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Introduction

The share of renewable energy in the European Union in gross final energy consumption reached 18 % in 2018, twice the share of 2004, which was 8.5 %. The European Union's target is to reach 20 % of its energy from renewable sources by 2020 and 32 % by 2030. 12 countries have already reached a share equal or above their 2020 binding targets but many countries have to increase their contribution, such as France's share from 16.6 % to 23 % (Eurostat, 2020). Anaerobic digestion (AD) of organic wastes is part of this handle. Two types of AD process exist, depending on the total solid content (TS): the liquid AD and the solid-state anaerobic digestion (SS-AD). The SS-AD is defined by a solid content higher than 15 % and is more appropriate for degradation of substrates with varying composition and high solid content [START_REF] Rocamora | Dry anaerobic digestion of organic waste: A review of operational parameters and their impact on process performance[END_REF][START_REF] André | Solid anaerobic digestion: State-of-art, scientific and technological hurdles[END_REF][START_REF] Degueurce | Dynamic effect of leachate recirculation on batch mode solid state anaerobic digestion: Influence of recirculated volume, leachate to substrate ratio and recirculation periodicity[END_REF]. This process has increased in recent years, but SSAD is less widespread compared to liquid AD due to the lack of knowledge and the operational complexity to sustain a stable production [START_REF] Rocamora | Dry anaerobic digestion of organic waste: A review of operational parameters and their impact on process performance[END_REF]. In fact, the scientific and technological hurdles of the SS-AD are numerous as nonrepresentativeness of samples, biological process drifts, lack of monitoring indicators in solid media, no hydrodynamic optimization, no comprehension of the process, nor inhibitions of the process [START_REF] André | Solid anaerobic digestion: State-of-art, scientific and technological hurdles[END_REF][START_REF] André | Dry anaerobic codigestion of roadside grass and cattle manure at a 60 L batch pilot scale[END_REF]. Some of these obstacles as inhibition phenomena and hydrodynamic comprehension can be studied using a type of design of experiments which is a Response Surface Methodology (RSM). This statistical method allows to describe and explain the effect of several independent variables on responses with multiple linear regression rules. The ultimate goal can be the determination of variables impact on the response or the optimization of the response (Goupy and Creighton, 2007;[START_REF] Goupy | Methods for Experimental Design: Principles and Applications for Physicists and Chemists[END_REF]. In literature, a couple of papers on the AD phenomenon use this tool with surface response designs (SRD) e.g. for the impact of pretreatment [START_REF] Gunes | Optimisation of anaerobic digestion of pot ale after thermochemical pre-treatment through Response Surface Methodology[END_REF][START_REF] Jin | Performance enhancement by rumen cultures in anaerobic codigestion of corn straw with pig manure[END_REF][START_REF] Jackowiak | Optimisation of a microwave pretreatment of wheat straw for methane production[END_REF], for the recirculation parameters on the SS-AD [START_REF] Degueurce | Dynamic effect of leachate recirculation on batch mode solid state anaerobic digestion: Influence of recirculated volume, leachate to substrate ratio and recirculation periodicity[END_REF], for the average velocity optimization on account reactor configuration parameters [START_REF] Leonzio | Fluid dynamic study of anaerobic digester: optimization of mixing and geometric configuration by using response surface methodology and factorial design[END_REF], for the methane yield optimization regarding the Carbon to Nitrogen ratio (C/N), Food to Microbe ratio (F/M) and pH (Kainthola et al., 2020;[START_REF] Kainthola | Optimization of methane production during anaerobic codigestion of rice straw and hydrilla verticillata using response surface methodology[END_REF][START_REF] Mortezaei | High-rate anaerobic digestion of yogurt wastewater in a hybrid EGSB and fixed-bed reactor: Optimizing through response surface methodology[END_REF] on different reactors or other parameters [START_REF] Jiménez | Methanogenic activity optimization using the response surface methodology, during the anaerobic co-digestion of agriculture and industrial wastes. Microbial community diversity[END_REF][START_REF] Kumar | Anaerobic digestion of Azolla pinnata biomass grown in integrated industrial effluent for enhanced biogas production and COD reduction: Optimization and kinetics studies[END_REF][START_REF] Lee | Optimization of bioaugmentation of the anaerobic digestion of Axonopus compressus cowgrass for the production of biomethane[END_REF]. The mixture designs (MD) work in the same way but consider compositions respecting the mixture properties. The main goal of MD in the AD process is to study the substrate composition. Some papers use this last tool in AD process [START_REF] Kashi | Application of a mixture design to identify the effects of substrates ratios and interactions on anaerobic co-digestion of municipal sludge, grease trap waste, and meat processing waste[END_REF][START_REF] Wang | Effects of total ammonia nitrogen concentration on solid-state anaerobic digestion of corn stover[END_REF][START_REF] Bassard | Méthodologie de prédiction et d'optimisation du potentiel méthane de mélanges complexes en co-digestion[END_REF][START_REF] Rakotoniaina | Co-méthanisation des déchets fermiers et alimentaires : expérimentation et modélisation[END_REF][START_REF] Rao | Experimental design of mixture for the anaerobic co-digestion of sewage sludge[END_REF]. These RSM studies are very interesting and allow deepening AD knowledge. Although a parameter optimization is only valuable for a specific substrate composition and a composition optimization is only valuable for a specific set of parameters. Some adaptations of factorial design are done in the literature [START_REF] Wang | Effects of total ammonia nitrogen concentration on solid-state anaerobic digestion of corn stover[END_REF] to consider mixture composition and operational parameters at the same time in a SRD but there is no study about a mix design between these two solutions. Moreover, these methods require a compromise between minimizing the number of experiments and to obtain results significance. To determine experimental repeatability, several reactors must be monitored under the same conditions and the results must be processed by an analysis of variance (ANOVA). The number of runs depends on the type of design used and the number of parameters studied. No information is available in the literature concerning the number of experiments reduction by alternative methods as numerical methods. The bootstrapping is a method which were invented by Bradley Efron [START_REF] Efron | Bootstrap Methods: Another Look at the Jackknife[END_REF][START_REF] Efron | Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy[END_REF] and involves determining the significance of the model coefficients and response by resampling residues and redefine the model coefficients from a large number of iterations. A parametric bootstrapping method had already been used to successfully estimate the distribution of the anaerobic digestion kinetic parameter estimators [START_REF] Ruiz | Anaerobic digestion process parameter identification and marginal confidence intervals by multivariate steady state analysis and bootstrap[END_REF] but there is still no RSM applications.

