N

N

Coupling solvers with model transformations to generate
explorable model sets
Théo Le Calvar, Fabien Chhel, Frédéric Jouault, Frédéric Saubion

» To cite this version:

Théo Le Calvar, Fabien Chhel, Frédéric Jouault, Frédéric Saubion. Coupling solvers with model
transformations to generate explorable model sets. Software and Systems Modeling, 2021, 20 (5),
pp.1633-1652. 10.1007/s10270-021-00867-0 . hal-03594336

HAL Id: hal-03594336
https://hal.science/hal-03594336

Submitted on 9 Jun 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03594336
https://hal.archives-ouvertes.fr

Software & Systems Modeling manuscript No.
(will be inserted by the editor)

Coupling Solvers with Model

Transformations to Generate
Explorable Model Sets

Théo Le Calvar - Fabien Chhel -
Frédéric Jouault - Frédéric Saubion

Received: 23 April 2020 / Revised: 8 January 2021 / Accepted: 26 January 2021

This is a post-peer-review, pre-copyedit version of an article published in Soft-
ware and Systems Modeling. The final authenticated version is available online at:
https://doi.org/10.1007/510270-021-00867-0

Abstract Model transformation is an effective technique to produce target
models from source models. Most transformation approaches focus on gen-
erating a single target model from a given source model. However there are
situations where a collection of possible target models is preferred over a
single one. Such situations arise when some choices cannot be encoded in the
transformation. Then, search techniques can be used to help find a target
model having specific properties.

In this paper, we present an approach that combines model transforma-
tion and constraint programming to generate explorable sets of models. We
extend previous work by adding support for multiple solvers, as well as ex-
tending ATL, a declarative transformation language used to write such trans-
formations. We evaluate our approach and language on a task scheduling case
study including both scheduling constraints, and schedule visualization.

Théo Le Calvar
Univ Angers, LERIA, SFR MATHSTIC, F-49000 Angers, France
DIRO, Université de Montréal

E-mail: firstname.lastname@univ-angers.fr

Frédéric Saubion
Univ Angers, LERIA, SFR MATHSTIC, F-49000 Angers, France
E-mail: firstname.lastname@univ-angers.fr

Fabien Chhel - Frédéric Jouault
ERIS Team, ESEO Group, Angers, France
E-mail: firstname.lastname@eseo.{r

https://doi.org/10.1007/s10270-021-00867-0

2 Théo Le Calvar et al.

Keywords Model Transformation, Constraint Solving, Model Set Explo-
ration

1 Introduction

Developers have to make many choices when they write a model transforma-
tion. Actually, they generally have to make all necessary choices to create
specific target models. The reason is that classical model transformation
techniques typically specify target models extensionally, by assigning specific
values to all their elements’ properties. They generally do not support inten-
sional specifications, which define sets of possible target models according to
constraints that must be satisfied. However, in some cases, all choices cannot
be encoded into the transformation. For instance, in decision support sys-
tems, such as product line configuration tools, users need to explore the set
of available solutions. Scheduling problems [6] where resources (e.g., teach-
ers) must be assigned non-conflicting time slots in specific rooms constitute
another example of such cases. Automatically solving such problems is hard,
notably because this means that all constraints must be precisely expressed.
A tool allowing users to explore the solution space would make it possible to
consider a human in the loop.

Let us mention two additional examples closer to the realm of model-
driven engineering :

— The first one is forward engineering, in which many different implemen-
tations of a design model generally exist. Code generation transformation
chains often have to integrate design choices. However they generally do
not let developers explore the solution space.

— The second example is model visualization: creating diagrams from mod-
els. A model visualizer may be implemented as a transformation from the
source model into a view model consisting of graphical shapes. Neverthe-
less, computing a suitable layout is hard. Although an automatic tool may
provide a useful starting point, users often have to improve diagram layout
manually. In such cases, transformations implementing model visualiza-
tion should not compute the whole target model, including full position of
every shape. Instead, transformations should specify which diagrams are
valid with respect to the source model, and let the users explore the space
of possible layouts.

Contributions The approach presented in this paper consists in combining
constraint programming techniques [28,2] with model transformation to ad-
dress such applications. This combination is ensured by a new mechanism

Title Suppressed Due to Excessive Length 3

called bridge variable. From a source model, we use a model transformation to
create a partial target model in which some properties are not assigned. This
transformation also generates constraints that apply to the target model.
Instead of specifying a full target model, we can thus specify part of the
target model plus constraints on some of its model element properties. Users
can then be presented with a target model satisfying these constraints. From
there they can explore the set of valid target models. A user may change the
target model in a breaking way, making it no longer valid for the given source
model. In this case, we use a constraint solver to repair the target model in
such a way that it is as close as possible to what the user specified, while
still remaining a valid target model. This paper is an extended version of our
initial preliminary paper [26]. The main new contribution is an extension of
the approach to multiple solvers, each solver being in charge of a specific part
of the problem. This makes it possible to leverage solvers with different capa-
bilities. This also implied a change of motivating example to better illustrate
this new feature. Another significant change is that the approach has now
been integrated in the ATL declarative model transformation language [21],
whereas [26] was using an embedded DSL (Domain Specific Language) inside
of a general purpose language.

We evaluate our approach by adapting it to a task scheduling case study
involving two aspects: schedule validity, and schedule visualization. Our ap-
proach allows us to specify these two problems as model transformation plus
constraint programming, each problem targeting a different solver. Users can
see and modify a diagram representing the computed schedule (i.e., a solu-
tion of the underlying combinatorial problem). Constraint solvers oversee the
modifications and can repair the schedule if breaking changes are introduced
by users.

Outline of the paper The paper is organized as follows. Section 2 presents
other approaches related to ours. The notion of model set exploration is pre-
sented in Section 3 along with the case study. Section 4 presents our approach
to model set exploration using constraints and how properties of elements of
the model can be used as decision variables of some constraints. A model
transformation based method to build explorable model is proposed in Sec-
tion 5. In Section 6 an implementation of the approach is presented. Then,
the approach is evaluated on the case study in Section 7. Finally, Section 8
outlines possible extensions not explored in this paper, while Section 9 con-
cludes.

4 Théo Le Calvar et al.

2 Related Work

Constraint programming [28,2] has many possible applications in the con-
text of Model-Driven Engineering (MDE). One of these applications is model
generation for testing or verification purposes. The rationale being that gen-
erating conforming models is not too hard, but metamodels alone cannot
necessarily encode all requirements, which are often specified as additional
constraints. Thus it is interesting to generate models that are well-formed
according to these constraints. In [17,16,39,38] constraints are used to gen-
erate and explore a design space. The authors built their approach on top of
the VIATRA2 graph pattern matching mechanism. Constraints are encoded
as graph patterns and a set of construction rules is used to build a model sat-
isfying these constraints. Exploring models conforming to an evolving meta-
model can help find errors. Approaches like [30] use Alloy [18] to generate
such models. In [37], the authors propose an approach to generate explorable
design spaces based on Prolog. Also based on Prolog, [41] presents an ap-
proach to complete partially defined model. In [40], authors present another
approach based on Cartier (which used Alloy) to generate models for model
transformation testing.

These approaches focus on generating models that conform to a meta-
model and a set of constraints, usually for testing purposes. Our approach
also aims at generating models that are valid with respect to a set of con-
straints. However we differ in two main ways. First, these approaches generate
sample models from a metamodel and a set of constraints. Whereas our ap-
proach takes a source model, apply a model transformation on it and adds
constraints on the resulting model to compute properties that cannot be com-
puted by regular model transformation techniques. Second, our approach is
incremental and allows the user to suggests changes on the resulting model
that are then processed by a constraint solver. While other approaches only
focus on using constraints to generate a model and do try to maintain its
correctness when modified.

