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Abstract: This paper considers the problem of modeling and analyzing the reliability of a system or a 

component (system) where the state of the system and the state of process variables influences each 

other in addition to an exogenous perturbation influence: this is the dynamic reliability. We consider 

discrete time case, that is the state of the system as well as the state of process variables are observed 

or measured at discrete time instants.  A mathematical tool that shows interesting properties for 

modeling and analyzing this problem is the so called Dynamic Bayesian Networks (DBN) that permit 

graphical representation of stochastic processes. Furthermore their learning and inference capabilities 

can be exploited to take into account experimental data or expert’s knowledge. We will show that a 

complex interaction between system and process on one hand and between system, process and 

exogenous perturbation on the other hand can simply be represented graphically by a dynamic 

Bayesian network. With their extended tool, known as influence diagrams (ID) that integrate actions or 

decisions possibilities, one can analyze and optimize a maintenance policy and/or make reactive 

decision during an accident by simulating different scenarios of its evolution for instance.  

Keywords: Dynamic Reliability, Dynamic Bayesian Networks, Influence Diagrams, Maintenance. 

Résumé: Nous considérons dans cet article le problème de modélisation et d’analyse de la fiabilité d’un 

système ou d’un composant dont l’état et celui du processus qui s’y déroule s’influencent mutuellement 

en plus d’une éventuelle perturbation exogène : c’est la fiabilité dynamique. Nous considérons le cas où 

le temps est discret : l’état du système, celui des variables du processus ainsi que la perturbation sont 

observés ou mesurés à des instants précis. Pour modéliser et analyser ce problème, les Réseaux 

Bayesiens Dynamiques (RBD) constituent un outil mathématique aux propriétés intéressantes 

permettant une représentation graphique des processus stochastiques. Le pouvoir d’apprentissage et 

d’inférence des RBD peut être exploité pour prendre en compte les données de retour d’expérience ou 

la connaissance des experts. Nous allons montrer qu’une interaction complexe entre l’état du système et 

le processus, d’une part, le processus et la perturbation externe, d’autre part, peut être représentée 

simplement par un réseau bayésien dynamique. L’extension des RBD, connue sous le nom de 

Diagrammes d’Influence qui intègrent la possibilité de prise de décision, va permettre l’analyse et 

l’optimisation des politiques de maintenance et/ou de prise de décision réactive en cas d’accident en 

simulant des scénarios possibles de l’évolution de cet accident par exemple.    

Mots clefs: Fiabilité Dynamique, Réseaux Bayésiens Dynamiques, Diagrammes d’Influence,  

Maintenance. 
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1. Introduction

The necessity of maintaining systems performance at high level and avoiding 

catastrophic accidents for systems such as nuclear power plants, airplanes, chemical 

plants, etc. raises new and challenging aspects of research in dependability 

(reliability, availability, maintainability, safety, etc.). One of such challenging 

problem is modeling and analyzing dynamic reliability: reliability that takes into 

account the environment of the system in terms of mutual influence between the state 

(for instance the system may be functioning, state OK or failed, state OFF) of the 

system and the state of process variables (pressure, temperature in a tank for 

instance) and/or exogenous perturbation. The dynamic reliability concept is 

recognized as a more realistic modeling of the systems for the purposes of reliability, 

risk and safety analysis (Labeau et al., 2000). Classically, the reliability of a system 

is defined for the duration of its mission in given conditions. As results, qualitative 

tools such as fault tree analysis (FTA, a deductive top-down method for analyzing 

system design and performance) and possibly quantitative tools mainly probabilities 

calculus and stochastic processes are sufficient for analyzing and assessing important 

(steady state) dependability measures of the system. Fault tree analysis involves 

specifying a top event to analyze (such as the failure of the system), followed by 

identifying all of the associated events that could lead to the top event. But this 

representation is mainly qualitative (or logical) because the state of the system is 

generally supposed to be binary stating the fact that the system is operating or not 

and the fault tree represents just a logical function (Pagès et al., 1979). This 

approach has some drawbacks such as not taking into account approximate 

performance of the system whereas in practice it can happen that a component 

performs approximately and the overall performance of the system be acceptable. To 

overcome this, one can use many states than two to represent the functioning modes 

of a component; the approximate functioning will then be stated in terms of 

probability. A good candidate mathematical tool for this purpose (Tchangani, 2001; 

Bobbio et al., 2001) is Bayesian Networks (BN) that are graphical representation of 

probabilistic relationships between variables of a knowledge domain. The 

terminology “Bayesian Networks” comes from the work by Thomas Bayes (Bayes, 

1763, 1958) in eighteenth century. Its actually development is due to (Pearl, 1988); 

see (Jensen, 1999; Pearl, 1988; Becker et al., 1999; Naïm et al., 2004) for a good 

introduction to Bayesian networks. A Bayesian network consists of two components: 

its structure that is a directed acyclic graph defining some relevant relationships 

between nodes that represent variables of a knowledge domain (for instance 

components or subsystems) and its parameters that give conditional probability 

density function (or table) of each node given the evidence on its parents (nodes that 

have a direct link to the former one), see for instance (Jensen, 1999) for more. A 

typical Bayesian network is given by Figure 1 where A is the parent node that is 

relevant, in some sense (causality, correlation, etc.), for the knowledge of the node 

B; to be complete and for a quantitative evaluation purpose, this relevancy 



(structure) must be completed by a conditional probability table or density { }AB /Pr

that is the probability of B knowing the state of A. 