The novelty of this work is to combine a new surface response methodology for SS-AD process, which is a mix design combining the response surface design and the mixture design with a numerical tool to reduce the number of experiments by iterative resampling: the bootstrapping. This study has been conducted on two substrates and two key parameters of the SS-AD to maintain time and cost constraints on batch reactors. The substrates used were cattle manure and damp grass. In fact, grass is a substrate with risk of inhibition by acidosis as cattle manure may offset this effect. The chosen parameters have also been selected for their impact on the acidosis and these parameters are immersion rate and recirculation frequency.

The chosen SRD is a full-factorial design and the chosen MD is a simplex-centroid design.

Materials and methods

Characteristics of substrates and inoculum used

Cattle manure (CM) was sampled from the farm of the UniLaSalle Polytechnic Institute (Beauvais, France). CM has been sampled for each set of experiments to maintain its raw properties and avoid any preliminary treatment. The liquid part of the manure or liquid bovin manure (LBM) was used as inoculum to bring the microbial consortium. Damp grass (DG) was mowed from household gardens in Les Clayes-sous-Bois (France) in September 2019 and has been aliquoted and frozen to be used at each set of experiments to avoid any physicochemical differences with DG used. Two sets of experiments were conducted in October 2019 and January 2020. The physicochemical analyses were made on CM and DG for each data set.