[35] proposes an extension of QVT-R in order to handle constraints. This
extension enables users to write fully declarative bindings between source
and target models mixing traditional transformation and constraints. The
constraints are used to compute attribute values.

This approach is similar to our approach. Instead of extending QTV-R,
our approach extends ATL, which is another well known declarative trans-
formation language. There are three important differences between their ap-
proach and our approach. First, in [35] the entire transformation and con-
straints are encoded as a constraint problem and thus solved entirely by the
solver, which can greatly limit the scalability of the approach. However, our

Title Suppressed Due to Excessive Length 5

approach uses an hybrid method, part of transformation is executed by a
normal model transformation engine and then a constraint solver is used to
compute constrained part of the target model. This ensures the constraint
problem stays small and manageable. Second, our approach leverages the
incrementality of our transformation engine and thus offers incremental con-
strained transformations. Third, in our approach the user can suggest changes
to apply on the target model which are then considered by the solver.

In [22], an approach is proposed to fully integrate constraint program-
ming into existing MDE workflows. This approach is used in [23] to build
bidirectional transformations. In [12], authors present another approach us-
ing Answer Set Programming to enable bidirectional model transformation.

These works use constraint solver to perform bidirectional model trans-
formation and synchronization between models. This goes beyond the capa-
bilities of our current implementation, which does not support bidirectional
transformation. However we support unidirectional synchronization.

In [13], the authors use Kodkod [42], a solver for relational logic, in or-
der to repair models with minimal changes. A detailed overview of model
reparation approaches is presented in [31]. A recent work [29] presents an
approach based on reinforcement learning to repair models. It uses reinforce-
ment learning to find a good sequence of actions to apply to repair a broken
model. The method relies on the user specifying a quality metric for a given
model.

These works are related to the repairing process that we present in this
paper and show that other approaches such as reinforcement learning can be
used as backends for reparation. These other solving backends have different
capabilities and may be relevant for specific use cases. These approaches
however do not really support user incrementality suggesting changes to the
model.

Constraint programming can also be used to verify the correctness of
model transformations. An approach is proposed in [8] to verify transforma-
tions written in ATL. In [9], one can verify the correctness of UML annotated
class diagrams using CSP. In [1], the authors verify the correctness of model
transformations by representing them in Alloy.

Some of these works are related to our main goal. Using a similar point of
view, our purpose is to define a framework for defining and handling transfor-
mations and constraints to represent explorable sets of possible target models.
Our approach is focused on human interaction with the model. Users actively
explore target model sets by modifying a selected target model, which is then
repaired by constraint solvers when necessary. Moreover, in order to reduce
latency during user interaction, our approach is incremental. Target mod-
els are not only incrementally updated upon source model changes, but the

6 Théo Le Calvar et al.

constraints are also updated in their corresponding solver. Unlike the other
works mentioned above, we do not try to check the validity of the process
or find a suitable transformation. Moreover, unlike other approaches, our
approach tries to reuse existing solvers and create bridges between existing
tools.

3 Model Set Exploration: Definitions and Examples

This section introduces the concept of explorable model set along with a
motivating example: a task scheduling tool. This tool involves two comple-
mentary aspects of model set exploration: 1) exploring possible schedules,
and 2) exploring possible visualizations of the schedules. The presence of
two complementary model set exploration aspects in the motivating example
makes it slightly more complex to understand than a simpler case with only
one such aspect. However, such a situation often arises in concrete contexts,
and constitutes a characteristic of the problems that we want to address. It
is therefore necessary to include both aspects in the example, so as to show
how our approach works. Section 3.1 gives some definitions. Then, the task
scheduling problem is presented in Section 3.2. Finally, diagram visualiza-
tion is introduced in Section 3.3 before being applied to task scheduling in
Section 3.4.

3.1 Definitions

Firstly, let us recall the definition of model space presented in [14]. A model
space is a directed graph M = (M,, M) where M, is a set of nodes called
models and M, is a set of arcs, called deltas or updates, between models.
We call exploration of a model space the application of deltas on models
belonging to M,. The user only sees one model from M, at any given time.
To start exploring, the user makes a change to the model, which corresponds
to following an arc from M 4.

Secondly, only some models in a model space are typically of interest.
To be valid, a model must conform to its metamodel, but this is usually not
enough. There are often rules, also called constraints, that dictate which mod-
els are valid. A valid model therefore needs to both conform to its metamodel
and satisfy this set of rules, which filter out invalid models. For instance, when
drawing diagrams made of simple shapes, a geometric metamodel is not suf-
ficient. There are rules to follow in order to correctly place shapes so that
they form a valid diagram. In order to take correctness of models into ac-
count, we introduce the concept of model set. A model set is a subset My, of

Title Suppressed Due to Excessive Length 7

M, only containing valid models. As defined above, exploring a model space
involves following deltas in M to move from a model in M, to another one.
Exploring a model set follows the same principle but the first and last models
of a sequence of deltas have to be in subset My (i.e., they have to be valid).

Model Space

Model Se

Fig. 1: Exploring some solutions

Finally, a mechanism is needed to complete any sequence of deltas so
that it reaches a valid model. We call this mechanism model repairing. Fig-
ure 1 gives an overview of the situation. The ellipse with the plain outline
represents the whole model space, whereas the one with the dashed outline
represents the model set. Each dot represents a model, and arrows represent
deltas. Dashed arrows represent deltas applied by a user, while plain ones
represent possible ways to repair the model into a valid one. After a user
update, the current model may be in one of two possible states:

1. Valid: the user modified the model and all rules are satisfied (e.g., model e
in Figure 1). Since the model is already valid, no further action is required.

2. Invalid: the user applied a delta that results in a model outside of the
model set (e.g., model b in Figure 1). The model still conforms to its
metamodel but does not satisfy all the associated rules. It is therefore
necessary to repair the model by following a repairing delta (i.e., a plain
arrow on Figure 1). The first possibility, which is always available, is to
block the user change and roll back (e.g., to model a). Other possibilities
are to follow deltas to other valid models (e.g., models ¢ and d).

When repairing models, multiple sequences of deltas leading to valid models
typically exist but only one is chosen. Consequently, model repairing is a kind
of search problem. We call behavior the strategy that is used to select which
sequence will be used to repair models. Useful strategies will typically avoid
systematic rollback, and rather reach a model that is the closest (according
to some definition of closeness) to the model reached by the user.

8 Théo Le Calvar et al.

Project
name: String requisites . requisitedBy
minLoad: int * Requisite
maxLoad: int
periods t source
* asks
Period " * Task 1target
erio isi
number: int name: String [<@> 20U7ce corequisites
.- 1 |tasks - v | Corequisite
/load: int %] cost: int target corequisitedBy
1 *

Fig. 2: Scheduling metamodel

3.2 The Task Scheduling Problem

The previous section introduced the notion of model exploration. This sec-
tion presents a first example application: task scheduling. This is indeed a
basic version of scheduling problems [6]. The overall idea is to assign tasks
to periods so that specific domain constraints are satisfied. This problem no-
tably arises in several software engineering activities, such as when schedul-
ing development effort, or when planning runtime executions. For the sake
of understandability, we simplified this example by removing unnecessary
concepts.