Figure 1. A typical example of a Bayesian network

Modeling a system in terms of reliability integrating an approximate functioning 

states can benefit of a combination of reliability diagrams or fault tree analysis 

approach and Bayesian networks theory, see for instance (Tchangani, 2001; Bobbio 

et al., 2001). The fault tree analysis can be used as a top level tool to represent 

interactions in terms of reliability between components or functions of a system; then 

in a second stage, Bayesian network model can be derived by transforming the 

AND/OR gates of the fault tree models in probability tables and considering that 

components can have more than two states of functioning. To illustrate this idea, let 

us consider a two components redundancy system and its fault tree model depicted 

on Figure 2. The gate AND means that the system (S) is in the state OFF if and only 

if the two components (C1 and C2) are in their OFF states respectively; the system 

will be in the state OK for any other combination of components’ states. 

Figure 2. A two components redundancy system (a) and its fault tree model (b) 
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Figure 3. A Bayesian netwok model of the two components redundancy system of 

the Figure 2 (a)

A Bayesian network model of such system where the components as well as the 

system may have as many states as possible is given by the Figure 3 where the 

equivalent of the AND gate is determined by the conditional probability table given 

by the equation [1]. 

{ }kji cCcCsS 2211 ,/Pr ===   [1] 

Besides the fact that a Bayesian network model integrates many functioning states of 

components, it has another advantage over the fault tree model because it has 

learning capabilities (see later) that can be used to derive conditional probability 

density functions or tables using expert knowledge and/or experimental data. Using 

Bayesian network approach for RAMS (Reliability – Availability – Maintainability – 

Safety) modeling and analysis as well as for maintenance management policy set up 

has gained a great interests in recent years in the literature, see for instance 

(Proccacia et al., 2003; Tchangani, 2001; Bobbio et al., 2001) and references 

therein.  

But, fault tree analysis model and related methods (see (Labeau et al., 2000) and 

references therein) as well as Bayesian networks model presented so far do not take 

into account the time effect (non stationary components failure rate for instance) or 

exogenous uncontrollable perturbations effect (the effect of the ambient temperature 

on the failure rate of an electronic component for instance) or the effect of the state 

of the process that is taking place in the system or components (for instance the 

pressure, the temperature and the quantity of matter in a chemical reactor or in a 

boiler will have an effect on the failure rate of its closing elements (valves) for 

instance) and so these tools are not adapted for dynamic reliability analysis. 

Different mathematical tools more or less complex among which are diffusion 

equation and Monte Carlo analysis (see (Labeau et al., 2000; Marseguerra et al., 

1998) and references therein for an introduction to some of them) or Petri nets 
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(Chabot et al., 2003) are used in the literature to analyze dynamic reliability of a 

system. In this paper, we will use dynamic Bayesian networks (DBN) as a 

mathematical tool to derive a generic approach for modeling and analyzing dynamic 

reliability; this choice is guided by the following facts: 

- dynamic Bayesian networks as Bayesian networks briefly recalled in upper lines 

are graphical representation (and therefore an easy language to understand even for 

non specialists) of stochastic processes that can represent very complex relationships 

between variables in a given knowledge domain;  

- there exists efficient algorithms, see (Murphy, 2002), for learning and inference 

that make it easy to integrate them into decision support systems; but one must be 

careful when choosing the appropriate algorithms mainly in the case of continuous 

dynamic variables, see (Murphy, 2002; Naïm et al., 2004);  

- they are widely used and have shown good results in practice in many domains 

such as knowledge discovery, data mining, fault diagnosis,  medical diagnosis, etc;  

- there exists efficient software (Hugin Explorer, Netica, BayesiaLab to name few) or 

Toolbox for use with Matlab (see BNT) and other scientific software that render 

their usage easy in practice even for non specialists;  

- when extended to influence diagrams by introducing decision nodes and possibly 

value nodes, they can be used for performance evaluation of maintenance policies or 

to support planing appropriate actions in the case of accident or catastrophic event 

because a built model can be used to simulate and obtain the most probable outcome 

with regard to different scenarios; 

- etc. 

Nowadays, dynamic Bayesian networks as a mathematical tool for modeling and 

anlyzing dynamic reliability is gaining a great interest in the RAMS community, see 

(Weber et al., 2003; Weber et al., 2004) and (Tchangani et al., 2005), a preliminary 

version of this paper. As stated previously, a dynamic reliability analysis problem is 

very large and general and so it is important to give the border of the problem under 

consideration; the context of dynamic reliability problem considered in this paper is 

defined by the following variables and assumptions. 

- { }sSts ...,,2,1)( =∈  is the state (discrete) of the system, component (functioning 

modes) at time instant t; it belongs to a finite set S (the system is normally

functioning, approximately functioning, is OFF, is under reparation, etc. for 

instance).  

- ntx ℜ∈)(  is the state (continuous) of the process variables at time instant t; 
nℜ

denotes a real vector space of dimension n; it could be for instance 

[ ]TtVtTtPtx )()()()( =  in a chemical reactor or a boiler where P(t) is the 

pressure, T(t) is the temperature and V(t) is the quantity of the matter and the 

superscript T stands for the transpose of the corresponding vector or matrix.  

- lty ℜ∈)(  is the observation or measurements of the process variables available at 

time instant t; it is a function of the state variables x(t) and l will be less than n in 

general; it could be the temperature of a chemical reactor obtained by a 

thermocouple for instance. 