For all experiments, all analyses were carried out in triplicate. The total solid content (TS) and the volatile solid (VS) of the inoculum, CM and DG were determined by a drying at 105°C for 24h and a combustion at 550°C for 2h [START_REF] Apha | Standard Methods for the Examination of Water and Wastewater[END_REF]. The pH of the inoculum has been determined using a pH meter (Mettler Toledo, Switzerland). The total volatile fatty acid content (FOS) and the buffer capacity (TAC) were determined by two titration using sulfuric acid. The first acidification at pH = 5.0 provides the TAC and the second one at pH = 4.4 provides the FOS. An automatic titrator (Mettler Toledo, Switzerland) has been used to realize these analyses. These tests were done at the beginning of each set of experiments and the results are presented in Table 1. The FOS/TAC value is an indicator to recognize stable AD operation or acidosis risks, where an excessive accumulation of acids leads to AD inhibition [START_REF] Mcghee | A Method for Approximation of the Volatile Acid Concentrations in Anaerobic Digesters[END_REF][START_REF] Nordmann | Die Überwachung der Schlammfaulung. KA-Informationen fur das Betriebspersonal[END_REF][START_REF] Voß | FOS/TAC-Deduction, Methods, Application and Significance, InternationaleWissenschaftskonferenz. Biogas Science 2009 -Science meets Practice[END_REF].

Experimental set-up

For this study, one of the fixed objectives was to denature substrates the less possible. This means that no grinding is done on substrates and the CM is not frozen but sampled and analyzed for each experiment. This choice is done to be as representative as possible of the real experimental conditions of an industrial digester. Thus, used reactors must respect space and cost constraints but it must be sufficiently large for samples studied. Moreover, constraints must be respected: the experimental parameters tested must be adjustable.

Fifteen leach bed reactors (LBR) made of Plexiglas with a total volume of 2.65 L were used enabling a compromise between lab scale and substrate representativeness. These reactors were divided into two parts: the upper part containing the solid phase and the bottom part holding the liquid phase. These parts were separated by a perforated grid with a pore size of 5 mm diameter. The grid height was adjustable along a central axis of 10 mm diameter by a manual tightening ring screwed, allowing imposing the immersion rate. A manual peristaltic pump was used on each LBR at constant flow speed range and allowed to adjust the recirculation frequency depending on the experiment. Thus, the liquid phase was spread out across the top of the solid phase in the LBR upper part and percolated to drop back into the bottom part. According to the experiment, recirculation frequency was between once a day and once a week. The top of the reactor was directly connected with manual biogas counters.

These bottles were graduated and operated according to the Mariotte's law through volume displacement, allowing to measure the cumulative biogas production each day. A temperature reading allowed to convert this volume into a normalized quantity. Biogas composition was analyzed five times a week by a gas chromatography (MicroGC, SRA Agilent 3000A) to determine the biogas composition on every reactor (weekends excepted) to measure methane, carbon dioxide, nitrogen and hydrogen production rates. The system is represented At the beginning of the experiment, all the introduced inoculum was recirculated once. For every other recirculation, the spread volume was 0.62 L, representing arbitrarily 2:3 of the total liquid volume. The spreading period was 1 min, because 0.62 L.min -1 is the minimal flow to insure a good liquid distribution over the whole surface of the solid matter. Every reactor was filled with the same volatile solid content. The chosen quantity of substrates inserted in each reactor contained the same volatile solid content than 250 g of cattle manure for the first and second run and 300 g of cattle manure for the third run. This was done to have a sufficient percolation. Previous investigations on the LBR permitted to determine this reference (data not shown). DG was introduced on CM, imposing a two-stored solid matter. This successive stratification was chosen to reduce the contact between grass and liquid phase and thus acidosis risks [START_REF] André | Dry anaerobic codigestion of roadside grass and cattle manure at a 60 L batch pilot scale[END_REF]. At the end of each run of experiments, mass balances were calculated on each reactor.

The ideal gas law was used to obtain the biogas mass flow expression. Then biogas flow was normalized and integrated throughout the experiment to obtain the total mass produced (g).

Equations ( 1) and (2) describe this method.

PQ(t)M(t) = m(t)RT(t)

(1)

dm = P R M(t)Q(t) T(t) dt (2)

Mix Response Surface Methodology

A mix design was chosen to optimize the response variable. This RSM was composed by coupling a response surface design and a mixture design. The first hypothesis made was the proportionality of the responses on the mixture composition. Concerning MD, a simplex-centroid design was used to determine the effect of mixture composition of the studied response. For this study, the response was the total methane yield YCH4 (NL.kgVS -1 ). The mixture factors γi were quoted as the ratio between the volatile solid content of the component i and the total volatile solid content (% VSi.VS - 1 ). This unit ensures to obtain comparable results between experimentations and not to be dependent on experimental conditions as component density or moisture. The final equation ( 3) is the model used.