The problem is modeled by the metamodel given in Figure 2. It consists
of a named Project, which contains Periods and named Tasks. Each Task
has a cost, a list requisites of Requisites, and a list corequisites of
Corequisites. The Corequisite and Requisite dependencies both have a
source and target Task. The target Task of a Requisite (resp. Corequisi-
te) must be in a Period that comes after (resp. or be the same as) the
Period of its source. Each Period has a number used to specify the order
in which Periods take place in time: all Periods with a lower number than
the one of a given Period happen before it. Each Period also has a derived
property called load, which corresponds to the sum of the costs of the Tasks it
contains. Each Project has a name, an upper-bound (maxLoad), and a lower-
bound (minLoad) corresponding to minimum and maximum load allowed for
each Period it contains.

While simple, this metamodel is complex enough to make it possible to
introduce interesting constraints. A schedule is an assignment of all Tasks
of a Project to Periods of the said Project. There are many possible as-
signments, of which many are not relevant, such as assigning all Tasks to
the first Period. Constraints can be used to restrict the set of possible as-
signments to the ones that are relevant. For instance, the load of a Period

Title Suppressed Due to Excessive Length 9

should be between the minLoad and maxLoad of its Project. Valid schedules
not only have to conform to their metamodel, but also verify a set of con-
straints specific to this case study. Based on the task scheduling metamodel
we can define several rules that can be used to select valid assignments from
all possible ones:

Rule 1: Appropriate Load. The load of each Period of a Project must
stay between the minLoad and maxLoad of said Project. Or, written in OCL:

context Project inv: self.periods—>forAll(p | p.load >= self.minload &&
p.load <= self.maxLoad)

Rule 2: Precedence of Tasks. All requisites of a Task must be assigned
to earlier Periods. Each corequisite of a Task must be assigned to the same
Period or an earlier one. Or, written as an OCL invariant:

context Task inv:
self.requisites—>forAll(t | self.period.number > t.period.number) &&
self.corequisites—>forAll(t | self.period.number = t.period.number)

The assignment of Tasks to Periods is important. Thus, finding a solution
consists of modifications to the Period-Task relation instead of property
modifications. After an initial schedule is found, alternative solutions can be
explored by following delta arcs. Each time a delta is applied, if the resulting
schedule is invalid, a repair must be computed and applied.

3.3 Diagrams as a Model Set Exploration Problem

In previous section, we have presented an abstract task scheduling problem
as a model exploration problem without connection to any user interface. In
order to be able to fully demonstrate the approach presented in this paper,
we need to complement this problem with another model exploration aspect.
For this purpose, we consider the integration of the task scheduling prob-
lem into a visual scheduling tool. Before looking into the specific details of
task scheduling visualization, the present section gives an overview of how a
diagramming tool can be modeled as a model exploration problem.
Diagrams consist of simple geometric shapes. For the sake of simplicity, we
only consider rectangles, lines, arrows, and texts in this paper. We therefore
consider models conforming to the metamodel given in Figure 3. This is
a simplified view metamodel inspired by JavaFX!. Like the actual JavaFX
API, it contains simple graphical shapes that can be displayed on a canvas.

1 JavaFX is a graphical Java framework, which API documentation can be accessed at
https://docs.oracle.com/javase/8/javafx/api/

https://docs.oracle.com/javase/8/javafx/api/

10

Théo Le Calvar et al.

Rectangle Line Text Arrow
X : double startX : double X ggﬂg:g fromX : double
y : double endX : double 7V\;idth - double fromY : double
width : double startY : double /height.- double toX : double
height : double endY : double text : String toY : double

Fig. 3: Simplified diagram metamodel

Rectangles and Texts have x and y coordinates along with a width and
a height. Each Text additionally has a text attribute, which contains the
String value to be written. Moreover, the width and height properties of
a Text are derived from the contents of its text and additional information
not specified in this simplified metamodel (e.g., specific font, font size). Lines
have coordinates for their starting point (startX, startY) as well as for their
ending point (endX, endY). Finally, Arrows follow a similar pattern to Lines,
with startX (resp. startY) renamed into fromX (resp. fromY), and endX
(resp. endY) renamed into toX (resp. toY). This metamodel is independent
of any specific domain that needs to be represented, and only defines shapes
that may be used to represent domain concepts.

A list of geometric shapes is not enough to specify valid diagrams. A set
of rules is needed to define how shapes can be positioned with respect to
each other. For instance, the shapes in Figure 4 do not form a meaningful
scheduling diagram. Texts should be contained in the rectangles, and each
arrow should connect two rectangles. Although all shapes are present, they
lack a proper positioning for the diagram to be valid.

Period 1 (5.0)

o / \\: 001

Period 2 (6.0) Period 3 (7.0)

Period 1 (5.0) Period 2 (6.0) Period 3 (7.0)

003

002

002

anlegt'arfl'o df:l F(ilgaug::gl conforming - to Fig. 5: Valid diagram example

In order to be valid, a diagram not only needs to conform to its metamodel
of geometric shapes, but it also needs to follow specific rules imposed by its
specific type. These rules are specific to each diagram type, and they are
part of its definition. For instance, we consider the diagram in Figure 5 to
be valid, but not the diagram in Figure 4. Making the set of valid diagrams

Title Suppressed Due to Excessive Length 11

explorable is as simple as letting users move shapes around and then repairing
the visualization when an invalid position is reached.

Because this problem is mostly geometric, we only consider the modifica-
tion of numerical properties (i.e., shape coordinates) of the model among the
many possible interactions. An example would be changing the y coordinate
of a rectangle. This excludes interactions that results in deltas that modify
the structure of the model (e.g., adding or removing elements). Likewise, we
only consider reparations that modify these numerical properties. Several be-
haviors may appear, depending on how the diagram model is repaired. For
instance, in Figure 5, if we allow the user to move the label inside its rectan-
gle, then we also need to define what should happen if the user tries to move
the label outside. The corresponding behavior must specify whether the at-
tempted move should be ignored, or whether the rectangle should move, or
grow in order to keep the text within its bounds.

3.4 Visualization of the Task Scheduling Problem

This section applies the concepts presented in the previous one to the task
scheduling tool. A screenshot of the visual task scheduling tool is given in
Figure 6. We consider a simple planning with 3 Tasks named 001, 002, and
003. Task 003 requires 001 and 002 to be completed before starting. These
Tasks can be assigned to three Periods named P1, P2, and P3. In Figure 5,
001 is assigned to P1, 002 to P2 and 003 to P3.

Section 3.2 presents a list of constraints specifying what a valid assign-
ment of Tasks to Periods is. Once such a valid assignment has been com-
puted, it can be displayed to the user as a diagram. In the above description
of the scheduling diagram, there is no position but only containment infor-
mation (e.g., P1 contains 001). Using this information, it is possible to write
rules to correctly position corresponding shapes. For instance:

Rule 1: Text Placement The top left point of each Text must coincide
with the top left point of its corresponding rectangle.

Rule 2: Containing Period Every Rectangle corresponding to a con-
tained task must remain inside the rectangle corresponding to its Period.

These geometric rules ensure that the diagram remains meaningful whatever
the position of the various shapes. The tool can let users move shapes around.
It can then leverage the rules to repair the model or diagram if a user performs
a move that would break it. For instance, the user may move a Task rectangle
contained in a Period rectangle beyond the boundary of the latter. Then the
tool can either move the Task rectangle to another Period rectangle or forbid

12 Théo Le Calvar et al.

the move. Moving the Task to another Period corresponds to changing the
containing Period of the Task. Each one of these two actions would make
Rule 2 satisfied again.

[Period 1 (5.0) Period 2 (6.0) Period 3 (7.0)

[o02 |«

001]

Fig. 6: Screenshot of the final result

We conclude the presentation of the motivating example, which involves
two model exploration aspects. The search problem corresponding to the
first one, presented in Section 3.2, involves finding valid assignments for a
relation. The second one, which has just been presented, involves finding
valid assignments for numerical properties. Other kinds of search problems
beyond relations and numerical properties can be used in rules but this goes
beyond the scope of this paper.

