreSQL solution for Q1.

The outline of our Q2 implementation is shown in Listing
27. (The full query is given in Listing 30.) The imple-
mentation defines interim views using four subqueries and
computes the result with the final (5th) query:

1. comment_friends(commentid, user1id, user2id): for a
given Comment, pairs of Users who liked it and are
friends.

2. comment_friends_closed(commentid, head_userid,
tail_userid): the transitive closure of cf relations, i.e. for
a given Comment, all pairs of Users who are reachable
from each other through friends edges.

3. connected_components(commentid,userid, componen-
tid): for a given Comment, the Users who belong to a
given component of the friendship graph.

4. comment_component_sizes(commentid, componentid,
component_size): for a given Comment, the component
IDs and their size.

5. Finally, the resulting relation contains the top-3Comments
with the highest scores.

3.13 PostgreSQL incremental

To improve performance for repeated query executions, we
have extended the PostgreSQL Batch solution (Sect. 3.12)
with support for incremental updates. This section discusses
the changes introduced in the schema andpresents the queries
that maintain the results upon changes.

3.13.1 Tool description

For the incremental solution, we have extended the database
schema as shown in Fig. 7. Compared to the batch schema,
this has three auxiliary relations and an extra attribute:
(1) q1_scoring for maintaining the scores and timestamps
of the Posts as defined in Q1, along with (2) cf and (3) cfc
with the same semantics as in the Batch solution of Q2.
The attribute (4) comments.postid is where Q1 maintains the
root Post reference for each Comment, which is then used
in Q1. Additionally, we have employed a horizontal parti-

123

772 G. Hinkel et al.

Fig. 7 ER diagram of the database schema, extended for incremental
processing with 3 tables, 1 attribute to hold the root Post reference
of the Comments and 5 status attributes added to the existing tables
(highlighted in yellow boxes with dashed borders)

tioning strategy [1] on each table. The partitioning uses an
attribute status consisting of a single character “B” or “D”.
During a particular update phase, rows that were already in
the database are stored in the “B” (before) partition, while
rows that have just been inserted are temporarily stored in the
“D” (diff) partition. At the end of each update phase, rows
from the diff partition migrate to the before partition. For
both queries, we implemented algebraic incremental view
maintenance with delta queries derived using the rules given
in [38] and [81, Appendix E].

3.13.2 Query 1

The incremental solution for Q1 consists of three steps, each
affecting the q1_scoring auxiliary relation, i.e. an initial step,
then, for each update of the graph, a sequence of interim result
maintenance and final result retrieval queries.

1. The initial step consists of two substeps:

(a) Wecompute the rootPost reference for allComments
(Listing 31) and materialize in attribute
comments.postid.

(b) We compute the score for all Posts (Listing 32)—
similarly to the batch solution of Q1 except that we
materialize each Post in relation q1_scoring with its
timestamp and score.

2. The interim result maintenance is again split into two
substeps:

(a) In preparation, we compute the root Post reference
for all new Comments (Listing 33) and materialize
in attribute comments.postid.

(b) Posts’ score maintenance (Listing 34) is imple-
mented using three subqueries, each computing the
increment in score for certain types of changes:
– The diff_posts subquery calculates the score of
the new Posts. The Comments and likes of the
new Posts must also be new, so the diff partition
of all 3 relations are joined together. A left outer
join is applied to include each new Post regard-
less of whether it has received any Comments
and/or likes yet.

– The diff_comments subquery calculates the extra
score for old Posts gained by new Comments
and the likes for them. This is expressed as the
inner join of the before partition of Posts and diff
partition of Comments. Then, a left outer join
of the diff partition of likes is applied, as only
new likes can refer to new Comments, and we
need to calculate scores of all new Comments
regardless of whether it received any likes.

– The diff_likes subquery computes extra score for
old Posts based for the new likes of their old
Comments. This is expressed as the inner join
of the before partition of Posts and Comments,
and the diff partition of likes.

In each subquery, one operand of the inner join is
the diff partition of either the posts, comments or
likes relations. Their usually small record count can
be exploited by the SQL query optimizer to speed
up joins. Using the calculations above, q1_scoring
is updated by increasing the scores of old Posts and
inserting new Posts along with their scores.
The relational algebraic formula for this interim result
maintenance query is given in Fig. 13 and proved in
Fig. 14.

3. The retrieval step is a simple top-3 query on q1_scoring
(Listing 35).

3.13.3 Query 2

Similarly to Q1, the incremental solution for Q2 again con-
sists of three steps, i.e. an initial step, then, for each update
of the graph, an alternating sequence of interim result main-
tenance and final result retrieval queries. Both the initial and
the maintenance steps are further divided into two queries
affecting the cf and cfc interim relations.

1. During the initial step, we first compute the before parti-
tion of the cf relation (Listing 36), then its closure in the
cfc relation (Listing 38). The queries to perform this are
analogous to the corresponding subqueries of the Post-
greSQL Batch solution for Q2 (Listing 27).

2. The maintenance step consists of two substeps:

123

A cross-technology benchmark for incremental graph queries 773

1 WITH RECURSIVE
2 comment_friends(commentid, user1id, user2id) AS (...),

--1
3 comment_friends_closed(commentid, head_userid, tail_userid)

AS --2
4 SELECT l.commentid
5 , l.userid AS head_userid, l.userid AS tail_userid
6 FROM likes l
7 UNION
8 SELECT cfc.commentid, cfc.head_userid, f.user2id AS

tail_userid
9 FROM comment_friends_closed cfc, comment_friends f

10 WHERE cfc.tail_userid = f.user1id
11 AND cfc.commentid = f.commentid
12), comment_components AS (

--3
13 SELECT commentid, head_userid AS userid
14 , min(tail_userid) AS componentid
15 FROM comment_friends_closed
16 GROUP BY commentid, head_userid
17), comment_component_sizes AS (

--4
18 SELECT cc.commentid, cc.componentid, count(*) AS

component_size
19 FROM comment_components cc
20 GROUP BY cc.commentid, cc.componentid
21)
22 --5 consider all comments including those without

likes
23 SELECT c.id AS commentid
24 , coalesce(sum(power(ccs.component_size, 2)), 0) AS

score
25 FROM comments c
26 LEFT JOIN comment_component_sizes ccs ON (ccs.commentid =

c.id)
27 GROUP BY c.id, c.ts
28 ORDER BY sum(power(ccs.component_size, 2)) DESC NULLS LAST
29 , c.ts DESC LIMIT 3
30 ;

Listing 27 Batch PostgreSQL solution snippet for Q2.

(a) Updating the cf relationwith aunionof new comment_
friends edges induced (Listing 37). Considering the
friends.user1id as the left side on the join, and
friends.user2id as its right side, a newedge is included
by either:
i. the new likes on the left side of all friendships

with all likes on the right side,
ii. the old likes on the left side of new friendships

and all likes on the right side, and
iii. old likes on the left side of old friendships and

new likes on the right side.
(b) Updating the transitive closure is done in three suc-

cessive subqueries (denoted as
comment_friends_closed_stage{0,1,2} in List-
ing 39):

i Each new like on a particular Comment is a new
zero-length path in the closure.

ii Instead of performing the computation on the
cf graph, we use new edges (comment_friends_
diff) to reach a fixed point in fewer steps.

iii The optimization in the previous step omitted
the edges in the existing transitive closure, and
hence, we add these to the result as a final step.

3. The retrieval step, similarly to the PostgreSQL Batch
solution for Q2, computes the component sizes, and then,
the scores for all Comments are computed to retrieve the
top-3 scored Comments (Listing 40).

3.14 GraphBLAS Batch

3.14.1 Tool description

GraphBLAS is a recently proposed standard built on the the-
oretical framework of matrix operations on semirings [57],
which allows concise and portable formulation of graph algo-
rithms [58]. The goal of GraphBLAS is to create a layer
of abstraction between the graph algorithms and the graph
analytics framework, separating the concerns of the algo-
rithm developers from those of the framework developers
and hardware designers. The GraphBLAS standard defines a
C API [20] that can be implemented on a variety of hardware
components including GPUs.

Data format An untyped graph can be represented as an
adjacency matrix A ∈ N

|V |×|V |, where rows and columns
both represent nodes of the graph and element Ai j repre-
sents the number of edges from node i to node j . If the
number of edges is not important, the adjacency matrix is
defined over Boolean values, i.e.A ∈ B

|V |×|V |, with Ai j = 1
if there is an edge from node i to node j and Ai j = 0 other-
wise. Bipartite graphs can be represented with a non-square
adjacency matrix A ∈ N

|V1|×|V2|, where V1 and V2 are the
sets of vertices in the two partitions. Typed graphs such as
the ones used in this paper can be represented as using a
bipartite adjacency matrix for each edge type, where V1 rep-
resent the source nodes and V2 represents the target nodes,
e.g. Likes ∈ B

|users|×|comments|. The graphs used in prac-
tical applications such as social networks are sparse. The
adjacencymatrices representing these graphs are also sparse,
i.e. most elements in their adjacency matrix are zero values.
These sparse matrices can be represented efficiently using
matrix compression techniques such as CSR (Compressed
Sparse Row).

A graph can also be stored as an incidence matrix B ∈
B

|V |×|E|, where rows and columns represent nodes and edges
(resp.). For undirected graphs, each column contains two 1
values in the positions of the source and the target nodes of
the edge, and other elements are 0. Incidence matrices are
sparse for all graphs with more than a few nodes.

Notation We follow the notation conventions of Graph-
BLAS as presented in [25]. Table 3 contains the list of
GraphBLAS operations and methods used in this paper.
Matrices are typeset in bold and start with an uppercase let-
ter, e.g. Friends. Vectors are typeset in bold and start with a
lowercase letter, e.g. scores. Additionally, sets are typeset in
italic and start with a lowercase letter, e.g. posts.

Implementation For this solution, we used
SuiteSparse:GraphBLAS [25], a parallel GraphBLAS imple-

123

774 G. Hinkel et al.

Table 3 Notation of the
GraphBLAS operations and
methods used in this paper
(based on [25])

Operation/method Name Notation

mxm Matrix–matrix multiplication C〈〈M〉〉 = A ⊕.⊗ B

vxm Vector–matrix multiplication w〈〈m〉〉 = u ⊕.⊗ A

mxv Matrix–vector multiplication w〈〈m〉〉 = A ⊕.⊗ u

eWiseAdd Element-wise addition, C〈〈M〉〉 = A ⊕ B

Union of patterns w〈〈m〉〉 = u ⊕ v

eWiseMult Element-wise multiplication, C〈〈M〉〉 = A ⊗ B

Intersection of patterns w〈〈m〉〉 = u ⊗ v

extract Extract submatrix C〈〈M〉〉 = A(I, J)

Extract subvector w〈〈m〉〉 = u(I)

apply Apply unary operator C〈〈M〉〉 = f (A)

w〈〈m〉〉 = f (u)

select Select elements C〈〈M〉〉 = Select(A(i, j) == k)

equal to scalar k w〈〈m〉〉 = Select(u(i) == k)

reduce Reduce matrix to column vector w〈〈m〉〉 = [⊕ jA(:, j)]
Reduce matrix to scalar s = [⊕i jA(i, j)]

transpose Transpose matrix C〈〈M〉〉 = AT

extractTuples Extract (i, j, Ai j) tuples
{
(i, j, Ai j)

} �→A
Extract (i, ui) tuples {(i, ui)} �→u

build Build matrix from tuples A �→{(i, j, Ai j)
}

Build vector from tuples u �→{(i, ui)}
nvals Number of non-empty elements nvals = |A|

nvals = |u|
Matrices and vectors are typeset in bold, starting with uppercase (A) and lowercase (u) letters, respectively.
Scalars including indices (s, i, j) are lowercase italic, while index arrays (I , J) are uppercase italic. ⊕ and ⊗
are the addition and multiplication operators of an arbitrary semiring, and masks 〈〈M〉〉 are used to selectively
write to the result. The pattern of a matrix/vector is the position of its non-empty elements

mentation and LAGraph [64], a library of GraphBLAS
algorithms. We also implemented an incremental solution
in GraphBLAS, described in Sect. 3.15.

3.14.2 Query 1

Q1 (Algorithm 1) computes the score for each Post, then
selects the top-3 Posts. We use an auxiliary RootPostT adja-
cency matrix to denote the Post a Comment belongs to
(possibly through a series of Comments). The algorithm
receives direct Comments on Posts (CommentedPT) and
Comments on other Comments (CommentedCT) sepa-
rately. Starting from the former (Line 7), BFS is used to
find child Comments level by level and collect them to the
Post they belong to until there are no more left (Lines 8-10).
In Line 12, the row-wise summation of RootPostT matrix
produces the number of (direct and indirect) Comments per
Post, and then, anapply operationmultiplies the vector ele-
ments by 10. Line 14 sums up the number of likes the Post
has via its Comments. For each Post, the RootPostT adja-
cency matrix selects the elements of the likesCount vector
corresponding to the Comments of the Post and then sums

up the values. The score for each Post is the element-wise
sumof the two vectors (Line 15). Figure 8a shows an example
calculation.

Algorithm 1 GraphBLAS algorithm for Q1.
1: Input
2: CommentedPT ∈ B

|posts|×|comments| 	 adjacency matrix
3: CommentedCT ∈ B

|comments|×|comments|
4: likesCount ∈ N

|comments| 	 # of incoming likes
5: Output
6: scores ∈ N

|posts|
7: RootPostT = Next = CommentedPT

8: while |Next|
= 0 do 	 selected Comments are not empty
9: Next = Next ⊕.⊗ CommentedCT 	 child Comments
10: RootPostT = RootPostT ⊕ Next

	 collect all Comments to the Posts they belong to
11: end while
12: sum = [⊕ j RootPostT(:, j)

] 	 row-wise sum
13: repliesScores = 10 ⊗ sum 	 apply multiply-by-10 op.
14: likesScores = RootPostT ⊕.⊗ likesCount
15: scores = repliesScores ⊕ likesScores
16: return scores

123

A cross-technology benchmark for incremental graph queries 775

(a) (b)

Fig. 8 Execution of the GraphBLAS algorithms on the example
graph (Fig. 5): the Initial evaluation step (used by both the batch and
incremental solutions) and the Update and re-evaluation step (used by
the incremental solution). Recall that the update in the example inserts

the following relevant entities (highlighted with grey background): a
friends edge between Users u1 and u4, a likes edge from User u2 to
Comment c2, a Comment node c4 with a root Post of p1 and an
incoming likes edge from User u4

3.14.3 Query 2

A batch evaluation example of Q2 (Algorithm 2) is depicted
in the upper part of Fig. 8b. Q2 computes the score for each
Comment and then selects the top-3 Comments. To col-
lect the Users of each subgraph, in Lines 8 and 10, Step 1

extracts the elements of the LikesT matrix as (c, u, 1) tuples
and collects them into sets of User IDs (u) per Comment (c).
To produce the subgraph for each Comment, Step 2

extracts a submatrix based on the Users selected (Line 11).
Step 3 finds connected components in the induced sub-
graph using the FastSV algorithm [88] of the LAGraph
library (Line 12). This produces a vector containing the com-
ponent ID for each User. Step 4 yields the squared sum of
component sizes, i.e. the score for each Comment (Line 14).

Algorithm 2 GraphBLAS algorithm for Q2.
1: Input
2: comments = {1, . . . , n}
3: LikesT ∈ B

|comments|×|users|
4: Friends ∈ B

|users|×|users|
5: Output
6: scores ∈ N

|comments|
7: function ScoreVecQ2
8: likes_tuples �→LikesT 	 1
9: for all c ∈ comments do
10: usersc = {u : (c, u,) ∈ likes_tuples} 	 1

11: Friendsc = Friends (usersc, usersc) 	 2

12: comp_ids = FastSV(Friendsc) 	 3
13: scores (c) =
14:

∑
k∈comp_ids |Select(comp_ids(i) == k)|2 	 4

15: end for
16: return scores
17: end function

3.15 GraphBLAS incremental

3.15.1 Tool description

To incrementalize theGraphBLASBatch solution (Sect. 3.14),
we have reworked the solution to compute changes to the
results upon updates instead of running a full re-evaluation.

Approach The incremental version performs a full batch
evaluation for the first run and computes the scores. Then, for
each update only those parts of the model are re-evaluated
which might be affected by the update. Finally, the previ-
ous top-3 scores and the new ones are compared to maintain
the result. Incremental computation of Q1 uses fine-grained
maintenance as it stores the scores of each Post and updates
them when new Comment nodes and likes edges appear.
The granularity of the incremental version of Q2 is coarser,
as it collects the Comments whose scores can change and
re-evaluates them.

Notation The updated variables are denotedwith prime, e.g.
the updated version of vector scores is scores′, which con-
tains the scores for the new nodes and the updated scores for
the existing ones. The changes can be stored as increment
matrices/vectors, denoted with a superscript plus symbol
(+) and are applied with the ⊕ operation to the original
values, e.g. scores′ = scores ⊕ scores+. Another option is
to store the changed values, denoted with �, and apply
them by overwriting the existing values: the new vector
is initialized with the original one: scores′ = scores, then
the new values overwrite the existing ones via a mask,
which preserves the unaffected values from modification:
scores′〈〈�scores〉〉 = �scores.

123

776 G. Hinkel et al.

3.15.2 Query 1

To incrementally evaluateQ1,Algorithm3updates the scores
as follows. Lines 9 and 10 compute the increment of the
score induced by new Comments. In Line 11, the number of
likes the Comments newly received is summed up per Post.
The two types of increments are summed up in Line 12.
For subsequent evaluations, the scores are updated using the
increment vector (Line 13). To find the top-3 scores, only the
previous maximum values and the Posts with updated scores
are considered. Line 14 yields the updated score values by
assigning the scores′ vector via the scores+ increment vector
as amask, which allows changes in the result only if themask
has an element at the correspondingposition. Figure 8a shows
an example calculation. Using the output of this algorithm,
merging the previous top-3 scores and the new ones yields
the new result.

