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Abstract

This paper investigates the hydrodynamics and power consumption in laminar stirred vessel flow using numerical computation. The Metzner–Otto

correlation was established for mixing in power-law fluids. This paper focuses on its application to yield stress fluids. Distributions of shear rates

and their link to power consumption for helical and anchor agitators are discussed. Insight is sought from the analytical formula for Taylor–Couette

flows. Laws are established for Bingham, Herschel-Bulkley and Casson fluids and reveal similar results. Fully or partially sheared flow situations

with plug regions are considered. Depending on the fluid model, the concept is valid or constitutes a satisfactory approximation for fully sheared

flows. When the flow is partially sheared, the expression depends on the Bingham number and the concept must be adapted. The results of the

numerical simulations are interpreted in the light of this analysis and results from the literature.
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1. Introduction

Mixing operations with non-Newtonian fluids are frequently

employed in areas such as the food, pharmaceutical, paint, or

polymer industries. Additional difficulties for the optimization

of processes often occur with such fluids. In fact, the hydrody-

namics strongly depends on the nature of the fluids involved in

the mixing system. Viscoplastic fluids (also called yield stress

fluids) are an important class of non-Newtonian fluids. These

fluids flow only when the shear stress is above a certain thresh-

old, the yield stress, and this leads in particular to dead zones in

the flow which lower mixing efficiency [1–3].

As a resulting global value of local hydrodynamics, power

consumption is of particular interest, partly because it is easy

to measure. Therefore it has always been a key parameter in all

chemical engineering studies and it is examined in priority for

every mixing system, whether in the industrial or the research

environment. It is thus a fundamental parameter not only for

determining the process operating cost but also for the process

design. Non-Newtonian fluids and principally yield stress fluids

are still poorly understood in this respect. In this case, experi-
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mentation becomes more difficult partly because of unwanted

wall slip and frozen regions in the vessel. For these specific rea-

sons, numerical and analytical studies are the more appropriate

means to obtain information about both the hydrodynamics and

the nature of the power correlation.

The objective of this paper is two-fold: (i) to evaluate the

power consumption for yield stress fluids in two standard mix-

ing systems for highly viscous fluids and (ii) to test the possibility

of applying an appropriate correlation between the power con-

sumption and the non-dimensional flow parameters for chemical

engineering purposes.

Such a correlation for Newtonian fluids in the laminar regime

corresponds to a friction coefficient that is inversely proportional

to the Reynolds number Re. For mixing systems, this property

is written as

NPRe = Kp, (1)

where NP is the power number proportional to power consump-

tion P, and Kp is a geometric factor which characterizes the

system. This relationship is frequently used in practice. It was

then logical to extend it to non-Newtonian fluids. Metzner and

Otto [4] did this in 1957 for shear thinning fluids (also referred

to as pseudoplastic fluids) and their work has been an authority

since then. In fact, the Reynolds number needs to be reconsidered



Nomenclature

Bi Bingham number

Bi* transition Bingham number

c agitator to wall clearance

C torque

C1, C2 critical torque values (Taylor–Couette flow)

D rate of strain tensor

D, Da impeller diameter

H height of the fluid

K Herschel-Bulkley model parameter

Kc Casson model parameter

Kp power constant

Ks Metzner–Otto coefficient

n power law index

N rotation frequency

Np power number

p pitch of the ribbon

P power consumption

r radial co-ordinate

r* non-dimensional radial co-ordinate

R1, R2 inner and outer radius (concentric cylinders)

Re Reynolds number

Re′ critical Reynolds number

Reg generalized Reynolds number

s radius ratio (Taylor–Couette geometry)

T vessel diameter

Vu, Vz tangential and axial velocity

V* non-dimensional velocity

X0 non-dimensional radial co-ordinate for transition

w impeller or ribbon width

Greek letters

γ̇ shear rate

γ̇eff effective shear rate

ηeff effective viscosity

η∞ Bingham model parameter (viscosity)