Y = α , + α , δ + α , δ + α , δ δ γ + α , + α , δ + α , δ + α , δ δ γ + α , + α , δ + α , δ + α , δ δ γ γ (3)
This design permits a better flexibility than classical designs and considers the interactions between SSAD process parameters variations and composition variations on the methane yield. Process factor values must be normalized between -1 and +1 to compare the effects of process factors with each other.

Each run is achieved with 15 LBR experiments. Five replications of the center point were done to estimate the experimental error and confirm the model significance. They are included into the first run to compare the bootstrapping method with the statistical method. For the second run, only the bootstrapping will be used to determine the confidence interval of methane yield. All the experiments are summarized in the Table 2.

The statistical analysis was established by a Fisher test for the model with a 95 % confidence level and a Student test for the coefficients value with a 90 % confidence level. The analysis was done with the data analysis tool from Excel, allowing to determine the coefficients value and confidence intervals associated. The adequacy of the model was checked by adjusted regression coefficients (Radj 2 ). The regression models were determined by analysis of variance (ANOVA) [START_REF] Miller | The Jackknife--A Review[END_REF][START_REF] O'connor | Introduction to Statistical Quality Control[END_REF] and a regressor selection was done [START_REF] Lind | Regressor selection with the analysis of variance method[END_REF]. After this selection, only 4 to 5 parameters among 12 were maintained for each run.

This observation resulted from the high confidence level established. Only 14 experiments were used to realize the analysis on each run because some LBR presented recirculation failures and values were rejected. These LBR were the experiments R15 and R19 for the first run and R13 for the second one. Finally, the assumptions dues to ANOVA method were proved by plotting a residual plot and a residual normality plot.

Repeatability analysis

Residual error includes model adjustment error and experimental error. To identify each error and verify the model significance, sum squares and degrees of freedom were calculated.

Dedicated experiments R16 to R20 were launched during the first run of experiments. These reactors were loaded with the same substrate's mixture and in the same operating conditions (Table 2). The experimental sum square was obtained by following the final methane yield obtained ! for these k reactors and was compared to the mean ¯ of these 5 experiments. This is how experimental variability was determined. Once the model is fitted with experimental points (R1 to R15, R13 excluded), the difference between experimental methane yield #! and predicted methane yield ^# was done by the residual sum squares. The difference between these two calculations allowed determining the adjustment error. The total number of experiments % &'( was 18 because two experiments were deleted before (R13 and R19) and P is the standardized regressor number, which value was 5 after regressor selection. An F-value is determined for the model significance and allow creating the confidence interval for each value included in the field of study. In numerical statistics, bootstrapping is a resampling method that operates by random sampling with replacement. The main idea is to model the inference of samples by resampling data and performing conclusions about a sample from resampled results. In inferential statistical analysis, the real population is unknown but using bootstrapping, the population is the sample and is known. The original data set is resampled and create a new sample from the original. The process is repeated during a large number of iterations N and each resampled result provides an estimate of the real population. This method was published by [START_REF] Efron | Bootstrap Methods: Another Look at the Jackknife[END_REF] and was inspired by the jackknife method [START_REF] Miller | The Jackknife--A Review[END_REF]. It is a very practical tool concerning the determination of samples accuracy and allows obtaining confidence intervals and estimating properties. The main advantage of this tool is the implementation simplicity to determine complex parameters and also helps to check the results stability. This method is more accurate than the standard confidence intervals obtained using classic assumptions of inferential statistics and allows to reduce the number of experiments. By contrast, the resampled results depend on the sample representativeness.

Concerning this work, bootstrapping is used for building new samples to offset the limited number of experiments and to assess the significance of experimental results.

