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. A major assessment of this study is that the reactor efficiency can easily be deduced, without any precise knowledge of some key parameters such as the density and thickness of the calcium phosphate layer. Finally a last numerical study concerning the superstructure definition shows that too complex a superstructure does not provide significant refinements on the solution.

Introduction

In the last decade, a lot of engineering solutions for addressing phosphorus recovery from wastewater by precipitation of calcium phosphate in a recyclable form [START_REF] Morse | Review: Phosphorus Removal and Recovery Technologies[END_REF] have been proposed. Due to increasing demand of sustainable development of the phosphate industry and stringent environmental standards, phosphate recovery from wastewater has came into light as a real challenge. Another way to tackle the problem is to implement the so-called pellet reactor approach [START_REF] Hirasawa | Fluidized-Bed Process for Phosphate Removal by Calcium Phosphate Crystallization[END_REF]Toya, 1990, Seckler et al., 1996). This paper aiming at designing an optimal pellet reactor, is in keeping with the above pattern.

As reported by [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatment[END_REF], a two-step procedure with Ca-PO 4 -H 2 O as a support system is used. The general modeling strategy is summarized in Figure 1, where X represents the conversion of phosphate from liquid to solid phase. The first modeling phase, leading to a thermodynamic model for predicting phosphate conversion for the Ca-PO 4 -H 2 O system as a function of pH, previously detailed in the work of Montastruc et al. (2003a) will not be reported here. This work is only related with the second step, that is to say the computation of the pellet reactor efficiency. Reactor efficiency is an alternative to the phenomenological approach which would need the accurate knowledge of numerous physical parameters involved in the agglomeration process (such as the coating), which are in the real world difficult to obtain, like calcium phosphate density and thickness.

The proposed approach is based on a reactor network-oriented model. The pellet reactor is modeled through a combination of elementary systems representing ideal flow patterns like perfect mixed flows, plug flows, by-passes, recycles and dead-zones. Given the total flow rate, the inlet concentration, the pellet reactor volume, and the outlet concentration, the arrangement, type and number of elementary units has to be selected for representing, as accurately as possible, the pellet reactor in terms of its outlet concentration computed from this model. As in classical process design problems, the model representing the pellet reactor is searched within a superstructure involving the set of all possible solutions corresponding to the physical reactor. Once the superstructure is defined, the potential solutions are extracted from it and evaluated according to a given objective function. Compared with the previous study of [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatment[END_REF] this work proposes a new solution procedure for the MINLP problem resulting from the superstructure formulation of the reactor network problem. Contrary to the paper of [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatment[END_REF], where the problem was solved by combining a simulated annealing procedure with a quadratic programming package, the GAMS library is used here.

The paper is organized as follows. The first section briefly recalls the physical process used for calcium phosphate precipitation -a fluidized bed reactor of sand continuous fed with aqueous solution. The second section is devoted to the mathematical formulation for the pellet reactor modeling. The key point of this formulation is the superstructure definition. The balance equations and the relations translating the existence or not of elementary units give birth to a Mixed-Integer NonLinear Programming Problem (MINLP). Like in the previous work of [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatment[END_REF], the MINLP problem is formulated for low input flow rate, high input flow rate and for the both flow rates together. The solutions extracted from the superstructure can be evaluated through several objective functions. In the following part, two GAMS (GAMS, 2004) codes, namely SBB and DICOPT++, for solving MINLP problems are compared on three examples. This study shows that the solver SBB, based on a Branch and Bound procedure, is more suited than DICOPT++, implementing the OA/ER method, for solving the type of problem under consideration. In the fourth part, the pellet reactor modeling problem is solved by means of the SBB package, for several flow rates situations and several objective functions. The obtained results are compared with the ones reported by Montastruc (2003a[START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatment[END_REF] who used a two-step procedure combining a simulated annealing method [START_REF] Kirkpatrick | Simulated Annealing: Theory and Applications[END_REF][START_REF] Kirkpatrick | Optimization by Simulated Annealing[END_REF] for extracting reactor configurations from the superstructure, and a NLP algorithm for optimizing the operating conditions of each configuration proposed at the upper level by the simulated annealing. In the fifth section, a study of the superstructure definition is carried out. Finally, the significant results are summarized in a concluding part.