ρ density

τ stress tensor

τ0 yield stress

ω angular velocity

for non-Newtonian fluids, as the viscosity of the fluid is not con-

stant but dependent on the shear rate. As Eq. (1) characterizes

the laminar flow regime and must be retained in non-Newtonian

laminar flows, it can be used to define a generalized Reynolds

number. From this generalized Reynolds number, an effective

viscosity ηeff can be deduced. Therefore, ηeff is defined as the

viscosity of the Newtonian fluid providing the same power con-

sumption as the non-Newtonian fluid for the studied system:

Reg =
ρND2

ηeff

(2)

Metzner and Otto [4] introduced the concept of effective vis-

cosity which is linked to an effective shear rate γ̇eff using the

rheological characterization of the fluid η(γ̇). They suggested

this effective shear rate to be proportional to the rotation fre-

quency N:

γ̇eff = KsN (3)

They validated their hypothesis with helical screw and heli-

cal ribbon agitators. In 1996, Tanguy et al. [5] in their attempt

to perform a numerical simulation of this problem presented a

review of the literature relating to the major experimental works

up to 1996. Numerous references also figure in the review by

Doraiswamy et al. [6]. In fact, many authors deriving a corre-

lation for power consumption in mixing systems have validated

and adopted this concept for shear thinning fluids. Moreover, the

variations of the Metzner–Otto parameter Ks with the power-law

index n prove to be small for weakly shear thinning fluids and

this justifies the approximation of a constant value. However

Brito de la Fuente et al. [7], Carreau et al. [8] and Tanguy et

al. [5] examining highly shear thinning fluids (n in the range

0.1–0.4) found a marked increase of Ks with n (helical ribbon

impellers and anchor) in their experimental results, while Rieger

and Novak [9] and Sestak et al. [10] observe strongly decreasing

values. In fact, these results seem to demonstrate the fact that the

value of Ks depends strongly on the rheology for highly shear

thinning fluids.

Much less attention has been paid to mixing in viscoplastic

fluids. The utility of the Metzner–Otto concept in such cases

is debatable. The first published study seems to be by Nagata

et al. [11] who were mainly interested in laminar-turbulence

transition but also suggested a Reynolds-based condition for the

existence of a shear-free region. Later, Hirata and Aoshima [2]

focused their experimental approach on the variations of sheared

regions (‘caverns’) with a generalized Reynolds number calcu-

lated using the Metzner–Otto concept. They justify this approach

by the constant value of the fitted Ks parameter obtained in the

laminar regime (with a Reynolds number in the range 1–10).

Curran et al. [12] use the same approach for two viscoplastic

fluids and two helical ribbon agitators. The fitted values of Ks

are slightly different for the two fluids with the simple helical

ribbon agitator, but they differ substantially with the double heli-

cal ribbon impeller. Hirata and Aoshima therefore suggest that

Ks depends both on fluid rheology and on geometry. The mix-

ing of viscoplastic fluids has also been studied using numerical

simulations. Bertrand et al. [13] analyze an anchor impeller mix-

ing system, Tanguy et al. [14] a twin-blade planetary mixer and

Torrez and André [15] a Rushton turbine. These latter authors

obtain Ks values which vary with fluid rheology from 7.3 to 9.6

while a generalized Reynolds number varies in the range 0.6–15.

Conversely for the planetary mixer, Tanguy et al. [14] conclude

that Ks variations can be put aside when the Bingham number

is less than 40. However, for the anchor agitator mixing system,

Bertrand et al. [13] present a detailed analysis for highly vis-

coplastic fluids and observe a weak increase of Ks from 21.1 to

23.8.

The present work studies two mixing systems specifically

for viscoplastic fluids. Such a situation occurs for instance in

an emulsion copolymerization process at high concentrations.



A rheological characterization of this emulsion has been per-

formed by Marouche et al. [16]. The mixing systems investigated

are flat-bottomed vessels equipped with double helical ribbon or

anchor agitators as they are common systems for highly viscous

fluids. The first part is devoted to CFD results. The numerical

approach was previously validated on the Taylor–Couette flow

for which analytical results are available (Marouche et al. [17]).

