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Abstract  10 

Optimization of solid-state anaerobic digestion on cattle manure and damp grass were 11 

performed simultaneously and combined to a bootstrapping tool to significantly decrease the 12 

number of experiments for a methane yield optimization. 15 batch reactors at lab scale were 13 

launched two times respecting a mix surface response methodology. A numerical method 14 

called Bootstrapping was used to verify results significance. Results have shown a significant 15 

influence with a p-value between 10-8 and 10-11: the optimal parameter values depend on the 16 

substrate composition with a maximal p-value of 5.60.10-2. The methane yield reached 156.19 17 

NL.kgVS-1 for a mixture of cattle manure and damp grass, and 142.92 NL.kgVS-1 for cattle 18 

manure only. The bootstrapping were validated with a standard error lower than 3% in 19 

comparison with ANOVA method, which confirms that the mix surface response methodology 20 

combined to bootstrapping is an innovative and efficient way to optimize solid-state anaerobic 21 

digestion process. 22 
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1 Introduction 25 

The share of renewable energy in the European Union in gross final energy consumption 26 

reached 18 % in 2018, twice the share of 2004, which was 8.5 %. The European Union’s target 27 

is to reach 20 % of its energy from renewable sources by 2020 and 32 % by 2030. 12 countries 28 

have already reached a share equal or above their 2020 binding targets but many countries 29 

have to increase their contribution, such as France’s share from 16.6 % to 23 % (Eurostat, 30 

2020). Anaerobic digestion (AD) of organic wastes is part of this handle. Two types of AD 31 

process exist, depending on the total solid content (TS): the liquid AD and the solid-state 32 

anaerobic digestion (SS-AD). The SS-AD is defined by a solid content higher than 15 % and is 33 

more appropriate for degradation of substrates with varying composition and high solid 34 

content (Rocamora et al., 2020; André et al., 2018; Degueurce et al., 2016). This process has 35 

increased in recent years, but SSAD is less widespread compared to liquid AD due to the lack of 36 

knowledge and the operational complexity to sustain a stable production (Rocamora et al., 37 

2020). In fact, the scientific and technological hurdles of the SS-AD are numerous as non-38 

representativeness of samples, biological process drifts, lack of monitoring indicators in solid 39 

media, no hydrodynamic optimization, no comprehension of the process, nor inhibitions of the 40 

process (André et al., 2018; André et al., 2019). 41 
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Some of these obstacles as inhibition phenomena and hydrodynamic comprehension can be 42 

studied using a type of design of experiments which is a Response Surface Methodology (RSM). 43 

This statistical method allows to describe and explain the effect of several independent 44 

variables on responses with multiple linear regression rules. The ultimate goal can be the 45 

determination of variables impact on the response or the optimization of the response (Goupy 46 

and Creighton, 2007; Goupy, 2012). In literature, a couple of papers on the AD phenomenon 47 

use this tool with surface response designs (SRD) e.g. for the impact of pretreatment (Gunes et 48 

al., 2021; Jin et al., 2018; Jackowiak et al., 2011), for the recirculation parameters on the SS-AD 49 

(Degueurce et al., 2016), for the average velocity optimization on account reactor 50 

configuration parameters (Leonzio et al., 2019), for the methane yield optimization regarding 51 

the Carbon to Nitrogen ratio (C/N), Food to Microbe ratio (F/M) and pH (Kainthola et al., 2020; 52 

Kainthola et al., 2019; Mortezaei et al., 2018) on different reactors or other parameters 53 

(Jiménez et al., 2014; Kumar et al., 2020; Lee et al., 2020). The mixture designs (MD) work in 54 

the same way but consider compositions respecting the mixture properties. The main goal of 55 

MD in the AD process is to study the substrate composition. Some papers use this last tool in 56 

AD process (Kashi et al., 2017; Wang et al., 2013; Bassard, 2015; Rakotoniaina, 2012; Rao et al., 57 