Process Description

The physical process lies on calcium phosphate precipitation carried out by mixing a phosphate solution with calcium ions and a base. The precipitation is accomplished by means of a fluidized bed reactor of sand continuously fed with aqueous solutions, as it is shown in Figure 2.

Calcium phosphate precipitates upon the surface of sand grains, and the fines (small particles) leave the bed with the remaining phosphate not recovered in the bed. As reported by [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatment[END_REF], two different behaviours can experimentally be observed. For high values of the fluidization velocity ( ≥ 0.09 m 3 /h), only one zone exists at the top of the bed, in which fines leave the reactor with the liquid effluent. In that case, process efficiency mainly results from fine coating on sand grains. In the other experimental regime, for low values of the fluidization velocity ( ≤ 0.05 m 3 /h), a new layer appears at the upper zone of the bed, where fines stagnate and agglomerate. The fines remain at the surface of the bed, even though inside the fluidized bed they totally cover the sand grains and give birth to large particles of complex structure.

The phosphate removal efficiency of the reactor is defined as the difference between the flow rate of the phosphorus component at the reactor inlet and the total flow rate of phosphorus both dissolved and in fines at the reactor outlet, divided by the input flow rate of phosphorus.

In the papers of Montastruc et al. (2003b), the modelling of fine production involves amorphous calcium phosphate (ACP) for the higher pH values, and both ACP and dicalcium phosphate dihydrate (DCPC) for lower pH values. As suggested by [START_REF] Mullin | Crystallization[END_REF], the precipitation phenomenon can be considered as an agglomeration process, and is represented by Smoluchowski's equation. In a previous study, [START_REF] Montastruc | Calcium Phosphate Precipitation in a Pellet Reactor[END_REF] have shown that the pellet reactor efficiency depends not only on pH, but also on hydrodynamic conditions.

Pellet Reactor Modeling and MINLP Problem Formulation

Pellet reactor modeling

At the first level (see Figure 1) of the modeling process, a thermochemical model determines the quantity of phosphate both in the liquid and solid phases vs. the pH value, calcium concentration and temperature. In this model, proposed by Montastruc et al. (2003b), the produced amounts of ACP and DCPD are quantified as functions of the initial conditions. As previously mentioned, this modeling phase will not be reported here.

In the second modeling phase (see Figure 1), instead of using a complex agglomeration model [START_REF] Mullin | Crystallization[END_REF] requiring difficult experimental determination of hydrodynamic conditions, the pellet reactor efficiency is computed from the identification of the pellet reactor model as a network made up of a combination of elementary systems representing basic ideal flow patterns, such as perfect mixed flows (continuous stirred tank rectors, CSTR), by-passes, recycles and dead-zones. Each elementary cell is characterized by a binary variable representing its potential existence or absence in the final model, and by specific parameters such as volume, concentration and flow rate. So the problem consisting in finding the best model for the pellet reactor, can be classified in the general Mixed-Integer Programming problem class. More precisely, the goal is to find the network representing as accurately as possible the pellet reactor efficiency, namely to determine the number of elementary units, with the associated volumes, concentrations and flow rates, given the inlet concentration, the total flow rate, the total reactor volume and the outlet concentration.

In the synthesis of reactor network field, two solution approaches can be distinguished. The strategy where the network is built step by step without embedding the set of potential solutions within a superstructure, was proposed by [START_REF] Athier | Synthesis of Optimum Heat Exhanger Networks by Simulated Annealing[END_REF] and [START_REF] Laquerbe | Synthesis of RTD Models via Stochastic Procedures: Simulated Annealing and Genetic Algorithm[END_REF]. In these two-step procedures, the master problem, solved by a stochastic method like simulated annealing or a genetic algorithm, proposes network structures to the subproblem, where the continuous operating variables on the network under consideration (generally flow rates, concentrations and volumes) are optimized by a NLP method suited to the type of constraints (the objective function being quadratic): QP for linear constraints and SQP for nonlinear ones. However, in this strategy the infeasibility of some structures proposed by the stochastic procedure has to the detected. These infeasibilities come from the inability to connect in some cases the discrete part of the models with the resulting continuous problem. This detection, lying on physical concepts, is strongly linked to the problem under consideration, and suffers of a lack of applicability. That is the reason why a procedure based on a superstructure approach has been retained in this study.