Algorithm 3 GraphBLAS update algorithm for Q1.
1: Input
2: scores ∈ N

|posts′ | 	 previous scores
3: likesCount+ ∈ N

|comments′ | 	 new incoming likes
4: �RootPostT ∈ B

|posts′ |×|comments′ | 	 new root Posts13

5: RootPost′T ∈ B
|posts′ |×|comments′ | 	 all root Posts

6: Output
7: �scores ∈ N

|posts′ | 	 only changed scores
8: scores′ ∈ N

|posts′ | 	 all updated scores
9: sum = [⊕ j �RootPostT(:, j)] 	 # of new comments
10: repliesScores+ = 10 × sum
11: likesScores+ = RootPost′T ⊕.⊗ likesCount+
12: scores+ = repliesScores+ ⊕ likesScores+ 	 increment vec.
13: scores′ = scores ⊕ scores+ 	 update scores
14: �scores〈〈scores+〉〉 = scores′ 	 collect updated scores
15: return �scores, scores′

3.15.3 Query 2

The incremental evaluation of Q2 is depicted in the lower
part of Fig. 8b. Algorithm 4 returns the Comments with new
scores (�scores) by re-evaluating the Comments which the
updates might impact on. Merging the previous top-3 scores
and the newones yields the new result. (New scores overwrite
existing ones.) The first phase of the algorithm (Steps 1 –
5 , Lines 14–20) collects the Comments which might be
affected by the updates (affected comments, acSet set), and
then, the second phase (Steps 6 – 9 , Line 21) computes the
new scores of these Comments using the batch algorithm
described in Algorithm 2.

A Comment might be affected by an update if (1) it is a
new Comment, or (2) the Comment receives a new incom-
ing likes edge from a User, resulting in a new component

13 Computed from previous RootPostT and new commented edges.

or the expansion of an existing one, or (3) two Users who
like the Comment become friends, which merges the com-
ponents the Users belong to (if they previously belonged to
different components). Case (3) is covered by Lines 14-18,
where Steps 1 – 4 compute the Comments which might
be affected by new friends edges. NewFriends incidence
matrix represents each new friendship by a column hav-
ing two 1-/valued elements for the two Users. For each new
friendship (i.e. pair of Users), Step 1 computes how many
User of the pair likes each Comment (0, 1, or 2). During the
matrix–matrix multiplication, each column of new friend-
ships selects two columns of Likes′T matrix and sums them
up into AC matrix (Line 15). In Line 16, Step 2 keeps
only 2-/valued elements, i.e. where both Users of a friend-
ship liked the Comment, so both of them are present in the
subgraph and the new friendship might merge components.
Then, Step 3 produces a row-wise sum using the logical
or operator ∨ (Line 17). Step 4 extracts (c, 1) tuples from
the result vector and collects the Comment IDs from these
tuples, then Step 5 collects all the Comments which might
be affected by the update (Line 19). Cases (1) and (2) are
covered by Line 20, which produces the union of all the
three cases. The next steps re-evaluate the scores of these
Comments (Line 21).

Algorithm 4GraphBLAS update algorithm for Q2 using the
ScoreVecQ2 function of Algorithm 2.
1: Input
2: comments′ = comments ∪ �comments
3: �likes ⊆ comments′ × users′
4: �friends ⊆ users′ × users′ 	 friend pairs in both orders
5: Likes′T ∈ B

|comments′ |×|users′ |
6: Friends′ ∈ B

|users′ |×|users′ |
7: Output
8: �scores ∈ N

|comments′ |
9: Data
10: NewFriends ∈ B

|users′ |× 1
2 |1friends| 	 incidence matrix

11: AC ∈ {0, 1, 2}|comments′ |×|1friends| 	 affected Comments
12: ac ∈ B

|comments′ | 	 Comments affected by new friends
13: acSet ⊆ comments′ 	 affected Comments, to reevaluate
14: NewFriends = BuildIncidenceMatrix(�friends)

15: AC = Likes′T ⊕.⊗ NewFriends 	 1

16: AC = Select(AC(i, j) == 2) 	 2

17: ac = [∨ j AC(:, j)] 	 3

18: acTuples �→ac 	 4

19: acSet = {c : (c, 1) ∈ acTuples} 	 5

20: acSet = �comments ∪ {c : (c, u) ∈ �likes} ∪ acSet 	 5
21: �scores =

ScoreVecQ2(acSet,Likes′T,Friends′) 	 6 – 9
22: return �scores

123

A cross-technology benchmark for incremental graph queries 777

3.16 Differential dataflow

3.16.1 Tool description

Dataflow-based computational models were proposed to per-
form complex analytics on high-volume data sets: the timely
dataflow [69,70] model targets batch processing, while its
extension, differential dataflow [65], targets incremental pro-
cessing.

We created two differential dataflow-based solutions:

.NET-based implementation Naiad14 is a data process-
ing prototype system developed at Microsoft Research15

between 2011 and 2014. Naiad supports both the timely
and differential dataflow computational models. The Naiad
implementation was written in C#.

Rust-based implementation The computational models of
Naiad have been implemented in the Rust programming lan-
guage16 [59] as two separate projects: Timely Dataflow17

and Differential Dataflow.18

For the sake of brevity, we only discuss the Rust-based
implementation here—the one using Naiad is available
online but has been omitted from this paper.

Data representation To represent the graph, the Differen-
tial Dataflow solution uses unordered collections containing
tuples with the following semantics:

• comms: (id, ts, content, creator, parent)
• posts: (id, ts, content, creator)
• knows: (user1, user2)
• likes: (user, comment)

3.16.2 Query 1

The implementation of Q1 (shown in Listing 28) uses the
comms, posts, and likes collections. In Line 8, we
extract the Comments and their direct parent objects, which
can either be a Post or anotherComment. In Lines 19–13,we
determine the direct replies for each Post. Next, in Lines 14–
25, we collect all transitive replies for each Post using the
iterate operator, which executes the specified function
until a stable result set is reached. In Lines 26–31, we col-
lect the number of likes for each Comment, each having a
cardinality of 1 (corresponding to their contribution to the

14 https://github.com/TimelyDataflow/Naiad
15 https://www.microsoft.com/en-us/research/project/naiad/
16 https://www.rust-lang.org/
17 https://github.com/TimelyDataflow/timely-dataflow.
18 https://github.com/TimelyDataflow/differential-dataflow.

overall score). Then, in Line 32, we collect each Comment
that belongs to the Post with a cardinality of 10 (as they are
worth 10 points). Next, in Lines 33–38, we concatenate the
collections containing the likes and the reply Comments and
count their total cardinality. Finally, in Lines 39–41, we add
the timestamps of each Post and get the top-3 values.

1 fn query_1<G, Submission, User, Date>(

2 comms: &Collection<G, (Submission,Date,String,User,Submission)>,

3 posts: &Collection<G, (Submission,Date,String,User)>,

4 likes: &Collection<G, (User, Submission)>,

5 probe: &mut ProbeHandle<G::Timestamp>,

6) -> TraceAgent<OrdKeySpine<String, G::Timestamp, isize>>

7 {

8 let comms_parents = comms.map(|(id, _, _, _, parent)| (parent,

id));(**)

9 let direct_replies = posts (**)

10 .map(|(post_id, _, _, _)| (post_id.clone(), ()))

11 .join_map(&comms_parents,

12 |post_id, _dummy, comm_id| (post_id.clone(), comm_id.clone())

13); (**)

14 let all_replies = direct_replies (**)

15 .iterate(|transitive| {

16 let comms_parents = comms_parents.enter(&transitive.scope());

17 let direct_replies = direct_replies.enter(&transitive.scope());

18 return transitive

19 .map(|(post_id, comment_id)| (comment_id.clone(),

post_id.clone()))

20 .join_map(&comms_parents,

21 |_parent_comment, post_id, child_comment| (post_id.clone(),

child_comment.clone())

22)

23 .concat(&direct_replies)

24 .distinct();

25 });(**)

26 let liked_comments = likes (**)

27 .map(|(_user,comm)| (comm, ()))

28 .join_map(

29 &all_replies.map(|(post_id, comment_id)| (comment_id,

post_id)),

30 |_comment_id, _dummy, post_id| post_id.clone()

31);(**)

32 let comms_themselves = all_replies.explode(|(post_id,

_comment_id)| Some((post_id, 10))); (**)

33 let post_score = posts (**)

34 .map(|post| post.0) // ensure all posts get a score

35 .concat(&liked_comments) // likes contribute to posts

36 .concat(&comms_themselves) // comments contribute to posts

37 .count()

38 .join(&posts.map(|post| (post.0, post.1.clone()))); (**)

39 let arrangement = limit(&post_score, 3) (**)

40 .map(|vec| format!("{}|{}|{}", vec[0], vec[1], vec[2]))

41 .arrange_by_self(); (**)

42 arrangement.stream.probe_with(probe);

43 return arrangement.trace;

44 }

Listing 28 Differential Dataflow implementation of Q1.

3.16.3 Query 2

The implementation of Q2 (shown in Listing 29) uses the
comms,knows and likes collections. First, in Lines 8–25,
we use iterative label propagation to find connected compo-
nents. Initially, we add the labels based on the likes edges
and then propagate them across the knows edges. When
the propagation reaches its fixed point, we will have a list
of (user, label, comment) tuples, where each tuple shows
that the given User is part of the connected component of the
given Comment, and the smallestUser id in this connected is
the label. Then, in Lines 26–35, we aggregate the labels to get
the size of each connected component and get the final score

123

https://github.com/TimelyDataflow/Naiad
https://www.microsoft.com/en-us/research/project/naiad/
https://www.rust-lang.org/
https://github.com/TimelyDataflow/timely-dataflow
https://github.com/TimelyDataflow/differential-dataflow

778 G. Hinkel et al.

by summing the squared component sizes. Finally, we add
the timestamps of each Comment and get the top-3 values.

1 fn query_2<G, Submission, User, Date>(

2 comms: &Collection<G, (Submission,Date,String,User,Submission)>,

3 knows: &Collection<G, (User, User)>,

4 likes: &Collection<G, (User, Submission)>,

5 probe: &mut ProbeHandle<G::Timestamp>,

6) -> TraceAgent<OrdKeySpine<String, G::Timestamp, isize>>

7 {

8 let labels: Collection<_, ((User, Submission), User)> = (**)

9 likes

10 .filter(|_| false)

11 .map(|(user, comm)| ((user.clone(), comm), user))

12 .iterate(|labels| {

13 let knows = knows.enter(&labels.scope());

14 let likes = likes.enter(&labels.scope());

15 labels

16 .map(|((node, comment), label)| (node, (label, comment)))

17 .join_map(&knows, |_node, (label, comment), dest|

((dest.clone(), comment.clone()),

label.clone()))

18 .concat(&likes.map(|(user, comm)| ((user.clone(), comm),

user.clone())))

19 .reduce(|_key, input, output| {

20 // only produce output, if 'input' contains '_key.0'

21 if input.iter().any(|(label,_wgt)| *label == &_key.0) {

22 output.push((input[0].0.clone(), 1));

23 }

24 })

25 }); (**)

26 let comm_score = labels (**)

27 .map(|((_node, comment), label)| (label, comment))

28 .count()

29 .explode(|((_label, comment), count)| Some((comment, count *

count)))

30 .concat(&comms.map(|comm| comm.0.clone()))

31 .count()

32 .join(&comms.map(|comm| (comm.0.clone(), comm.1.clone())));

33 let arrangement = limit(&comm_score, 3)

34 .map(|vec| format!("{}|{}|{}", vec[0], vec[1], vec[2]))

35 .arrange_by_self(); (**)

36 arrangement.stream.probe_with(probe);

37 return arrangement.trace;

38 }

Listing 29 Differential Dataflow implementation of Q2.

4 Classification

In this section, we compare the solutions according to
our predefined classification criteria, evaluating general tool
properties as well as case-specific applications of them.
Aligned with the research questions, we used the following
classification criteria:

Declarative query language To aid the development of
the solutions using the respective tools, it is helpful for
the tool to adhere to a standard declarative query lan-
guage.
Datamodel For a usage integrated into amodelling tool
set, ideallymodel query tools should be able to usemod-
els created and maintained in a modelling environment
as they are, without adapters.

Explicitness of incrementalization Ideally, tools are able
to incrementalize the query in an implicit manner, i.e.
the developer only has to specify the query, but not how
changes are propagated or how the query is broken down

into chunks. This criterion does not apply to batch solu-
tions, i.e. ones that recalculate the query from scratch
after each model change.

Persistence To enable a failsafe operation, it is a desir-
able property for an analysis tool to continue the analysis
even if the process is unexpectedly shut down. For this,
data structures to save intermediate results have to be
persisted, which is why we call this category query per-
sistence. Further, in order to process models beyond the
size of the main memory, it is desirable to persist the
models in a database such that solutions do not have to
have all model elements in memory. We refer to this as
model persistence.

Parallelism As modern CPUs have multiple cores, it is
desirable for a query technology to be able to make use
of these resources by running parts of the query or its
incremental change propagation in parallel.

Asymptotic complexity topropagate changesWepresent
an estimated asymptotic complexity of the steps required
to propagate changes. For this, we consider the neces-
sary steps to propagate changes to both queries for all
of the five possible changes (Sect. 2.3). The derived
complexity values are specific to the particular scenario
of the Social Media benchmark and thus should not be
interpreted as a generic characterization of the tools.

In the following sections, we discuss the criteria for each
of the solutions individually and summarize the results after-
wards in Table 4, except for the asymptotic complexities that
are depicted in Tables 5 and 6.

4.1 Declarative query language

NMF makes use of the SQO (Standard Query Operators),
which is a common standard on the .NETplatform. Similarly,
the Xtend solution uses the standard collection operators of
Java. ATL uses (a slightly adapted version of) OCL. The
SQL and Neo4j solutions use the standard query languages
of these databases: SQL:1999 and Cypher.

EOL used by Hawk is standard in Epsilon, but the com-
munity of Epsilon is much smaller than the community of
relational databases, .NET or Neo4j.

AOFandYAMTLhave their tool-specific query languages
which are declarative (both solutions can be executed incre-
mentally from the query specification) but not yet standards.

JastAdd uses its own language to specify synthesized and
inherited attributes with tool-specific extensions like circular
rules.

123

A cross-technology benchmark for incremental graph queries 779

Table 4 Comparison of the tools used in the paper

Tool Version Data model Engine Solution Decl. Batch Implicit Explicit DB MV Parallel

AOF v201806 EMF Java 8 Xtend ⊘ ◯ ⊗ ◯ ◯ ◯ ◯

ATL 3.8.0 EMF Java 8 ATL ⊗ ⊗ ◯ ◯ ◯ ◯ ◯

ATL Incremental v201904 EMF Xtend ATL/AOF ⊗ ◯ ⊗ ◯ ◯ ◯ ◯

Differential Dataflow 0.11.0 relations Rust Rust ◯ ◯ ⊗ ◯ ◯ ◯ ⊗
GraphBLAS 4.0.3 matrices C C++ ◯ ⊗ ◯ ⊗ ◯ ◯ ⊗
Hawk 2.1.0 EMF Java 8 EOL ⊘ ⊗ ⊘ ⊗ ⊗ ⊘ ◯

JastAdd 2.3.5 EMF Java 11 Java 11 ◯ ⊗ ⊗ ◯ ◯ ◯ ◯

Neo4j 4.2.4 property graph Java 11 Java 11 ⊗ ⊗ ◯ ⊗ ⊗ ⊗ ◯

NMF 2.0.169 NMF C# C# ⊗ ⊗ ⊗ ◯ ◯ ◯ ⊗
PostgreSQL 12.4 relations C Java 11/SQL ⊗ ⊗ ◯ ⊗ ⊗ ⊗ ◯

Xtend 2.20.0 EMF Java 8 Xtend ⊗ ⊗ ◯ ◯ ◯ ◯ ⍟

YAMTL 0.1.5 EMF Java 11 Xtend ⊘ ⊗ ⊗ ⊗ ◯ ◯ ◯

Data Model: the data model exposed to the user. Engine: programming language used to implement the engine (model transformation engine,
database query engine, etc.), Solution: programming language and query language (if applicable) used to implement the solution,Decl.: the solution
specified the queries using a declarative query language, Batch: only batch mode is supported, Implicit: implicit incrementalization is supported,
Explicit: a solution with explicit incrementalization was implemented, DB: database-backed, i.e. the tool persists the model on disk after each
transaction,MV: materialized views, Parallel: parallelization is supported. Notation—⊗ yes; ⊘ to some extent; ◯ no; ⍟ yes, using Java 8 streams

Table 5 Asymptotic complexities to propagate a model update for Q1 in selected solutions

Solution Add User Add Post Add Comment Add like Add friendship

NMF reference (batch) Θ(p log p + c) Θ(p log p + c) Θ(p log p + c) Θ(p log p + c) Θ(p log p + c)

ATL (batch) Θ(p log p + c) Θ(p log p + c) Θ(p log p + c) Θ(p log p + c) Θ(p log p + c)

Xtend Θ(p log p + c) Θ(p log p + c) Θ(p log p + c) Θ(p log p + c) Θ(p log p + c)

PostgreSQL (batch) Ω((p + c) log cl + l) Ω((p + c) log cl + l) Ω((p + c) log cl + l) Ω((p + c) log cl + l) Ω((p + c) log cl + l)

YAMTL-B (batch) Θ(p + c) Θ(p + c) Θ(p + c) Θ(p + c) Θ(p + c)

NMF O(1) O(log p) O(h + log p) O(h + log p) O(1)

Hawk (IU) O(n) O(n) O(n + p log p) O(n + p log p) O(n)

JastAdd Θ(p) Θ(p) O(p + n) O(p + n) Θ(p)

AOF O(1) O(log p) O(h + log p) O(h + log p) O(1)

ATL (incremental) O(1) O(log p) O(h + log p) O(h + log p) O(1)

Differential Dataflow O(1) O(log p) O(h + log p) O(log p) O(1)

YAMTL-II (incremental) O(1) O(1) O(n) O(n) O(1)

Hawk (IUQ) O(n) O(n) O(n + p log p) O(n + p log p) O(n)

PostgreSQL (incremental) O(1) Θ(log p) Θ(log p + log c) Θ(log p log c) O(1)

Neo4j (incremental) O(log u) O(log p) O(h + log p + log c) O(h + log puc) O(log u)

YAMTL-EI (incremental) O(1) O(1) O(1) O(1) O(1)

The solutions are categorized as batch, implicit incrementalized and explicit incrementalized

4.2 Datamodel

Given that the benchmark was originally presented at the
TTC, it is not surprising that most solutions can operate
directly on EMF models.