Bootstrapping was used on two major points of this study: the confidence intervals of model coefficients and the confidence interval of predicted methane yield. The approach used was the residual resampling. For the first point, the supposed model was fitted with experimental data and fitted parameters and residues were retained. Then, randomly resampled residues were added to the fitted response in order to create a new sample. The model was fitted again with experimental data including the resampled results and all samples and new samples were retained. These last two steps were repeated in a large number of times to approach the empiric probability distribution. For the second point, once the model was fitted with experimental data, the sample residues were resampled over the full field of study. In addition to this attention point, the operating method was the same. The residues were studentized to consider the standard deviation difference between residues. The complete method is sketched Fig 2 . Every calculation and plot were programmed with Scilab 6.0.0.

Results and discussion

Batch reactor performance

For the first run of experiments with the damp grass composition lower than 45%VS, the immersion rate and the recirculation frequency became higher as well as the methane yield.

The difference between immersion rates was clearly visible in the LBR when the immersion rate was high, the methane yield was higher. However, the recirculation frequency induced different comportments depending on the immersion rate and the mixture composition. For the second run, when the damp grass composition was higher than 50%VS, two main optimal methane yield zones appeared: when the immersion rate was low and the recirculation frequency was high and vice versa. Moreover, when the damp grass composition was higher than 50%VS, it was very difficult to construe the biogas flow and methane curve shapes. This is a typical example justifying the use of response surface methodology. Three experiments were removed from these two runs because there was some experimental bias like recirculation blockages or sealing problems: R13 for each run of experiments and R19. All the characteristics of the liquid phase and the solid phase are summarized in the Table given in supplementary material.

For each run of experiments, mass balances were calculated on each reactor. Biogas flow has been normalized and included in the mass balance to obtain the total mass produced (g). The minimum and maximum differences are 0.20 % and 8.66 %. LBR are therefore representing mass balance between 91.34 % and 99.80 %, attesting the absence of biogas leakage or reactor failures. This difference may be explained by the mass losses during the reactors emptying and mass weighing. Depending on experimental conditions, the VS removal ranged from 63% to 87% for the first run and from 62.9% to 83.5% for the second run, attesting a great biodegradation of substrates by the microbial consortium. These results are illustrated in Fig 3.

This conclusion is echoed by the methane yield observed. These consumptions represent between 51% and 95% of the BMP for the first run and between 20% and 57% for the second run. These results show that the experimental conditions are not optimal, probably due to the substrates accessibility. Generally, the experiments with a low recirculation frequency and with more damp grass produce less biogas. Some experimental parameters could explain this phenomenon as preferential path and dead zones during percolation of the liquid phase.

Moreover, the pH value is considerably higher than the beginning of experiments, between 7.79 and 8.05, indicating a good balance between produced and consumed volatile fatty acids (VFA). For the first run, the FOS/TAC ratio is between 0.098 and 0.128 and between 0.112 and 0.296 for the second run. This result suggests an impact of damp grass on FOS concentration and buffer capacity.

Statistical analysis of the results

Table 3 gives the final model of methane yield coefficients after regressors selection (after removing all nonsignificant regressors, with a p-value > 0.1). Two models were determined according to the run of the experiment, therefore according to experimental conditions. This model presents an adjusted R² of 88 ± 1 %, which attesting a great accuracy to describe the reality. The residual variability could be explained by the uncertainty of measurement and by the impact of external parameters variations which were not considered for this study. But these results still remain good results in terms of accuracy. The model p-value is very low, proving the model significance.

Table 4 provides the regressors value. Each run of experiments presents different models and thus different regressors according to the experimental conditions. In fact, the significant coefficients are not the same depending on the inhibition phenomenon, the substrate mixture, the inoculum/substrate ratio and the recirculation frequency. A positive sign of the coefficient means that the coefficient has a favorable impact on the methane yield. Therefore, the cattle manure γ1 and damp grass γ2 presence are beneficial to the methane production. The immersion δ1 and the recirculation frequency δ2 are beneficial to the methane yield when associated with the substrates mixture, according to the interaction results δ1γ1γ2 and δ2γ1γ2.