2011). These RSM studies are very interesting and allow deepening AD knowledge. Although a 58 

parameter optimization is only valuable for a specific substrate composition and a composition 59 

optimization is only valuable for a specific set of parameters. Some adaptations of factorial 60 

design are done in the literature (Wang et al., 2013) to consider mixture composition and 61 

operational parameters at the same time in a SRD but there is no study about a mix design 62 

between these two solutions. Moreover, these methods require a compromise between 63 

minimizing the number of experiments and to obtain results significance. To determine 64 

experimental repeatability, several reactors must be monitored under the same conditions and 65 

the results must be processed by an analysis of variance (ANOVA). The number of runs 66 

depends on the type of design used and the number of parameters studied. No information is 67 

available in the literature concerning the number of experiments reduction by alternative 68 

methods as numerical methods. The bootstrapping is a method which were invented by 69 

Bradley Efron (Efron, 1979; Efron and Tibshirani, 1986) and involves determining the 70 

significance of the model coefficients and response by resampling residues and redefine the 71 

model coefficients from a large number of iterations. A parametric bootstrapping method had 72 
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already been used to successfully estimate the distribution of the anaerobic digestion kinetic 73 

parameter estimators (Ruiz et al., 2005) but there is still no RSM applications. 74 

The novelty of this work is to combine a new surface response methodology for SS-AD process, 75 

which is a mix design combining the response surface design and the mixture design with a 76 

numerical tool to reduce the number of experiments by iterative resampling: the 77 

bootstrapping. This study has been conducted on two substrates and two key parameters of 78 

the SS-AD to maintain time and cost constraints on batch reactors. The substrates used were 79 

cattle manure and damp grass. In fact, grass is a substrate with risk of inhibition by acidosis as 80 

cattle manure may offset this effect. The chosen parameters have also been selected for their 81 

impact on the acidosis and these parameters are immersion rate and recirculation frequency. 82 

The chosen SRD is a full-factorial design and the chosen MD is a simplex-centroid design.  83 

 84 
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2 Materials and methods 85 

2.1 Characteristics of substrates and inoculum used 86 

Cattle manure (CM) was sampled from the farm of the UniLaSalle Polytechnic Institute (Beauvais, 87 

France). CM has been sampled for each set of experiments to maintain its raw properties and avoid 88 

any preliminary treatment. The liquid part of the manure or liquid bovin manure (LBM) was used as 89 

inoculum to bring the microbial consortium. Damp grass (DG) was mowed from household gardens 90 

in Les Clayes-sous-Bois (France) in September 2019 and has been aliquoted and frozen to be used 91 

at each set of experiments to avoid any physicochemical differences with DG used. Two sets of 92 

experiments were conducted in October 2019 and January 2020. The physicochemical analyses 93 

were made on CM and DG for each data set.  94 

For all experiments, all analyses were carried out in triplicate. The total solid content (TS) and the 95 

volatile solid (VS) of the inoculum, CM and DG were determined by a drying at 105°C for 24h and a 96 

combustion at 550°C for 2h (APHA, 1998). The pH of the inoculum has been determined using a pH 97 

meter (Mettler Toledo, Switzerland). The total volatile fatty acid content (FOS) and the buffer 98 

capacity (TAC) were determined by two titration using sulfuric acid. The first acidification at pH = 99 

5.0 provides the TAC and the second one at pH = 4.4 provides the FOS. An automatic titrator 100 

(Mettler Toledo, Switzerland) has been used to realize these analyses. These tests were done at the 101 

beginning of each set of experiments and the results are presented in Table 1. The FOS/TAC value 102 

is an indicator to recognize stable AD operation or acidosis risks, where an excessive accumulation 103 

of acids leads to AD inhibition (Mcghee, 1968; Nordmann, 1977; Voß et al., 2009). 104 

2.2 Experimental set-up 105 

For this study, one of the fixed objectives was to denature substrates the less possible. This 106 

means that no grinding is done on substrates and the CM is not frozen but sampled and 107 
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analyzed for each experiment. This choice is done to be as representative as possible of the 108 

real experimental conditions of an industrial digester. Thus, used reactors must respect space 109 

and cost constraints but it must be sufficiently large for samples studied. Moreover, 110 

constraints must be respected: the experimental parameters tested must be adjustable. 111 