NMF uses its ownmetamodel NMeta but includes a trans-
formation from Ecore and uses the same serialization format
[45].

For JastAdd, it is necessary to reformulate the metamodel
as grammar.

The solutions for Differential Dataflow, Neo4j, Graph-
BLAS and PostgreSQL do not operate on models directly
but require dedicated adapters to feed the data from models
into their input formats (CSV files).

123

780 G. Hinkel et al.

Table 6 Asymptotic complexities to propagate a model update for Q2 in selected solutions

Solution Add User Add Post Add Comment Add like Add friendship

NMF reference (batch) O(l · f + c log c) O(l · f + c log c) O(l · f + c log c) O(l · f + c log c) O(l · f + c log c)

ATL (batch) O(l · f + c log c) O(l · f + c log c) O(l · f + c log c) O(l · f + c log c) O(l · f + c log c)

Xtend O(l · f + c log c) O(l · f + c log c) O(l · f + c log c) O(l · f + c log c) O(l · f + c log c)

PostgreSQL (batch) Ω(l · log l f + l) Ω(l · log l f + l) Ω(l · log l f + l) Ω(l · log l f + l) Ω(l · log l f + l)

YAMTL-B (batch) O(l · f · α(l) + c) O(l · f · α(l) + c) O(l · f · α(l) + c) O(l · f · α(l) + c) O(l · f · α(l) + c)

NMF incremental O(1) O(1) O(log c) O(f 2 + log c) O(l · f + c log c)

Hawk (IU) O(c log c) O(c log c) O(c log c) O(f 2 + c log c) O(l · f + c log c)

JastAdd Θ(c) Θ(c) Θ(c) O(c + f 2) O(l · f)

AOF O(1) O(1) O(log c) O(f 2 + log c) O(l · f + c log c)

ATL (incremental) O(1) O(1) O(log c) O(f 2 + log c) O(l · f + c log c)

Differential Dataflow O(1) O(1) O(log c) O(f 2 + log c) O(l · f + c log c)

YAMTL-II (incremental) O(1) O(1) O(1) O(l · f · α(l)) O(l · f · α(l))

Hawk (IUQ) O(1) O(1) O(1) O(f 2) O(l · f)

PostgreSQL (incremental) Ω(l · f) Ω(l · f) Ω(l · f) Ω(l · f + c2 f 2) Ω(l · f + c2 f 2)

Neo4j (incremental) O(log u) O(log p) O(log c) O(u · f + log c) O(c2)

YAMTL-EI (incremental) O(1) O(1) O(1) O(f · α(l)) O(α(l))

The solutions are categorized as batch, implicit incrementalized and explicit incrementalized

4.3 Explicitness of incrementalization

The NMF reference solution, the ATL solution, the Xtend
solution and the batch versions of SQL, Neo4j and Graph-
BLAS solutions are not incremental.

The incrementalization in the incremental NMF solution
and in the AOF solution is implicit: the framework deducts a
dependency graph from a model of the code that is available
at runtime. This dependency graph is at the level of individual
operations, so that only those operations really affected by a
change need to be re-computed. However, these frameworks
require data structures that explicitly support incremental-
ization. Both NMF and AOF already contain support for a
wide range of common operations and allow Users to add
new algorithms and data structures when needed, such as for
calculating the connected components in Q2.

In the Hawk solutions, there are two aspects to incremen-
talization: the way that the persistent graph is updated and
the way that the query is run. The batch solution uses derived
attributes to cache the scores of Comments and Posts, which
are implicitly updated incrementally if the nodes used to
compute them change: however, the queries run in batch
mode, and every change in the social network requires a
full re-serialization to disk before the indexing process can
update the graph. The incremental update solution uses the
same approach for querying, but it does not re-serialize
the social network model: instead, it applies the change
sequences directly to the internal graph used for querying.
The incremental update and query solution uses an explicitly

incrementalized version of the query, using graph listeners
to trigger the rescoring of Comments and Posts, and uses
the same approach to directly update the underlying graph
database from the NMF change sequences.

JastAdd and YAMTL support a completely implicit incre-
mentalization by tracking all read operations to the model
from which a dependency graph is set up. If the result of
a rule depends on a read operation that is invalidated due
to model changes, this attribute instance (JastAdd) or rule
instance (YAMTL) is executed again. Therefore, the granu-
larity of the incrementalization is given by the granularity of
the attributes/rules.19

In the incremental versions of the SQL, Neo4j and Graph-
BLAS solutions, the incrementality is achieved explicitly.
That is, these solutions all keep the scores of Posts or
Comments through a table, additional nodes or vectors,
respectively. Then, the solutions use explicit algorithms
developed for the respective tool to update the scores in case
of model updates.

In case of the SQL solution, this effort to explicitly reengi-
neer existing queries for incremental change propagation
is guided [38,81]. Such guidance can help the developer
incrementalize a given query and could be automated when
sufficient tooling becomes available.

The Differential Dataflow solution works similar to NMF
and AOF. However, the notion of time during the calcula-
tion of the query allows this tools to support temporary state,

19 YAMTL can also expose model updates affecting a rule instance so
that these can be explicitly handled with fine-grained incrementality.

123

A cross-technology benchmark for incremental graph queries 781

in particular the iterate call in Listing 29. This tempo-
rary state allows to support also more complex cases such as
computing connected components in Q2 using only built-in
algorithms and data structures [70].

In total, we have nine non-incremental solutions. Post-
greSQL, Neo4j, YAMTL-EI and GraphBLAS are explicitly
incrementalized, so developers have to approach the prob-
lem conceptually differently than in the batch solution.
Hawk provides slight implicit incrementalization capabil-
ities, but much of the solution must be provided by the
developer in order to get the solution incremental; there-
fore, we categorized it as an explicit incremental tool. In
NMF, JastAdd, AOF, YAMTL-II, Incremental ATL Incre-
mental and Differential Dataflow, the incrementalization
happens entirely implicitly, though partiallywith restrictions.
Namely, JastAdd and YAMTL require the developer to adapt
to their programmingmodel, whereas NMF and AOF restrict
the used operations to those that are supported in the frame-
work, even if this set is extensible. Differential Dataflow does
not have such restrictions.

4.4 Persistence

Most of the presented solutions keep the data only in mem-
ory without any features for fault-tolerance. This means that
the solutions require a separate tooling to ensure a failsafe
operation.

The exceptions to this are Hawk, Neo4j and PostgreSQL,
which make use of database systems internally and are there-
fore durable, in the sense that models and intermediate query
results for their incremental variants are available even if the
application gets terminated unexpectedly.

For many of the other tools, model persistence could
be achieved through persistence systems such as Eclipse
CDO.20 However, although themodel sizes used in the scope
of the benchmark went up to a few million model elements
and connections, solutions were always able to handle the
models in main memory. Therefore, the need for solutions
with model persistence to hit the disk for an update led to
performance penalties in comparison with other solutions.

The advantage that Hawk and the incremental versions
of Neo4j and PostgreSQL take out of the persistence of the
intermediate results is that after a restart, they do not require
the performance penalty of an initial run again and can pro-
cess updates straight away after a restart. The exception to
that is the incremental update and query solution for Hawk,
since this keeps an in-memory list of the top-3 elements.

20 https://www.eclipse.org/cdo/.

4.5 Parallelism

Since GraphBLAS is based on matrix operations, it is well
suited for parallel processing. Differential Dataflow also sup-
ports executing the query in parallel. The Xtend solution
makes use of the Java streams feature to enable parallelism,
but only on a task level, i.e. the solution runs different parts
of the query in a pipeline.

NMF also has some built-in support for parallelism, but
it is restricted only to the incremental change propagation.
The initial query execution does not profit from the parallel
execution.

The other solutions do not make use of parallelism.

4.6 Asymptotic complexity to propagate changes

Recall that in Sect. 2.3, the following change operations
were presented: (1) a new User is added, (2) a new Post
is added, (3) a new Comment is added to an existing Post,
(4) a Comment is liked, and (5) two existing Users become
friends.

In the remainder of this section, we denote the number
of Users in a model with u, the number of Posts with p,
the number of Comments with c and the number of likes
with l. A Postmay have up to n Comments including transi-
tive replies. The maximum hierarchy depth of Comments is
denoted by h. A group of Users that like the same Comment
and are connected through friendships has the maximum size
f .

4.6.1 NMF Batch, Xtend, ATL

The NMF reference solution and the ATL solution are batch
implementationswhere all changes result in a complete recal-
culation of the analysis. ForQ1, calculating the scores of each
Post takes Θ(p + c) time, plus Θ(p log p) for the sorting.
This amounts to Θ(p log p + c). For Q2, Tarjan’s algorithm
or a similar algorithm to obtain connected components is
executed for each Comment. Tarjan’s algorithm has a linear
complexity in both nodes and edges where there are at most
f 2 edges, leading to a complexity of O(c · f 2). However,
because Users only need to be considered for Comments
they have liked and every like corresponds to exactly one
node in the induced graph for the liked Comment, this can
be reduced to O(l · f). Together with O(c log c) for sorting
the Comments, this leads to O(l · f + c log c) for Q2. For
Xtend, the sorting step is avoided by a dedicated stream oper-
ator in both queries. Furthermore, the usage of streams in the
Xtend solution theoretically allows to calculate the scores of
the individual Comments or Posts in parallel.

123

https://www.eclipse.org/cdo/

782 G. Hinkel et al.

4.6.2 NMF incremental, AOF, ATL incremental, differential
dataflow

In the incremental NMF solution as well as in the AOF,
incremental ATL and Differential Dataflow solutions, the
analysis is slightly more complex. Adding a new User does
not touch the dependency graph for Q1, and thus, the effort
for change propagation is constant, same for the change that
twoUsers become friends.When a new Post is added, it does
not have any Comments, but has to be inserted in the binary
search tree of Posts. This has an effort of O(log p). Adding
a new Comment will ripple through the Descendants
or AllInstances operation and cause an effort of O(h),
followed by Θ(log p) to update the position of the Post in
the binary search tree. When a Comment is liked, this only
causes constant effort to update the sum, but O(h) to find the
corresponding Post and Θ(log p) to update the position in
the search tree.

For Q2, the insertion of a new User does not touch the
dependency graph because the new User does not have
friends and has not liked any Comments yet. Similarly,
the insertion of a Post only causes constant effort to the
change propagation. The insertion of a Comment only
requires to calculate connected components of an empty
graph (theComment is not liked, yet) and inserting it into the
binary search tree, which takes O(log c). Liking a Comment
requires to re-compute the connected components for this
Comment and updating the score in the search tree, which is
O(f 2+log c) since the connected components are computed
from scratch. If two Users become friends, this potentially
changes the subgraphs for all Comments, which has a com-
plexity of O(l · f +c log c) just as if wewere to recalculate the
entire query, though in the average case, many new friend-
ships will likely not affect all Comments.

The parallel execution of NMF and Differential Dataflow
does not change the complexity to perform a change, and it
is rather used to propagate the changes within the transaction
in parallel.

4.6.3 Hawk

In Hawk, the batch update process needs to check the entire
model for changes, which clearly is Ω(p + c + u · f). For
incremental updates, the time to perform the graph updates
is constant. However, in both cases, the indices need to be
re-computed. For Q1, this takes Θ(n) time plus O(p log p)
for sorting the Posts as soon as the score for a Post needs
to be re-computed, i.e. when adding or liking a Comment.
The incremental query eliminates the sorting step, explic-
itly taking advantage of the monotony of the scores in this
scenario.

For Q2, similarly to the incremental NMF and AOF solu-
tions, the insertion of aUser or a Post does not have any effect

because they do not invalidate the score of any Comment.
However, the solution still requires the sorting, which takes
O(c log c), unless the solution is run in the incremental query
mode (in which case the sorting is replaced by constant
effort, using the monotony of the scores). If a Comment is
liked, the calculation of connected components is invalidated
and recalculated for this Comment, which takes O(f 2). A
new friendship requires the score of all Comments to be
re-evaluated, which is complexity of O(l · f).

4.6.4 JastAdd

JastAdd tracks accesses to model elements when an attribute
(score) of amodel element is computed and uses this to inval-
idate these attributes upon a model change. However, the
maximum always has to be computed. Adding a new User or
twoUsers becoming friends in Q1 (changes that do not affect
any model feature used in computing the scores) has a com-
plexity of Θ(p). This complexity also dominates the score
calculation for a new Post (without Comments). Adding or
liking a Comment will invalidate the score for the Post and
cause JastAdd to re-compute the score for this Post, which
requires a complexity of O(n) in addition to the Θ(p).

For Q2, finding the maximum takes Θ(c) and for insert-
ing a User or Post, that is the overall complexity because the
new User or Post is not being read in any score calculation.
A new Comment only requires to calculate the score for that
Comment in addition, which takes only constant effort. Lik-
ing a Comment will invalidate the score for this Comment,
which again takes O(f 2) and a new friendship takes O(l · f)
as this friendship may affect the score for many Comments.

4.6.5 YAMTL

In the YAMTL solutions, only the three best candidates are
retained and this simplifies the sorting step, which becomes
constant. Discarding a candidate has constant time, andwhen
the candidate is valid, it takes up to twocomparisons to update
the list.

In Q1, YAMTL-B calculates the scores by traversing all
Posts and then all of their Comments, O(p + c). When
adding Comments or likes, YAMTL-II re-computes the
score for each matched Post affected by a change, traversing
all of its contained Comments, O(n). Instead, YAMTL-EI
only processes the new Comment that has been added to the
Post or that has been liked by anotherUser for each impacted
Post, so the update is O(1) in those cases.

In Q2, for each Comment, Sedgewick and Wayne’s
weighted quick union find with path compression initial-
izes components in linear time, O(l · f), where the initial
size of components is given by l. Find and union oper-
ations have an amortized cost that corresponds to the
inverse of Ackermann’s function, O(α(l)). YAMTL solu-

123

A cross-technology benchmark for incremental graph queries 783

tions match Comments instead of Posts in Q2. For comput-
ing a Comment score, YAMTL’s solution applies the union
operation for any friend that has liked the Comment, so
processing each Comment involves O(l · f ·α(l)). In propa-
gationmode, YAMTL-B initializes the data structures for the
weighted quick union find with path compression for Users l
in eachComment, and the cost is O(l · f ·α(l)+c). YAMTL-
II visits the Comments affected by changes and initializes
the connected components of friends from scratch, so the
cost is O(l · f · α(l)) when adding a like and when adding a
friendship. YAMTL-EI is sensitive to finer changes, adding
a like by a new User triggers the update of connected com-
ponents with the friends f of the new User, O(f · α(l)),
whereas a new friendship only involves computing the union
of two components, O(α(l)).

4.6.6 PostgreSQL batch

Compared to solutionsworkingonobjectmodels, anRDBMS
has the problem that references to other models are not
directly available as object references but usually lead to
an indirect reference that must be resolved using an index.
The choice of this index and also the exact query strategy
is generally specific to the RDBMS and may differ from our
estimation here. In the remainder, we assume search trees are
used that resolve such a reference in log time. This allows
to manage data beyond main memory limitations but is of
course slower than following a direct reference.

ForQ1, the root Post reference for eachComment is com-
puted first in Ω(c · log c), which stands for the cost of the
first self-join of Comments when computing the transitive
closure. Then Posts are outer joined with their Comments
in Ω(p · log c + p + c) steps to produce an interim result
size proportional to p + c, which is then outer joined with
their likes in Ω((p + c) · log l + p + c + l) and the count
of likes has to be computed in Ω(l) steps. In-memory solu-
tions, by contrast, can easily read the count as it is usually
directly available for array list implementations of collec-
tions. Thus, the batch implementation has a complexity of
Ω(c · log c + p · log c + (p + c) · log l + p + c + l), which
can be further simplified to Ω((p + c) · log cl + l).21

In Q2, we first compute the transitive closure of the friend-
ship subgraphs22 in Ω(l · log l f l + l + f + l), which stands
for the cost of the first recursive step. The size of the transi-
tive closure is Ω(l), which is fed as input to the subsequent
aggregations that can be done in linear time w.r.t. their input
size. The result of the aggregations has again a size of Ω(l),

21 This assumes an optimal query execution under the assumption that
p < c and p < l.
22 In Listing 30, this is composed of two subqueries for clarity, i.e. com-
ment_friends and comment_friends_closed, but we assume the former
is inlined for execution.

and as it exists only in memory, no index is available. Thus,
the final join to Comments is assumed to be done using
hash join with a complexity of Ω(c + l). Summing up
the former gives the batch implementation a complexity of
Ω(l · log l f l + l + f + l + l + c+ l), which can be simplified
to Ω(l · log l f + l).23

4.6.7 PostgreSQL incremental

For Q1, any score update of a Post in the incremental SQL
solution yields a complexity ofΘ(log p). However, adding a
new User or friendship does not cause a score update and has
therefore constant effort. Apart from that, adding a Post only
requires to left join an empty table with constant effort and
migrating the Post to the new partition, which we assume is
constant effort. Adding a Comment requires to resolve its
Post with a complexity of Θ(log p + log c), adding a like
causes Θ(log p · log c). For Q2, the result-retrieval is non-
trivial even in the presence of an index and has an effort of
Ω(l · f). Adding a User, Post or Comment changes neither
friends nor likes relations, which is why all join operations
to update the comment_friends relation in stages 0 and 1
inner join an empty table and thus become constant in the
maintenance phase. Computing stage 2 and inserting into
the comment_friends relation require to process all O(c2 f 2)
entries of stage 2. Liking a Comment or a new friendships
adds an overhead to the computation of stage 1 and stage 2
(possibly recursively), but we assume this effort to be domi-
nated by O(c2 f 2).