In contrast, when the damp grass composition is higher (during run 2), the interaction coefficient between substrates γ1γ2 is negative. This means that a high composition rate of damp grass induced a negative impact on the methane yield, probably due to inhibition phenomenon. Finally, an interaction coefficient between process parameters and cattle manure composition δ1 δ2 γ1 is negative in the first run of experiments. This could be explained by the substrate's stratification, inducting that cattle manure is easier to be submerged than damp grass. As the damp grass has a higher methanogenic power, the process parameters may not improve the methane yield of a mixture with a low damp grass composition. The residues of each model were plotted and all the postulates may be graphically verified. There is still a slight difference of residual variability between the experimental values and models and a few points which present fractiles slightly apart the normality line. This is why all the residues were normalized by dividing residues by the residual standard deviation. This point will also be considered when the bootstrapping is used.

Optimization of the methane yield

The regression model obtained and the coefficients value are attained as illustrated in equations ( 4) to ( 7). These equations were numerically solved in order to find the optimum coefficient values to maximize the methane yield. The maximal production value obtained for each run is respectively 156.19 NL.kgVS -1 and 143.45 NL.kgVS -1 . This difference is due to the inoculum properties and the differences between recirculation frequencies. Thus, this value could not be compared. Therefore, the methane yield comportment can be analyzed and compared. These conclusions are consistent with the result found in the literature [START_REF] André | Dry anaerobic codigestion of roadside grass and cattle manure at a 60 L batch pilot scale[END_REF]Feng et al., 2017) considering the inoculum, cattle manure and damp grass TS, VS and composition differences. The response surface obtained for the first run is illustrated in Fig 4 . The predicted methane yield depends on the process parameters and mixture parameters. In this way, when the cattle manure composition increase (figures from the top to the bottom), the predicted methane yield observed depending on the immersion rate and the recirculation frequency.

Y ,)*+ = (α , + α , δ δ )γ + α , γ + (α , δ + α , δ )γ γ (4) Y ,)*+ = α , γ + α , γ + α , γ γ + α , δ γ γ ( 
These observations indicate a rise of the methane yield when the damp grass and process parameters rise until damp grass composition reaches 45 %VS. If extrapolation is done, beyond 70 % VS of damp grass, the predicted methane yield curve has a significantly different behavior.

This probably represents the impact of contact period between liquid phase and substrates.

Concerning the second run of experiments, the immersion rate had not been effectively brought into focus. predicted methane yield is not depending on this parameter. In this way, methane yield can be based only on damp grass composition and recirculation frequency as illustrated in Fig 5 . A red area means a higher methane yield and a blue area means a lower methane yield. The methane yield surfaces are on the right and methane yield isovalues are represented on the left. The predicted methane yield curve has a different behavior than the first experiment. This is probably because the high damp grass percentage induced inhibitions, potentially acidosis, that were not present during the first set of experiments and induce a different behavior. This difference of behaviors highlights that extrapolation presents strong uncertainties for RSM methods and should not be used for SS-AD with risks of inhibitions.

In these different experimental conditions, the same conclusion is done: in the mixture considered, when the damp grass composition is upper than 70 %VS, inhibitions by acidosis could appear. In this case, immersion rate and recirculation frequency can limit this phenomenon. This study highlighted that two process behaviors permit controlling acidosis risks: high immersion rates and low recirculation frequency, or low immersion rates and high recirculation frequency. This could be explained by an equilibrium between foster the contact period between microbial consortium and the higher biodegradable DG substrate and limiting the acidosis risks.

Repeatability study

Once the predicted methane yield was optimized and the response surface modeled, it is very important to determine the prediction accuracy to know how these experiments are repeatable. For this, two main tools were used: the classical analysis of variance and the bootstrapping. ANOVA needs to respect some postulates done on the model residues: variance is equal for all residues, each residue is independent, normally distributed, and the statistical average of residues is zero. The postulate acceptation causes low bias and need a sufficient number of experiments to be correctly verified. The confidence intervals were determined and the bootstrapping tool were applied to the experimental results concerning two main points:

the confidence intervals on the model coefficients determination and the confidence intervals on the predicted methane produced.