Fifteen leach bed reactors (LBR) made of Plexiglas with a total volume of 2.65 L were used 112 

enabling a compromise between lab scale and substrate representativeness. These reactors 113 

were divided into two parts: the upper part containing the solid phase and the bottom part 114 

holding the liquid phase. These parts were separated by a perforated grid with a pore size of 5 115 

mm diameter. The grid height was adjustable along a central axis of 10 mm diameter by a 116 

manual tightening ring screwed, allowing imposing the immersion rate. A manual peristaltic 117 

pump was used on each LBR at constant flow speed range and allowed to adjust the 118 

recirculation frequency depending on the experiment. Thus, the liquid phase was spread out 119 

across the top of the solid phase in the LBR upper part and percolated to drop back into the 120 

bottom part. According to the experiment, recirculation frequency was between once a day 121 

and once a week. The top of the reactor was directly connected with manual biogas counters. 122 

These bottles were graduated and operated according to the Mariotte’s law through volume 123 

displacement, allowing to measure the cumulative biogas production each day. A temperature 124 

reading allowed to convert this volume into a normalized quantity.  Biogas composition was 125 

analyzed five times a week by a gas chromatography (MicroGC, SRA Agilent 3000A) to 126 

determine the biogas composition on every reactor (weekends excepted) to measure 127 

methane, carbon dioxide, nitrogen and hydrogen production rates. The system is represented 128 

Fig 1. 129 
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At the beginning of the experiment, all the introduced inoculum was recirculated once. For 130 

every other recirculation, the spread volume was 0.62 L, representing arbitrarily 2:3 of the 131 

total liquid volume. The spreading period was 1 min, because 0.62 L.min-1 is the minimal flow 132 

to insure a good liquid distribution over the whole surface of the solid matter. Every reactor 133 

was filled with the same volatile solid content. The chosen quantity of substrates inserted in 134 

each reactor contained the same volatile solid content than 250 g of cattle manure for the first 135 

and second run and 300 g of cattle manure for the third run. This was done to have a sufficient 136 

percolation. Previous investigations on the LBR permitted to determine this reference (data 137 

not shown). DG was introduced on CM, imposing a two-stored solid matter. This successive 138 

stratification was chosen to reduce the contact between grass and liquid phase and thus 139 

acidosis risks (André et al., 2019). At the end of each run of experiments, mass balances were 140 

calculated on each reactor. 141 

The ideal gas law was used to obtain the biogas mass flow expression. Then biogas flow was 142 

normalized and integrated throughout the experiment to obtain the total mass produced (g). 143 

Equations (1) and (2) describe this method. 144 

PQ(t)M(t) = m(t)RT(t) (1) 

� dm
�

�
= P
R �M(t)Q(t)

T(t) dt
��

��
 (2) 

2.3 Mix Response Surface Methodology 145 

A mix design was chosen to optimize the response variable. This RSM was composed by coupling a 146 

response surface design and a mixture design. The first hypothesis made was the proportionality of 147 

the responses on the mixture composition. Concerning MD, a simplex-centroid design was used to 148 
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determine the effect of mixture composition of the studied response. For this study, the response 149 

was the total methane yield YCH4 (NL.kgVS
-1). The mixture factors  γi were quoted as the ratio 150 

between the volatile solid content of the component i and the total volatile solid content (% VSi.VS-151 

1). This unit ensures to obtain comparable results between experimentations and not to be 152 

dependent on experimental conditions as component density or moisture. The final equation (3) is 153 

the model used. 154 

Y��� = �α�,� + α�,�δ� + α�,�δ� + α�,��δ�δ��γ�
+ �α�,� + α�,�δ� + α�,�δ� + α�,��δ�δ��γ�
+ �α�,� + α�,�δ� + α�,�δ� + α�,��δ�δ��γ�γ� 

(3) 

This design permits a better flexibility than classical designs and considers the interactions 155 

between SSAD process parameters variations and composition variations on the methane 156 

yield. Process factor values must be normalized between -1 and +1 to compare the effects of 157 

process factors with each other.  158 

Each run is achieved with 15 LBR experiments. Five replications of the center point were done 159 

to estimate the experimental error and confirm the model significance. They are included into 160 

the first run to compare the bootstrapping method with the statistical method. For the second 161 

run, only the bootstrapping will be used to determine the confidence interval of methane 162 

yield. All the experiments are summarized in the Table 2.  163 

The statistical analysis was established by a Fisher test for the model with a 95 % confidence 164 

level and a Student test for the coefficients value with a 90 % confidence level. The analysis 165 

was done with the data analysis tool from Excel, allowing to determine the coefficients value 166 

and confidence intervals associated. The adequacy of the model was checked by adjusted 167 

regression coefficients (Radj
2). The regression models were determined by analysis of variance 168 
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(ANOVA) (Miller, 1974 ; O’Connor, 1991) and a regressor selection was done (Lind & Ljung, 169 