4.6.8 Neo4j incremental

The Neo4j solution saves the score as a property on Post
and Comment nodes and indexes these properties using
B-trees.24 For Q1, this implies that inserting a new Post
necessitates a cost of O(log p) (maintaining the index on
the score property). Adding a Comment or a like can result
in an increase of the score of the root Post, which costs O(h)

for finding the Post and O(log p) to update the score. For
Q2, the incremental solution materializes each Comment’s
connected components which need to be maintained upon
inserting a new likes edge. The non-trivial operations are
as follows. When a Comment is initially inserted, it has
a score of 0. Maintaining the index on the score property
incurs a cost of O(log c). When a User usr adds a new
like to Comment cmt, the solution merges all connected
components of cmt containing friends of usr with a cost of
O(u · f). Additionally, maintaining the index on the score

23 This assumes an optimal query execution under the assumption that
f < l and c < l.
24 https://neo4j.com/docs/operations-manual/4.1/performance/index-
configuration/.

123

https://neo4j.com/docs/operations-manual/4.1/performance/index-configuration/
https://neo4j.com/docs/operations-manual/4.1/performance/index-configuration/

784 G. Hinkel et al.

property of the Comments has O(log c) cost. Finally, adding
a new friends edge necessitates checking which components
ofwhichComments canbemerged, incurring a cost ofO(c2)
and maintaining the index for cost O(log c).

Apart from this, since Neo4j indexes store identifiers of
nodes in search trees and checks uniqueness constraints,
adding a User requires an effort of Θ(log u), adding a
Post Θ(log p) and adding a Comment Θ(log c). Liking
a Comment requires at least Θ(log u + log c) and Users
becoming friends at least Θ(log u) cost.

4.6.9 GraphBLAS

For GraphBLAS, stating algorithmic complexities for query
calculation is difficult because the engine automatically
chooses from a variety of algorithms for matrix multipli-
cation given that the matrices are usually very sparse. For
example, the adjacency matrix to calculate the Comments
of a root Post in the Q1 batch version is sparse because
Comments only belong to one root Post. A naïve imple-
mentation of calculating this sum would therefore take an
effort of O(p ·c), but this analysis does not take into account
the optimizations that GraphBLAS applies to this compu-
tation. Therefore, we do not provide results for asymptotic
complexity for GraphBLAS.

4.6.10 Summary

The asymptotic complexities for Q1 are summarized in
Table 5. The table is divided into solutions that are not incre-
mental at all at the top (including non-incremental executions
of tools that are able to implicitly incrementalize the query),
those that are implicitly incremental and derive the algorithm
to propagate incremental changes from a declarative specifi-
cation in the middle, and explicitly incremental solutions at
the bottom.

One can see in Table 5 that whereas the non-incremental
tools have a linear complexity with respect to the number of
Posts and Comments, many incremental tools have a bet-
ter asymptotic complexity and therefore should scale much
better in presence of changes as they have constant or loga-
rithmic update efforts. However, there is a notable difference
between NMF and AOF, which take a rather fine-grained
approach to incremental change propagation, compared to
JastAdd, Hawk and YAMTL that rely on chunks in the form
of (derived) attribute or rule calculations.While the latter can
speed up recalculation to constant times in some cases, the
former approaches can get down to logarithmic efforts even
when Comments are added or liked as they allow partial
recalculation of the score of a Comment. These complexi-
ties also could be beaten by solutions where the incremental
change propagation is explicitly specified by the developer,
at least using the approaches studied.

The results for asymptotic complexities for Q2 are sum-
marized in Table 6. The solutions are ordered in the same
way as in Table 5. While for adding Users, Posts or
Comments, the results look very similar to Q1 with incre-
mental approaches achieving a strictly better asymptotic
complexity, the results for liking a Comment or especially
Users becoming friends are not as good. This is partially
because the analysis of asymptotic complexities is not very
detailed,25 but it is also a consequence of the effect that these
changes simply have a large impact on the computations
that get invalidated. A new friendship changes the connected
components in the induced subgraphs of the Comments that
both Users have liked.

5 Performance evaluation

In this section, we present the results of the performance
measurements with respect to the time required to load the
models, to run the initial query evaluation, and to propagate
changes. We first present the benchmark setup and experi-
ment design and then analyse the results. Finally, we discuss
potential threats to validity.

5.1 Benchmark setup

5.1.1 Input models

We executed the benchmark on models of increasing sizes,
denoted by scale factors (SFs) of power of 2. The number of
elements per node/edge type in each SF is shown in Table 7.
The largest model has 0.86M nodes and 2.25M edges. The
number of changes varies between 45 and 132 model ele-
ments.

5.1.2 Benchmark framework

The benchmark framework is based on the one of the TTC
2017 Smart Grid case [48] and supports automated build and
execution of solutions aswell as a correctness check and visu-
alization of the results using R. The correctness is checked by
comparing the query result against a pre-computed reference
both after the initial transformation and after eachupdate. The
source code and documentation of the benchmark as well as
metamodels, solutions, input models and change sequences
used for benchmarking are publicly available online.26 The
benchmark repository also contains instructions on how to

25 A more detailed analysis might take the maximum number of
Comments a User has liked into account, which is certainly smaller
than c.
26 https://github.com/TransformationToolContest/ttc2018liveContest.

123

https://github.com/TransformationToolContest/ttc2018liveContest

A cross-technology benchmark for incremental graph queries 785

Table 7 Model sizes for each scale factor: number of nodes and edges, number of changes

Type\scale factor 1 2 4 8 16 32 64 128 256 512 1024

Comments 640 1064 2315 5056 9220 18,872 39,212 76,735 148,470 273,418 540,905

Posts 554 889 1845 2270 5518 10,929 18,083 37,228 74,668 167,299 314,510

Users 80 118 190 204 394 595 781 1158 1678 2606 3699

Total number of nodes 1274 2071 4350 7530 15,132 30,396 58,076 115,121 224,816 443,323 859,114

friends 53 102 262 298 904 1827 2752 5695 11,118 24,387 45,386

replyTo 640 1064 2315 5056 9220 18,872 39,212 76,735 148,470 273,418 540,905

likes 6 24 66 129 572 1598 4770 13,374 36,815 102,276 268,432

submitter 1194 1953 4160 7326 14,738 29,801 57,295 113,963 223,138 440,717 855,415

Total number of edges 2533 4207 9118 17,865 34,654 70,970 143,241 286,502 568,011 1,114,216 2,251,043

Total number of changes 67 120 132 104 110 117 68 86 45 112 74

run the benchmark inDocker containers and there areDocker
images of all solutions available in Docker Hub.27

5.1.3 Benchmark environment

We ran the solutions on a cloud virtual machine with 8 cores
of an Intel® Xeon® Platinum8167MCPU, a base clock speed
of 2.0 GHz and a turbo clock speed of 2.4 GHz. Hyper-
Threading was turned off. The machine was running the
Ubuntu 20.04.2 LTS operating system. To help reproducibil-
ity, the experiments were executed in containers managed
by Docker 20.10.6. The runtime environments for Java-
and .NET-based solutions were OpenJDK 1.8.0 update 282,
OpenJDK11.0.10 and .NETCore 3.1.14. Each toolwasmea-
sured 5 times, and the geometric mean of the results is used.
The timeout value for each run was set to 10 minutes.

The modelling tools used XML-based representations
(e.g. XMI files) to load the data and the change set sequences.
For the rest of the tools (Neo4j, GraphBLAS, PostgreSQL
and Differential Dataflow), both the initial model and the
change sequences were loaded from CSV files.

5.2 Analysis

We grouped execution times by query, tool family and phase.
To save space, we do not show the exact results, but these can
be obtained from the GitHub repository of the benchmark.
From the phases listed in Sect. 2.4, we omitted the initial-
ization phase and kept the other three, i.e. (1) loading the
models, (2) the initial run and (3) the time to apply a set
of changes and update the result accordingly. In the follow-
ing, we compare the solutions across tool boundaries. For
each family of solutions, we only include the results for the

27 https://hub.docker.com/r/ftsrg/ttc2018/tags.

best variant. A comparison of the solution variants for NMF,
Hawk, JastAdd and YAMTL can be found in the appendix.

5.2.1 Batch solutions

The results for all batch tools are depicted in Fig. 9. One
can immediately see that most lines in all of these diagrams
have approximately the same slope. This confirms that query
execution times grow approximately linearly with the size of
the models.

The results for the initial execution times and the times
to update the graph are also very similar. This is clear, given
that after changing the model, the batch solutions all evaluate
the entire query again. Particularly for small models, there
is an overhead attached with the first execution, which is
why the execution times for updates are slightly smaller. This
overhead differs between the tools and is constant, thus hard
to perceive on a log scale.

For the update times, one can see clear distances between
the graphs, especially for Q1 where plotted execution times
appear almost parallel, indicating constant factors, i.e. the
solutions have different execution speeds but very similar
scalability characteristics. The GraphBLAS batch solution
outperforms all other batch solutions by more than one order
of magnitude. JastAdd and YAMTL that come next are still
faster thanNMFby a factor of 3 and faster than the remaining
by at least an order of magnitude for Q1.

For Q2, many solutions had severe performance problems
which is why they did not complete for larger model sizes.
One can also see that in particular for the SQL solution and
the JastAdd solution, the slope is steeper for the larger model
sizes, indicating the chosen algorithm implementation does
not scale equally well.

For Hawk, one can see how the choice of the underlying
database implementation affects performance: the perfor-

123

https://hub.docker.com/r/ftsrg/ttc2018/tags

786 G. Hinkel et al.

Fig. 9 Execution times of solutions with batch evaluation

Fig. 10 Execution times of solutions with implicit incremental evaluation

123

A cross-technology benchmark for incremental graph queries 787

Fig. 11 Execution times of solutions with explicit incremental evaluation

mance using SQLite is mostly better, which is clear given
that the entire models for all sizes fit into main memory.

5.2.2 Implicit incremental solutions

For the implicitly incremental solutions, the results depicted
in Fig. 10 look very different. While one can see a slope
in the load times and in the initial query evaluations, the
times to propagate a change sequence appear constant across
model sizes for all solutions except JastAdd. These solutions
require few milliseconds or less to propagate the changes
even for the largest input model sizes.28 For JastAdd, the
execution times for an update have the same slope as for
the initial execution, so the incremental change propagation
cannot reduce the complexity but allows a constant speedup
(or even slowdown, cf. Sect. A.2.3).

Because the Differential Dataflow solution was the only
solution in this category that is not using a modelling frame-
work underneath but uses plain CSVs as inputs, it is faster
in loading the models by multiple orders of magnitude. This
is due to the fact that the parsers used in the modelling tools
(EMF or NMF) both work with a much more diverse set

28 The NMF solution appears to be slower than a millisecond, but this
is only due to the fact that the firstUpdate phase includes a just-in-time
compilation which takes about 10–50 ms.

of inputs than CSV and therefore have a much higher com-
plexity. Furthermore, both modelling frameworks induce an
overhead to the model elements.

With regard to the initial execution, one can see that the
slope for AOF and the incremental ATL solution is smaller
than for the others. Apparently, AOF has a bigger constant
overhead that gets less important asmodels grow. In contrast,
theNMF solution has an initial time that ismore than an order
of magnitude slower than the other solutions. Apart from
this, one can observe that Differential Dataflow, JastAdd and
YAMTL are the fastest in the initial run.

5.2.3 Explicit incremental solutions

Surprisingly, the results for the explicitly incremental tools
depicted in Fig. 11 are worse than for the implicitly incre-
mental tools in the sense that they all have a slope, i.e. the
execution times to update the query results grow with grow-
ing model sizes. The only exception here is YAMTL, where
the incrementalization itself is obtained implicitly but isman-
ually and explicitly tuned. For GraphBLAS, this seems not
critical for the model sizes benchmarked because the solu-
tion is faster than the others by multiple orders of magnitude
and the time to propagate the changes is still below the tenth
of a second. For all the other solutions, however, the scalabil-
ity is much worse than for most of the implicit incremental

123

788 G. Hinkel et al.

Fig. 12 Execution times of selected incremental solutions

tools: they run out of memory and have runtimes of multiple
seconds.

This result is surprising because one would expect that the
incrementality of solutions, i.e. to which extent the update
times depend on the model sizes depend on the input size,
would be better if the solutions are explicitly developed for
this use case. However, the results imply the opposite. This
is because the implicit incremental tools create very fine-
grained dependency graphs that allow implicit incremental
tools to keep the effort of propagating a change to aminimum,
whereas the explicit solutions apply rather coarse-grained
schemes and need to re-evaluate larger parts of the query.

For Hawk, the differences between the Neo4j and the
SQLite backend are more severe than in the batch version.
While Neo4j is slower, particularly in the Update phase, it
is capable of processing the largest model, while the SQLite
backend runs out of memory.

5.2.4 Selected incremental tools

To allow a better comparison between the implicitly and
explicitly incremental solutions, we plotted a selected subset
of the incremental tools in Fig. 12. The results show again
large differences in the runtime for the initial query computa-
tion of about three orders of magnitude. The load times show
the differences between solutions that operate on plain CSVs

and those that use a modelling framework or have to set up
a database.

The results for the change propagation just confirm what
we found in the previous sections: while the explicitly incre-
mentalized solutions have a slope, indicating that the time
for updating the results grows with the size of the models,
the implicitly incrementalized solutions essentially ignore
the size of the models when propagating updates. Further-
more, while the times of the implicitly incremental tools are
all within one order of magnitude, the times for the explicitly
incremental tools differ significantly and are generally much
worse, again with the exception of GraphBLAS.29

5.3 Threats to validity

5.3.1 Internal threats to validity

Query Selection The queries used in the benchmark are arti-
ficial. They have been created by the first author in such a
way that they would represent typical queries. The design
goal of the second query in particular was to include some
kind of graph algorithm in order to evaluate the flexibility of
the tools on a concrete example. We chose the calculation of

29 Here, we again consider the explicitly incrementalized version of
the YAMTL solution as essentially implicitly incrementalized with an
additional explicit tuning.

123

A cross-technology benchmark for incremental graph queries 789

connected components because it is a well-studied algorithm
and was applicable for the chosen scenario.

Technologies There is a difference of the used languages,
runtimes and technologies because the solutions use differ-
entmodelling approaches. Therefore, differences in response
times may be due to the difference of the used framework
instead of the difference in the used incremental tool. Clear-
ing this effect from the measurements would necessitate
re-implementing both the solutions and the underlying tools
(in many cases large libraries or even database management
systems) in another technology stack, an overhead which
is not justified by this confounding effect. Further, users
will likely choose a tool that actively supports the modelling
approach they are using.

Tools versus solutions The paper claims to compare tools
where we in fact compare solutions using these tools. How-
ever, the solutions have been created by the authors of the
tools or at least experienced developers. Therefore, we think
that it is realistic to assume that the solutions are optimal for
the provided tool. However, this optimummay vary between
solutions. A good example is the calculation of the top-3 ele-
ments from a collection with scores. Some tools realize this
by taking the first elements of a sorted collection, because
keeping the sorted collection speeds up the following calls
and this way, the analysis is very readable. Others calculate
the 3 maximal elements because the sorted collection would
be discarded and is therefore not efficient.

Noise during measurements Due to repetition of measure-
ments, we think that the influence of garbage collection and
just-in-time compilation is much smaller than the observed
differences between incremental and non-incremental tools.
However, we ran our benchmarks on virtual machines in the
cloud, wherewe could not control the resource isolation from
other tenants.

Different input formats To account for the format of model
change sequences, we reproduced the change format also in
EMF and generally took the serialization, deserialization and
conversion of model changes into the tools’ respective native
formats out of the time measurements.

5.3.2 External threats to validity

Generalizability It is unclear to what degree the obtained
results can be generalized for other applications, input model
characteristics and change sequences. Further, it is unclear
to what extent the solutions represent the tools, even though
many solutions have been implemented by tool authors. The
analysis of the algorithmic complexities shows that these

complexities heavily depend on the query, the characteris-
tics of the inputs and the change sequences and all of these
will be different in other applications. However, we expect
that observed difference between the orders of magnitude of
the update times for incremental vs. non-incremental tools
is (to some degree) representative to real-world use cases
which run global graph queries on continuously changing
graph models.

Limited types of changes Though the change sequence used
in the various case studies has been generated, they depend
on the selection of changes and their proportion. In partic-
ular, we only considered incremental changes, i.e. additions
of Posts, Comments or friendships. We did not consider
decremental changes such as deleting Posts, Comments or
breaking friendships. Those potentially require additional
change propagation rules that did not have to be considered
in the scope of this paper. In the scope of a benchmark, it is
important to exactly specify the possible changes to the inputs
because the presence of decremental changes can have an
impact on the choice of algorithms to implement the change
propagation [46], so the possibility of decremental changes
has an impact even if they do not actually occur.

6 Related work

In this section, we review related work. We begin by review-
ing studies that compare existing tools of related fields in
Sect. 6.1. In Sect. 6.2, we then review existing incremen-
tal tools that we have not so far taken into account for the
comparison.

6.1 Comparative studies

The present paper is an outcome of TTC 2018, but this is
not the first time that the TTC has considered incremental
queries. The Train Benchmark [82] by Szárnyas et al. com-
pared query technology based on an example metamodel and
queries motivated by the railway domain. A separate TTC
version of this benchmark also exists that focuses more on
modelling tools [83]. Both versions of this benchmark have in
common that they use homogeneous change sequences. This
means that solutions generally only have to react to one kind
of model changes that will always affect the query result. In
the benchmark presented in this paper, we use heterogeneous
change sequences independent of the query, as we think that
this is more realistic. Furthermore, we added a query where
pure querying technology is not sufficient.

Apart from the Train Benchmark, there have been a num-
ber of other TTC contests in the recent years that took
incremental change propagation into account. The TTC 2016
live contest was about a meta-transformation to transform

123

790 G. Hinkel et al.

an abstract dataflow model into an executable model trans-
formation, with the goal to achieve an incremental change
propagation as well. However, no change sequences were
provided and therewas only one incremental solution.30 Sim-
ilarly, the TTC 2017 Smart Grids case [48] featured a query
joining information from two models, if possible with incre-
mental change propagation. However, only two solutions
were submitted [47,72] fromwhich only one supported incre-
mental change propagation. The 2017 Families to Persons
case [6] focused more on bidirectional change propagation
but also considers incremental change propagation (in both
directions). In contrast to the present social media bench-
mark, input and outputmodels are isomorphic in the Families
to Persons case. A complete list of the TTC cases up to 2018
can be found in [81, p.112].