- { }maaaAta ...,,,)( 21=∈  is the action of the decision maker at time t that 

influences the state of the system; there is a finite number of stationary actions 

defined by the set A (have a cooling effect on a component, to lubricate, to heat up, 

etc.) available to the decision maker at each instant t; notice that we do not consider 

the lower controller (PID controller for instance) effect that could have an influence 

(stabilization for example) on the process variables state.  

- ptw ℜ∈)(  is an exogenous perturbation that influences the system and/or the 

process variables behavior; it could be for instance the effect of ambient conditions 

(temperature,  pressure, humidity, ..) on the failure rate of a component. 

- [ ])(...)()( 1 ttt sπππ =  where { }itsti == )(Pr)(π  is the probability that the 

system is in the state i at the time instant t; these probabilities verify the condition 

� =
=

s

i
i t

1

1)(π . 

The purpose of this paper is then to establish a model that describes how all these 

variables dynamically influence each other. The remainder of this paper is organized 

as follow: in the second section we will present dynamic Bayesian networks (only 

the concepts that are relevant to our purpose will be presented; for more formal 

presentation, the reader is invited to consult specialized literature such as (Murphy, 

2002)) and their learning and inference capabilities that make them suitable for 

modeling stochastic processes; the third section will consider the usage of dynamic 

Bayesian networks for modeling and analyzing dynamic reliability as defined in the 

introduction section; finally a conclusion is presented in the fourth section. We will 

illustrate each modeling stage by using a small example to show how dynamic 

Bayesian networks may be used. 

2. Dynamic Bayesian Networks 

2.1. Presentation  

Dynamic Bayesian networks (DBNs) are directed graphical models of stochastic 

processes, see (Murphy, 2002), and they generalize Hidden Markov Models 

(HMMs) and Linear Dynamical Systems (LDSs) by representing the hidden and 

observed state in terms of state variables, which can have complex 

interdependencies. The graphical structure provides an easy way to specify these 

conditional interdependencies, and hence to provide a compact parameterization of 

the model. A dynamic Bayesian networks is completely defined by two components: 

its structure that is a directed acyclic graph (DAG, nodes represented by ovals) 

representing relationships between variables and its parameters that represent 

conditional probability density (CPD) in the case of a continuous variable (the 

allowed values of the variable belong to a continuous set) or conditional probability  

table (CPT) in the case of a discrete variable (the allowed values of the variable 

belong to a discrete set that will be in general a finite set). A dynamic Bayesian 

network structure consists of an intra slice directed acyclic graph and an inter slice

directed graph; slices represent time instants to describe dynamic behavior of the 



system. Intra slice graph models the instantaneous relationships of nodes (a Bayesian 

Network) and the inter slice graph represents the dynamics of the nodes. Intra slice 

parameters are CPD and/or CPT of the corresponding Bayesian network and inter 

slice parameters represent the dynamics of variables on one hand and their 

relationships with the variables that influence their behavior on the other hand. For 

instance a dynamic Bayesian network representing a Markov chain (Hêche et al., 

2003) will have a two time slices graph with inter slice directed graph and no intra 

slice graph. For instance, Figure 4 shows an example of a Markov chain (a) with two 

states A and B and its dynamic Bayesian network representation (b) where the 

generic state s can be A or B and the dynamics are captured by the transition matrix 

�
�

�
	



�
=

BBBA

ABAA

pp

pp
P ; this matrix must be a stochastic matrix that is it must verify the 

conditions of equation [2] 

1,1 =+=+ BBBAABAA pppp .   [2] 

The actual probability of belonging to one or other state A or B is given by the row 

vector [ ])()()( ttt BA πππ =  and the behavior of the system is described by the 

following equation [3]. 

0)0(,)1()( ππππ =⋅−= Ptt     [3] 

The advantage of the Bayesian network model over the Markov chain representation, 

besides the fact that the model is more compact is that the transition matrix P can be 

learnt (estimated) from the expert knowledge and/or experimental data. But, as 

stated in the previous lines, dynamic Bayesian networks represent more complex 

stochastic processes than Markov chains and so algorithms to learn parameters for a 

dynamic Bayesian networks for a real world problem may be very complex or 

necessitate an approximation scheme that must be chosen carefully (see for instance 

Murphy, 2002). 

Figure 4. An example of a Markov chain (a) and its dynamic Bayesian network 

representation (b) 
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Most of the time, a system is not autonomous and there is a decision maker that can 

influence the behavior of the system, this can be taken into account by adding a 

decision node in a Bayesian network that leads to an influence diagram. Hence, an 

influence diagram is a simple visual representation of a decision problem. Influence 

diagrams offer an intuitive way to identify and display the essential elements, 

including decisions, uncertainties, and objectives, and how they influence each other. 

An influence diagram or decision graph (Howard et al., 1984; Jensen, 1999) is a 

directed acyclic graph (DAG) that depicts relationships among variables in a 

decision problem. A typical influence diagram is shown by Figure 5 that describes 

the following decision problem: to monitor a machine, some sensors are put on it in 

order to give information about its actual state. According to this information one 

decides whether to stop the machine for diagnosis or not. Stopping the machine for 

diagnosis or letting it operates in bad state has a cost.  