2005). After this selection, only 4 to 5 parameters among 12 were maintained for each run. 170 

This observation resulted from the high confidence level established. Only 14 experiments 171 

were used to realize the analysis on each run because some LBR presented recirculation 172 

failures and values were rejected. These LBR were the experiments R15 and R19 for the first run 173 

and R13 for the second one. Finally, the assumptions dues to ANOVA method were proved by 174 

plotting a residual plot and a residual normality plot. 175 

2.4 Repeatability analysis 176 

Residual error includes model adjustment error and experimental error. To identify each error 177 

and verify the model significance, sum squares and degrees of freedom were calculated. 178 

Dedicated experiments R16 to R20 were launched during the first run of experiments. These 179 

reactors were loaded with the same substrate’s mixture and in the same operating conditions 180 

(Table 2). The experimental sum square was obtained by following the final methane yield 181 

obtained  �! for these k reactors and was compared to the mean  ̄� of these 5 experiments. 182 

This is how experimental variability was determined. Once the model is fitted with 183 

experimental points (R1 to R15, R13 excluded), the difference between experimental methane 184 

yield  #! and predicted methane yield  ̂# was done by the residual sum squares. The difference 185 

between these two calculations allowed determining the adjustment error. The total number 186 

of experiments %&'( was 18 because two experiments were deleted before (R13 and R19) and P 187 

is the standardized regressor number, which value was 5 after regressor selection. An F-value 188 

is determined for the model significance and allow creating the confidence interval for each 189 

value included in the field of study. In numerical statistics, bootstrapping is a resampling 190 

method that operates by random sampling with replacement. The main idea is to model the 191 
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inference of samples by resampling data and performing conclusions about a sample from 192 

resampled results. In inferential statistical analysis, the real population is unknown but using 193 

bootstrapping, the population is the sample and is known. The original data set is resampled 194 

and create a new sample from the original. The process is repeated during a large number of 195 

iterations N and each resampled result provides an estimate of the real population. This 196 

method was published by Efron (1979) and was inspired by the jackknife method (Miller, 197 

1974). It is a very practical tool concerning the determination of samples accuracy and allows 198 

obtaining confidence intervals and estimating properties. The main advantage of this tool is 199 

the implementation simplicity to determine complex parameters and also helps to check the 200 

results stability. This method is more accurate than the standard confidence intervals obtained 201 

using classic assumptions of inferential statistics and allows to reduce the number of 202 

experiments. By contrast, the resampled results depend on the sample representativeness. 203 

Concerning this work, bootstrapping is used for building new samples to offset the limited 204 

number of experiments and to assess the significance of experimental results.  205 

Bootstrapping was used on two major points of this study: the confidence intervals of 206 

model coefficients and the confidence interval of predicted methane yield. The approach used 207 

was the residual resampling. For the first point, the supposed model was fitted with 208 

experimental data and fitted parameters and residues were retained. Then, randomly 209 

resampled residues were added to the fitted response in order to create a new sample. The 210 

model was fitted again with experimental data including the resampled results and all samples 211 

and new samples were retained. These last two steps were repeated in a large number of 212 

times to approach the empiric probability distribution. For the second point, once the model 213 

was fitted with experimental data, the sample residues were resampled over the full field of 214 
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study. In addition to this attention point, the operating method was the same. The residues 215 

were studentized to consider the standard deviation difference between residues. The 216 

complete method is sketched Fig 2. Every calculation and plot were programmed with Scilab 217 

6.0.0. 218 

3 Results and discussion 219 

3.1 Batch reactor performance 220 

For the first run of experiments with the damp grass composition lower than 45%VS, the 221 

immersion rate and the recirculation frequency became higher as well as the methane yield. 222 