A related field to incremental computation is reactive pro-
gramming, where the goal is to get notifications for changes.
An overview of 15 languages for reactive programming was
created by Bainomugisha et al. [7]. Reactive programming
approaches are built upon an important assumption, namely
that signals do not change once they are processed. That is,
they operate on a (potentially infinite) sequence of immutable
data. This is a contrast to model analysis tools where the
model usually has an approximately fixed size, but is muta-
ble.

In the Social Media case, this difference boils down to
the question whether one looks at the events that enter the
system such as adding a new User, adding a friendship,
etc., or whether the state of the system is looked at in its
entirety. Model-driven tools make the system state explicit
(in a model); meanwhile, reactive programming approaches
make it rather implicit. We think that the question which of
these is better highly depends on the application scenario.

6.2 Incrementality

Incrementality is a desirable property as it promises to save
computational effortwhen analyses are computed repeatedly.
Therefore, it has been a subject of research for decades [75],
for example, with the search for incremental compilers [76].
Common to all of these approaches is that they take advantage
of assumptions they make on the computation to perform at
the cost of limited applicability.

The approach by Reps [77] for attribute grammars is
among the first incrementalization systems, which special-
ized on a limited class of problems. This approach works by
using a static dependency graph for attribute evaluations for
which Reps has shown that an optimal-time re-evaluation
strategy can be found by re-evaluating the attributes in a

30 Nevertheless, a publication of the results has been attempted but
failed, mainly due to the lack of significant contributions given the low
number of submissions and the difficulty to generalize results.

topologically sorted order of a static dependency graph. This
approach rests on the assumption that the data processed by
the attribute grammar are immutable. As Reps applies this
technique for parse trees, this assumption is reasonable, but
it does not hold for models in general. The JastAdd tool in
our comparison uses this technology.

Pugh and Teitelbaum [73] then applied memoization
to incremental computation. Memoization is applicable to
any referential transparent function (such as getting refer-
ences to the three topmost elements of Q1 or Q2 is) but
rests on the assumption that the data structures it operates
on are immutable—an assumption not met with models.
Immutable data structures cannot represent cyclic data struc-
tures natively and thereforemake it difficult to create analyses
requiring them. In theSocialMedia benchmark,wehavevari-
ous cross-references betweenUsers to represent their friends.
Further, in general it is unclear which functions should be
memoized to actually get a performance benefit.

Acar and others created Self-Adjusting Computation
(SAC), a framework to support the development of incre-
mental programs [2] using the then newly introduced DDGs.
A good overview on SAC is provided by Acar [3]. The rough
idea is to memoize the computation made for a given analy-
sis. Closely related, Hammer and others introduced the idea
of demanded computation graphs, implemented in Adap-
ton [40,41]. Demanded computation graphs make sure that a
change propagation is only performed if the result is actually
needed. Both for SAC and Adapton, the modelling technol-
ogy currently is a big obstacle as they are implemented in
programming languages that do not have good support for
models.31 We therefore could not take these approaches into
account.

A popular approach to specify queries, especially in graph
transformation, isGraph Patterns. Bergmann et al. have cre-
ated IncQuery, an incremental pattern matching system for
Graph Patterns [10,11]. This approach uses a Rete network
[32], a static dependency graph, whose nodes are primitive
filter conditions or joins of partial patternmatches. Each node
represents a set of (partial) pattern matches. This approach
can support mutable models because the notification API
of models can be used to determine when matches must be
revoked or new matches arise.

In relational databases research, incrementalization man-
ifests in the topic of incremental view maintenance [14].
An overview on the research can be found in [24,39,79].
However, we are not aware of an open-source relational man-
agement system that implements any of these techniques.

Other approaches to incremental computation include
entirely new programming models that allow an easy
incrementalization or parallelization. An example of these
approaches is revision-based computing [21].

31 Furthermore, for SAC there is no publicly available compiler.

123

A cross-technology benchmark for incremental graph queries 791

7 Conclusion and future work

7.1 Conclusion

Wehave presented a simple benchmark for incremental graph
queries and demonstrated how it can be implemented on
11 tools fromdifferent technological spaces (modelling tools,
databases, graph analytical frameworks). The results allow
us to reason on the questions raised in the introduction.

Does the tool fit into my technology space? A complete
overview of the tools considered can be found in Table 4.
Most solutions work directly with EMF models. NMF has
its own modelling framework but claims compatibility of
the serialized models [45]. The solutions in Differential
Dataflow, GraphBLAS, Neo4j and PostgreSQL implement
conversions from EMF to their native formats.

Is it useful to rely on the incrementalization of a tool or
is it better [...] to implement change propagation explic-
itly? The analysis of asymptotic complexities in Sect. 4.6
has foreshadowed what could be confirmed by actual perfor-
mance measurements on realistic graph instances in Sect. 5:
in the present benchmark, several implicit incrementaliza-
tion tools were able to keep up and even outperform not
only solutions developed for batch execution but also solu-
tions that have been developed explicitly to be incremental,
sometimes by multiple orders of magnitude for propagat-
ing changes. Just by specifying the query in the format of
those tools, developers can gain a performance improvement
for incremental change propagation that seems very hard to
beat otherwise and gain that essentially for free. Only the
GraphBLAS solution without the performance penalty of a
modelling framework was faster, but it required the devel-
oper to rephrase the problem with matrix multiplications and
explicitly deal with incrementality. This is complex, error-
prone and hence expensive to develop even for such simple
queries. Further, it is in contrast to the implicit solutions,
in particular when their front-end language matches com-
mon standards such as OCL, EOL, SQO or Java Collections
queries.

The performance results demonstrate how the explicitly
incrementalized solutions, which use dependency structures
on a much coarser granularity, save only few intermediate
results and are slower on average than the implicitly incre-
mentalized solutions. This is because every type of change
requires dedicated code to update intermediate results. The
implicit tools create a much more fine-grained dependency
graph that allows to reach better asymptotic complexities
and better runtimes. The only exception here is YAMTL-EI,
because it is essentially a tuned version of YAMTL-II and
therefore uses the same granularity.

The results also show that the implicit incremental tools
NMF, AOF, ATL, YAMTL-II and Differential Dataflow
have similar performance characteristics (with Differential
Dataflow in front due to not having the overhead of a mod-
elling framework), so the choice which of them to use is
largely a matter of the context where the problem needs to
be tackled (modelling framework, programming language,
etc.).

How long does it take to recover from an application
crash? The implicit incrementalization tools we compared
in the scope of this benchmark do not support query persis-
tence (cf. Sect. 4.4) or currently cannot (yet?) catch up with
dedicated solutions where the queries have been explicitly
designed for change propagation, even when being slightly
bent towards the specific problem (the incremental query
version of Hawk). The explicitly incrementalized durable
solutions in SQL and Neo4j are more difficult to understand
but are performant, making it an interesting future research
topic to generalize these kind of solutions and hide their com-
plexity behind a high-level frontend language.

For relational databases, the lack of an out-of-the-box
solution for incrementalization is particularly surprising,
given the huge body of research in incremental view main-
tenance [24,39]. Their advantage in the scope of this bench-
mark would have been clear as the incremental SQL solution
ismuch harder to understand than its batch counterpart. How-
ever, these ideas did not yet make their way into the common
or open-source database management systems.

How much development effort will be necessary to imple-
ment change propagation? Of course, the development
effort to implement change propagation heavily depends on
the tool and how experienced the developer is with the tool.
Because the solutions in this benchmark have been developed
by different authors, we did not even attempt to collect data
about the development effort necessary. However, the discus-
sion in Sect. 4.3 shows that the magnitude of development
effort is quite different for the tools, in particular depend-
ing on whether the incrementalization happens implicitly
or requires explicit implementation. While for JastAdd and
YAMTL (in the implicitly incremental solution), no changes
are necessary at all and tools like NMF or AOF only require
to implement extensions (which can be shared among multi-
ple projects, so that maybe one day comprehensive libraries
exist), other tools such as in particular GraphBLAS, Neo4j
and SQL require a completely different approach for sup-
porting incremental change propagation.

How does it scale? The analysis of complexities and the
performance results on actual hardware gives an impression
of the scalability of the tools for the benchmark queries. As
discussed in Sect. 5.3, this does not mean that the same scala-

123

792 G. Hinkel et al.

bility is reached on a different use case. Rather, the discussion
in Sect. 4.6 unveils what is actually happening under the cov-
ers for a given change and this discussion could be adapted
for other use cases as well. The actual performance results
then show the implementation constant for the tools in com-
parison to each other, which likely hold also for other use
cases. Thus, the results can be used to estimate the scalabil-
ity also in other contexts.

Can I speed it up by adding more CPU cores? The paral-
lelism support of the tools compared in this paper is discussed
in Sect. 4.5. The results show that while the parallelism for
GraphBLAS and Differential Dataflow does bring perfor-
mance advantages, these are not present (yet?) for NMF or
YAMTL.

Is the tool extensible [...]? When originally selecting the
queries for the benchmark, we expected that the calculation
of connected components could not be handled natively by
any approach so that solutions had to prove the extensibil-
ity of the tools. However, although this strategy has worked
for a number of tools, it has not worked for all of them as
some tools (Differential Dataflow, JastAdd to some degree)
could indeed handle also Q2 without an extension of the
tool. For the database solutions, algorithms such as calcu-
lating connected components usually have to be developed
from scratch, using relational algebra.

7.2 Future work

We have future plans to extend the Social Media benchmark,
both by covering more tools and algorithms in our experi-
ments aswell as bymaking the benchmarkmore challenging.
To cover more techniques, we plan to include modelling
tools such as Viatra [85], relational databases which sup-
port intra-query parallelism such as theDuckDBembeddable
analytical database [74], and make use of recently developed
connected components algorithms [15]. Finally, we plan to
incorporate change sequences that include deletions [87]
which is expected to make it more challenging to perform
the incrementalmaintenance of the queries and the connected
components algorithm.

Acknowledgements We would like to thank Frank McSherry for pro-
viding an initial implementation of the Differential Dataflow solution.
René Schöne was supported by German Federal Ministry of Educa-
tion and Research within the research project “OpenLicht”. Márton
Elekes’s research was funded by the European Commission and the
Hungarian Authorities (NKFIH) through the Arrowhead Tools project
(EU Grant Agreement No. 826452, NKFIH Grant 2019-2.1.3-NEMZ
ECSEL-2019-00003) and by the NRDI Fund based on the charter of
bolster issued by the NRDI Office under the auspices of theMinistry for
Innovation and Technology. Gábor Szárnyas was partially supported by
the SQIREL-GRAPHS NWO project.

Funding Open access funding provided by Budapest University of
Technology and Economics.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Appendix

A.1 Detailed solution listings

– Listings 30–40 contain the code for the Batch and Incre-
mental PostgreSQL solutions of Q2.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

A cross-technology benchmark for incremental graph queries 793

1 WITH RECURSIVE-- recursive stands here regardless of the fact

that the 2nd subquery is the recursive one

2 comment_friends (commentid, user1id, user2id) AS (

3 SELECT l1.commentid, f.user1id, f.user2id

4 FROM likes l1, likes l2

5 , friends f

6 WHERE l1.userid = f.user1id

7 AND f.user2id = l2.userid

8 AND l1.commentid = l2.commentid

9)

10 , comment_friends_closed(commentid, head_userid, tail_userid)

AS (

11 -- transitive closure (reachability-only, no path is recorded)

12 -- of friendship-subgraphs defined by comment likes

13
14 -- start with the users that liked a specific comment.

15 -- They are the nodes of the projected users graph for a

comment

16 SELECT l.commentid

17 , l.userid AS head_userid, l.userid AS tail_userid

18 FROM likes l

19 UNION

20 SELECT cfc.commentid, cfc.head_userid, f.user2id as

tail_userid

21 FROM comment_friends_closed cfc

22 , comment_friends f

23 WHERE cfc.tail_userid = f.user1id

24 AND cfc.commentid = f.commentid

25)

26 , comment_components AS (

27 SELECT commentid, head_userid AS userid

28 , min(tail_userid) AS componentid

29 FROM comment_friends_closed

30 GROUP BY commentid, head_userid

31)

32 , comment_component_sizes AS (

33 SELECT cc.commentid, cc.componentid, count(*) AS

component_size

34 FROM comment_components cc

35 GROUP BY cc.commentid, cc.componentid

36)

37 -- consider all comments including those without likes

38 SELECT c.id AS commentid

39 , coalesce(sum(power(ccs.component_size, 2)), 0) AS

score

40 FROM comments c

41 left join comment_component_sizes ccs on (ccs.commentid =

c.id)

42 GROUP BY c.id, c.ts

43 ORDER BY sum(power(ccs.component_size, 2)) DESC NULLS LAST

44 , c.ts DESC LIMIT 3

45 ;

Listing 30 Batch PostgreSQL solution for Q2.

1 WITH RECURSIVE

2 -- calculate ancestors of comments

3 comments_with_rootpost_stage1(id, ancestorid) AS (

4 SELECT c.id, c.parentid AS ancestorid

5 FROM comments c

6 UNION

7 SELECT cr.id, c.parentid AS ancestorid

8 FROM comments_with_rootpost_stage1 cr

9 , comments c

10 WHERE 1=1

11 -- join

12 AND cr.ancestorid = c.id

13)

14 -- calculate rootpost: when ancestor's id matches a post's

id, then it is the root post

15 , comments_with_rootpost AS (

16 SELECT c.id, c.ancestorid AS postid

17 FROM comments_with_rootpost_stage1 c

18 , posts p

19 WHERE 1=1

20 AND c.ancestorid = p.id

21)

22 UPDATE comments c

23 SET postid = cr.postid

24 FROM comments_with_rootpost cr

25 WHERE c.id = cr.id

26 ;

Listing 31 SQL query to initialize Comments’ root Post reference for
the Incremental PostgreSQL solution for Q1.

1 insert into q1_scoring (postid, postts, score)

2 select p.id, p.ts, 10*count(distinct c.id) +

count(l.userid) as score

3 from posts p

4 left join comments c on (p.id = c.postid)

5 left join likes l on (c.id = l.commentid)

6 group by p.id, p.ts

7 ;

Listing 32 SQL initial query for the Incremental PostgreSQL solution
for Q1.

1 WITH RECURSIVE

2 -- calculate ancestors of new comments

3 comments_with_rootpost_stage1(id, ancestorid) AS (

4 SELECT c.id, c.parentid AS ancestorid

5 FROM comments_d c

6 UNION

7 SELECT cr.id

8 -- when we reach a comment for which the root post

is known,

9 -- we jump directly to that without traversing the

whole comment tree

10 , coalesce(c.postid, c.parentid) AS ancestorid

11 FROM comments_with_rootpost_stage1 cr

12 , comments c

13 WHERE 1=1

14 -- join

15 AND cr.ancestorid = c.id

16)

17 -- calculate rootpost: when ancestor's id matches a post's

id, then it is the root post

18 , comments_with_rootpost AS (

19 SELECT c.id, c.ancestorid AS postid

20 FROM comments_with_rootpost_stage1 c

21 , posts p

22 WHERE 1=1

23 AND c.ancestorid = p.id

24)

25 UPDATE comments_d c

26 SET postid = cr.postid

27 FROM comments_with_rootpost cr

28 WHERE c.id = cr.id

29 ;

Listing 33 Interim step to maintain root Post reference of all
Comments’ of the Incremental PostgreSQL solution for Q1.

123

794 G. Hinkel et al.

1 WITH diff_posts AS (

2 select p.id, p.ts

3 , 10*count(distinct c.id) + count(l.userid) as score

4 from posts_d p

5 left join comments_d c on (p.id = c.postid)

6 left join likes_d l on (c.id = l.commentid)

7 group by p.id, p.ts

8)

9 , diff_comments AS (

10 select p.id, p.ts

11 , 10*count(distinct c.id) + count(l.userid) as score

12 from posts_b p

13 inner join comments_d c on (p.id = c.postid)

14 left join likes_d l on (c.id = l.commentid)

15 group by p.id, p.ts

16)

17 , diff_likes AS (

18 select p.id, p.ts

19 , count(l.userid) as score

20 from posts_b p

21 inner join comments_b c on (p.id = c.postid)

22 inner join likes_d l on (c.id = l.commentid)

23 group by p.id, p.ts

24)

25 INSERT INTO q1_scoring AS r (postid, postts, score)

26 select id, ts, sum(score) as score

27 from (

28 select * from diff_posts

29 UNION ALL

30 select * from diff_comments

31 UNION ALL

32 select * from diff_likes

33) t

34 group by id, ts

35 ON CONFLICT (postid) DO UPDATE SET score = EXCLUDED.score +

r.score

36 ;

Listing 34 Interim result maintenance step of the Incremental
PostgreSQL solution for Q1.

1 select postid, score
2 from q1_scoring
3 order by score desc, postts desc limit

3;

Listing 35 SQL result retrieval phase for the Incremental PostgreSQL
solution for Q1.

1 INSERT INTO comment_friends (status,
commentid, user1id, user2id)

2 SELECT 'B' AS status
3 , l1.commentid, f.user1id,

f.user2id
4 FROM likes l1, likes l2
5 , friends f
6 WHERE l1.userid = f.user1id
7 AND f.user2id = l2.userid
8 AND l1.commentid = l2.commentid;

Listing 36 Initialization phase for the Incremental PostgreSQL solution
for Q2, initializing the comment_friends relation.