The hydrodynamics of the mixing systems is presented here and

we focus on the shear rate which is a key parameter for yield

stress fluids. These results show the effect of viscoplasticity on

the velocity field and on the shear rate field. They constitute

the basis for the calculation of the power consumption which is

studied in the second part of this paper. In this latter part, the rela-

tionship between the Metzner–Otto parameter (calculated from

the power consumption) and the Bingham number is analyzed. It

is first derived analytically for the Taylor–Couette flow. Sheared

and non-sheared regions are characterized and their existence

is related to power consumption. The power number is subse-

quently derived numerically for the mixing systems under study

and the application of the Metzner–Otto concept to such stan-

dard systems is discussed.

2. Hydrodynamics and shear rate fields for yield stress

fluids in mixing vessel

The two commonly used agitators for highly viscous fluids

are helical ribbon and anchor. The latter, although not usual in

industrial processes because of its low efficiency, is interesting

because of the mainly tangential flow generated at low rotational

speed, which makes the Taylor–Couette analogy possible (Ait-

Kadi et al. [18]). Variations of the hydrodynamics and power

consumption for such agitators have been extensively studied,

for both Newtonian and non-Newtonian pseudoplastic fluids. To

study the yield stress fluids which constitute the purpose of this

paper, mixing systems are dealt with by numerical simulation

using viscoplastic fluids modeled by a Bingham law:

D = 0 for |τ| ≤ τ0 (4)

τ =
(

η∞ +
τ0

γ̇

)

D for |τ| ≥ τ0 (5)

where D and τ are, respectively, the rate of strain tensor and the

stress tensor. τ0 is the yield stress and the shear rate γ̇ is defined

as γ̇ =
√

2 tr D2 where tr stands for the trace. A dimensionless

number comparing yield stress to a viscous stress is defined

through the Bingham number:

Bi =
τ0

η∞N
(6)

Numerical simulation is conducted for both double helical

ribbon and anchor agitator using the commercial CFD code

FLUENT. A second order scheme is used for the pressure and

for the momentum equations. The coupling velocity–pressure is

processed by the SIMPLE algorithm. The computations are con-

ducted in a rotating frame bound to the impeller so that the prob-

lem is steady. The Bingham model requires a numerical approx-

imation to overcome infinite viscosity in shear-free regions. The

Fig. 1. Geometry of the mixing systems.



usual models for numerical approximation of Bingham fluid are

the bi-viscosity model (Vradis and Otugen [19], O’Donovan

and Tanner [20]), the Papanastasiou model (Papanastasiou [21],

Pham and Mitsoulis [22]), the Bercovier and Engelman model

[23] and the Carreau model with a very low power-law index

(typically 10−3) [17]. All these models have been implemented

in the code by user-defined functions, apart from the Carreau

model which is a standard option of FLUENT. These mod-

els were compared in the theoretical case of a Taylor–Couette

flow. The difference with the analytical results was quantified

on the velocity profile and especially on the critical region of

sheared/unsheared transition. The parameters of the numerical

procedure were chosen to set a final error level of less than 2% of

the reference velocity. Both the comparison and the numerical

procedure are described in Marouche et al. [17] and Marouche

[24]. For the studied 2D and 3D mixing systems, the indepen-

dence to both the mesh size and the approximation parameters

is checked. It has been shown that these approximation param-

eters need to be adjusted when the Bingham numbers increase.

Special attention is paid to this issue. The unstructured meshes

used for the 3D anchor and helical ribbon systems consist of

692,825 and 700,218 tetrahedral cells, respectively.

The mixing systems are presented in Fig. 1a and b. The tank

is a flat-bottomed vessel (inside diameter: T) equipped with an

anchor or a double helical ribbon agitator (diameter: Da). The

anchor was treated in 2D and 3D and helical ribbon in 3D. H

is the fluid height. Values for the impeller or ribbon width w,

agitator-to-wall clearance c and pitch of the ribbon p are reported

in Table 1. The double helical ribbon impeller is geometrically

similar to the one used by Curran et al. [12] in their experimental

study.