The difference between immersion rates was clearly visible in the LBR when the immersion 223 

rate was high, the methane yield was higher. However, the recirculation frequency induced 224 

different comportments depending on the immersion rate and the mixture composition. For 225 

the second run, when the damp grass composition was higher than 50%VS, two main optimal 226 

methane yield zones appeared: when the immersion rate was low and the recirculation 227 

frequency was high and vice versa.   Moreover, when the damp grass composition was higher 228 

than 50%VS, it was very difficult to construe the biogas flow and methane curve shapes. This is 229 

a typical example justifying the use of response surface methodology. Three experiments were 230 

removed from these two runs because there was some experimental bias like recirculation 231 

blockages or sealing problems: R13 for each run of experiments and R19.  All the 232 

characteristics of the liquid phase and the solid phase are summarized in the Table given in 233 

supplementary material. 234 

For each run of experiments, mass balances were calculated on each reactor. Biogas flow has 235 

been normalized and included in the mass balance to obtain the total mass produced (g). The 236 

minimum and maximum differences are 0.20 % and 8.66 %. LBR are therefore representing 237 
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mass balance between 91.34 % and 99.80 %, attesting the absence of biogas leakage or reactor 238 

failures. This difference may be explained by the mass losses during the reactors emptying and 239 

mass weighing. Depending on experimental conditions, the VS removal ranged from 63% to 240 

87% for the first run and from 62.9% to 83.5% for the second run, attesting a great 241 

biodegradation of substrates by the microbial consortium. These results are illustrated in Fig 3. 242 

This conclusion is echoed by the methane yield observed. These consumptions represent 243 

between 51% and 95% of the BMP for the first run and between 20% and 57% for the second 244 

run.  These results show that the experimental conditions are not optimal, probably due to the 245 

substrates accessibility. Generally, the experiments with a low recirculation frequency and with 246 

more damp grass produce less biogas. Some experimental parameters could explain this 247 

phenomenon as preferential path and dead zones during percolation of the liquid phase.  248 

Moreover, the pH value is considerably higher than the beginning of experiments, between 249 

7.79 and 8.05, indicating a good balance between produced and consumed volatile fatty acids 250 

(VFA). For the first run, the FOS/TAC ratio is between 0.098 and 0.128 and between 0.112 and 251 

0.296 for the second run. This result suggests an impact of damp grass on FOS concentration 252 

and buffer capacity. 253 

3.2 Statistical analysis of the results 254 

Table 3 gives the final model of methane yield coefficients after regressors selection (after 255 

removing all nonsignificant regressors, with a p-value > 0.1). Two models were determined 256 

according to the run of the experiment, therefore according to experimental conditions. This 257 

model presents an adjusted R² of 88 ± 1 %, which attesting a great accuracy to describe the 258 

reality. The residual variability could be explained by the uncertainty of measurement and by 259 

the impact of external parameters variations which were not considered for this study. But 260 
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these results still remain good results in terms of accuracy. The model p-value is very low, 261 

proving the model significance.  262 

 263 

Table 4 provides the regressors value. Each run of experiments presents different models and 264 

thus different regressors according to the experimental conditions. In fact, the significant 265 

coefficients are not the same depending on the inhibition phenomenon, the substrate mixture, 266 

the inoculum/substrate ratio and the recirculation frequency. A positive sign of the coefficient 267 

means that the coefficient has a favorable impact on the methane yield. Therefore, the cattle 268 

manure γ1 and damp grass γ2 presence are beneficial to the methane production.  The 269 

immersion δ1 and the recirculation frequency δ2 are beneficial to the methane yield when 270 

associated with the substrates mixture, according to the interaction results δ1γ1γ2 and δ2γ1γ2. 271 

In contrast, when the damp grass composition is higher (during run 2), the interaction 272 

coefficient between substrates γ1γ2 is negative. This means that a high composition rate of 273 

damp grass induced a negative impact on the methane yield, probably due to inhibition 274 

phenomenon. Finally, an interaction coefficient between process parameters and cattle 275 

manure composition δ1 δ2 γ1 is negative in the first run of experiments. This could be explained 276 

by the substrate’s stratification, inducting that cattle manure is easier to be submerged than 277 

damp grass. As the damp grass has a higher methanogenic power, the process parameters may 278 

not improve the methane yield of a mixture with a low damp grass composition.  The residues 279 

of each model were plotted and all the postulates may be graphically verified. There is still a 280 

slight difference of residual variability between the experimental values and models and a few 281 

points which present fractiles slightly apart the normality line. This is why all the residues were 282 
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normalized by dividing residues by the residual standard deviation. This point will also be 283 

considered when the bootstrapping is used. 284 

3.3 Optimization of the methane yield 285 

The regression model obtained and the coefficients value are attained as illustrated in 286 

equations (4) to (7). 287 

Y���,)*+� = (α�,� + α�,��δ�δ�)γ� + α�,�γ� + (α�,�δ� + α�,�δ�)γ�γ� (4) 