4 An Approach for Model Set Exploration

As presented in Section 3, we focus our approach on providing to users the
ability to explore sets of models. Such an exploration enables the user to
improve a model by making small changes to it. However, these changes
can sometimes make the model invalid. In this case, the model needs to be
repaired and this can be done by a constraint solver. For instance, let us
consider the following rule applied to a rectangle r: r.width >= 100. There
is an infinite number of valid solutions for this width, as long as it is greater
than 100. In order to make these models explorable we propose an approach
that links properties of the model with decision variables, which are handled
by constraint solvers.

4.1 Overview

Model sets may be arbitrarily large. Therefore, we need a mechanism to de-
fine them intensionally. We propose to use constraint programming and to
add constraints to the model element properties. Constraint programming
includes generally declarative modeling languages that allow the users to
describe problems by means of a constraint satisfaction problem in a declar-
ative fashion instead of implementing a solving process. More formally, a CSP

Title Suppressed Due to Excessive Length 13

(Constraint Satisfaction Problem) is a triple P = (X, D, C') where X is the
set of decision variables, D is the set of the domains of these variables (these
domains may be different for each variable), and C' is the set of constraints.
Given a set of decision variables z; € X and their associated domains of
possible values D; € D, a constraint is a k-ary relation between k variables
in X. A solution of P is an assignment s : X — (J, D; that satisfies all the
constraints.

In our approach, models are extended using constraints. These constraints
express relations over model element properties and act as the rules described
in Section 3. A CSP solver ensures that the models remain consistent and be-
long to the model set. In order to bind model properties to decision variables
we introduce the concept of bridge variable.

4.2 Bridge Variable

A bridge variable binds a property of a model element to a decision variable
of a solver. Each property of every model element used in the constraints cor-
responds to one and only one bridge variable. The same is also true between
bridge variables and decision variables in the solver. The bridge variable keeps
both its decision variable and property synchronized. That is to say, when-
ever one of the two is modified, the bridge variable forwards the change to
the other. Figure 7 details how modifications are forwarded with a solver that
automatically computes a new solution. After the user interacted with the
model and one of its properties has been updated?, the corresponding bridge
variable is notified of the update. This update is forwarded to the constraint
solver, which then updates the current solution based on the new value. How
values are computed by the solver corresponds to the notion of model repair-
ing we presented in Section 3.1. Defining the repair strategy is done through
careful constraints declarations, for instance with constraint priorities. After
this update, the solver notifies each bridge variable that corresponds to a
decision variable that has been changed. The bridge variables then forward
the updates to their corresponding model properties. This automatic solving
behavior may not always be desired (for instance when modifying coupled
variables, such as the = and y coordinates of a point). Considering only one
variable at a time can lead to transitory inconsistencies and trigger a repair
whereas the model would have been valid with all modifications propagated.
Thus this needs to be configurable depending of the situation. Because of the
nature of constraint programming, a user update on one property can lead

2 We consider atomic updates. If the interaction modified several properties then they
are treated as a sequence of updates.

14 Théo Le Calvar et al.

to several other updates. Variables have names based on the names of the
corresponding Task or Period that they represent. Rectangles are named
by appending .r to the element name (e.g., P1.r for P1), Texts are named
by appending .t (e.g., P1.t for P1), and so on for Lines and Arrows. For
instance, in Figure 6, moving the Rectangle corresponding to Task 001 to
the left only updates property 001.r.x but the solver also needs to update
001.t.x to keep the diagram valid.

The bridge variable is somewhat similar to the concept of constraint reifi-
cation that is common in constraint programming [4] but at a different level.
With constraint reification it is possible to handle constraints as Boolean
decisions variables. However, in our approach, bridge variables do not result
from the truth values of the constraints but from properties available outside
of the solver.

Usler Bridge Yarlable

| Suggest update
——

Propagate new value

IR A

Suggest new value

>
>

-

T
1
1
1
1
r
1
1
1
1
1
1
1
!

1
loop / [for each updat?d variable]
X :< Notify of update
1 1
1

_ Update property !

1
1
1
1
1
1
1
|
| Update solution
1
|
1
1
1
1
1
1
1
1
1

Update the view |
,(— 1

Usir Bridge Variable

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
e

Fig. 7: Propagation of change across bridge variable

In some specific cases it is not desirable to assign a decision variable to
a property. Such a case may happen when dealing with read only properties
such as derived properties. For instance, the width property of a Text is
read only: it is derived from the length of its text and the size of the used
font. In other cases, one may simply not want the solver to be allowed to
modify a specific property of a model element. It is thus necessary to prevent
the solver from updating the corresponding decision variable. There are two
main solutions for handling this problem. The first one would be to use a

Title Suppressed Due to Excessive Length 15

decision variable but restrict its domain to a single value. The second one
would be to represent the model element property using a constant in the
solver, rather than as a decision variable. Both solutions work but are not
equivalent. Depending on the solver, one may prefer one to the other.

This simple binding works well for numerical values or more broadly types
of property that are supported by the chosen constraint solvers. However we
express constraints over models and not all property types can be mapped
to supported constraint solver types. One important type of property that is
often not directly supported by solvers is relations (or associations). Many
approaches exist to map relations to numerical values. For instance, it is pos-
sible to give objects unique ids and to use predicates to encode the existence
of a relation between two objects [41]. Another approach is to directly use
graph pattern matching to handle relations [38,16]. In our case we decided
to use an approach similar to [41] but adapted it for CSP solvers where there
are no predicates.

Let us consider a constraint stating that Task 001 is assigned to one of
the three Periods would looks like:

Vi e {1,2,3} 001.period = P, — war;

Z var; =1

1€{1,2,3}

With 001.period being the variable encoding which Period the Task 001
is assigned to, P; being the id of each Period and var; being an intermediate
variable. This uses constraint reification to check if the Task is assigned to a
specific Period. It can be expressed in several different ways, for instance by
using a Boolean variable for each possible relation. This encoding only works
for one-to-one or one-to-many relations, which is the only kind of relation we
considered so far. To handle all kind of relations, an encoding closer to the
one defined in [41] would be necessary.

4.3 Constraints Management

Bridge variables link properties of model elements to decision variables in the
solver. We now need a complete language or metamodel to express constraints
that use these bridge variables. There are many generic constraint languages,
such as Minizinc [34], but they lack features to efficiently represent bridge
variables and integrate into the MDE ecosystem. They are not thus suitable
as pivot languages in our approach. Similar remarks hold for solvers such
as Alloy [18] or Choco [36] that respectively have a dedicated language, and
an API to interact with. To be able to export/express our constraints to

16 Théo Le Calvar et al.

Strength

REQUIRED
STRONG
MEDIUM
WEAK

Expression

expressions

BridgeVariable &

prop: ModelProperty CompositeExpression| |ExpressionGroup

var: SolverVariable i P
isVector : Boolean operatorName : String solver : String

isConstant : Boolean Z}

arguments

Constant

DoubleExp INtExp Constraint

strength : Strength

value : Double value : Integer weight : double

Fig. 8: Metamodel for Constraints

various solvers with different features and expressiveness, we introduce a
pivot constraint metamodel to ease the transformation into specific solver
languages.