Numerical simulations were conducted for different Bing-

ham numbers in the range 60–12,000 which were obtained using

various yield stresses and various rotational speeds. As pointed

out by Marouche et al. in the case of the 2D anchor agitator

([17,24]), the hydrodynamics can be strongly modified by yield

stress. Similar effects are observed on the double helical rib-

bon: Figs. 2 and 3 present the non-dimensional radial profiles

of the axial and tangential velocities taken at z = T/2 and x = 0

(using V* = V/πNT and r* = r/(T/2)). As observed by Bertrand

et al. [13], yield stress leads to markedly lower axial pump-

ing (Fig. 2). Correlatively, tangential velocity seems to undergo

acceleration when compared to the Newtonian reference case

(Fig. 3). But it is noteworthy that the linearity of the profiles

V ∗
θ (r∗) concerns a region that becomes larger as the Bingham

number increases. This corresponds to lower velocity gradients

in the radial direction. Yield stress then leads to higher veloci-

ties which are closer to the driven velocity of the agitator. This is

confirmed by the graph in Fig. 4 which shows the reduced tan-

Table 1

Geometrical characteristics for agitators

Da/T H/T c/T w/T p/T

Anchor 0.96 1 0.02 0.067 –

Double helical ribbon 0.89 1 0.055 0.144 0.89

Fig. 2. Radial profiles of the axial velocity for Bingham fluids (double helical

ribbon, z* = 1, x* = 0).

Fig. 3. Radial profiles of the tangential velocity for Bingham fluids (double

helical ribbon, z* = 1, x* = 0).

gential velocity on a vertical line crossing the ribbon (defined

by x* = 0 and y* = y/(T/2) = 0.746).

To further investigate the effects of viscoplasticity, it is then

worth comparing shear rate fields. As mentioned previously,

Fig. 4. Axial profiles of the tangential velocity for Bingham fluids (double heli-

cal ribbon, x* = 0, y* = 0.746).



Fig. 5. Shear rate fields for Bingham fluids (double helical ribbon).

viscoplasticity has a major influence on hydrodynamics when

parts of the flow domain experience stresses which are below

the threshold. This leads to unsheared regions. Inversely, when

shear stress is significantly higher than yield stress all over the

domain, viscoplasticity is masked and the fluid behaves like a

pseudoplastic fluid.

Thus shear rate γ̇ is a key parameter for both mixing effi-

ciency and non-Newtonian behavior. Shear rate fields proceed-

ing from 3D simulations with double helical ribbon are presented

in Figs. 5 and 6. Fig. 5a–d present the viscoplastic Bingham

case for Bingham numbers decreasing from 6000 to 60. Fig. 6a

and b are for the Newtonian reference case. Similar results in a

Fig. 6. Shear rate fields for Newtonian reference fluids (double helical ribbon).



Fig. 7. Shear rate fields for Bingham fluids in a median horizontal plane (anchor agitator).

median horizontal plane for the anchor agitator are presented in

Fig. 7a–d. The generalized Reynolds number Reg mentioned in

these figures is defined as the ratio Kp/NP. The power consump-

tion and, consequently, the power number NP are calculated from

the velocity field by the integration of viscous dissipation on the

whole domain. The power constant Kp is determined with New-

tonian cases and remains constant up to a Reynolds number of

about 10. Values for each case are reported in Table 2 and agree

with results from the literature.

In these representations of shear rate fields, the same color

map divides the flow domain into five regions defined by

the limiting values 10−6 s−1, 10−4 s−1, 10−2 s−1 and 100 s−1.

Figs. 5a and 7a reveal that a large part of the domain is almost

shear-free for Bingham fluids (shear rate less than 10−6 s−1).