Y���,)*+� = α�,�γ� + α�,�γ� + α�,�γ�γ� + α�,�δ�γ�γ� (5) 

Y���,)*+� = (147.95 2 8.31δ�δ�)γ� + 113.59γ� + (63.69δ� + 27.48δ�)γ�γ� (6) 

Y���,)*+� = 129.41γ� + 143.45γ� 2 171.86γ�γ� + 77.79δ�γ�γ� (7) 

These equations were numerically solved in order to find the optimum coefficient values to 288 

maximize the methane yield. The maximal production value obtained for each run is 289 

respectively 156.19 NL.kgVS
-1 and 143.45 NL.kgVS

-1. This difference is due to the inoculum 290 

properties and the differences between recirculation frequencies. Thus, this value could not be 291 

compared. Therefore, the methane yield comportment can be analyzed and compared. These 292 

conclusions are consistent with the result found in the literature (André et al., 2019; Feng et 293 

al., 2017) considering the inoculum, cattle manure and damp grass TS, VS and composition 294 

differences. The response surface obtained for the first run is illustrated in Fig 4. The predicted 295 

methane yield depends on the process parameters and mixture parameters. In this way, when 296 

the cattle manure composition increase (figures from the top to the bottom), the predicted 297 

methane yield observed depending on the immersion rate and the recirculation frequency. 298 

These observations indicate a rise of the methane yield when the damp grass and process 299 

parameters rise until damp grass composition reaches 45 %VS. If extrapolation is done, beyond 300 
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70 % VS of damp grass, the predicted methane yield curve has a significantly different behavior. 301 

This probably represents the impact of contact period between liquid phase and substrates. 302 

Concerning the second run of experiments, the immersion rate had not been effectively 303 

brought into focus. predicted methane yield is not depending on this parameter. In this way, 304 

methane yield can be based only on damp grass composition and recirculation frequency as 305 

illustrated in Fig 5. A red area means a higher methane yield and a blue area means a lower 306 

methane yield. The methane yield surfaces are on the right and methane yield isovalues are 307 

represented on the left. The predicted methane yield curve has a different behavior than the 308 

first experiment. This is probably because the high damp grass percentage induced inhibitions, 309 

potentially acidosis, that were not present during the first set of experiments and induce a 310 

different behavior. This difference of behaviors highlights that extrapolation presents strong 311 

uncertainties for RSM methods and should not be used for SS-AD with risks of inhibitions. 312 

In these different experimental conditions, the same conclusion is done: in the mixture 313 

considered, when the damp grass composition is upper than 70 %VS, inhibitions by acidosis 314 

could appear. In this case, immersion rate and recirculation frequency can limit this 315 

phenomenon. This study highlighted that two process behaviors permit controlling acidosis 316 

risks: high immersion rates and low recirculation frequency, or low immersion rates and high 317 

recirculation frequency. This could be explained by an equilibrium between foster the contact 318 

period between microbial consortium and the higher biodegradable DG substrate and limiting 319 

the acidosis risks. 320 

3.4 Repeatability study 321 

Once the predicted methane yield was optimized and the response surface modeled, it is very 322 

important to determine the prediction accuracy to know how these experiments are 323 
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repeatable. For this, two main tools were used: the classical analysis of variance and the 324 

bootstrapping. ANOVA needs to respect some postulates done on the model residues: variance 325 

is equal for all residues, each residue is independent, normally distributed, and the statistical 326 

average of residues is zero. The postulate acceptation causes low bias and need a sufficient 327 

number of experiments to be correctly verified. The confidence intervals were determined and 328 

the bootstrapping tool were applied to the experimental results concerning two main points: 329 

the confidence intervals on the model coefficients determination and the confidence intervals 330 

on the predicted methane produced. 331 

Concerning the model coefficients, the bootstrapping was used 200 times with 2000 iterations 332 

to approach the real population. This represents 400,000 confidence interval simulations of 333 

each coefficient or between 1,600,000 and 2,000,000 calculations. The results are shown Table 334 