1 INSERT INTO comment_friends (status,
commentid, user1id, user2id)

2 SELECT 'D' AS status
3 , l1.commentid, f.user1id,

f.user2id
4 FROM likes_d l1, likes l2
5 , friends f
6 WHERE l1.userid = f.user1id
7 AND f.user2id = l2.userid
8 AND l1.commentid = l2.commentid
9 UNION ALL

10 SELECT 'D' AS status
11 , l1.commentid, f.user1id,

f.user2id
12 FROM likes_b l1, likes l2
13 , friends_d f
14 WHERE l1.userid = f.user1id
15 AND f.user2id = l2.userid
16 AND l1.commentid = l2.commentid
17 UNION ALL
18 SELECT 'D' AS status
19 , l1.commentid, f.user1id,

f.user2id
20 FROM likes_b l1, likes_d l2
21 , friends_b f
22 WHERE l1.userid = f.user1id
23 AND f.user2id = l2.userid
24 AND l1.commentid = l2.commentid;

Listing 37 SQL maintenance phase for the Incremental PostgreSQL
solution for Q2: updating the comment_friends relation.

123

A cross-technology benchmark for incremental graph queries 795

1 WITH RECURSIVE
comment_friends_closed_init(

2 commentid, head_userid,
tail_userid) AS (

3 -- transitive closure
(reachability-only, no path is
recorded)

4 -- of friendship-subgraphs defined by
comment likes

5
6 -- start with the users that liked

a specific comment.
7 -- They are the nodes of the

projected users graph for a
comment

8 SELECT l.commentid, l.userid AS
head_userid, l.userid AS
tail_userid

9 FROM likes l
10 UNION
11 -- expand the closure with the

edges of the projected
graph,

12 -- which is stored in
comment_friends table

13 SELECT cfc.commentid,
cfc.head_userid, f.user2id
as tail_userid

14 FROM comment_friends_closed_init
cfc

15 , comment_friends f
16 WHERE cfc.tail_userid = f.user1id
17 AND cfc.commentid = f.commentid
18)
19 INSERT INTO

comment_friends_closed(commentid,
head_userid, tail_userid)

20 select commentid, head_userid,
tail_userid

21 from comment_friends_closed_init w
22 left join

comment_friends_closed
q using (commentid,
head_userid,
tail_userid)

23 where q.commentid IS NULL;

Listing 38 SQL initialization phase for the Incremental PostgreSQL
solution for Q2: initializing the comment_friends relation’s closure.

1 WITH RECURSIVE -- note: though not the 1st query is
the recursive one, the RECURSIVE keyword
needs to be at the beginning

2 comment_friends_closed_stage0 AS (
3 -- in order to maintain the transitive closure in

comment_friends_closed
4 -- we build on the transitive closure built so

far and the new likes.
5 -- We need the new likes because users that liked

a specific comment
6 -- are the nodes of the projected users graph for

a comment
7 SELECT commentid, head_userid, tail_userid
8 FROM comment_friends_closed
9 UNION ALL

10 SELECT l.commentid, l.userid AS head_userid,
l.userid AS tail_userid

11 FROM likes_d l
12)
13 , comment_friends_closed_stage1(commentid,

head_userid, tail_userid) AS (
14 -- the transitive closure computed so far

(reachability-only, no path is recorded)
15 -- is expanded by paths built from the new friendships
16 SELECT commentid, head_userid, tail_userid
17 FROM comment_friends_closed_stage0
18 UNION
19 SELECT cfc.commentid, cfc.head_userid, f.user2id

as tail_userid
20 FROM comment_friends_closed_stage1 cfc
21 , comment_friends_d f
22 WHERE cfc.tail_userid = f.user1id
23 AND cfc.commentid = f.commentid
24)
25 , comment_friends_closed_stage2 AS (
26 -- transitive closure having the new friendships is

then expanded using the
27 -- previous transitive closure stage
28 SELECT distinct cfc.commentid, cfc.head_userid,

r.tail_userid
29 FROM comment_friends_closed_stage1 cfc
30 inner join comment_friends_closed r on

(cfc.tail_userid =
r.head_userid AND
cfc.commentid = r.commentid)

31 -- LEFT JOIN and WHERE ... IS NULL is
the antijoin

32 -- used to eliminate edges already
present in the previous closure

33 -- this is to prevent unnecessary
CONFLICTs in the INSERT
statement below.

34 left join comment_friends_closed s0 on
(cfc.commentid = s0.commentid
AND cfc.head_userid =
s0.head_userid AND
cfc.tail_userid =
s0.tail_userid)

35 WHERE s0.commentid IS NULL
36 UNION
37 SELECT commentid, head_userid, tail_userid
38 FROM comment_friends_closed_stage1
39)
40 INSERT INTO comment_friends_closed(commentid,

head_userid, tail_userid)
41 select commentid, head_userid, tail_userid
42 from comment_friends_closed_stage2 w
43 left join comment_friends_closed q using

(commentid, head_userid,
tail_userid)

44 where q.commentid IS NULL
45 ON CONFLICT DO NOTHING;

Listing 39 SQL maintenance phase for the Incremental PostgreSQL
solution for Q2: updating the comment_friends relation’s closure.

123

796 G. Hinkel et al.

1 WITH comment_components AS (
2 SELECT commentid, head_userid AS

userid
3 , min(tail_userid) AS

componentid
4 FROM comment_friends_closed
5 GROUP BY commentid, head_userid
6)
7 , comment_component_sizes AS (
8 SELECT cc.commentid,

cc.componentid, count(*) AS
component_size

9 FROM comment_components cc
10 GROUP BY cc.commentid,

cc.componentid
11)
12 -- consider all comments including

those without likes
13 SELECT c.id AS commentid
14 , coalesce(sum(

power(ccs.component_size,
2)), 0) AS score

15 FROM comments c left join
comment_component_sizes ccs
on (ccs.commentid = c.id)

16 GROUP BY c.id, c.ts
17 ORDER BY sum(

power(ccs.component_size, 2))
DESC NULLS LAST

18 , c.ts DESC LIMIT 3;

Listing 40 SQL result retrieval phase for the Incremental PostgreSQL
solution for Q2.

– Figure 14 contains the proof for the relational algebra for-
mula for the join of relations with a positive delta (change
set).

– Listings 41–42 contain the initial queries of the incre-
mental Neo4j solution for Q2.

– Listings 43–44 contain the incremental maintenance
queries of the Neo4j solution for Q2.

– Algorithm 5 shows a GraphBLAS algorithm to build the
incidence matrix from an adjacency matrix.

1 MATCH (c)<-[:LIKES]-(u:User)
2 WITH c, collect(u) AS users
3 CALL apoc.create.addLabels(users,

['Likes_' + c.id]) YIELD node
4 RETURN count(*)

Listing 41 Neo4j incremental implementation of Q2 – initial step that
materializes the subgraph by dynamic labelling of Users liking the
Comment.

123

A cross-technology benchmark for incremental graph queries 797

Fig. 13 Relational algebra formula for join of relations with positive delta

Fig. 14 Proof for the relational algebra formula for join of relations with a positive delta (change set)

1 CALL apoc.periodic.commit("
2 MATCH (c:Comment)<-[:LIKES]-(u1:User)
3 WITH c, min(u1) AS u1
4 CREATE (c)-[:COMPONENT]->(comp:Component)
5 WITH c, u1, comp
6 CALL apoc.path.subgraphNodes(u1,

{labelFilter: 'Likes_' + c.id,
7 relationshipFilter: 'FRIEND'}) YIELD

node AS u2
8 CREATE (comp)-[:USER]->(u2)
9 WITH c, comp, u2

10 MATCH (c)<-[l:LIKES]-(u2)
11 DELETE l
12 WITH c, comp, count(*) AS componentSize
13 SET comp.size = componentSize
14 RETURN count(*)
15 // limit - to bypass mandatory limit
16 ")

Listing 42 Neo4j incremental implementation of Q2 – grouping
components using fixed-point calculation and the reachability function
apoc.path.subgraphNodes of the APOC library.

1 WITH $friendEdgeId AS friendEdgeId
2 MATCH (comp1:Component)-[:USER]->
3 (u1:User)-[friendEdge]->(u2:User)

<-[:USER]-(comp2:Component),
4 // comp1 <> comp2, because COMPONENT edges

are different
5 (comp1)<-[:COMPONENT]-(c:Comment)
6 -[:COMPONENT]->(comp2)
7 WHERE id(friendEdge) = friendEdgeId
8 WITH c, comp1, comp2,
9 comp1.size AS comp1Size,

10 comp2.size AS comp2Size,
11 comp1.size + comp2.size AS newCompSize
12 // mergeRels: to avoid parallel COMPONENT

edges
13 CALL apoc.refactor.mergeNodes([comp1,

comp2], {mergeRels: true}) YIELD
node AS newComp

14 SET newComp.size = newCompSize,
15 c.score = c.score -

comp1Size*comp1Size -
comp2Size*comp2Size +
newCompSize*newCompSize

Listing 43 Neo4j incremental implementation of Q2 – merging
components when a new FRIEND edge is inserted and the two users
belonged to separate components.

1 WITH $likesEdgeId AS likesEdgeId
2 MATCH (c:Comment)<-[likesEdge]-(u:User)

123

798 G. Hinkel et al.

3 WHERE id(likesEdge) = likesEdgeId
4 CREATE (c)-[:COMPONENT]->(uComp:Component {size:

1})-[:USER]->(u)
5 WITH c, uComp, u
6 // OPTIONAL: to proceed if there is no such

component to merge with
7 OPTIONAL MATCH

(c)-[:COMPONENT]->(comp2:Component)
8 WHERE (comp2)-[:USER]->(:User)<-[:FRIEND]->(u)
9 WITH c,

10 uComp + collect(comp2) AS components,
11 1 + sum(comp2.size) AS newCompSize,
12 sum(comp2.size * comp2.size) AS

scoreDecrease
13 // mergeRels: to avoid parallel COMPONENT edges
14 CALL apoc.refactor.mergeNodes(components,

{mergeRels: true})
15 YIELD node AS newComp
16 SET newComp.size = newCompSize,
17 c.score = c.score - scoreDecrease +

newCompSize*newCompSize

Listing 44 Neo4j incremental implementation of Q2 – creating single-
node components for the new LIKES edges, then merge them with all
components where the User has friends (if any), and maintain the
component sizes and the score of the Comment.

Algorithm 5 Build incidence matrix from edges.
1: Input
2: es={(i1, j1), (j1,i1), ... , (im , jm), (jm ,im)}⊆{1, ... , n}2
3: Output
4: B ∈ {0, 1}n×m 	 incidence matrix
5: function BuildIncidenceMatrix
6: b_tuples ← ∅, k ← 1
7: for all (i, j) ∈ es do
8: if i < j then
9: b_tuples ← b_tuples ∪ {(i, k, 1), (j, k, 1)}
10: k ← k + 1
11: end if
12: end for
13: B �→b_tuples
14: return B
15: end function

A.2 Comparison of solution variants

A.2.1 NMF

Figure 15 shows the results for the different variants of the
NMF solution. The results show that the difference between
the standard incremental mode and the transactional mode is
marginal, i.e. the engine could not take advantage of propa-
gating all changes at once instead of propagating each change
separately. This is because the changes affect different parts
of the dependency graph. However, executing these propa-
gations in different threads also does not lead to speedups
because there is usually one change propagation dominating
the others. Instead, we see that the additional overhead of

synchronization makes the parallel mode’s change propaga-
tion slightly slower in this case.

A.2.2 Hawk

Figure 16 shows the execution times of all different variants
of the Hawk solution. Unfortunately, it appears that the ini-
tial load process did not complete within the timeout past
model size 64 across the solutions: this is due to the use of
monolithic single-file models in the benchmark framework,
whereas Hawk is optimized towardsmodels which have been
fragmented into many files. The results show that the initial
load is somewhat slower for thebatch and incremental update
(IU) solutions, as they need to calculate the derived attributes
used to cache scores. These derived attributes allow the ini-
tial execution of the query to be much faster in the batch and
IU modes than in the incremental update and query (IUQ)
mode: the IUQ mode has to do a first full execution of the
query. The updates are the slowest in the batch solution due to
the need to both recalculate derived attributes and reserialize
the changed social network model between updates. The IU
mode has slightly faster updates, as it skips the reserializa-
tion and instead applies the changes directly to the graph used
for querying. The IUQ mode speeds this up even further by
replacing derived attributes with graph listeners, using them
to detect changed comments and posts and re-score them.

A.2.3 JastAdd

Figure 17 shows the execution times of all different variants
of the JastAdd solution. The results show that the approaches
using bidirectional relations (Relast variants) are strictly bet-
ter than their counterparts, both in terms of initial execution
and time to propagate updates. As can be expected, the incre-
mental variants are also slower than the batch variants in
the initial query computation. However, because the JastAdd
solution needs to sort the results also in the incremental case
which dominates the complexity, the performance results for
the incremental variants are not significantly faster than the
batch variants. With unidirectional references as in the orig-
inal metamodel, the change propagation in the incremental
execution is even slower than the batch variant.

A.2.4 YAMTL

Figure 18 shows the execution times of all YAMTL solu-
tions. They indicate that the performance improvements of
the YAMTL-EI solutions over the purely implicit variant are
rather small, except for Q2 where the time for an update
propagation could be further reduced.

123

A cross-technology benchmark for incremental graph queries 799

Load Initial Update
Q

1
Q

2

1 2 4 8 16 32 64 128 256 512 1024 1 2 4 8 16 32 64 128 256 512 1024 1 2 4 8 16 32 64 128 256 512 1024

0.001

0.01

0.1

1

10

100

0.001

0.01

0.1

1

10

100

Model size

E
xe

cu
tio

n
tim

e
[s

]

NMF NMF Incremental NMF Parallel NMF Transactional

Fig. 15 Execution times of NMF solutions

Load Initial Update

Q
1

Q
2

1 2 4 8 16 32 64 128 256 512 1024 1 2 4 8 16 32 64 128 256 512 1024 1 2 4 8 16 32 64 128 256 512 1024

0.1

1

10

100

0.1

1

10

100

Model size

E
xe

cu
tio

n
tim

e
[s

]

Hawk

Hawk IU

Hawk IUQ

Hawk Neo4j

Hawk Neo4j IU

Hawk Neo4j IUQ

Hawk SQLite

Hawk SQLite IU

Hawk SQLite IUQ

Fig. 16 Execution times of Hawk solutions. Notation: IU: Incremental Update, IUQ: Incremental Update + Query

Load Initial Update

Q
1

Q
2

1 2 4 8 16 32 64 128 256 512 1024 1 2 4 8 16 32 64 128 256 512 1024 1 2 4 8 16 32 64 128 256 512 1024

0.001

0.01

0.1

1

10

0.001

0.01

0.1

1

10

Model size

E
xe

cu
tio

n
tim

e
[s

]

JastAdd Relast Reusable Batch JastAdd Relast Reusable Incremental JastAdd Relast XML Batch JastAdd Relast XML Incremental

Fig. 17 Execution times of JastAdd solutions

123

800 G. Hinkel et al.

Load Initial Update
Q

1
Q

2

1 2 4 8 16 32 64 128 256 512 1024 1 2 4 8 16 32 64 128 256 512 1024 1 2 4 8 16 32 64 128 256 512 1024

0.001

0.01

0.1

1

10

0.001

0.01

0.1

1

10

Model size

E
xe

cu
tio

n
tim

e
[s

]

YAMTL Batch YAMTL Incremental YAMTL Incremental (tuned, parallel) YAMTL Incremental (tuned)

Fig. 18 Execution times of YAMTL solutions

References

1. Abadi, D.: Data partitioning. In: Liu, L., Özsu, M.T. (eds.) Ency-
clopedia of Database Systems, 2nd edn. Springer, Berlin (2018).
https://doi.org/10.1007/978-1-4614-8265-9_688

2. Acar, U.A.: Self-adjusting computation. Ph.D. thesis, Carnegie
Mellon University, Pittsburgh, USA (2005)

3. Acar, U.A.: Self-adjusting computation (an overview). In: Proceed-
ings of the 2009 ACM SIGPLANWorkshop on Partial Evaluation
and Program Manipulation, pp. 1–6. ACM (2009)

4. Aho, A.V., Ullman, J.D.: The universality of data retrieval lan-
guages. In: POPL, pp. 110–120. ACM Press (1979). https://doi.
org/10.1145/567752.567763

5. Angles, R., Antal, J.B., Averbuch, A., Boncz, P.A., Erling,
O., Gubichev, A., Haprian, V., Kaufmann, M., Larriba-Pey, J.,
Martínez-Bazan, N., Marton, J., Paradies, M., Pham, M., Prat-
Pérez, A., Spasic, M., Steer, B.A., Szárnyas, G., Waudby, J.: The
LDBCsocial network benchmark.CoRRarXiv:2001.02299 (2020)

6. Anjorin, A., Buchmann, T., Westfechtel, B., Diskin, Z., Ko, H.,
Eramo, R., Hinkel, G., Samimi-Dehkordi, L., Zündorf, A.: Bench-
marking bidirectional transformations: theory, implementation,
application, and assessment. Softw. Syst. Model. 19(3), 647–691
(2020). https://doi.org/10.1007/s10270-019-00752-x

7. Bainomugisha, E., Carreton, A.L., Cutsem, Tv., Mostinckx, S.,
Meuter, Wd.: A survey on reactive programming. ACM Comput.
Surv. 45(4), 521–5234 (2013). https://doi.org/10.1145/2501654.
2501666

8. Barmpis, K., García-Domínguez, A., Bagnato, A., Abherve, A.:
Monitoring model analytics over large repositories with Hawk and
MEASURE. In:ModelManagement andAnalytics for Large Scale
Systems, pp. 87–123. Academic Press (2020). https://doi.org/10.
1016/B978-0-12-816649-9.00014-4. http://www.sciencedirect.
com/science/article/pii/B9780128166499000144

9. Beaudoux, O., Blouin, A., Barais, O., Jézéquel, J.: Active opera-
tions on collections. In: Model Driven Engineering Languages and
Systems: 13th International Conference, MODELS 2010, Oslo,
Norway, October 3-8, 2010, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 6394, pp. 91–105. Springer (2010)

10. Bergmann, G., Horváth, Á., Ráth, I., Varró, D.: A benchmark
evaluation of incremental pattern matching in graph transforma-
tion. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.)
Graph Transformations, 4th International Conference, ICGT 2008,