In a superstructure-based solution procedure, all the potential solutions are imbedded within a general framework, named superstructure, and the designer is no longer faced with the infeasibility of some solutions. However, if the superstructure-based approach is an efficient way to overcome the infeasibility problem, this approach is not the panacea, because the quality of the generated solution obviously depends on the superstructure chosen for solving the problem. The superstructure definition may be a key point for complex problems needing and important number of elementary cells, giving birth to highly combinatorial problems. Nevertheless, the fluidized bed to be modeled here being structurally quite simple, a fluidized bed with recycle streams at different levels of the bed, the superstructure-based approach has bee retained in this study.

Though the notion of superstructure was used for a long time in the process synthesis field, one of the first paper to solve a modeling problem with a superstructure-based approach was presented by [START_REF] Floquet | Identification de modèles par une méthode d'optimisation en variables mixtes[END_REF]. In this paper, the problem consists in determining the best model for a wastewater treatment tank. The settling tank is a rectangular basin with two agitators. The solution is searched within a superstructure involving CSTR's, plug-flow reactors PFR's, a by-pass, a recycle stream and a dead-zone. The goal was to obtain the best model with respect to a given output concentration. The resulting MINLP problem was solved by means of a generalized Bender's procedure. The problem was solved for several values of the experimental output concentration, in order to analyze the evolvement of the solution provided by the MINLP solution procedure.

Superstructure definition

For the fluidized bed reactor modeling problem, a preliminary study carried out by [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatment[END_REF] showed that the superstructure proposed for solving the settling tank problem was inadequate to represent the pellet reactor with a sufficient degree of accuracy. The same superstructure, shown in Figure 3, as the one proposed by [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatment[END_REF] is used in this paper. This superstructure involves 15 elementary cells, 12 CSTR numbered from 3 to 14, a by-pass, a recycle stream and a dead-zone numbered 1, leading to a combinatorial problem of size 2 15 = 32 768 possible solutions. The mathematical formulation of the modeling problem involves the following equations, where V i , C i and F i represent respectively the reactor volumes, the molar concentrations in fines and the flow rates, whereas the term y(i) is related to the presence or absence of unit i. Only constraints and bounds related to the superstructure have been considered in the following. Additional relations or bounds coming for example from thermochemical considerations on the process itself were not introduced in the constraint set, in order to preserve the generic aspect of the problem formulation.
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That is, 12 partial balance equations, given that total balance equations for reactors without recirculation streams cannot be written. 3, 4, 5, 6, 11, 12, 13 and 14 (example 
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This equation means that concentration C 9 is either concentration C 2 if reactor 7 exist (y(7) = 1) or concentration C 8 if the reactor does not exist.
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These artificial bounds have been introduced in order to reduce the search space, but also to define supplementary constraints translating flow rate existence as a function of elementary unit (reactor or stream) existence. For example constraint (8-a) means that flow rate F 14 exists only if branch 15 exists (y(15) = 1). All the other equations have similar significances. For flow rate going from the input towards the output, the factor 2 is arbitrarily chosen.

MINLP problem

The MINLP problem is made up with the following items. Variables -13 continuous variables for the volumes -14 continuous variables for the flow rates -17 continuous variables for the concentrations -15 binary variables associated with the presence or absence of elementary cells Linear constraints -1 equality constraint for the volume (Eq. 1) -13 inequality constraints for the volumes (Eq. 7-a) -8 total balance equations on reactors 3, 4, 5, 6, 11, 12, 13 and 14 (Eq. 5) -2 total balance equations on input and output nodes (Eq. 2-a and 3-a) -4 equality constraints for concentrations (Eqs. 6) -5 inequality constraints on flow rates (Eqs. 8) Nonlinear (bilinear) constraints -2 partial balance equations on input and output nodes (Eq. 2-b and 3-b) -12 partial balance equations on reactors 7, 8, 9 and 10 (Eqs. 4)

Objective functions

The MINLP problem is solved in a next section for the three following cases according to the fluidization velocity: -Case 1. Low input flow rate (F 0 =0.05 m 3 /h) -Case 2. High input flow rate (F 0 =0.09 m 3 /h) -Case 3. Find a unique model adequate for both cases 1 and 2.

For cases 1 and 2, three types of objective functions were studied as comparison purposes. With this objective function, the problem is to find the simplest model giving the experimental output concentration. Obviously, the case 3 cannot be solved with the objective function of type 1, because of constraint (10) would not have two different values for its right-hand side.