Figure 5. Example of an influence diagram 

All the nodes necessary to define an influence diagram are shown on the former 

Figure 5, namely: chance nodes (ovals) that represent uncertain variables impacting 

the decision problem; decision nodes (rectangles) that represent choices open to a 

decision maker and value nodes (diamonds) that represent attributes (most of the 

time numeric attributes) the decision maker cares about. They are an extension of 

Bayesian networks or dynamic Bayesian networks by adding decision and value 

nodes. In an influence diagram, an arc or edge relating two chance nodes is called a 

relevance arc because it indicates that the state of the source node is relevant to the 

probability distribution of the destination node, arcs from decision nodes to chance 

nodes are known as influence arcs meaning that the decision influences the outcome 

of the chance node and arcs into decision nodes (from chance nodes) are called 

information arcs meaning that the outcome of the chance node will be known at the 

time the decision is taken. Decision nodes are ordered in time (sequential decisions): 

there is a direct link between all decision nodes. Finally, arcs from chance or 

decision nodes into value nodes represent functional links. Relevance arcs may mean 

many things depending on the problem at hand such as: implication, correlation, 

causality, etc.  

The consideration of influence diagrams together with dynamic Bayesian networks 

in this paper is motivated by the fact that, in general, the main purpose of carrying a 

(dynamic) reliability study or analysis is to set up a preventive maintenance policy 

and so integrating decision nodes in the model to represent maintenance actions for 

instance is justified.  
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In the next paragraph we will consider the properties of dynamic Bayesian networks 

that make theme suitable for modeling stochastic processes in general and dynamic 

reliability in particular. 

2.2. Inference and learning capabilities of dynamic Bayesian networks 

2.2.1. Learning capabilities 

Though learning a dynamic Bayesian network consists in two components: learning 

its structure and/or learning its parameters; structure learning is more difficult than 

parameters learning. On the other hand, in many domains such as that we are 

concerned with in this paper, experts are able to establish the relationships existing 

between variables; that is why we consider only parameters learning. For parameters 

learning purpose, there exists efficient algorithms and software, see for instance 

(BNT) and (Murphy, 2002), that can compute conditional probability table for 

discrete nodes when experimental data (evidence) exist. Learning conditional 

probability density functions for continuous nodes necessitates in general 

discretization and approximation schemes that are not obvious (Murphy, 2002). For 

our problem of dynamic reliability analysis, discretization of continuous variables 

(temperature, pressure, etc.) may be straightforward because in many cases the 

experts reason about these variables in terms of thresholds that leads to a natural 

discretization see for instance (Labeau et al., 2000; Marseguerra et al., 1998). A 

possible direct application of parameters learning is the estimation of some 

important dependability performance measures of the system. Indeed, by simulating 

the obtained model, some parameters such as the steady state probability of being in 

a particular state or the mean transition time between two given states or the same 

state can be computed. For instance in the case of Markov and constant transition 

matrix assumption, learning parameters returns to determining the transition matrix P

of the system from experimental data; from this matrix P, one can deduce some 

steady state performance measures such as: mean up time (MUT), mean time to 

repair (MTTR), mean time between failures (MTBF), mean life duration, 

availability, safety, etc. by applying the theory of Markov processes; the following 

facts are well known from this theory. 

For an irreducible non periodic Markov chain, see (Hêche et al., 2003) for 

definition, that can represent the behavior of a reparable system (there is no 

catastrophic states for this system), with transition matrix P, the steady state 

probability distribution � (a row vector of dimension s) exists and is the unique 

solution of the equations [4] 

�=⋅
=

s

i
iP

1

, πππ       [4] 

and it is known that: 

- iπ  is the probability that the system is in the state i or equivalently the 

proportion of the time the system spent in the state i (a possible estimation of the 

mean up time (MUT) or mean time to repair (MTTR)) ; 



-
iπ

1
 is the mean number of transitions (mean time) between two visit of state i (a 

possible estimation of mean time between failures (MTBF), etc.). 

For an absorbing Markov chain, see (Hêche et al., 2003), that can represent the 

behavior model of a system with non reparable states and the transition matrix P in 

the canonical form ��
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I
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0
 where I is an identity matrix with dimension equals 

to the number of absorbent states, R and Q are constant matrices with appropriate 

dimensions, it is known that the steady state behavior of P
t
 is given by 

( ) ��
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t
 and [ ] ( ) 1−−== QInN ij  is called the fundamental 

matrix. From this observation, the following results are known: 

- the mean time that the system sojourns in the transient state j when beginning its 

behavior from the transient state i (a possible estimation of the mean time the 

system will be functioning approximately for instance) is the element ijn  of the 

fundamental matrix N;  

- the mean time before attaining an absorbent state (a possible estimation of mean 

life duration) when beginning its behavior from the transient state i is the sum of 

the elements of the i
th

 row of the fundamental matrix N; 

- the probability of being absorbed (a parameter related to the safety) by the 

absorbent state j when beginning the behavior from the transient state i is the 

element ijb of the matrix ( ) RQINRB
1−−== . 

Notice that for any absorbent Markov chain, the canonical form of its transition 

matrix P can be simply obtained by rearranging the order of its states.  

This simple and short recall shows how learning capabilities of dynamic Bayesian 

networks can be exploited for analyzing the behavior of stochastic systems in many 

practical domains. In the following paragraph we will consider their inference 

capabilities. 