5. Beyond 100 uses of the bootstrapping tool, the simulations stay in the same domain. When 335 

the simulations are over, the maximum upper confidence interval and the minimum lower 336 

confidence interval are retained and compared with the ANOVA confidence intervals. The 337 

results obtained provide the same confidence intervals with a maximal error of 2.9 %. This 338 

error could be explained by the absence of postulates and the residual variability awareness by 339 

the studentized residues. In this study, residue postulates were verified and enough 340 

experimental data were used to obtain a robust analysis of variance. But for other design 341 

experimentations where there is a lack of samples, bootstrapping could be a solution to 342 

determine the repeatability of the model and may be useful to decrease the necessary number 343 

of experiments without losing accuracy.   344 

The same study has been done on the confidence intervals of predicted methane yield. The 345 

confidence intervals on the first run have been determined for a damp grass composition 346 
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between 0.15 and 0.45. The extrapolation has been done for a damp grass composition 347 

between 0.45 and 0.85. The same work has been done for the second run of experiments for a 348 

damp grass composition between 0.15 and 0.85. The confidence intervals provided by the 349 

ANOVA method and by the bootstrapping method are still comparable. Results are illustrated 350 

in Fig 6 for the second run. The green surface represents the predicted methane yield. The blue 351 

surface represents the ANOVA confidence intervals and the red surfaces represent the 352 

bootstrapping confidence intervals. It can be noticed that bootstrapping provides higher 353 

confidence intervals than ANOVA. It could be explained by the consideration of residue 354 

variability. Bootstrapping is a method that analyzes and reproduces a global error between 355 

experimental points and predicted points, containing experimental errors and adjustment 356 

errors. This is why experimental repetitions are not necessary to determine confidence 357 

intervals. The predicted methane surface has a very simple shape, due to the predicted 358 

methane yield non-dependency with the recirculation frequency. The ANOVA confidence 359 

intervals are represented in blue and bootstrapping intervals are represented in red. This is 360 

why the response surface had also been studied depending on the damp grass composition 361 

and the recirculation frequency. 362 

Fig 5. provides a response surface shape close to the studies already present in the literature 363 

(Degueurce et al., 2016) and highlights the significance of recirculation frequency on the 364 

methane yield. Moreover, for each experiment, bootstrapping provides larger confidence 365 

intervals. This difference is probably due to the absence of study hypotheses, confirming its 366 

use. The larger intervals allow a reduced risk of experimental errors and adjustment errors. 367 
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4 Conclusions 368 

The results suggested that interactions between process parameters and mixture parameters 369 

are significant and plays an important role in methane production,  which validate the 370 

usefulness of mix response designs. The repeatability could be studied with numerical tools as 371 

bootstrapping for greater accuracy and minimizing the number of experiments. This work 372 

proposes an optimal method in terms of time and accuracy to realize response surface studies. 373 

However, it is only a first step and it is possible to go far beyond these results, notably using 374 

more complex mixtures, more process parameters and different response designs. 375 
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Table 1 Chemical characteristics of inoculum and initial substrates used 

  TS VS pH FOS TAC BMP 

 Unit % %TS - mg.L-1 mg.L-1 NL.kgVS
-1 

 Standard 

error 

± 0.03 ± 0.01 ± 0.01 ± 5.5 ± 62 - 

Run 1 Initial CM 22.0  87.7  7.51  - - 142.92 ± 12.42 

Initial DG 42.2  71.7  5.81  - - 240.39 ± 8.95 

Initial LM 1.61  62.7  7.92  96.81  3460 10.42 ± 0.01 

Run 2 Initial CM 18.5  87.6  7.46  - - 142.68 ± 16.93 

Initial DG 42.2  71.7  5.82  - - 240.39 ± 8.95 

Initial LM 1.80  46.3  8.77  1021.21  7081 10.42 ± 0.01 

 



Table 2 Mix design of experiment used for runs 1 & 2 

 

Experiment Standardized 

factor values 
Compositions Run 1 Compositions Run 2 Methane yield 

Run 1 
Methane yield 

Run 2 

 δ1 δ2 γ1 γ2 γ1 γ2 (NL.kgVS
-1) (NL.kgVS

-1) 