Type 2

2 exp , ) ( ) min( f f C C F - = (11)
Here, the problem is to find the model giving an output concentration as close as possible of the experimental output concentration.
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The term ρ is positive penalty coefficient whose value has to be adjusted so that both terms
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have the same order of magnitude. A value of 10 -6 was chosen for this coefficient. In that last case, the goal is to obtain the simplest model giving also a concentration as close as possible of the experimental concentration. The main difference between objective functions of type 1 and 3, is that for the third case, constraint (10) is not formulated as a constraint, but directly introduced into the objective function.

For case 3 related to the two flow rates considered simultaneously, only two objective functions similar with the previous objective functions of type 2 and 3, are used:
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where ρ=10 -6 .

GAMS solvers

In the previous study of [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatment[END_REF] a two-step procedure combining a simulated annealing algorithm for extracting models from the superstructure, and a NLP algorithm for optimizing the operating conditions of the elementary cells of the current model, was implemented. This approach appears to be attractive, but the handling of the NLP problem for each model structure proposed at the upper level by the simulated annealing method, poses non trivial numerical problems. Indeed, the dimensions of the NLP problem may vary according to the proposed models, in terms of some variables and constraints that may disappear or come back into the problem. For this reason a general purpose MINLP solver was used in this paper. Insofar as it constitutes now a standard in process engineering, as well as in research and teaching fields, the GAMS package was chosen.

From handling MINLP problems, GAMS offers two codes for solving the master problem. DICOPT++, based on the Outer-Approximation/Equality-Relaxation (OA/ER) procedure, first proposed by [START_REF] Duran | An Outer-Approximation Algorithm for a Class of mixed-Integer Nonlinear programs[END_REF] and [START_REF] Kocis | Relaxation Strategy for the Structural Optimization of Process Flowsheets[END_REF], and improved by [START_REF] Kocis | Global Optimization of Nonconvex Mixed-Integer Nonlinear Programming (MINLP) Problems in Process Synthesis[END_REF] for partially non convex problems is the oldest MINLP procedure of GAMS. SBB (Simple Branch and Bound) is the other code implemented more recently in the GAMS library. It is based on an implicit enumeration procedure first proposed by [START_REF] Gupta | Branch and Bound Experiments in Convex Nonlinear Integer Programming[END_REF] and [START_REF] Gupta | Nonlinear Mixed-Integer Programming and Discrete Optimization[END_REF]. At each node of the tree representing the mixed-integer linear programming (MILP) problem, corresponding to the master problem in the general MINLP solution procedure, a continuous NLP problem obtained from assimilating some discrete variables to continuous ones, is solved. This solution provide a lower bound value on the objective function, used for defining the branching scheme (two options are provided -depth first or breadth first branching) or to cut a branch [START_REF] Floudas | Nonlinear and Mixed-Integer Optimization, Fundamentals and Applications[END_REF]. The pseudo-cost method can be used for the selection of the next variable or the next node to branch. However the pseudo-cost computation, based on the NLP unfeasibility may require high computational times (Brooke et al., 1998). In the most classical version of SBB with a depth first scanning procedure, the wellknown backtracking method is implemented for identifying the next node to be separated. Whatever the algorithm used for solving the master problem, AO/ER or SBB, a NLP problem has to be solved at each iteration. The solver used is the classical CONOPT3, based on the GRG method first proposed by [START_REF] Abadie | The GRG Method for Nonlinear Programming[END_REF] and [START_REF] Abadie | Generalization of the Wolfe Reduced Gradient Method to the Case of Nonlinear Constraints[END_REF]. The GRG implementation is detailed in the paper of [START_REF] Drud | A GRG for Large Sparse Dynamic Nonlinear Optimization Problems[END_REF].

In the study of [START_REF] Hocine | Identification de modèles de procédés par programmation mixte déterministe[END_REF], the two solvers have been compared on the base of three types of benchmark problems. The first type of test problem consists in finding again the elementary solution represented in Figure 4, starting from several superstructures shown in Figures 5-a, 5-b and 5-c. The second type of benchmark problem is related to the natural gas transportation network given by [START_REF] Himmelblau | Optimization of Chemical Processes[END_REF]. The corresponding structure is given in Figure 6. The last benchmark problem is the one presented by [START_REF] Floquet | Identification de modèles par une méthode d'optimisation en variables mixtes[END_REF]. The goal is to determine the best model for a wastewater treatment tank. The solution is searched within a superstructure involving CSTR's, PFR's, a by-pass, a recycle stream and a dead-zone, as shown in Figure 7.