2.2.2. Inference capabilities 

Another possibility offered by dynamic Bayesian networks is the inference; that is 

propagating a change in the system to estimate the possible outcome and identifying 

the most probable state of a system or the value of a variable given the observation 

or measurement.  For instance if the exogenous perturbation behavior changes from 

an estimated nominal behavior, an interesting question could be: what will be the 

behavior of the system state (prognostics) ? There are algorithms and software (see 

(BNT) and (Murphy, 2002)) that handle such issues. Let us define )(tO to be a 

vector containing the states and/or the values of all observed nodes at time t. The 

general inference problem for dynamic Bayesian networks is to compute the 

following parameters, equation [5] 



{ }21),(/)(Pr ttOtX ≤≤ ττ     [5] 

where X(t) represents generically the state or the value of any hidden node. The 

interesting and usually considered cases in practice are filtering ( 2tt = ), prediction

(t> t2) and smoothing (t1 < t< t2). Once these probabilities are computed, one can use 

the so called Viterbi decoding scheme (the abduction or most probable explanation) 

to determine the most probable state s*(t) of the component or node under 

consideration at the time instant t as given by equation [6] 

{ }{ }21),(/)(Prmaxarg)(* ttOitsts Si ≤≤== ∈ ττ .   [6] 

The inference offers other possibilities that could permit in practice to react quickly 

to given evidences; a main parameter against which one fight in practice is the time 

(or duration). For instance knowing the duration before a likely catastrophic event 

given current evidence (for instance the failure of a low level controller that causes 

the states of process variables to grow out of limit causing damage to the system) is 

important for assistance purpose and this duration can be derived from inference. Let 

us call SC ⊂  the set of all catastrophic states (states to be avoided) of a system, 

then, given an evidence E(t) (the behavior of the perturbation w(t), failure of a 

component, etc.) for a period [ ]Tt ,0  we can define the duration )(δτ   to go before 

catastrophe at the risk 10 << δ  as the first instant from t0 such that the probability 

that the state of the system at this instant belongs to the set C exceeds δ−1 ; it is 

given by equation [7] 

[ ]{ }{ }.1,),(/)(Prinf)( 000 δττδτ τ −≥∈+∈+= TttttECts   [7] 

Of course as in the learning case, inference algorithms are more or less complex 

depending on the nature of nodes (continuous or discrete) and the interdependency 

(the number of slices) among nodes. As the purpose of this paper is to show how 

dynamic Bayesian networks could be used for dynamic reliability modeling and 

analysis purpose, we consider the subtleties of choosing an appropriate inference 

algorithms to be out of the scope of this paper; but we would like to insist to the 

readers intention that the choice of an appropriate inference algorithm may be a 

matter of experts and encourage them to refer to appropriate literature such as 

(Murphy, 2002; Naïm et al., 2004).  

In the following section, we will show how dynamic Bayesian networks and their 

capabilities presented so far can be used as a modeling tool for dynamic reliability 

modeling, assessment and analysis purpose as defined in the introduction section. 

3. Modeling dynamic reliability using dynamic Bayesian networks  

In this section we will show how the dynamic reliability problem defined in the 

introduction section can be tackled using dynamic Bayesian networks and influence 



 

diagrams as the underlying mathematical tool in different configurations (wearing 

away process of components, influence of exogenous perturbation, relationships 

between state of the system and process variables as well as the effect of decision 

maker’s action). For sake of simplicity and without loss of generality we assume that 

all stochastic processes considered here are Markov Processes (MP), two slices 

dynamic Bayesian networks (in the case of non Markovian processes only the 

number of slices will change, more than two slices to take into account the history of 

the system for a more or less large horizon and the main difficulty will be the 

complexity of parameters specification and the complexity of learning and inference 

algorithms). We would like to precise that the Markovian hypothesis is guided by the 

sake of simplicity for the presentation and the fact that we conceive this paper as a 

tutorial or introduction of how to use dynamic Bayesian networks for dynamic 

reliability modeling. A stochastic process X(t) is said to be a Markov process if and 

only if the following equation [8] is valid. 

{ } { })1(/)(Pr)0(...,),1(/)(Pr −=− tXtXXtXtX   [8] 

An influence diagram will correspond to Markov Decision Processes (MDP) that 

consider the possibility for a decision maker to intervene on the behavior of the 

system: the transition probabilities at each instant t depend on the action taken by the 

decision maker or agent; a cost (or benefit) may be associated with the actual state 

and/or the decision. The goal is to find a function, called a policy, which decides 

what to do (which action to take) in each state, so as to optimize some performance 

index (e.g. the mean or expected discounted sum of reward). The influence diagrams 

offer then the possibility with regard to reliability analysis to set up and evaluate 

maintenance policies.  

In the following paragraph we consider gradually the modeling of different effects 

on the reliability of a system from simple consideration to more complex ones.

3.1. Modeling the wearing away process of a system 

When aging any system will have more and more chance to fail because of a wearing 

away phenomenon. The wearing away process modeling (with Markov assumption) 

using dynamic Bayesian networks is straightforward and the corresponding model 

(structure) is typically given by Figure 6 where we consider that the state of the 

system s(t) at an instant t depends on the states of different components Ci(t) at that 

instant. 



Figure 6. A typical dynamic Bayesian networks model of a wearing away process

The Bayesian network of Figure 6 shows that the system is hierarchically organized 

with many components that can cause its failure; that is why each slice constitutes a 

Bayesian network. The inter slice structure shows a purely wearing away 

phenomenon of components because each component of the slice t-1 is its unique 

parent in the slice t. The transition matrix Pi depends on actual value of the 

corresponding component failure rate )1( −tiλ  that has its own dynamics. Notice 

that the behavior of Pi could be integrated in the model by adding nodes to represent 

the failure rates processes as shown by Figure 7 for the component Ci.  