Our proposed constraints metamodel is built around the notion of bridge
variable. A simplified version is shown in Figure 8. Because the BridgeVaria-
ble is responsible for maintaining a model element property and its corre-
sponding solver decision variable synchronized, it needs to keep a reference
to both of them. To stay as generic as possible, CompositeExpressions may
have any number of arguments and use a name to identify which opera-
tor is used. Constraints are CompositeExpression with a strength and
a weight. Each operator has a specific number of arguments and semantics
attached to its name. Concrete sets of predicates depend on the application.
For instance, for our case study, there could be geometric predicates like
contains or above.

To be processed by a solver, this intermediate model needs to be trans-
formed into solver-specific constraints. Transforming this pivot model into a
solver-specific language may involve constraint rewriting if the target solver
does not support specific predicates or operators used in the pivot constraints.
For instance, we may rewrite geometric constraints into algebraic ones or en-
code relations with the method described in Section 4.2. Using such a pivot
metamodel adds a layer of abstraction that eases support of new solvers.

Figure 8 also shows that each constraint can have a strength and a weight.
These can be used with solvers that support hierarchical constraints [44,
32]. They can for instance help specify behaviors. Hierarchical constraints

Title Suppressed Due to Excessive Length 17

can easily be emulated using classical constraints and a carefully crafted
objective function. Finally, BridgeVariable has a property isVector that
indicates if the source property is a single value or a collection. We call
VariableVector a BridgeVariable that references a property that is a col-
lection. VariableVector may be used to abstract a set of similar constraints
into a single one. It regroups multiple variables into a single vector, which can

be used as a regular variable. Thus, constraints with VariableVectors can re-
sult in multiple constraints once translated to a specific solver. ExpressionGroups
are used to gather constraints into a single model element. Their use is de-
tailed in Section 6.1.

Having an intermediary metamodel for constraints makes it possible to
define this series of rewrittings as a series of relatively simple model trans-
formations that are applied one after the other. For instance, flattening con-
straints that contain VariableVectors into a list of constraints that only
contain simple variables is one of these transformations. Having these steps
defined as solver agnostic transformations helps reusing them when the same
intermediary transformations are necessary for different solvers. For instance,
all solvers of our current implementation use the flattening step presented
above.

We saw earlier that BridgeVariables are used to monitor changes made
on properties so that these changes can be propagated to a solver. This works
great for solvers that have the following features:

Feature 1: Adding variables and constraints. Suggesting a new value
for a variable corresponds to the addition of a new constraint. It also adds
a new variable used to save the difference between the suggested value and
the actual value.

Feature 2: Removing variables and constraints. After a suggestion has
been posted, it may be necessary to remove constraints that have been added
in order to suggest a new value. Otherwise it would not be possible to undo
suggestions.

Feature 3: Preventing variables from changing too much. Solvers do
not necessary ensure that solving the same problem twice will result in the
same solution, or a close one. This is especially true when the problem itself
is modified. Thus, it may be necessary to specify that some variables are
assigned to values that should stay stable across multiple solving attempts.
This corresponds to the stay constraint in incremental solvers such as Cas-
sowary [3].

Feature 4: Minimizing/maximizing a variable. Once a value has been
suggested the problem is no longer a satisfaction problem rather becomes an

18 Théo Le Calvar et al.

optimization problem. The solver then has to find a solution that minimizes
the distance between all variables and their suggested values.

However, not all solvers present these features. With some solvers it may
be necessary to compute a new solution from scratch every time an update is
posted, which can be costly. Thus it may be preferable to disable auto-solving
and only solve a problem when the user asks for a new solution. However,
this behavior alone is not sufficient.

Without additional information the solver is free to choose any solution,
it does not care about previous ones. Therefore, it is necessary to change the
constraint problem so that the satisfaction problem becomes an optimiza-
tion problem. A system similar to Cassowary can be implemented on top
of solvers that do not have any concept of incrementality. Each time a new
solution is asked, additional constraints are added so that the new solution
stays close to the old one. The idea is that two solutions are close if the
differences between the values of their variables are small. With hierarchical
constraints, it is also possible to specify that some variables are allowed to
change more than others. Finding a new solution that is close to another
one is an optimization problem where the solver tries to minimize the (pos-
sibly weighted) sum of differences between the old and new values. When
implementing such a system on top of solvers that do not support dynamic
addition of removal of constraints, it is necessary to re-serialize the problem
each time a new solution is asked, thus emulating an incremental behavior
on a non incremental solver.

4.4 Solver Collaboration

As mentioned earlier, each solver has its own set of features depending on
its method of resolution. For instance, Cassowary is an incremental solver
built to efficiently solve changing linear constraints on floating point values.
On the other hand, Choco [36] is able to handle non linear constraints over
integers but cannot efficiently handle changing problems. Thus it is inter-
esting to make different solvers collaborate so that each solver can be used
to solve problems it is built for. Also, giving each solver a smaller problem
is beneficial in itself. CSP is an NP-complete problem, thus solving several
smaller problems can be faster than solving a single big one. Making solver
collaborate has been discussed for a long time [5,33], and strategies have
emerged to make this collaboration more efficient.

However, when considering independent problems, these methods are not
necessary. Two problems are said to be independent from each other if they
do not share decision variables, or in our case model element properties. If

Title Suppressed Due to Excessive Length 19

Source Model Space Target Model Space

Classical
Approaches

Problem 1 Problem 2 Approach

Fig. 10: Diagram of the model to

Fig. 9: Problems with shared vari-
model set approach

ables

two problems are independent, then an update on one problem cannot have
any impact on the second problem. In this ideal case, each solver can act on
its problem without any sort of coordination.

In our case study we have two sub-problems. One consists of business
constraints to find a valid schedule, while the other consists of graphical
constraints to properly display said schedule. These two problems are almost
independent. They share only few variables, those that encode which Period
each Task is assigned to. In such a case, a mechanism is needed to ensure
these shared variables are handled correctly.

One simple strategy is to give the right to update shared variables to only
one solver, when this is possible. Then, other solvers can only access these
variables as read-only values (i.e., constants). To work correctly, this strategy
requires that all shared variables between two problems are writable by the
same solver. This mechanism of read-write and read-only variables can be
represented as a directed graph. Variables are the nodes, and edges represent
constraints. An example with two non independent problems is shown in Fig-
ure 9. In this example, variables of problem 1 are accessed without restriction
(plain double arrow). Variables f, g, h in problem 2 are accessed without
restriction whereas variables b and e are accessed as read-only values (sim-
ple dashed arrow). This example works correctly because all arrows between
problems 1 and 2 go in the same direction. In the general case, with more
than two problems, this strategy works as long as there is no cycle between
problems. With this representation it is possible to easily find an order in
which solvers can be executed by using a topological sort. A similar approach
to the one used in [25] could be used to determine better orderings.

Figure 11 shows a variant of Figure 7 adapted to a scenario with two
solvers. Solver 1 has write access to shared variables, thus it is notified of
changes first. Then, the new found solution is propagated to Solver 2 as
read-only values. Solver 2 can then compute a new solution.

20 Théo Le Calvar et al.

Usle-r | Bridge Yarlable | | Solvler 1 | | Solver 2 |

i Suggest update
—

Propagate new value

>
>

Suggest new value
— >

| : Update solution
1
1

1
1
1
1
1
T
1
1
1
1
1
1 i
1

!

!

loop / [for each updated variable]

L
1
1
' _ Notify of update !
1
1
1

1

1 [3
<

1 1

1 1

P '

_ Update property

<

L L L
loop /) [for each update(ll property used in Sol\ller 2]
Propagate new values _' !

> !