For the first class of benchmark problem, the two GAMS solvers DICOPT++ and SBB lead to the solution of Figure 4, whatever the superstructure used, and whatever the variable initialization. The CPU times are so small, that they cannot be used for discriminatory argument's sake. For the natural gas transportation network, several solutions can be found according to the integer variable initialization, showing that the problem has numerous local optima. The solution found by the two solvers when all the integer variables are fixed at 1, is represented in Figure 8. However, for other initializations, DICOPT++ leads to worse solutions than SBB. For the last test problem, the optimal solution found by DICOPT++ and SBB is shown if Figure 9. As for the natural gas transportation problem, the same trend according to the variable initialization can be observed for DICOPT++. Finally it follows from this preliminary study that SBB seems to be less influenced by the variable initialization, so it has been retained for solving the pellet reactor modeling problem in the two following sections.

Solution of the Pellet Reactor Modeling Problem

Separate solutions for the two flow rates

For the two cases concerning the flow rates, the problem data are listed in Table 1. Let us note that all the values reported on various solutions are always reduced values. In this framework, the total volume V total is set equal to one. As previously mentioned, the MINLP problem is first solved for cases 1 and 2 (low flow rate and high flow rate separately) with the three objective functions given by Equations ( 9), ( 11) and ( 12). The search with the SBB solver always begins with the complete superstructure (see Figure 3), that is to say, all the integer variables are fixed at 1. For objective functions ( 9) and ( 11) the results are given in Figures 10-a and 10-b (respectively 11-a and 11-b) for the low (respectively high) flow rate value. For objective function ( 12), the same as used by [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatment[END_REF] and combining criteria ( 9) and ( 11), the model shown in Figure 10-a (respectively Figure 11-a) for the low (respectively high) flow rate value is found again. The results reported by [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatment[END_REF] are recalled in Figures 12 and13. In this study, as well as in the paper of [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatment[END_REF], for all the objective functions and for the two flow rate cases, the quadratic deviation between the modeled output concentration and the experimental one is always very low (less than 20 10 -) and the number of CSTR is one or two. However the solutions identified by SBB are structurally simpler in terms of number of CSTR's or number of streams than the solutions reported by [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatment[END_REF]. From the very low values of the quadratic deviations between models and experiments, it can be noted that the proposed superstructure is sufficient enough to describe the two extremes of the physical process running.

Two flow rates simultaneously

When the two flow rates are simultaneous considered, the two objective functions used for finding a unique model well fitted for the two values, are given by Eqs ( 13) and ( 14). Insofar as the input flow rate F 0 and the kinetic constant k take two different values, the MINLP problem is solved with two different sets of constraints. The kinetic constant k, representing the rate of deposition of the phosphorus on the sand grains, was experimentally estimated for the two input flow rates (see table 1). The difficulty is now to find a unique solution for an optimization problem involving two different sets of constraints. The goal is to obtain a good numerical compromise between two problems. The same strategy as in the separate flow rate case for the SBB search is implemented concerning the search initialization (all the integer variables fixed at 1). For objective function (13) the obtained model is shown in Figure 14, where the values of the quadratic deviation, noted QD, between the output modeled concentration and the experimental one are reported for the two flow rate cases. In this figure notation a/b indicates that a refers to the concentration obtained with the low flow rate value and b to the concentration for the high value. For objective function ( 14) combining the quadratic deviation between output and experimental concentrations and the number of elementary cells into the model, the result obtained in this study is the one already reported in Figure 14. For comparison purposes, the solution given by [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatment[END_REF]) is shown in Figure 15. As in the separate flow rate cases, the solution obtained by SBB is structurally simpler than the one of [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatment[END_REF].

Choice of the objective function

Concerning the objective functions to be used in this type of modeling problem, the solutions found when using objective functions (9), ( 12) and ( 14) involving a term translating the model complexity (term ∑ ) (i y ) give obviously simpler models in a structural point of view than objective functions ( 11) and ( 13) only related to the quadratic deviation between concentrations, and thus without a loss of accuracy of the modeled output concentration. However, for the separate flow rate value cases, when objective function ( 9) is used, the constraint (10) on the output modeled concentration has to be added into the problem constraint set. Though in the presented example the solutions found by SBB are the same for objective functions ( 9) and ( 12), one can think that constraint (10) which is a sharp constraint may numerically penalize the problem solution. So it appears that an objective function of type ( 12) involving a term related to the quadratic deviation between the modeled output and the experimental one and another part translating the model complexity, is more suited for solving a model identification problem.