Figure 7. Dynamic Bayesian network representation of the behavior of the 

transition matrix with regard to the failure rate process

Once the model is established, it can be used in different manner: to estimate the 

failure rates from experimental data by learning parameters Pi(t) or to use the model 

as a decision support to set up a (predictive) maintenance policy if failure rates 

behaviors are known.  

To illustrate this idea, let us consider the system of Figure 2 (a) whose Bayesian 

network model is given by Figure 3. We consider, for the sake of simplicity, that the 

components as well as the system have only two states namely OK meaning that the 

component or the system is normally functioning and OFF meaning that the system 

or the component is out of service; furthermore we consider that the components are 

not repairable. The dynamic Bayesian network model (structure) of this system is 

given by Figure 8 ((a) represents the structure of the model, (b) is the intra slice 

parameters and (c) represents the inter slice parameters or transition matrices; the 

matrices 21 AandA  are the generating matrices of the corresponding continuous 

time Markov chain, see (Hêche et al., 2003).  
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Figure 8. Dynamic Bayesian network model of the system of Figure 2 (a)

For the intra slice parameters, notice that we did not give { }21 ,/Pr CCOFFS =

because we have the following relation (equation [9]) 

{ } { }2121 ,/Pr1,/Pr CCOKSCCOFFS =−== .  [9] 

Though we could consider an approximate functioning, that is there is no certainty 

(probability p rather than 1) that the system functions when at least one component 

functions, we consider here the perfect case so that the probability of the system to 

be in the state OK is given by the following equation [10].  

( )( ))(1)(11)( 21 ttt
C

OK

C

OK
S
OK πππ −−−=     [10] 

If we consider that the predictive maintenance policy is to intervene on the system 

(change components for instance) if the probability of the system to be in the state 

OK is less than 80%, that is 8.0)( ≤tS
OKπ , then by simulating the former model, one 

can derive the schedule of the predictive maintenance. The Figure 9 shows 

simulation results with and initial conditions [ ]01)0()0(
21

== CC ππ ; the first 

graphic of this figure shows a constant failure rate for C2 that is 
2

105.0
2

−×=λ  and 

a behavior that varies from a constant value of 3
1 10−=λ  to a linear form for the 

failure rate of component C1; the second graphic shows the behavior of the 

probability of the system to be in the state OK when the component C1 failure rate is 

considered equal to its constant part and in the general case respectively. The 

predictive maintenance schedule will be then to intervene after 300 time units if 
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failure rates are constant and after 225 time units if C1 failure rate behaves as shown 

on the first graphic of Figure 9. 

Figure 9. Simulation results of the model of Figure 8

In the next paragraph the effect of a possible exogenous perturbation will be 

introduced in the model. 

3.2. Influence of an exogenous perturbation on the state of a system  

Let us consider the problem of monitoring the state s(t) of a system that is influenced 

by a continuous exogenous perturbation w(t); observations are made at discrete 

instant and the perturbation is supposed to be a Markov process (its value 

(continuous) at time t is influenced only by its value at time t-1). A typical model of 

such problem using dynamic Bayesian networks is given by Figure 10 where the 

state of the system at time t is influenced by the perturbation value at time t-1

through the influence on its components as compared to the autonomous model of 

Figure 6. This assumption, once again, is made for sake of presentation simplicity 

and does not restrict the application of the model because in a real problem case, one 

can remove this assumption without altering the modeling process and result.  



Figure 10. Dynamic Bayesian networks structure of the state of a system influenced 

by an exogenous perturbation 

The parameters of this model are two fold. The conditional probability density 

(CPD) of w(t) is a function of w(t-1). For instance if this conditional probability 

follows a normal distribution law with mean btAw +− )1(  where A is a matrix and b

is a vector of dimension p and covariance Σ  then we have the following conditional 

probability density function  fw(w(t)) for w(t) (see equation [11]). 
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  [11] 

where Σ  denotes the determinant of Σ ; the probability for w(t) to belong to a 

subset Ω  of pℜ when w(t-1) is known is then given by equation [12] 

{ } �=−Ω∈
Ω

dwwftwtw w )()1(/)(Pr .   [12] 

The inter slice parameters of the component consist in a conditional probability 

tables (CPT) where each element depends on the perturbation as given by the 

equation [13] whereas the intra slice parameters remain unchanged.  

{ } )()1(,)1(/)(Pr wpwtwktCjtC kj
C

ii
i==−=−=    [13] 

As an illustration, let us consider the behavior of the system of Figure 2 (a) and 

suppose that the failure rates 1λ  and 2λ  are functions of a perturbation w defined by 

the equations [14]. 

wwww αλλαλλ +=+= 202101 )(,)(    [14] 

The purpose is to establish a predictive maintenance policy according to the intensity 

of the perturbation w. The model of this problem in terms of dynamic Bayesian 

network is given by Figure 11. The states of components as well as the intra slice 
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parameters are the same as that of former Figure 8. The transition matrices are given 

by equation [15] 
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2
)(

1
21 )(,)(

wAwA
ewPewP ==    [15] 

with  

.
00

)()(
)(,

00

)()(
)(

22
1

11
1 �

�

�
	



�−
=�

�

�
	



�−
=

ww
wA

ww
wA

λλλλ   [16] 

Figure 11. Dynamic Bayesian network model of the example of Figure 2 (a) where 

components are influenced by an exogenous perturbation

Simulating this model with parameters: 
32

20
3

10 102.0,105.0,10 −−− ×=×== αλλ

we obtain results of Figure 12 for different value of the perturbation. Let )(wTc

denotes the time it lasts, given the perturbation intensity w, before preventive 

intervention on the system considering former predictive maintenance policy 

(intervene whenever 8.0)( ≤tS
OKπ ) then we obtain results shown on Figure 12 and 

one can notice the intuitive coherency for the behavior of )(wTc  with regard to the 

perturbation intensity.  