T
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
L
]
1
1
1
1
1

1
Update constant value

>
>

| Update solution

-

_ Notify of update

1
1
|
loop /) [for each update# variable] :
1
1
1
1
1

Update property

1

1

1

1

2
<

Update the view |
I%l

User | Bridge Variable | | Solver 1 | | Solver 2 |

Fig. 11: Sequence diagram of interactions with multiple solvers

5 Generation of Explorable Model Sets

In Section 4 we presented our approach to explore model sets based on con-
straints. Theses constraints use bridge variables to forward updates from the
model to the solver and back. We need a convenient way to setup constraints
while building the target model. In Section 5.1 we describe how this can be
achieved. In Section 5.2 we give a few necessary requirements for such a tool.

5.1 Overview

Classical model transformation approaches generally output a single target
model from a single source model. However, there may be many correct
target models. Figure 10 summarizes the differences between classical ap-
proaches and our approach. The two ellipses with solid outlines correspond
to the source and target model spaces. The dots represent models in the

Title Suppressed Due to Excessive Length 21

corresponding M, sets. The ellipse with a dashed outline represents the tar-
get model set that is generated by our approach. With our approach we can
provide an explorable target model set by using constraints to complement
a model. Model transformation can, from a source model, generate both the
target model and the constraints. The idea is depicted in Figure 12. Both
the target and constraint models are generated by the transformation from
a source model. In our context, the target model is displayed by JavaFX
but this is not the case for other kinds of target models. Constraint, target,
and source models are synchronized in order to ensure changes are properly
propagated. This synchronization structure is automatically setup by a trans-
formation between models, and bridge variables between models and solvers.
Then the constraints are dispatched to their target solver wrapper. There
they are rewritten by a series of transformations in order to adapt them to

the specific solver used.
Target
Model
Source . ;
(Model }—? Transformation synchronized

——
Solver Wrapper

\ 4
Constraints Constraints
Model Dispatcher |

Fig. 12: Full diagram of the approach

As explained in previous sections, in our approach, constraints are used
to specify a model set intentionally. By adding constraints to the generated
transformation, the target model structure along with its associated con-
straints are generated in a consistent way. In a single unified step, the devel-
oper can write a transformation that describes how to create a target model
set from a source model. This description also precises which properties can
be modified and how they relate to each other.

5.2 Requirements

From the various properties discussed earlier in this paper we derive the
following four requirements.

Requirement 1: Declarative Rule-based. Constraint programming is a
declarative way to specify relations between variables. It makes sense to also

22 Théo Le Calvar et al.

opt for a declarative transformation language. Several rule-based transfor-
mation approaches [43,27,19] already exist and have proven to be relevant.
Moreover, rules are an abstraction that encapsulates source and target ele-
ments along with how they relate. They can relatively easily be extended to
also encapsulate constraints.

Requirement 2: Specifying Constraints. Any implementation of the ap-
proach must provide means to specify which constraints apply to target ele-
ment properties. In our case study, the constraints needed for the visualiza-
tion part are geometric by nature (see Constraints 1 and 2 from Section 3.4).
Like many similar frameworks, JavaFX uses a Cartesian coordinate system
with double precision floating point values. Therefore, many fine-grained ge-
ometric constraints, like specifying minimum lengths, are actually arithmetic
constraints on doubles. The front end must consequently provide means to
express geometric and arithmetic constraints.

Requirement 3: Prioritizing Constraints. In order to capture complex
behaviors, there must be a mechanism to specify that some constraints may
be violated. Moreover, when either one of two constraints must be violated,
it must be possible to specify which one should be violated first. This is a
key mechanism to be able to express fine-grained behaviors.

Requirement 4: Incremental Transformation. By incrementality we mean
that if the source model changes, the target should be updated, along with
the set of constraints that apply to it. This should happen without having
to recompute the solutions from scratch to be more reactive. This require-
ment makes it possible to visualize changing models in real time. Thanks to
incrementality it is possible to use the transformation to rewrite parts of the
model that the solver would not be able to deal with.

Given these requirements, and the fact that our team has been working
on an incremental declarative ATL engine, we decided to extend ATL to sup-
port constraint specification and prioritizing. The incremental ATL engine,
ATOL, is presented in [10]. The next section gives an overview of the current
implementation of the approach.

Remark: although guided by our choice of case study, some of these re-
quirements would likely apply to other implementations of the approach, but
this is beyond the scope of this paper.

6 Implementation Overview

In this section, we detail how we leveraged ATOL’s capabilities and ex-
tensibility in order to implement the approach presented in this paper. All

Title Suppressed Due to Excessive Length 23

tools used in this paper are available at https://github.com/ESEO-Tech/
ATL-Tools-Library and are licensed under EPL-2.0 license.

ATOL is an ATL compiler that generates Java code that uses AOF
(Active Operations Framework, a Java implementation of Active Opera-
tions [19]), thus enabling incremental execution of ATL transformations. Ac-
tive operations constitute a set of operations that can be applied on collec-
tions (ordered or not, such as singleton, set or list) to build complex incre-
mental expressions. There are such incremental variants of well-known OCL
operations such as: select, collect, concat, or size. Each of these oper-
ations has one or more inputs, as well as an output, and is equipped with
propagation algorithms. These algorithms make it possible for the operation
to react to changes applied on its input, by computing consistent modifica-
tions of its output. After computing the changes to perform on the output, it
notifies the other operations which use it as input. Thus a modification of an
input can be propagated from operation to operation until all intermediary
elements of the incremental expression are updated.

ATOL compiles ATL bindings into AOF expressions, so that changes on
source properties are propagated to target properties. Right now, ATOL
is restricted to a subset of ATL, which is sufficient to demonstrate that
active operations can be used as a back-end for ATL transformations. We
currently only support unique lazy rules, and not classical ATL rules, because
the current implementation of the incremental rule matcher is limited. ATL
transformations are compiled into Java classes with one method for each ATL
rule. Users can then directly call specific rules on specific source elements.

While not fully compatible with ATL, ATOL has a plugin mechanism
that can be used to implement extensions. More precisely, each plugin can
match bindings in order to compile them differently. These bindings are not
compiled by ATOL itself, but are directly forwarded to the plugin instead.
The plugin is then in charge of generating the corresponding Java code. This
process will be described more precisely in Section 6.2.

6.1 Structure of a Constrained Transformation Rule

Including constraints in classical ATL files is not directly possible. However,
the plugin mechanism described above makes it possible to target specific
bindings and compile them differently from the rest of the transformation.
The generation of constraints can be achieved as described in Section 4.3.
An example ATL rule containing constraints is given in Listing 1. This
rule is quite similar to a classical ATL rule. It includes the same from (1. 2-
3) and to (l. 4-14) sections. Classical target element declarations are not

https://github.com/ESEO-Tech/ATL-Tools-Library
https://github.com/ESEO-Tech/ATL-Tools-Library

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

24 Théo Le Calvar et al.

rule ExampleRule {
from
s : SourceMetaModel!SourceClass
to
t: TargetMetaModel!TargetModel (
exampleProperty <— 'something'
) b
constraints: Constraints!ExpressionGroup (
solver <— 'choco',
expressions <— Sequence {
t.x + t.y < 42,
t.x.stay('MEDIUM')
}
,)

Listing 1: Example ATL rule containing constraints

modified (1. 5-7). Even our constraint target element uses the classical ATL
syntax (1. 8-14). For instance, the solver property of ExpressionGroup is
set to choco (1. 9).

6.2 Compiling a Transformation

The constraints plugin of ATOL intercepts only the compilation of bindings
targeting the expressions property of ExpressionGroups. Instead of com-
piling the content of the Sequence into classical ATL, this plugin compiles
it to Java code that instantiates the corresponding constraints metamodel.