Comparison with the Newtonian reference case (Fig. 6a and

b for helical ribbon) confirms that hydrodynamics is governed

independently by both the Bingham number and the generalized

Table 2

Power constants (2D anchor: using H = T)

Kp

2D anchor 246

3D anchor 334

Helical ribbon 325

Reynolds number (see differences between Figs. 5b and 6a, or

between Figs. 5c and 6b, which are obtained for similar Reynolds

values). This shows the influence of viscoplasticity on this flow

which is then restricted to regions around the impeller for high

Bingham numbers. The equivalent structure was found for the

anchor agitator as described by Elson [3] or Hirata and Aoshima

[2] for mixing of yield stress fluid with agitators such as the

Rushton turbine, pitched blade turbine or marine propeller. If

the mixing power is insufficient, the flow is limited to a cav-

ern around the impeller and the surrounding fluid is at rest. As

measured with LDA by Hirata and Aoshima [2], the cavern is of

approximately constant size in the laminar regime and begins

to increase in size for generalized Reynolds numbers larger

than 30 (as in the case of the Rushton turbine and non-baffled

tank). Hirata and Aoshima used a generalized Reynolds number

based on the Metzner and Otto concept. However, although it

is not mentioned in their paper, the given data permit an esti-

mate of the Bingham number. This gives values between 3.6

(Reg = 1) and 1.4 (Reg = 30). Considering the results presented

in Figs. 5a–d and 7a–d, numerical simulation reveals that these

sheared regions slowly increase in size as observed in Ref. [2] for

the caverns, but simultaneously, higher shear rates progressively

occur in the shear-free region of Figs. 5a or 7a. When reaching

a higher Reynolds number (Reg = 10, Fig. 5c), the shear-free

region no longer exists in Bingham fluid and the structure of



the flow is similar to the Newtonian case (Fig. 6b). Subse-

quently, shear stresses are higher than the yield stress throughout

the domain so that the effects of viscoplasticity are not dis-

cernible and the fluid behaves like a shear thinning fluid for these

flow conditions. The differences from the Newtonian case result

from power-law behavior. Nagata et al. [25], in their numerical

approach applied to several agitators including anchor and heli-

cal ribbon, showed the existence of a critical Reynolds number

Re′ beyond which there are no shear-free regions throughout

the tank. Re′ is based on the plastic viscosity η∞ and linked

to fluid and geometry parameters. Expressed with the Bingham

number, this relation is written as
√

Re′/Bi = 1. For the four

cases of Fig. 5, this quantity is equal to 0.014, 0.14, 0.70, and

1.41, respectively (and 0.002, 0.02, 0.58 and 2.3 in Fig. 7a–d).

Thus, the Nagata criterion is valid as a first approximation taking

account of the fact that the evolution of the shear-free region is

progressive.

3. Power consumption and Metzner–Otto concept

Now our purpose is to explore how the power number varies

with the yield stress, i.e. with the Bingham number. To achieve

this, the mixing system hydrodynamics results presented in Sec-

tion 2 are used to calculate the power consumption and the

Metzner–Otto parameter Ks. In fact, a complex flow configu-

ration has been observed in the shear rate distribution. In order

to understand and analyze these results, the Taylor–Couette flow

is used to establish a qualitative basis of interpretation. Indeed

several authors have used this analogy to analyze flows in mix-

ing systems (Thakur et al. [26], Bousmina et al. [27], Ait-Kadi

et al. [18]). So this simple flow is examined prior to examining

the standard mixing systems.

3.1. Analytical Taylor–Couette flow

The velocity field for the basic Taylor–Couette flow is well-

known for the standard viscoplastic models, but to the best of

our knowledge, these data have not been used to examine the

M–O parameter. Therefore we now focus on the incompressible,

isothermal and 2D flow between two concentric cylinders of

height H, with no-slip condition on the cylinders. The outer

cylinder is fixed, while a torque C is applied to the inner cylinder

which has a rotation frequency N. A geometrical parameter s is

defined by the inner to outer diameter ratio R1/R2.

The following results are established for Bingham fluids.

Similar results are obtained for Herschel-Bulkley fluids (case

n = 1/2 and n = 1/3) and Casson fluids. Constitutive equations

and their subsequent results are presented in Appendix A (see

Table A.1 for Bingham number definition). Velocity profiles

for such fluids have already been presented by Bird, Dai and

Yarusso [28] for a Bingham Fluid, or Jarny and Coussot [29] for

Herschel-Bulkley fluids. Whatever the constitutive equation for

the fluid is, the hydrodynamics for viscoplastic fluids depends

on the torque C with two critical values: C1 = 2πHτ0R
2
1 and

C2 = 2πHτ0R
2
2. For lower torque (C ≤ C1 < C2), the shear stress

imposed on the fluid is below the threshold τ0 and, with no-

slip boundary conditions, this leads to zero velocity over the

entire domain. For intermediate and higher torques, shear stress

depends on the radial co-ordinate r* = r/R2 and is a decreasing

function of r*.