R1 +1 -1 0.55 0.45 0.15 0.85 144.77 120.51 

R2 +1 -1 0.70 0.30 0.5 0.5 154.86 85.41 

R3 +1 -1 0.85 0.15 0.85 0.15 150.11 97.51 

R4 +1 +1 0.55 0.45 0.15 0.85 148.28 126.01 

R5 +1 +1 0.70 0.30 0.5 0.5 152.97 124.04 

R6 +1 +1 0.85 0.15 0.85 0.15 143.42 130.04 

R7 -1 -1 0.55 0.45 0.15 0.85 95.72 119.80 

R8 -1 -1 0.70 0.30 0.5 0.5 121.27 47.63 

R9 -1 -1 0.85 0.15 0.85 0.15 123.72 109.45 

R10 -1 +1 0.55 0.45 0.15 0.85 129.99 111.42 

R11 -1 +1 0.70 0.30 0.5 0.5 133.70 123.07 

R12 -1 +1 0.85 0.15 0.85 0.15 144.56 88.00 

R13 0 0 0.55 0.45 0.15 0.85 158.91 137.63 

R14 0 0 0.70 0.30 0.5 0.5 147.8 87.19 

R15 0 0 0.85 0.15 0.85 0.15 140.98 123.03 

R16 0 0 0.70 0.30 - - 151.93 - 

R17 0 0 0.70 0.30 - - 142.52 - 

R18 0 0 0.70 0.30 - - 136.70 - 

R19 0 0 0.70 0.30 - - 124.00 - 

R20 0 0 0.70 0.30 - - 138.66 - 

 



 

 

Table 3 Analysis of variance on the final model (90 % confidence level) 

Regression DF Sum of 

squares 
Mean 

squares 
F-value p-value 

Run 1      

Model 5 2.70.105 5.39.104 1421.22 1.44.10-11 

Residual 9 3.41.102 3.79.101 - - 

Total 14 2.70.105 - - - 

R2 - 0.999 - - - 

Radj
2 - 0.887 - - - 

Standard error - 6.16 - - - 

 

Run 2 
     

Model 4 1.63.105 4.08.104 134.29 5.13.10-8 

Residual 10 3.04.103 3.04.102 - - 

Total 14 1.66.105 - - - 

R2 - 0.981 - - - 

Radj
2 - 0.876 - - - 

Standard error - 17.42 - - - 

 



 

 

Table 4 Analysis of variance on the regressors (90 % confidence level) 

Regressor Coefficient 

value 
Standard 

error 
p-value Lower 

boundary 
Upper 

boundary 

Run 1      

γ1 147.95 4.90 7.35.10-11 140.06 155.84 

γ2 113.59 9.91 1.13.10-6 95.43 131.75 

δ1 δ2 γ1 -8.31 2.50 8.95.10-3 -12.89 -3.72 

δ1 γ1 γ2 63.69 8.83 5.02.10-5 47.50 79.88 

δ2 γ1 γ2 27.48 8.83 1.25.10-2 11.29 43.67 

 

Run 2 
     

γ1 129.41 15.99 1.06.10-5 100.43 158.39 

γ2 143.45 17.32 8.67.10-6 112.07 174.84 

γ1 γ2 -171.86 79.52 5.60.10-2 -315.98 -27.73 

δ2 γ1 γ2 77.79 28.27 2.04.10-2 26.56 129.02 

 



 

 

Table 5 Analysis of variance and bootstrapping on the coefficients confidence intervals (90 % confidence level) 

Regressor Coefficien

t value 
Lower 

ANOVA  
Upper 

ANOVA 
Lower 

Bootstrapping 
Upper 

Bootstrapping 
Relative error (%)  

Run 1       

γ1 147.95 140.06 155.84 140.03 155.51 1.91 

γ2 113.59 95.43 131.75 95.15 131.19 0.76 

δ1 δ2 γ1 -8.31 -12.89 -3.72 -12.76 -3.85 2.90 

δ1 γ1 γ2 63.69 47.50 79.88 47.76 79.91 0.74 

δ2 γ1 γ2 27.48 11.29 43.67 11.43 43.46 1.07 

 

Run 2 
      

γ1 129.41 100.43 158.39 98.13 157.26 2.01 

γ2 143.45 112.07 174.84 110.31 173.38 0.47 

γ1 γ2 -171.86 -315.98 -27.73 -323.06 -30.90 1.36 

δ2 γ1 γ2 77.79 26.56 129.02 25.24 130.54 2.77 
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