Constraints written in this sequence can use specific operations that are
not supported by ATL (and only a limited subset of ATL is supported here).
For instance, at line 12, the stay operation is a constraint that does not
correspond to any ATL operation.

Part of the generated code for the constraint t.x + t.y < 42 from List-
ing 1 at line 11 is shown in Listing 2. The code is indented and variables
have been renamed in order to help the reader. As we can see, the code in-
cludes model elements that correspond to the constraint written in the ATL
transformation. For instance, 1. 7-11 (resp. 1. 14-18) correspond to the instan-
tiation of variable x (resp. y) and 1. 23-24 to the creation of the constant 42.
Each reference to a property of the target model in a constraint is compiled
into a BridgeVariable. Hence, there is nothing special to write in the ATL
code in order to indicate that a property is a variable. However, it is possible
to use the toConstant() operation to indicate that a property should be
considered as a constant. It would then be updated upon model changes, but
the solver would not be allowed to change it.

1
2
3

© 0 N o o »

20
21
22
23
24
25

Title Suppressed Due to Excessive Length 25

Constraint cstr_inf = Constraints.Constraint.newInstance();
cstr_inf.setOperatorName ("<");

CompositeExp operation_plus = Constraints.CompositeExp.newInstance();
operation_plus.setOperatorName ("+");

BridgeVariable var_x = Constraints.BridgeVariable.newInstance();
var_x.setIsVector(false);
var_x.setIsConstant (false);
var_x.setSource(t);
var_x.setPropertyName ("x");
operation_plus.getArguments ().add(var_x);

BridgeVariable var_y = Constraints.BridgeVariable.newInstance();
var_y.setIsVector(false);
var_y.setIsConstant (false);
var_y.setSource(t);
var_y.setPropertyName ("y");
operation_plus.getArguments ().add(var_y);

cstr_inf.getArguments ().add(operation_plus);

IntExp cst_42 = Constraints.IntExp.newInstance();
cst_42.setValue (42);
cstr_inf.getArguments ().add(cst_42);

Listing 2: Part of the generated Java code corresponding to line 11 of Listing 1

Then these variables and constants are used as operands for the various
operators (1. 12 and 1. 19) and constraints (1. 21 and 1. 25). Finally, it is pos-
sible to specify the strength of a constraint by adding a comment containing
the desired strength level (weak, medium, strong, or required). The default
strength of a constraint is required. The strength levels are used to derive the
priority of the constraints in the problem. This concept of strength level is
directly inherited from Cassowary.

6.3 Processing the Resulting Constraints

At runtime, this code generates a constraint for each source element that
was matched by the rule. We call this resulting constraint the constraint
model. However, no solver can directly use this constraint model. Each solver
has its own metamodel. We call these solver-specific constraints concrete
constraints in order to distinguish them from the (abstract) constraint model.
Several transformations are necessary to generate concrete constraints from
the constraint model. These transformations correspond to the right-most
part of Figure 12. At this time, our tool supports several solvers such as

Cassowary [3], Choco [36], MiniCP [24], and XCSP3 [7].

26 Théo Le Calvar et al.

The corresponding transformations are written in Xtend, and directly use
AOF in order to be incremental. New constraints added to the constraint
model generated by the ATL transformation are automatically fed to this se-
quence of incremental transformations, resulting in new concrete constraints
that are added to the solver. Similarly, when constraints are removed from
the constraint model, the corresponding concrete constraints are removed
from the solver. This ensures that the constraint model is synchronized with
the concrete constraints, and that they represent the same constraint prob-
lem. Solutions found by the solver can thus be translated to solutions in the
constraint model. We are currently working on replacing these hand-written
Xtend transformations by ATL transformations. However the ATOL com-
piler does not, at this time, include all necessary feature to efficiently write
these transformations.

Each of these transformations performs a different task depending on
the target solver. For instance, with the constraint metamodel presented
in Figure 8 (Section 4.3), it is possible to nest an ExpressionGroup inside
another ExpressionGroup. This allows for easier processing of the constraints
generated by the transformation. However, these ExpressionGroups need to
be flattened so that the result is only composed of CompositeExpressions.

Another example is the simplification transformation shown in Figure 12.
BridgeVariables can reference properties that are collections. For instance,
let us consider that properties x and y of the SourceClass used in List-
ing 1 are both lists of values and that we have an instance s of this class
with s.x = [a,b,c] and s.y = [4,5] , where [1,2,3] denotes an ordered
list containing elements 1, 2 and 3 in that order. Then the corresponding
constraint would be [a,b,c] + [4,5] < 42, which is not directly usable by
most solvers. This constraint needs to be simplified. Simplifying a constraint
expands the single constraint containing VariableVectors into several con-
straints containing only simple values.

Depending on how the simplification is performed, this constraint could
be simplified into the six following constraints, a + 4 < 42, b+ 4 < 42,
c+4 <42, a+5 < 42, b+ 5 < 42, and ¢+ 5 < 42. In this example,
when an operator is surrounded by two VariableVectors its expansion is
the Cartesian product of elements of the surrounding VariableVectors.

It could also be simplified into the two following ones, a + 4 < 42 and
b+ 5 < 42. In this example, instead of using a Cartesian product, elements
of surrounding VariableVectors are matched pairwise. We call this scalar
expansion.

Depending on the situation, either Cartesian or scalar expansion can be
useful. We decided to support them both in our constraint language. All

Title Suppressed Due to Excessive Length 27

classical arithmetic operators use Cartesian expansion, and operator prefixed

bR

with a 7.” (such as .+ or . =) use scalar expansion.

6.4 Interacting with the Solver

Wrappers, shown at the right of Figure 12, encapsulate solvers so that the
user can interact more easily with them. These wrappers take the constraint
model as input and apply the transformations presented in Section 6.3.

After applying all these transformations, concrete constraints can be
generated. This final transformation translates the constraint model into a
solver-specific model, or direct calls to a solver’s API. Depending on the con-
sidered solver and its features, this last step can be trivial or may involve
complex data management in order to emulate missing features.

Solvers present various sets of features. For instance, Choco does not sup-
port adding or removing constraints during solving. In order to be able to
use it in a context where constraints or variables can be added or removed
at any time, the final transformation is much more complex than with the
Cassowary solver, which supports adding or removing constraints and vari-
ables. Therefore, when using Choco, every change in the constraint model
results in a completely new set of concrete constraints. Rebuilding this set
of concrete constraints, and asking for a new resolution from scratch, can be
costly if the problem is complex.

Hence, we propose two ways to interact with solvers:

1. the solver is automatically called whenever a change occurs in the concrete
model. This mode is suitable for solvers that support fast incremental
resolution, like Cassowary. We refer to this mode as autosolving.

2. the user has full control over the solver and triggers resolution manually.
This second mode can be useful when changes between coupled variables
occur. This is the preferred mode for solvers that do not support incre-
mental solving or take a significant time to solve a problem?, like Choco.

The wrapper is used to suggest changes on properties of the model as
shown in Figure 7 (Section 4.2). A new constraint is then added to the
constraint model in order to reflect the suggestion. Then, whether triggered
automatically or called by the user, the solver can compute a new solution
and propagate new values. Finally, the suggestion constraint is marked for
removal for the next solving.

3 In the context of graphical interfaces that we use as a case study, we consider a solving
time to be significant if it is noticeable to the user.