Concerning the model coefficients, the bootstrapping was used 200 times with 2000 iterations to approach the real population. This represents 400,000 confidence interval simulations of each coefficient or between 1,600,000 and 2,000,000 calculations. The results are shown Table 5. Beyond 100 uses of the bootstrapping tool, the simulations stay in the same domain. When the simulations are over, the maximum upper confidence interval and the minimum lower confidence interval are retained and compared with the ANOVA confidence intervals. The results obtained provide the same confidence intervals with a maximal error of 2.9 %. This Fig 5 . provides a response surface shape close to the studies already present in the literature [START_REF] Degueurce | Dynamic effect of leachate recirculation on batch mode solid state anaerobic digestion: Influence of recirculated volume, leachate to substrate ratio and recirculation periodicity[END_REF] and highlights the significance of recirculation frequency on the methane yield. Moreover, for each experiment, bootstrapping provides larger confidence intervals. This difference is probably due to the absence of study hypotheses, confirming its use. The larger intervals allow a reduced risk of experimental errors and adjustment errors.

Conclusions

The results suggested that interactions between process parameters and mixture parameters are significant and plays an important role in methane production, which validate the usefulness of mix response designs. The repeatability could be studied with numerical tools as bootstrapping for greater accuracy and minimizing the number of experiments. This work proposes an optimal method in terms of time and accuracy to realize response surface studies.

However, it is only a first step and it is possible to go far beyond these results, notably using more complex mixtures, more process parameters and different response designs. 
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  error could be explained by the absence of postulates and the residual variability awareness by the studentized residues. In this study, residue postulates were verified and enough experimental data were used to obtain a robust analysis of variance. But for other design experimentations where there is a lack of samples, bootstrapping could be a solution to determine the repeatability of the model and may be useful to decrease the necessary number of experiments without losing accuracy.The same study has been done on the confidence intervals of predicted methane yield. The confidence intervals on the first run have been determined for a damp grass composition between 0.15 and 0.45. The extrapolation has been done for a damp grass composition between 0.45 and 0.85. The same work has been done for the second run of experiments for a damp grass composition between 0.15 and 0.85. The confidence intervals provided by the ANOVA method and by the bootstrapping method are still comparable. Results are illustrated in Fig6for the second run. The green surface represents the predicted methane yield. The blue surface represents the ANOVA confidence intervals and the red surfaces represent the bootstrapping confidence intervals. It can be noticed that bootstrapping provides higher confidence intervals than ANOVA. It could be explained by the consideration of residue variability. Bootstrapping is a method that analyzes and reproduces a global error between experimental points and predicted points, containing experimental errors and adjustment errors. This is why experimental repetitions are not necessary to determine confidence intervals. The predicted methane surface has a very simple shape, due to the predicted methane yield non-dependency with the recirculation frequency. The ANOVA confidence intervals are represented in blue and bootstrapping intervals are represented in red. This is why the response surface had also been studied depending on the damp grass composition and the recirculation frequency.
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Table 1

 1 Chemical characteristics of inoculum and initial substrates used

			TS	VS	pH	FOS	TAC	BMP
		Unit	%	%TS	-	mg.L -1	mg.L -1	NL.kgVS -1
		Standard	± 0.03	± 0.01	± 0.01	± 5.5	± 62	-
		error						
	Run 1	Initial CM	22.0	87.7	7.51	-	-	142.92 ± 12.42
		Initial DG	42.2	71.7	5.81	-	-	240.39 ± 8.95
		Initial LM	1.61	62.7	7.92	96.81	3460	10.42 ± 0.01
	Run 2	Initial CM	18.5	87.6	7.46	-	-	142.68 ± 16.93
		Initial DG	42.2	71.7	5.82	-	-	240.39 ± 8.95
		Initial LM	1.80	46.3	8.77	1021.21	7081	10.42 ± 0.01