Two cases are considered related to a critical radius X0:

X0 =
1

R2

√

1

2πH

C

τ0
(7)

For intermediate torque (C1 ≤ C ≤ C2), the shear stress is

higher than the threshold τ0 until r* is lower than X0. Conversely,

the shear stress is lower than τ0 for greater values of r*. This

flow will be called ’mixed flow’ as the fluid is sheared in the

region defined by r* ≤ X0 and motionless for r* ≥ X0. Note that

the previous condition for C is equivalent to the X0-condition:

s ≤ X0 ≤ 1.

For higher torque (C ≥ C2 > C1, equivalent to: X0 ≥ 1), the

whole domain is sheared. This kind of flow will be called ‘fully

sheared flow’. In this configuration, the shear rate is non-zero

throughout the domain and the apparent behavior of the fluid is

not fundamentally different from that of a corresponding shear

thinning fluid.

It is noteworthy that X0 and the Bingham number are con-

nected by a one to one relation (see Appendix A, Table A.2). The

transition between mixed and fully sheared flows then occurs for

X0 = 1 or, equivalently, for Bi = Bi* with:

Bi∗ =
4πs2

1 − s2 + 2s2 ln s
(8)

The shear-free regions observed in mixing systems are similar

to those of Taylor–Couette flow and we will now focus on power

consumption in connection with hydrodynamics. Expression of

the power consumption P for power-law fluids with power-law

index n is given in [30] and this leads to Ks value for this geom-

etry [7]:

Ks = 4πnn/(1−n)

(

(1 − s2/n)
n

1 − s2

)1/(1−n)

(9)

In addition, a weak dependence on n is observed as long as the

ratio s is sufficiently high, thereby justifying a n-independency

in the first approximation.

Now considering a Bingham fluid, the fact of expressing the

generalized Reynolds number allows us to compute an effective

viscosity ηeff for the flow. Using the constitutive Eq. (5) and

relation (3) successively, we define an effective shear rate γ̇eff

associated with the effective viscosity ηeff and finally the Ks

expression for this geometry:

• For mixed flow (X0 ≤ 1):

Ks =
4π

1 − X2
0 + 2 ln(X0/s)

(10)

• For fully sheared flow (X0 ≥ 1)

Ks =
−2π

ln s
(11)



Fig. 8. Metzner–Otto parameter Ks for viscoplastic fluids in Taylor–Couette

flow. Vertical lines: transition Bingham number Bi* for the three models studied

(case s = 0.5 for Bingham, Casson and Hershel Bulkley with n = 0.5).

So, for a Bingham fluid, the Ks value is constant for fully

sheared flows (i.e. when C ≥ C2 or Bi ≤ Bi*) but depends on X0

(or C) for mixed flows. Using the correspondence between X0

and the Bingham number Bi, Fig. 8 presents Ks versus Bi in

the case of s = 0.5. The transition between mixed flow and fully

sheared flow is observed for Bi = Bi*. To show the influence

of the constitutive law, Ks versus Bi is also presented for the

Herschel-Bulkley (n = 0.5) and Casson models in Fig. 8. Both

the minimum Ks value and the transition Bingham number Bi*

depend on the model. It should be noted that, unlike the Bingham

model, the Metzner–Otto parameter Ks is not constant when the

flow is fully sheared for either the Hershel–Bulkley or Casson

models but variations of Ks are weak and approximation by a

constant value may be satisfactory in this case.

A preliminary conclusion is that the Metzner–Otto concept is

valid for Bingham fluids insofar as the flow corresponds to a fully

sheared regime, that is, when the fluid is used in its shear thinning

domain. However, Ks variations increase when s decreases, and

a constant Ks value can be quite acceptable for higher values of

s (for instance: 25% variations for s = 0.8).