About the Superstructure

This last part of the paper is devoted to the study of the superstructure definition. For a process design problem as well as for a modeling one, in the superstructure based-approach, the solution is searched within a superstructure involving the set of all possible solutions corresponding to the physical problem. Once the superstructure is defined, the potential solutions are extracted from it and evaluated according to a given objective function. So it is coarse to note that the quality of the optimal solution identified strongly depends on the superstructure definition. A too simple superstructure would give too poor solutions far away from the true physical process, but on the other hand a too complex superstructure would introduce too structurally complex solutions with regard to the true phenomenon and would require too hard computing environment, as well as in terms of software, but also of hardware. A happy medium has to be found between these two farthest situations. In this framework, the superstructure first proposed by [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatment[END_REF], and given in Figure 3, is slightly modified by adding exchange streams from reactors of the medium branch to other reactors located on lower and upper branches (streams between reactors 7 and 3, 7 and 11, 8 and 4, 8 and 12, 9 and 5, 9 and 13, 10 and 6, 10 and 14). It is like a unilateral radial dispersion between reactors was introduced. The resulting superstructure is shown in Figure 16.

The problem was solved only for the most complex case, where the two flow rates are considered simultaneously, and according to the previous remark, only for objective function ( 14). The results are the same as the ones obtained on the simplest superstructure of Figure 3. This last study clearly shows that a too complex superstructure does not provide significant refinements on the solution.

Conclusions

In this paper a MINLP solution for modeling a pellet reactor for phosphorus recovery from wastewater is proposed. The best model is searched within superstructures composed of elementary flow patterns, recycles, by-passes and dead-zones. The reactor is modeled on the one hand for two values of the input flow rates, corresponding to two experimental behaviours of the fluidized bed, and on the other hand for the two flow rates considered simultaneously. In that last case, the problem is to find a unique model well suited for input flow rates lying in the range covered by the low and high flow rate values.

The resulting MINLP problem was solved by using the GAMS package. GAMS is a numerical based-equation environment in which any optimization problem can easily be described through a high level input language. In a preliminary step, three benchmark problems are solved by implementing two GAMS tools, DICOPT++ based of the OA/ER strategy, and the branch and bound SBB procedure. It comes from this study that the SBB procedure seems to be less sensitive to the variable initialization, so it has been retained for modeling the pellet reactor. The problem was first solved for two objective functions related either to the model complexity, or to the quadratic deviation between the modeled and experimental outputs. A third objective function combining the two previous criteria was also used. Whatever the flow rate case considered, the solutions found by SBB are structurally simpler than the ones of [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatment[END_REF]. A last numerical study concerning the superstructure definition shows that a too complex superstructure does not provide significant refinements on the solution.

For high and low input flow rates, as well as for flow rates bounded by these extreme values, the results obtained show that satisfactory reactor networks can be constructed that give good comparisons to the experimental efficiency.

A major assess of this modeling study, is that the reactor efficiency can be easily deduced, without any precise knowledge of some key parameters such as the density and thickness of the calcium phosphate layer. In fact the proposed methodology is an efficient tool for determining new agglomeration fluidization conditions. [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatment[END_REF] for the pellet reactor problem with the low flow rate value and objective function (12) Figure 13 Solution of [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatment[END_REF] for the pellet reactor problem with the high flow rate value and objective function ( 12) Figure 14 Solution for the pellet reactor problem with the two flow rates simultaneously and objective functions ( 13) and ( 14) Figure 15 Solution of [START_REF] Montastruc | A Systemic Approach for Pellet Reactor Modeling: Application to Water Treatment[END_REF] for the pellet reactor problem with the two flow rates simultaneously and objective function ( 14) Figure 16 Superstructure for the pellet reactor problem with a unilateral radial dispersion Step 1
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						Case 1	Case 2
		0 F	0.05	0.09
	C	0	1	1
	C	f	,	exp	0.258	0.477
		k	91	68.5