Table 2

 2 Mix design of experiment used for runs 1 & 2

	Experiment	Standardized	Compositions Run 1 Compositions Run 2 Methane yield	Methane yield
		factor values					Run 1	Run 2
		δ1	δ2	γ1	γ2	γ1	γ2	(NL.kgVS -1 )	(NL.kgVS -1 )
	R1	+1	-1	0.55	0.45	0.15	0.85	144.77	120.51
	R2	+1	-1	0.70	0.30	0.5	0.5	154.86	85.41
	R3	+1	-1	0.85	0.15	0.85	0.15	150.11	97.51
	R4	+1	+1	0.55	0.45	0.15	0.85	148.28	126.01
	R5	+1	+1	0.70	0.30	0.5	0.5	152.97	124.04
	R6	+1	+1	0.85	0.15	0.85	0.15	143.42	130.04
	R7	-1	-1	0.55	0.45	0.15	0.85	95.72	119.80
	R8	-1	-1	0.70	0.30	0.5	0.5	121.27	47.63
	R9	-1	-1	0.85	0.15	0.85	0.15	123.72	109.45
	R10	-1	+1	0.55	0.45	0.15	0.85	129.99	111.42
	R11	-1	+1	0.70	0.30	0.5	0.5	133.70	123.07
	R12	-1	+1	0.85	0.15	0.85	0.15	144.56	88.00
	R13	0	0	0.55	0.45	0.15	0.85	158.91	137.63
	R14	0	0	0.70	0.30	0.5	0.5	147.8	87.19
	R15	0	0	0.85	0.15	0.85	0.15	140.98	123.03
	R16	0	0	0.70	0.30	-	-	151.93	-
	R17	0	0	0.70	0.30	-	-	142.52	-
	R18	0	0	0.70	0.30	-	-	136.70	-
	R19	0	0	0.70	0.30	-	-	124.00	-
	R20	0	0	0.70	0.30	-	-	138.66	-

Table 3

 3 Analysis of variance on the final model (90 % confidence level)

	Regression	DF	Sum of	Mean	F-value	p-value
			squares	squares		
	Run 1					
	Model	5	2.70.10 5	5.39.10 4	1421.22	1.44.10 -11
	Residual	9	3.41.10 2	3.79.10 1	-	-
	Total	14	2.70.10 5	-	-	-
	R 2	-	0.999	-	-	-
	Radj 2	-	0.887	-	-	-
	Standard error	-	6.16	-	-	-
	Run 2					
	Model	4	1.63.10 5	4.08.10 4	134.29	5.13.10 -8
	Residual	10	3.04.10 3	3.04.10 2	-	-
	Total	14	1.66.10 5	-	-	-
	R 2	-	0.981	-	-	-
	Radj 2	-	0.876	-	-	-
	Standard error	-	17.42	-	-	-

Table 4

 4 Analysis of variance on the regressors (90 % confidence level)

	Regressor	Coefficient	Standard	p-value	Lower	Upper
		value	error		boundary	boundary
	Run 1					
	γ1	147.95	4.90	7.35.10 -11	140.06	155.84
	γ2	113.59	9.91	1.13.10 -6	95.43	131.75
	δ1 δ2 γ1	-8.31	2.50	8.95.10 -3	-12.89	-3.72
	δ1 γ1 γ2	63.69	8.83	5.02.10 -5	47.50	79.88
	δ2 γ1 γ2	27.48	8.83	1.25.10 -2	11.29	43.67
	Run 2					
	γ1	129.41	15.99	1.06.10 -5	100.43	158.39
	γ2	143.45	17.32	8.67.10 -6	112.07	174.84
	γ1 γ2	-171.86	79.52	5.60.10 -2	-315.98	-27.73
	δ2 γ1 γ2	77.79	28.27	2.04.10 -2	26.56	129.02

Table 5

 5 Analysis of variance and bootstrapping on the coefficients confidence intervals (90 % confidence level)

	Regressor	Coefficien	Lower	Upper	Lower	Upper	Relative error (%)
		t value	ANOVA	ANOVA	Bootstrapping	Bootstrapping	
	Run 1						
	γ1	147.95	140.06	155.84	140.03	155.51	1.91
	γ2	113.59	95.43	131.75	95.15	131.19	0.76
	δ1 δ2 γ1	-8.31	-12.89	-3.72	-12.76	-3.85	2.90
	δ1 γ1 γ2	63.69	47.50	79.88	47.76	79.91	0.74
	δ2 γ1 γ2	27.48	11.29	43.67	11.43	43.46	1.07
	Run 2						
	γ1	129.41	100.43	158.39	98.13	157.26	2.01
	γ2	143.45	112.07	174.84	110.31	173.38	0.47
	γ1 γ2	-171.86	-315.98	-27.73	-323.06	-30.90	1.36
	δ2 γ1 γ2	77.79	26.56	129.02	25.24	130.54	2.77
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