The great interest of the Meztner–Otto correlation is the pre-

diction of power consumption and it is easy to use when Ks

is constant. This is justified for power-law fluids but must be

used with care for viscoplastic fluids when the flow is not fully

sheared. For instance, Ks varies in a ratio of 1:2 when s = 0.5 and

considering it as constant leads to significant errors on effective

viscosity ηeff and on power consumption.

3.2. Numerical results for mixing system and discussion

Focusing now on the numerical results for the mixing sys-

tems under consideration, the Metzner–Otto parameter Ks was

determined as described in Section 3.1 for the Couette flow.

Fig. 9 presents Ks versus Bi in the laminar region for both dou-

ble helical ribbon impeller and 2D and 3D anchors. Concerning

numerical simulations conducted for the 2D anchor agitator, it is

noteworthy that (Ks, Bi) values are obtained with different rota-

tion frequencies and different yield stresses, which confirms that

Ks depends mainly on Bi. The large range of Bingham numbers

Fig. 9. Metzner–Otto parameter Ks for Bingham fluids in mixing systems.

explored, up to 1.2 × 104, reveals significant variations of Ks for

the 2D anchor, corresponding to a ratio of 1:3.27 for the extreme

values of Bi. Taking into account the 3D effects reduces these

variations to a ratio of 1:2.55. The double helical ribbon gives

weaker variations with a ratio of 1:1.32 although an asymptotic

value for low Bingham numbers is not reached. The Ks versus Bi

curve is therefore similar to that observed for the Taylor–Couette

flow: a smoothly varying region for high Bingham numbers cor-

responding to a large shear-free region. Decreasing Bi leads to

a transition region with noticeable Ks variations for Bingham

numbers in the range 30–1000 (anchor) or 30–100 (double heli-

cal ribbon) where the shear rate progressively increases in the

vessel while shear-free regions vanish.

Numerical results obtained by Bertrand et al. [13] for a 3D

anchor agitator differ from ours as they indicate low variations of

Ks in a ratio of 1:1.13 when the Bingham number varies from 8

to 7500. This latter conclusion does not agree with our observa-

tions for comparable configurations. However, the experimental

results in literature do not justify the use of constant Ks on a

large range of Bingham numbers. Indeed, the constant value of

Ks used by Hirata and Aoshima [2] in their analysis is satisfac-

tory because the Bingham number range explored is restricted

(from 1.4 to 3.6). But experimental results obtained by Curran

et al. [12] are particularly interesting as these authors studied

the same double helical ribbon as we did, and observed non-

negligible variations of Ks. Fitting their power number results,

they obtain a mean value of Ks equal to 16 and 27 for each of

the two fluids that they tested. Bingham numbers can be calcu-

lated for these experiments and lie in the range 5–30 for the first

fluid (Ks = 16), and 10–52 for the second fluid (Ks = 27). These

experimental values are reported in Fig. 5. It is worth noticing

that they are close to the minimum and maximum values that we

obtain numerically for the same geometry (19 and 26) although

their experimental values are shifted towards lower Bingham

numbers.

Thus the differences in the values of Ks with respect to the

Bingham number Bi impose the use of a non-constant value in

the Metzner–Otto correlation for a large Bi range. A generalized

Reynolds number Reg, which is linked to the fluid rhéology, can

be determined using the Ks parameter. Variations in the value



of Ks induce differences in the evaluation of Reg and thus in

the determination of the flow regime. The results of the present

paper concord in a qualitative sense with the theoretical results

obtained for the Taylor–Couette flow and are consistent with

experimental observations. They can be retained as a working

basis for the purpose of chemical engineering design.

4. Conclusion

This numerical work has been developed in order to pro-

vide a physical analysis of mixing in viscoplastic fluids from

the knowledge of local hydrodynamics and shear rate distribu-

tions. Large shear-free zones can appear in which the yield stress

induces plug flows. This drastically changes the law of power

consumption with respect to the Reynolds number. For this rea-

son, we have examined the validity of the Metzner–Otto concept

in a large range of Bingham and Reynolds numbers.