Leicester, United Kingdom, September 7–13, 2008. Proceedings,
Lecture Notes in Computer Science, vol. 5214, pp. 396–410.
Springer (2008). https://doi.org/10.1007/978-3-540-87405-8_27

11. Bergmann, G., Horváth, Á., Ráth, I., Varró, D., Balogh, A., Balogh,
Z., Ökrös, A.: Incremental evaluation of model queries over EMF
models. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) Model
Driven Engineering Languages and Systems: 13th International
Conference, MODELS 2010, Oslo, Norway, October 3–8, 2010,
Proceedings, Part I, Lecture Notes in Computer Science, vol. 6394,
pp. 76–90. Springer (2010). https://doi.org/10.1007/978-3-642-
16145-2_6

12. Besnard,V., Jouault, F., Calvar, T.L., Tisi,M.: TheTTC2018Social
Media Case, by ATL and AOF. In: Garcia-Dominguez, A., Hinkel,
G., Krikava, F. (eds.) Proceedings of the 11th Transformation Tool
Contest, a part of the Software Technologies: Applications and
Foundations (STAF 2018) federation of conferences, CEURWork-
shop Proceedings. CEUR-WS.org (2018)

13. Bettini, L.: Implementing Domain-Specific Languages with Xtext
and Xtend. Packt Publishing, Birmingham (2013)

14. Blakeley, J.A., Larson, P., Tompa, F.W.: Efficiently updating mate-
rialized views. In: SIGMOD, pp. 61–71.ACMPress (1986). https://
doi.org/10.1145/16894.16861

15. Bögeholz, H., Brand, M., Todor, R.: In-database connected com-
ponent analysis. In: ICDE, pp. 1525–1536. IEEE (2020). https://
doi.org/10.1109/ICDE48307.2020.00135

16. Boronat, A.: Expressive and efficient model transformation with
an internal DSL of Xtend. In: Proceedings of the 21th ACM/IEEE
International Conference on MoDELS, pp. 78–88. ACM (2018)

17. Boronat, A.: YAMTL solution to the TTC 2018 social media case.
In: Garcia-Dominguez, A., Hinkel, G., Krikava, F. (eds.) Proceed-
ings of the 11th Transformation Tool Contest, a part of the Software
Technologies: Applications and Foundations (STAF 2018) federa-
tion of conferences, CEURWorkshopProceedings. CEUR-WS.org
(2018)

18. Boronat, A.: Incremental execution of rule-based model transfor-
mation. Int. J. Softw. Tools Technol. Transf. (2020). https://doi.
org/10.1007/s10009-020-00583-y

19. Brucker,A.D.,Clark,T.,Dania,C.,Georg,G.,Gogolla,M., Jouault,
F., Teniente, E., Wolff, B.: Panel discussion: proposals for improv-
ing OCL. In: Proceedings of the 14th International Workshop on
OCL and Textual Modelling, CEUR Workshop Proceedings, vol.
1285, pp. 83–99 (2014)

123

https://doi.org/10.1007/978-1-4614-8265-9_688
https://doi.org/10.1145/567752.567763
https://doi.org/10.1145/567752.567763
http://arxiv.org/abs/2001.02299
https://doi.org/10.1007/s10270-019-00752-x
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1016/B978-0-12-816649-9.00014-4
https://doi.org/10.1016/B978-0-12-816649-9.00014-4
http://www.sciencedirect.com/science/article/pii/B9780128166499000144
http://www.sciencedirect.com/science/article/pii/B9780128166499000144
https://doi.org/10.1007/978-3-540-87405-8_27
https://doi.org/10.1007/978-3-642-16145-2_6
https://doi.org/10.1007/978-3-642-16145-2_6
https://doi.org/10.1145/16894.16861
https://doi.org/10.1145/16894.16861
https://doi.org/10.1109/ICDE48307.2020.00135
https://doi.org/10.1109/ICDE48307.2020.00135
https://doi.org/10.1007/s10009-020-00583-y
https://doi.org/10.1007/s10009-020-00583-y

A cross-technology benchmark for incremental graph queries 801

20. Buluç, A., Mattson, T., McMillan, S., Moreira, J.E., Yang, C.:
Design of the GraphBLAS API for C. In: GABB at IPDPS, pp.
643–652. IEEEComputer Society (2017). https://doi.org/10.1109/
IPDPSW.2017.117

21. Burckhardt, S., Leijen, D., Sadowski, C., Yi, J., Ball, T.: Two for
the price of one: a model for parallel and incremental computation.
SIGPLAN Not. 46(10), 427–444 (2011). https://doi.org/10.1145/
2076021.2048101

22. Calvar, T.L., Chhel, F., Jouault, F., Saubion, F.: Using pro-
cess algebra to statically analyze incremental propagation graphs.
In: Hebig, R., Berger, T. (eds.) Proceedings of MODELS 2018
Workshops: ModComp, MRT, OCL, FlexMDE, EXE, COMMit-
MDE,MDETools,GEMOC,MORSE,MDE4IoT,MDEbug,MoD-
eVVa, ME, MULTI, HuFaMo, AMMoRe, PAINS co-located with
ACM/IEEE 21st International Conference on Model Driven Engi-
neering Languages and Systems (MODELS 2018), Copenhagen,
Denmark, October, 14, 2018, CEUR Workshop Proceedings, vol.
2245, pp. 160–173. CEUR-WS.org (2018)

23. Calvar, T.L., Jouault, F., Chhel, F., Clavreul, M.: Efficient ATL
incremental transformations. J. Object Technol. 18(3), 2:1-17
(2019). https://doi.org/10.5381/jot.2019.18.3.a2

24. Chirkova, R., Yang, J.: Materialized views. Found. Trends
Databases 4(4), 295–405 (2012). https://doi.org/10.1561/
1900000020

25. Davis, T.A.: Algorithm 1000: SuiteSparse:GraphBLAS: graph
algorithms in the language of sparse linear algebra. ACM Trans.
Math. Softw. 45(4), 44:1-44:25 (2019). https://doi.org/10.1145/
3322125

26. Dong, G., Su, J.: Incremental maintenance of recursive views
using relational calculus/SQL. SIGMODRec. 29(1), 44–51 (2000).
https://doi.org/10.1145/344788.344808

27. Elekes, M., Antal, J.B., Szárnyas, G.: An analysis of the SIGMOD
2014 programming contest: complex queries on the LDBC social
network graph. CoRR arXiv:2010.12243 (2020)

28. Elekes, M., Szárnyas, G.: An incremental GraphBLAS solution for
the 2018 TTC Social Media case study. In: GrAPL at IPDPS, pp.
203–206. IEEE (2020). https://doi.org/10.1109/IPDPSW50202.
2020.00045

29. Elekes, M., Szárnyas, G.: Incremental view maintenance in graph
databases: a case study in Neo4j. In: Proceedings of the 27th PhD
mini-symposium. Budapest University of Technology and Eco-
nomics, Department of Measurement and Information Systems
(2020). http://docs.inf.mit.bme.hu/paper-minisy20-elekes/elekes.
pdf

30. Erling, O., Averbuch, A., Larriba-Pey, J., Chafi, H., Gubichev, A.,
Prat-Pérez, A., Pham, M., Boncz, P.A.: The LDBC social net-
work benchmark: interactive workload. In: SIGMOD, pp. 619–630
(2015). https://doi.org/10.1145/2723372.2742786

31. Fan, W., Hu, C., Tian, C.: Incremental graph computations: doable
and undoable. In: SIGMOD, pp. 155–169. ACM (2017). https://
doi.org/10.1145/3035918.3035944

32. Forgy,C.L.: Rete: a fast algorithm for themany pattern/many object
pattern match problem. Artif. Intell. 19(1), 17–37 (1982)

33. Francis, N., et al.: Cypher: an evolving query language for property
graphs. In: SIGMOD, pp. 1433–1445. ACM (2018). https://doi.
org/10.1145/3183713.3190657

34. Garcia-Dominguez, A.: Hawk solutions to the TTC 2018 Social
Media Case. In: Garcia-Dominguez, A., Hinkel, G., Krikava, F.
(eds.) Proceedings of the 11th Transformation Tool Contest, a
part of the Software Technologies: Applications and Foundations
(STAF 2018) Federation of Conferences, CEUR Workshop Pro-
ceedings. CEUR-WS.org (2018)

35. García-Domínguez, A., Hinkel, G., Krikava, F. (eds.): Proceed-
ings of the 11th Transformation Tool Contest, Co-located with
the 2018 Software Technologies: Applications and Foundations,
TTC@STAF 2018, Toulouse, France, June 29, 2018, CEURWork-

shop Proceedings, vol. 2310. CEUR-WS.org (2019). http://ceur-
ws.org/Vol-2310

36. Giese, H., Wagner, R.: From model transformation to incremental
bidirectional model synchronization. Softw. Syst. Model. 8(1), 21–
43 (2009). https://doi.org/10.1007/s10270-008-0089-9

37. Green, A., et al.: Updating graph databases with Cypher. PVLDB
(2019). https://doi.org/10.14778/3352063.3352139. http://www.
vldb.org/pvldb/vol12/p2242-green.pdf

38. Griffin, T., Kumar, B.: Algebraic change propagation for semijoin
and outerjoin queries. SIGMOD Rec. 27(3), 22–27 (1998). https://
doi.org/10.1145/290593.290597

39. Gupta, A.,Mumick, I.S., et al.: Maintenance of materialized views:
problems, techniques, and applications. IEEE Data Eng. Bull.
18(2), 3–18 (1995)

40. Hammer, M.A., Dunfield, J., Headley, K., Labich, N., Foster, J.S.,
Hicks, M., Van Horn, D.: Incremental computation with names.
In: Proceedings of the 2015 ACM SIGPLAN International Confer-
ence on Object-Oriented Programming, Systems, Languages, and
Applications, pp. 748–766. ACM (2015)

41. Hammer, M.A., Phang, K.Y., Hicks, M., Foster, J.S.: Adapton:
composable, demand-driven incremental computation. SIGPLAN
Not. 49(6), 156–166 (2014). https://doi.org/10.1145/2666356.
2594324

42. Hartmann, T., Fouquet, F., Jimenez, M., Rouvoy, R., Traon, Y.L.:
Analyzing complex data in motion at scale with temporal graphs,
pp. 596–601 (2017). https://doi.org/10.18293/SEKE2017-048.
http://ksiresearchorg.ipage.com/seke/seke17paper/seke17paper_
48.pdf

43. Hedin, G.: Reference attributed grammars. Informatica 24(3), 301
(2000)

44. Hedin, G., Magnusson, E.: JastAdd: an aspect-oriented compiler
construction system. Sci. Comput. Program. 47, 37–58 (2003)

45. Hinkel, G.: NMF: A Modeling Framework for the .NET Platform.
Technical report, Karlsruhe Institute of Technology, Karlsruhe
(2016). http://nbn-resolving.org/urn:nbn:de:swb:90-537082

46. Hinkel, G.: Implicit incremental model analyses and transforma-
tions. Ph.D. thesis, Karlsruhe Institute of Technology (2017)

47. Hinkel, G.: An NMF solution to the Smart Grid case at the
TTC 2017. In: García-Domínguez, A., Hinkel, G., Krikava, F.
(eds.) Proceedings of the 10th Transformation Tool Contest (TTC
2017), Co-located with the 2017 Software Technologies: Applica-
tions and Foundations (STAF 2017), Marburg, Germany, July 21,
2017, CEURWorkshop Proceedings, vol. 2026, pp. 13–17. CEUR-
WS.org (2017). http://ceur-ws.org/Vol-2026/paper5.pdf

48. Hinkel, G.: The TTC 2017 outage system case for incremental
model views. In: Garcia-Dominguez, A., Hinkel, G., Krikava, F.
(eds.) Proceedings of the 10th Transformation Tool Contest, a
part of the Software Technologies: Applications and Foundations
(STAF 2017) Federation of Conferences, CEUR Workshop Pro-
ceedings. CEUR-WS.org (2017)

49. Hinkel, G.: An NMF solution to the TTC 2018 Social Media
Case. In: Garcia-Dominguez, A., Hinkel, G., Krikava, F. (eds.)
Proceedings of the 11th Transformation Tool Contest, a part of
the Software Technologies: Applications and Foundations (STAF
2018) Federation of Conferences, CEUR Workshop Proceedings.
CEUR-WS.org (2018)

50. Hinkel, G.: NMF: a multi-platform modeling framework.
In: Rensink,A., Cuadrado, J.S. (eds.) Theory and Practice ofModel
Transformations: 11th International Conference, ICMT2018, Held
as Part of STAF 2018, Toulouse, France, June 25–29, 2018. Pro-
ceedings. Springer (2018)

51. Hinkel, G.: The TTC 2018 social media case. In: Garcia-
Dominguez, A., Hinkel, G., Krikava, F. (eds.) Proceedings of the
11th Transformation Tool Contest, a part of the Software Tech-
nologies: Applications and Foundations (STAF 2018) Federation

123

https://doi.org/10.1109/IPDPSW.2017.117
https://doi.org/10.1109/IPDPSW.2017.117
https://doi.org/10.1145/2076021.2048101
https://doi.org/10.1145/2076021.2048101
https://doi.org/10.5381/jot.2019.18.3.a2
https://doi.org/10.1561/1900000020
https://doi.org/10.1561/1900000020
https://doi.org/10.1145/3322125
https://doi.org/10.1145/3322125
https://doi.org/10.1145/344788.344808
http://arxiv.org/abs/2010.12243
https://doi.org/10.1109/IPDPSW50202.2020.00045
https://doi.org/10.1109/IPDPSW50202.2020.00045
http://docs.inf.mit.bme.hu/paper-minisy20-elekes/elekes.pdf
http://docs.inf.mit.bme.hu/paper-minisy20-elekes/elekes.pdf
https://doi.org/10.1145/2723372.2742786
https://doi.org/10.1145/3035918.3035944
https://doi.org/10.1145/3035918.3035944
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/3183713.3190657
http://ceur-ws.org/Vol-2310
http://ceur-ws.org/Vol-2310
https://doi.org/10.1007/s10270-008-0089-9
https://doi.org/10.14778/3352063.3352139
http://www.vldb.org/pvldb/vol12/p2242-green.pdf
http://www.vldb.org/pvldb/vol12/p2242-green.pdf
https://doi.org/10.1145/290593.290597
https://doi.org/10.1145/290593.290597
https://doi.org/10.1145/2666356.2594324
https://doi.org/10.1145/2666356.2594324
https://doi.org/10.18293/SEKE2017-048
http://ksiresearchorg.ipage.com/seke/seke17paper/seke17paper_48.pdf
http://ksiresearchorg.ipage.com/seke/seke17paper/seke17paper_48.pdf
http://nbn-resolving.org/urn:nbn:de:swb:90-537082
http://ceur-ws.org/Vol-2026/paper5.pdf

802 G. Hinkel et al.

of Conferences, CEUR Workshop Proceedings. CEUR-WS.org
(2018)

52. Hinkel, G., Happe, L.: An NMF solution to the TTC train bench-
mark case. In: Rose, L., Horn, T., Krikava, F. (eds.) Proceedings of
the 8th Transformation Tool Contest, a part of the Software Tech-
nologies: Applications and Foundations (STAF 2015) Federation
of Conferences, CEURWorkshop Proceedings, vol. 1524, pp. 142–
146. CEUR-WS.org (2015)

53. Jouault, F., Beaudoux, O.: On the use of active operations for incre-
mental bidirectional evaluation ofOCL. In: Proceedings of the 15th
International Workshop on OCL and Textual Modeling, CEUR
Workshop Proceedings, vol. 1512, pp. 35–45. Ottawa, Canada
(2015)

54. Jouault, F., Beaudoux, O.: Efficient OCL-based incremental trans-
formations. In: Proceedings of the 16th International Workshop in
OCL and Textual Modeling, CEUR Workshop Proceedings, vol.
1756, pp. 121–136. Saint-Malo, France (2016)

55. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Pro-
ceedings of the Model Transformations in Practice Workshop at
MoDELS 2005, vol. Satellite, pp. 128–138. Springer (2005)

56. Jouault, F., Tisi, M.: Towards incremental execution of atl trans-
formations. In: Tratt, L., Gogolla, M. (eds.) Theory and Practice of
Model Transformations, pp. 123–137. Springer, Berlin (2010)

57. Kepner, J., Aaltonen, P., Bader, D.A., Buluç, A., Franchetti, F.,
Gilbert, J.R., Hutchison, D., Kumar, M., Lumsdaine, A., Meyer-
henke, H., McMillan, S., Yang, C., Owens, J.D., Zalewski, M.,
Mattson, T.G., Moreira, J.E.: Mathematical foundations of the
GraphBLAS. In: HPEC, pp. 1–9 (2016). https://doi.org/10.1109/
HPEC.2016.7761646

58. Kepner, J., Gilbert, J.R. (eds.): Graph Algorithms in the Language
of Linear Algebra, Software, Environments, Tools, vol. 22. SIAM
(2011). https://doi.org/10.1137/1.9780898719918

59. Klabnik, S., Nichols, C.: The Rust Programming Language. No
Starch Press, San Francisco (2018)

60. Knuth,D.E.: Semantics of context-free languages.Math. Syst. The-
ory 2(2), 127–145 (1968). https://doi.org/10.1007/BF01692511

61. Kolovos, D.S., Paige, R.F., Polack, F.: The epsilon object language
(EOL). In: Model Driven Architecture: Foundations and Appli-
cations, Second European Conference, ECMDA-FA 2006, Bilbao,
Spain, July 10–13, 2006, Proceedings, pp. 128–142 (2006). https://
doi.org/10.1007/11787044_11

62. Magnusson, E., Hedin, G.: Circular reference attributed grammars:
their evaluation and applications. Sci. Comput. Program. 68(1), 21–
37 (2007)

63. Martínez, S., Tisi,M., Douence, R.: Reactivemodel transformation
with atl. Sci. Compute. Program. 136, 1–16 (2017). https://doi.org/
10.1016/j.scico.2016.08.006