Figure 12. Simulation results of the model of Figure 11
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In the next paragraph, we will consider a more general dynamic reliability model that 

integrates interactions between perturbation, process and system. 

3.3. Interaction between process, perturbation and the system  

Here we consider the case where in addition to an exogenous perturbation w(t), there 

exists a relationship between the process variables x(t) and the state of the system 

s(t). The exogenous perturbation is either a deterministic or a stochastic process 

(Markov) and it can influence either the state of the system s(t), the process variables 

x(t) or both with possible complex relationships. The Figure 13 shows an example of 

the structure of such model.  

Figure 13. Dynamic Bayesian networks model of interactions between the state of 

the system and process variables influenced by an exogenous perturbation 

The link from system nodes at time t-1 to the process variables at time t means that 

actual state of the system may influence the dynamics of the internal process; indeed, 

in a boiler the pressure will depend on weather the boiler is closed or open. The intra 

slice parameters as well as perturbation dynamics are similar to what was stated in 

the previous paragraph whereas the conditional probability density (CPD) of the 

process variables state x(t) depends on x(t-1), w(t-1) and s(t-1). For instance in the 

case of Gaussian distribution (see equation [17]) 

))(())1(,)1(),1(/)(Pr( txfitswtwtxtx x==−=−−    [17] 

with mean )()1()( wbtxwA ii +−  and covariance )(wiΣ  where the parameters 

)(),( wbwA ii  and )(wiΣ  depend on the actual state i of the system and the actual 

value of the perturbation, this conditional probability density function is given by 

equation [18]. 

x(t-1)

Ck(t-1)

s(t-1)

Ci (t-1)

C2 (t-1)

C1 (t-1)

…………….

Ck (t)

s(t)

C
i 
(t)

C
2 
(t)

C1 (t)

…………….

w(t-1) w(t)

x(t)
process dynamics

hardware

process process

perturbation dynamics

perturbationperturbation

hardware



 

( )
( ) ( )�




�
�
�

�
−−Σ−−−−

Σ
= − )()()()()()()1()()(

2

1
exp

)(2

1
))(( 1

2/12/
wbtxwAtxwwbtxwAtx

w
tx

x
f iii

T
ii

i
nπ

         [18] 

The probability that the state of the process variables belongs to a given set Γ  at the 

next instant given actual conditions can then be calculated using equation [19]. 

{ } �==−=−−Γ∈
Γ

dxtxfitswtwtxtx x ))(()1(,)1(),1(/)(Pr   [19] 

The transition matrix of the state of the system is given by equation [20] 

{ } ),()1(,)1(,)1(/)(Pr wxpwtwxtxitsjts ij==−=−=−= .   [20] 

As an illustration let us consider the system depicted on Figure 2 (a) with the 

assumptions that failure rates of the components are functions of an internal process 

state (temperature, pressure) x(t) that is a positive scalar which dynamics in return 

are influenced by a perturbation w(t). The structure of a dynamic Bayesian network 

that describes such problem is given by Figure 14.  

Figure 14. Dynamic Bayesian network model of example of Figure 2 (a) where 

components are influenced by an internal process which in return is influenced by 

an exogenous perturbation

For simulation, let us suppose that failure rates behave as equation [21] 

xxxx αλλαλλ +=+= 202101 )(,)(     [21] 

and the dynamics of the process state is given by equation [22]. 

0)0(),1()1()( =−+−= xtwtxtx β     [22] 

Simulating this model with the parameters of equation [23] 
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we obtain the results depicted on Figure 15 where the first graphic shows the 

perturbation w(t) and the second graphic shows the induced behavior of the process 

state x(t). The third graphic represents the probability that the system is in its OK
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state when there is non perturbation and when we consider a perturbation given by 

the first graphic. With this simulation, one can set up predictive maintenance as in 

the previous section without observing the actual state of the process variables just 

by estimating the perturbation. Let us consider as in the previous paragraph that the 

maintenance policy is to intervene on the system whenever 8.0)( ≤tS
OKπ  and let cT

be the time it lasts before intervention, then the simulation shows that if there is no 

perturbation then TUTc 300=  and if the perturbation behaves like shown by the 

first graphic then TUTc 200= ; this information can be used to set up intervention 

plans according to environmental changes. This model shows an hierarchic 

relevancy: the perturbation is relevant to the process variable which in return is 

relevant to the state of the system.  

Figure 15. Simulation results of the model of Figure 14 

Finally, in the next paragraph we will consider the possibility that a decision maker 

(in a very broad acceptation including human, computer program, robot, ..) has an 

effect on the behavior of the system; this leads to an influence diagram as model. 