As a qualitative support to the analysis of mixing systems, the

analytical results for the Taylor–Couette flow are used to express

the power number as well as the Ks parameter for this specific

flow. They show that Ks strongly depends on the Bingham num-

ber and on X0 critical radius delimiting the shear and shear-free

regions. Such regions are observed in the studied mixing systems

through the examination of the shear rate fields.

After examination of two standard agitators for high viscos-

ity fluids (double helical ribbon and anchor), it can be concluded

that a constant value for the Metzner–Otto parameter Ks is not

a reasonable option when the Bingham number varies signifi-

cantly. These results are coherent with the experimental results

presented in literature. On the basis of this analysis it is clear that

a variation of Ks must be taken into account and that it would be

very useful to improve the knowledge of hydrodynamics, par-

ticularly the sheared/unsheared region distribution, in order to

provide a predictive tool for designers.
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Appendix A

Additional results for Bingham fluids and results for

Herschel-Bulkley and Casson fluids are given in Tables A.1–A.3.

A.1. Metzner–Otto parameter Ks for general

HerschelBulkley fluid

For the general case of Herschel-Bulkley model (i.e. what-

ever n is), a simple analytic expression does not exist for Ks

for the Taylor–Couette flow. But it is easy to demonstrate exis-

tence and uniqueness for Ks. Thus, determining velocity field in

Table A.1

Herschel-Bulkley and Casson fluids: constitutive law and Bingham number definition

Herschel-Bulkley fluid Casson fluid

Model: Eq. (4) and, for τ ≥ τ0 τ =
(

Kγ̇n−1 +
τ0

γ̇

)

D τ =
(

Kc +
√

τ0

γ̇

)2

D

Bi
τ0

KNn

τ0

K2
c N

Table A.2

Relation between Bingham number and X0 parameter for Taylor–Couette flow defined in Section 2.2

Mixed flow (s ≤ X0 ≤ 1) Fully sheared flow (X0 ≥ 1)

Bingham Bi =
4π

(X2
0
/s2) − 1 − 2 ln(X0/s)

Bi =
4π

(X2
0
/s2) − X2

0
+ 2 lns

Herschel-Bulkley (n = 1/2) Bi =
(2π)1/2

((1/4)(X4
0
/s4) − (X2

0
/s2) + (3/4) + ln(X0/s))

1/2
Bi =

(2π)1/2

((1/4)(X4
0
/s4)(1 − s4) − (X2

0
/s2)(1 − s2) − ln s)

1/2

Casson Bi =
4π

(X2
0
/s2) − 4(X0/s) + 3 + 2 ln(X0/s)

Bi =
4π

(X2
0
/s2)(1 − s2) − 4(X0/s)(1 − s) − 2 ln s

Table A.3

Metzner–Otto parameter Ks for Herschel-Bulkley and Casson fluids

Ks Ks,min

Herschel-Bulkley (n = 1/2) Ks =
4π2s4

Bi2X4
0
(1 − s2)

2

(

1 +

√

1 +
1

π
Bi2

X2
0

s2
(1 − s2)

)2

2π
1 + s2

1 − s2

Casson Ks = 4π
Bi

(X2
0
/s2)(
√

Bi(1 − s2) −
√

4π(s/X0))
2

π
1 + s

1 − s



Newtonian case leads to:

N =
C

8π2HR2
2η

1 − s2

s2
(A.3)

For viscoplastic fluids, ηeff is defined as the Newtonian vis-

cosity leading to the same power consumption. Eq. (A.3) then

applied for η = ηeff. Together with Eq. (7) to express the torque

C and using the constitutive law (Table A.1), one obtains:

1

4π

1 − s2

s2
Bi X2

0Ks − Kn
s − Bi = 0 (A.4)

For fixed values of s, X0 and Bi, Eq. (A.4) has a single positive

Ks-solution. As a complementary result (A.5) gives:

Ks,max =
4π

1 − s2
. (A.5)
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