64. Mattson, T., Davis, T.A., Kumar,M., Buluç,A.,McMillan, S.,Mor-
eira, J.E., Yang, C.: LAGraph: a community effort to collect graph
algorithms built on top of the GraphBLAS. In: GrAPL at IPDPS,
pp. 276–284 (2019). https://doi.org/10.1109/IPDPSW.2019.00053

65. McSherry, F., Murray, D.G., Isaacs, R., Isard, M.: Differen-
tial dataflow. In: CIDR (2013). http://cidrdb.org/cidr2013/Papers/
CIDR13_Paper111.pdf

66. Mey, J., Kühn, T., Schöne, R., Aßmann, U.: Reusing static anal-
ysis across different domain-specific languages using reference
attribute grammars. Art Sci. Eng. Program. (2020). https://doi.org/
10.22152/programming-journal.org/2020/4/15

67. Mey, J., Schöne, R., Hedin, G., Söderberg, E., Kühn, T., Fors, N.,
Öqvist, J., Aßman, U.: Continuous model validation using refer-
ence attribute grammars. In: Proceedings of the 11th International
Conference on Software Language Engineering (2018)

68. Monge, A.E., Elkan, C.: An efficient domain-independent algo-
rithm for detecting approximately duplicate database records. In:
DMKD (1997)

69. Murray, D.G., McSherry, F., Isaacs, R., Isard, M., Barham, P.,
Abadi, M.: Naiad: a timely dataflow system. In: SIGOPS, pp. 439–
455. ACM (2013). https://doi.org/10.1145/2517349.2522738

70. Murray, D.G., McSherry, F., Isard, M., Isaacs, R., Barham, P.,
Abadi, M.: Incremental, iterative data processing with timely
dataflow. Commun. ACM 59(10), 75–83 (2016). https://doi.org/
10.1145/2983551

71. Needham, M., Hodler, A.E.: Graph Algorithms: Practical Exam-
ples in Apache Spark and Neo4j. O’Reilly Media, Sebastopol
(2019)

72. Peldszus, S., Bürger, J., Strüber, D.: Detecting and prevent-
ing power outages in a smart grid using emoflon. In: García-
Domínguez, A., Hinkel, G., Krikava, F. (eds.) Proceedings of the
10th TransformationTool Contest (TTC2017), Co-locatedwith the
2017SoftwareTechnologies:Applications andFoundations (STAF
2017), Marburg, Germany, July 21, 2017, CEUR Workshop Pro-
ceedings, vol. 2026, pp. 19–23. CEUR-WS.org (2017). http://ceur-
ws.org/Vol-2026/paper17.pdf

73. Pugh, W., Teitelbaum, T.: Incremental computation via function
caching. In: Proceedings of the 16th ACM SIGPLAN-SIGACT
symposiumon Principles of programming languages, pp. 315–328.
ACM (1989)

74. Raasveldt, M., Mühleisen, H.: DuckDB: an embeddable analytical
database. In: SIGMOD, pp. 1981–1984. ACM (2019). https://doi.
org/10.1145/3299869.3320212

75. Ramalingam, G., Reps, T.: A categorized bibliography on incre-
mental computation. In: Proceedings of the 20th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pp.
502–510. ACM (1993)

76. Reiss, S.P.: An approach to incremental compilation. In: Proceed-
ings of the 1984 SIGPLANSymposium onCompiler Construction,
SIGPLAN ’84, pp. 144–156. ACM, New York, NY, USA (1984).
https://doi.org/10.1145/502874.502889

77. Reps, T.: Optimal-time incremental semantic analysis for syntax-
directed editors. In: Proceedings of the 9th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
POPL ’82, pp. 169–176.ACM,NewYork,NY,USA(1982). https://
doi.org/10.1145/582153.582172

78. Schöne, R., Mey, J.: A JastAdd-based solution to the TTC 2018
social media case. In: Garcia-Dominguez, A., Hinkel, G., Krikava,
F. (eds.) Proceedings of the 11th Transformation Tool Contest, a
part of the Software Technologies: Applications and Foundations
(STAF2018) federation of conferences, CEURWorkshopProceed-
ings. CEUR-WS.org (2018)

79. Sebaa, A., Tari, A.: Materialized view maintenance: issues,
classification, and open challenges. Int. J. Coop. Inf. Syst.
28(1), 19300011–193000159 (2019). https://doi.org/10.1142/
S0218843019300018

80. Sedgewick, R., Wayne, K.: Algorithms, 4th edn. Addison-Wesley,
Boston (2011)

81. Szárnyas, G.: Query, analysis, and benchmarking techniques for
evolving property graphs of software systems. Ph.D. dissertation,
Budapest University of Technology and Economics (2019). http://
hdl.handle.net/10890/13133

82. Szárnyas, G., Izsó, B., Ráth, I., Varró, D.: The train bench-
mark: cross-technology performance evaluation of continuous
model queries. Softw. Syst. Model. (2017). https://doi.org/10.
1007/s10270-016-0571-8

83. Szárnyas, G., Semeráth, O., Ráth, I., Varró, D.: The TTC 2015
train benchmark case for incremental model validation. In: TTC at
STAF, pp. 129–141 (2015). http://ceur-ws.org/Vol-1524/paper2.
pdf

84. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM
J. Comput. 1(2), 146–160 (1972)

85. Varró, D., Bergmann, G., Hegedüs, Á., Horváth, Á., Ráth, I.,
Ujhelyi, Z.: Road to a reactive and incremental model transfor-

123

https://doi.org/10.1109/HPEC.2016.7761646
https://doi.org/10.1109/HPEC.2016.7761646
https://doi.org/10.1137/1.9780898719918
https://doi.org/10.1007/BF01692511
https://doi.org/10.1007/11787044_11
https://doi.org/10.1007/11787044_11
https://doi.org/10.1016/j.scico.2016.08.006
https://doi.org/10.1016/j.scico.2016.08.006
https://doi.org/10.1109/IPDPSW.2019.00053
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper111.pdf
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper111.pdf
https://doi.org/10.22152/programming-journal.org/2020/4/15
https://doi.org/10.22152/programming-journal.org/2020/4/15
https://doi.org/10.1145/2517349.2522738
https://doi.org/10.1145/2983551
https://doi.org/10.1145/2983551
http://ceur-ws.org/Vol-2026/paper17.pdf
http://ceur-ws.org/Vol-2026/paper17.pdf
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1145/502874.502889
https://doi.org/10.1145/582153.582172
https://doi.org/10.1145/582153.582172
https://doi.org/10.1142/S0218843019300018
https://doi.org/10.1142/S0218843019300018
http://hdl.handle.net/10890/13133
http://hdl.handle.net/10890/13133
https://doi.org/10.1007/s10270-016-0571-8
https://doi.org/10.1007/s10270-016-0571-8
http://ceur-ws.org/Vol-1524/paper2.pdf
http://ceur-ws.org/Vol-1524/paper2.pdf

A cross-technology benchmark for incremental graph queries 803

mation platform: three generations of the VIATRA framework.
Softw. Syst. Model. 15(3), 609–629 (2016). https://doi.org/10.
1007/s10270-016-0530-4

86. Vogt, H.H., Swierstra, S.D., Kuiper, M.F.: Higher order attribute
grammars. In: PLDI ’89. ACM, New York, NY, USA (1989).
https://doi.org/10.1145/73141.74830

87. Waudby, J., Steer, B.A., Prat-Pérez, A., Szárnyas, G.: Supporting
dynamic graphs and temporal entity deletions in the LDBC Social
Network Benchmark’s data generator. In: GRADES-NDA at SIG-
MOD,pp. 8:1–8:8.ACM(2020). https://doi.org/10.1145/3398682.
3399165

88. Zhang, Y., Azad, A., Hu, Z.: FastSV: a distributed-memory con-
nected component algorithm with fast convergence. In: PPSC, pp.
46–57. SIAM (2020). https://doi.org/10.1137/1.9781611976137.5

89. Zhao, K., Yu, J.X.: All-in-one: graph processing in RDBMSs revis-
ited. In: SIGMOD, pp. 1165–1180. ACM (2017). https://doi.org/
10.1145/3035918.3035943

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Georg Hinkel received his B.Sc.
and M.Sc. degrees in Computer
Science from the Karlsruhe Insti-
tute of Technology (KIT), in 2011
and 2014, respectively, and the
B.Sc. degree in math in 2012.
In 2017, he received his Ph.D.
degree on implicit incremental
model analyses and transforma-
tions from the KIT. Currently, he
is a Senior Software Technology
Engineer at Tecan Software Com-
petence Center GmbH. His
research interest covers model-
driven engineering, incremental-

ity and medical robotics. He has organized several international work-
shops and is a reviewer for multiple international journals. He is the
lead developer of NMF and has (co)-authored more than 30 peer-
reviewed publications.

Dr. Antonio Garcia-Dominguez is
a Lecturer in Computer Science
at Aston University (United King-
dom). His main research interests
are model-driven engineering and
software testing, with an inter-
est on the use of non-relational
database technologies and AI
approaches to deal with increas-
ingly more complex systems. In
addition to over 10 papers in peer-
reviewed journals and over 40
papers in conferences and work-
shops, Antonio is a core contribu-
tor in several related open source

projects. Some of these projects include the Eclipse Epsilon model
management languages and tools, the MuBPEL mutation testing
framework for WS-BPEL, or the Eclipse Hawk model indexing frame-
work.

René Schöne is a research assis-
tant and Ph.D. student at the Chair
of Software Technology at Tech-
nische Universität Dresden. His
research and PhD focuses on the
application of reference attribute
grammars for models@run.time in
self-adaptive systems currently
within the domain of smart home.
Challenges there include adequate
modelling of domains, abstraction
of and connection to real hard-
ware devices, and efficient anal-
yses in the presence of frequent
model updates.

Artur Boronat is a lecturer at the
School of Computing and Mathe-
matical Sciences of the University
of Leicester (UK). His research
interests revolve around: model-
driven engineering and agile soft-
ware development, applications in
healthcare and industry 4.0; appli-
cation of AI technology and for-
mal methods in the intersection of
the two areas above. He obtained
his Ph.D. degree from the Univer-
sitat Politénica de Valéncia (UPV,
Spain) in 2007. He has been a
visiting researcher at University

of Illinois at Urbana-Champaign (UIUC, USA) and at Universitat
Politécnica de Catalunya (UPC, Spain). He has organized several
international workshops and is a reviewer for multiple international
journals and funding bodies. He has (co)-authored more than 50
peer-reviewed publications and authored several MDE tools, such as
YAMTL for model transformations and EMF-Syncer for agile model-
driven engineering.

Massimo Tisi is an associate
professor in the Department of
Computer Science of the Institut
Mines-Telecom Atlantique (IMT
Atlantique, Nantes, France), and
deputy leader of the NaoMod team,
LS2N (UMR CNRS 6004). Since
2019 he coordinates the Lowco-
mote Marie Curie European Train-
ing Network. He has been visit-
ing researcher at McGill Univer-
sity and the National Institute of
Informatics (NII) in Japan, and
post-doctoral fellow at Inria. He
received his PhD degree in Infor-

mation Engineering at Politecnico di Milano (Italy), where he was a
member of the Database and Web Technologies group. His research
interests revolve around software and system modeling, domain-
specific languages and applied logic. He contributes to the design of
the ATL model-transformation language and investigates the applica-
tion of deductive verification techniques to model-driven engineering.

123

https://doi.org/10.1007/s10270-016-0530-4
https://doi.org/10.1007/s10270-016-0530-4
https://doi.org/10.1145/73141.74830
https://doi.org/10.1145/3398682.3399165
https://doi.org/10.1145/3398682.3399165
https://doi.org/10.1137/1.9781611976137.5
https://doi.org/10.1145/3035918.3035943
https://doi.org/10.1145/3035918.3035943

804 G. Hinkel et al.

Théo Le Calvar is an asso-
ciate professor at IMT-Atlantique
(France). He received his PhD in
Computer Sciences from the Uni-
versity of Angers in France in
2019. He worked as a postdoc
in the ERIS team at ESEO in
Angers, France and in the
GEODES team at Université de
Montréal in Canada. His current
research interests include incre-
mental model transformation, con-
straint solving and modeling on
the web.

Frederic Jouault is a research
associate at ESEO, France. He
received his PhD from the Univer-
sity of Nantes before doing a post-
doc at the University of Alabama
at Birmingham. His research inter-
ests involve model engineering,
transformation, synchronization,
and execution, as well as their
application to Domain-Specific
Languages (DSLs) and model-
based reverse engineering. Frédéric
created ATL, a DSL for model-to-
model transformation. He is now
leading the development of ATL

(language and toolkit) on Eclipse.org, and is in charge of the Eclipse
modeling MMT project as well as a member of the modeling PMC.

József Marton is a lecturer in
Database Theory at the Faculty of
Electrical Engineering and Infor-
matics of the Budapest Univer-
sity of Technology and Economics
(Hungary). His research interest
covers continuous query process-
ing, continuous data integration
from heterogeneous data sources
and mapping non-relational data
models and queries to relational
model and SQL engines. Jozsef
also contributes to related open
source research and industrial
projects.

Tamás Nyíri received his M.Sc.
degree in computer science from
the Budapest University of Tech-
nology and Economics in 2021.
In his thesis he investigated incre-
mental execution technologies for
graph queries, especially the dif-
ferential dataflow computational
model. Currently, he is working at
Cloudera as a software engineer.

JánosBenjaminAntal is a software
engineer. He received his M.Sc.
degree in computer science from
the Budapest University of Tech-
nology and Economics in 2019.
As part of his master thesis he
contributed to the Linked Data
Benchmark Council Social Net-
work Benchmark. Currently, he is
working on an in-memory graph
database at Memgraph.

Márton Elekes is a Ph.D. stu-
dent at the Budapest University of
Technology and Economics. His
research interests include graph
databases and software testing. He
is a contributor of the LDBC
Social Network Benchmark.

Gábor Szárnyas is a postdoc-
toral researcher. He obtained his
Ph.D. in software engineering in
2019, focusing on the intersection
of object-oriented graph models
and property graphs. He currently
works on efficient graph process-
ing techniques, including formu-
lating graph algorithms in the lan-
guage of linear algebra (Graph-
BLAS, LAGraph), implementing
property graph query engines
(openCypher, SQL/PGQ), and
designing graph benchmarks. He
serves on the steering committee

of the Linked Data Benchmark Council.

123

	A cross-technology benchmark for incremental graph queries
	Abstract
	1 Introduction
	2 The social media benchmark
	2.1 Metamodel and change sequences
	2.2 Queries
	2.2.1 Query 1: Most controversial posts
	2.2.2 Query 2: Most influential comments

	2.3 Change sequences
	2.4 Benchmark phases

	3 Solutions
	3.1 Common solution approaches
	3.1.1 Query 1: Most controversial posts
	3.1.2 Query 2: Most influential comments

	3.2 Reference solution: C# query syntax
	3.2.1 Tool description
	3.2.2 Query 1
	3.2.3 Query 2

	3.3 NMF incremental
	3.3.1 Tool description
	3.3.2 Query 1
	3.3.3 Query 2
	3.3.4 Transactions and parallelism

	3.4 Hawk
	3.4.1 Tool description
	3.4.2 Query 1
	3.4.3 Query 2

	3.5 JastAdd
	3.5.1 Tool description
	3.5.2 Query 1
	3.5.3 Query 2

	3.6 YAMTL
	3.6.1 Tool description
	3.6.2 Query 1
	3.6.3 Query 2

	3.7 ATL
	3.7.1 Tool description
	3.7.2 Query 1
	3.7.3 Query 2

	3.8 Xtend
	3.8.1 Tool description
	3.8.2 Query 1
	3.8.3 Query 2

	3.9 AOF and ATL incremental
	3.9.1 Tool description
	3.9.2 Query 1
	3.9.3 Query 2

	3.10 Neo4j Batch
	3.10.1 Tool description
	3.10.2 Query 1
	3.10.3 Query 2

	3.11 Neo4j incremental
	3.11.1 Tool description
	3.11.2 Query 1
	3.11.3 Query 2

	3.12 PostgreSQL Batch
	3.12.1 Tool description
	3.12.2 Query 1
	3.12.3 Query 2

	3.13 PostgreSQL incremental
	3.13.1 Tool description
	3.13.2 Query 1
	3.13.3 Query 2

	3.14 GraphBLAS Batch
	3.14.1 Tool description
	3.14.2 Query 1
	3.14.3 Query 2

	3.15 GraphBLAS incremental
	3.15.1 Tool description
	3.15.2 Query 1
	3.15.3 Query 2

	3.16 Differential dataflow
	3.16.1 Tool description
	3.16.2 Query 1
	3.16.3 Query 2

	4 Classification
	4.1 Declarative query language
	4.2 Data model
	4.3 Explicitness of incrementalization
	4.4 Persistence
	4.5 Parallelism
	4.6 Asymptotic complexity to propagate changes
	4.6.1 NMF Batch, Xtend, ATL
	4.6.2 NMF incremental, AOF, ATL incremental, differential dataflow
	4.6.3 Hawk
	4.6.4 JastAdd
	4.6.5 YAMTL
	4.6.6 PostgreSQL batch
	4.6.7 PostgreSQL incremental
	4.6.8 Neo4j incremental
	4.6.9 GraphBLAS
	4.6.10 Summary

	5 Performance evaluation
	5.1 Benchmark setup
	5.1.1 Input models
	5.1.2 Benchmark framework
	5.1.3 Benchmark environment

	5.2 Analysis
	5.2.1 Batch solutions
	5.2.2 Implicit incremental solutions
	5.2.3 Explicit incremental solutions
	5.2.4 Selected incremental tools

	5.3 Threats to validity
	5.3.1 Internal threats to validity
	5.3.2 External threats to validity

	6 Related work
	6.1 Comparative studies
	6.2 Incrementality

	7 Conclusion and future work
	7.1 Conclusion
	7.2 Future work

	Acknowledgements
	A Appendix
	A.1 Detailed solution listings
	A.2 Comparison of solution variants
	A.2.1 NMF
	A.2.2 Hawk
	A.2.3 JastAdd
	A.2.4 YAMTL

	References