3.4. Introducing the effect of the decision maker action  

Let us suppose now that an agent or decision maker can have an action on the state 

of the system. From the model established in the previous paragraph, we must just 

add a decision node (and possibly value node) to obtain the influence diagram 

depicted on the Figure 16 when a Markov process assumption is considered. Notice 

here that we consider that the agent do not have the entire state of the process 

variables (this is common in practice) at the moment its decision is made but a 

partial observation y(t); we consider also the possibility to estimate the intensity of 



the perturbation )(tw  that will be available to decision maker at the moment decision 

is made; a value node is introduced to take into account possible benefit or cost 

induced by the action, the state of the system and the state of process variables (this 

later one could measure the quality of a product for instance). In terms of parameters 

there is no change with regard to previous paragraph for the exogenous perturbation 

w(t) and for the state of the process variables x(t). But the transition probability ijp

of the state of the system will depend on the perturbation value w(t-1), the state of 

process variables value x(t-1) and the action a(t-1), and so it is given by equation 

[24]. 

{ } ),()1(,)1(,)1(,)1(/)(Pr wxpatawtwxtxitsjts
k
ijk ==−=−=−=−=  [24] 

The observation of y(t) from x(t) and the estimation )(tw  from w(t) may be modeled 

by Bayesian networks too. 

Figure 16. Influence diagram model of interaction between process, system, 

perturbation and decision maker 

To illustrate this approach, let us consider the model of Figure 14 and consider that 

an agent has an action a that influences the components failure rates according to the 

following law (equation [25]) 

)())(1())((),())(1())(( 202101 txtatxtxtatx −+=−+= αλλαλλ   [25] 

where either 0)( =ta  (do nothing) or 1)( =ta  (do something that will bring the 

failure rates to their initial values). This model (structure) is given by the influence 

diagram of Figure 17. 
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Figure 17. Influence diagram model of the example of Figure 2 corresponding to 

model of Figure 14 with a decision maker’ action on components failure rates

Let us suppose that the decision maker observes the process variables state x(t) and 

takes the action if this value is beyond a threshold xc. Simulating this model with the 

same parameters as in the former paragraph (Figure 14) and for the threshold value 

xc = 8 (80% of the final value), we obtain the results of Figure 18; the behaviors of 

the perturbation and the process variable states are the same as the two first graphics 

of Figure 15 respectively. The first graphic shows the probability for the system to 

be in the state OK when there is no perturbation and with perturbation and decision 

maker correction and the second graphic shows the behavior of the decision maker’s 

action. Notice that here the time it lasts before intervention is 275 TU compared to 

200 TU for the case where there is no action.  

Figure 18. Simulation results of the model of Figure 18

The following paragraph gives an idea of possible approximation when learning and 

inference become intractable because of continuous variables.  

3.5. Possible approximation scheme 

Learning and inference with continuous variables is in general a hard task (see 

(Murphy, 2002)). Furthermore, in practice one may be interested only by when a 

continuous variable come across the border of a compact subset (when the pressure 
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or the temperature goes beyond or below a threshold) so that it can be acceptable to 

approximate the problem using the piecewise constant scheme that is the transition 

matrix P is considered constant whenever the continuous variable belong to a given 

compact subset. The failure rate of a component will brutally vary if the perturbation 

and/or the process state goes beyond/below a threshold for instant. In this case, when 

we consider the transition matrix P to depend on a continuous variable x, that is P = 

P(x), it means that on each previously defined compact subset Ω , the transition 

matrix is a function of Ωx  ( )( Ω= xPP ) that represents x on Ω ; in general it will be 

the mean value of x over Ω , that is Ωx  is given by equation [26] 
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where )(Ωm  is a measure of Ω . For instance if the transition matrix P is a function 

of a time varying function x(t) that behave as shown by Figure 19, then we could 

divide the time interval [ ]30 tt  into three compact intervals and consider that 

iPP =  on each sub interval where iP  is a function of ix  that is defined by equation 

[27] 
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Figure 19. An example of the transition matrix approximation

Monitoring such a system consists then essentially to monitoring when the 

continuous variable come across a compact domain border and simulating the 

corresponding model to react in consequence.  

4. Conclusion  

The problem of modeling and analyzing dynamic reliability has been considered in 

this paper through dynamic Bayesian networks as the underlying mathematical tool. 

It is shown that their learning and inference capabilities can be exploited in order to 

take into account experts knowledge and experimental data to estimate the 
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dependability measures and to update beliefs given evidence. The existence of 

efficient algorithms for learning and inference make it possible to integrate them into 

decision support system for maintenance purpose or to construct standalone package 

for analysis and optimization of maintenance policy or as an aid for proactive and 

reactive decision making, by simulating the possible outcome of different scenarios 

before and during an abnormal behavior due to the growth of the perturbation or 

process variables out of limit for instance. The small academic example considered 

along the paper shows the potentiality of the approach presented so far but this 

potentiality must be proved by applying the approach to a real world complex 

example; this is the task for future works and the generality of the approach make it 

possible to use it in other domains. The need of expertise suggests that the use of this 

approach for modeling a real world problem will necessitate a multi disciplinary 

team. Though the exogenous perturbation and the process variables are considered to 

be continuous, in practice, with most of the existing software, it will be required to 

sample them on a given domain and this process may lead to some errors in the 

estimation of dependability measures; this possibility must be taken into account by 

the modeling team. As stated in the previous sections, the choice of appropriate 

algorithms and approximation schemes for a practical application may be a matter of 

expertise and so the modeling process must be carried up by a team comprising 

experts of dynamic Bayesian networks experts. 
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