28 Théo Le Calvar et al.

Wrappers also take an important part in the synchronization between
model properties and solver variables. As presented earlier in Section 4.2,
each BridgeVariable references a specific property of a specific model ele-
ment. Actual synchronization between the model element property and the
corresponding variable in the solver is performed by the wrapper, which can
read or write the value of the property. For instance, after a call to Choco, val-
ues of variables in the solution are compared to their corresponding property
in the target model. If they differ, the wrapper updates the corresponding
model element properties with the values found in the solution. This update
is made possible by the BridgeVariable that targets a specific property of
a model element.

If a model element property is used as a variable in one solver and as
a constant in another, updating the value of said property will trigger an
update in the constraint model of the second solver. This update will then
be propagated to the concrete constraints of the second solver, and can trigger
a new resolution if the solver is set to autosolve whenever an update occurs.
This is the mechanism used to perform basic solver collaboration. It has
the advantage of requiring no additional synchronization mechanisms but
is relatively limited in terms of possible collaboration scenarios. For this
mechanism to work properly, the user has to be careful during transformation
development, and must ensure that no property is used by multiple solvers
as a variable. Only one solver can use a given model element property as a
variable, others have to use it as a constant. Moreover, if multiple properties
are shared between two solvers, one must ensure that the one solver only has
write permission to these variables, and the other only has read permission.

7 Evaluation of the Approach

In Section 5 we presented how our model set exploration approach can be
deployed in an automatic way by using a transformation language to generate
both target models and constraints. In Section 7.1 we present the constraint
problems generated by our approach on the example detailed in Section 3.4.
Then, in Section 7.2 we present some ATL rules used to generate the target
and constraints presented in Section 7.1.

7.1 Explorable Task Scheduling Models

In Sections 3.2 and 3.4 we have introduced a simple example of a task schedul-
ing tool. We briefly described how shapes should be placed in order to form

© 0 NN W N e

o e
N~ O

© 0 NN W N e

Title Suppressed Due to Excessive Length 29

a valid diagram, and which constraints apply when creating a schedule. List-
ing 3 lists part of the constraints needed to ensure the diagram shown in
Figure 6 is valid. We omitted strengths from constraints in order to keep
them readable. Variables are named after the property they represent. For
instance, pl.r.x correspond to the property x of element p1l.r.

pl.r.y = 0, pl.r.x = 0.0xpl.r.width, pl.l.startX = pl.r.x,
pl.l.endX = pl.r.x + pl.r.width, pl.1l.endY = pl.1.startY,
pl.1l.startY = pl.t.y + 15.1 4+ 5,

pl.r.width = 125, pl.r.height = 200,

pl.t.x = pl.r.x + pl.r.width/2 — 88.3/2, pl.t.y = pl.r.y+5,
t000.r.x >= 0,

t000.r.width = 1.2 % 24.8,

t000.r.height = 1.2 x 15.1,

t000.t.x = t000.r.x + 5, tt000.t.y = t000.r.y + 2,
t000.r.x >= pl.r.x, t000.r.y >= pl.1l.startY,

t000.r.x + t000.r.width <= pl.r.x + pl.r.width,

t000.r.y + t000.r.height <= pl.r.y + pl.r.height,

rq_t002_t000.
rq_t002_t000.
rq_t002_t000.

.fromX = 0,
.fromX — rq_t002_t000.1.toX
.fromY — rq_t002_t000.1.toY

rq_t002_t000.1.fromY
0,
0,

0)

rq_t002_t000.
rq_t002_t000.
rq_t002_t000.
rq_t002_t000.
rq_t002_t000.
rq_t002_t000.
rq_t002_t000.
rq_t002_t000.

.fromX >= t002

.toX <= t000.r
.toY >= t000.r
.toY <= t000.r

N e e

Listing 3: Part

.fromX <= t002.
.fromY >= t002.
.fromY <= t002.
.toX >= t000.r.

.T.X,
.Xx 4+ t002.r.width,

r
r'y7

r.y + t002.r.height,
X?

.Xx 4+ t000.r.width,

'y1
.y + t000.r.height

of graphical constraints of Figure 6

000.{period}.number < 3, 000.{period}.number >= 0,

001.{period}.number < 3, 001.{period}.number >= 0,

002.{period}.number < 3, 002.{period}.number >= 0,

002.{period}.number > 000.{period}.number,

002.{period}.number > 001.{period}.number,

sum (5+xreify (000.period=0),6*reify (001.period=0),7*reify (002.period=0))>=0,
sum(5+reify (000.period=0),6+xreify (001.period=0),7*reify (002.period=0))<=15,
sum (5xreify (000.period=1),6*reify (001.period=1),7*reify (002.period=1))>=0,
sum(5+%reify (000.period=1),6%xreify (001.period=1),7*reify (002.period=1))<=15,
sum (5xreify (000.period=2),6%reify (001.period=2),7*reify (002.period=2))>=0,
sum(5+reify (000.period=2),6%xreify (001.period=2),7*reify (002.period=2))<=15

Listing 4: Business constraints of Figure 6

In this example we decided to use Cassowary [3], a linear constraint solver.
Therefore, constraints shown in Listing 3 only consist of linear equalities and

30 Théo Le Calvar et al.

inequalities. We mentioned earlier that geometric constraints were well suited
for diagram definition. However, when dealing with simple shapes such as
rectangles or lines, most of these geometric constraints can be expressed as
linear inequalities between coordinates or values. For instance, Constraint 1,
that places the top left corner of a Text relative to its Rectangle, becomes
two constraints, one for each coordinate (1. 10).

Listing 4, lists all constraints needed to compute a correct schedule. We
decided to use the constraint solver Choco [36] to solve these constraints.
We used the same notation for variables than the one used in Listing 3. We
add only new operators (e.g., reify, sum) and the braces to denote variable
encoding relations (1. 1-5). The sum operator is self explanatory. The reify
operator converts the truth value of a constraint into an integer with value 0
if the constraint is not satisfied and 1 otherwise. For instance, Constraint 1,
that bounds the load of a Period corresponds to two constraints (e.g., 1. 7-8).

Patterns can be observed in constraints: those relating to model elements
of the same type share a similar structure. Periods involve two constraints,
one to ensure load is above minLoad and another one to ensure it is be-
low maxLoad. Tasks involve three constraints, two to specify the valid ids
of Periods (1. 1, 2, and 3) and one to place requisites Tasks in Periods
with a lower number (1. 4-5). But not all Tasks have all these constraints.
Only Task 003 has the constraints corresponding to requisites. Differences
appear because 003 requires 001 and 002, whereas neither 001 nor 002 have
requisites.

The contains constraint is a geometric constraint that can be translated
into four linear inequalities*. The four constraints encoding the fact that pl
contains task 001 are on 1. 11-13 of Listing 3. Similar patterns appear for
the Requisite arrow, the two ends are contained into the Rectangles of the
corresponding Task (1. 18-21 and 1. 22-25).

As described in Section 4.2, once everything has been initialized, updates
on the diagrams are propagated to the solver, which updates the solution,
which is then propagated back to the diagram.

7.2 Generation of Explorable Task Scheduling Models

In Sections 3.2 and 3.3 we presented how our approach can be used to gen-
erate a valid schedule along with an interactive diagram visualization. This
section describes how to implement this example with two model transfor-

4 For simplicity we consider that every shape can be assimilated to a rectangle aligned
with the x and y axis. This corresponds to the notion of bounding box.

© W N oA W N e

[= ~ S S S
o U W N R O

Title Suppressed Due to Excessive Length 31

mations that build the constraints to generate this schedule and the view for
it.

In Section 3.2 we detailed a small scheduling problem and a visualization
shown in Figure 6. It consists of a Project with 3 Periods and 3 Tasks. Task
003 requires Tasks 001 and 002 to be completed before it can start.

rule Period {
from
s : Scheduling!Period
to
constraints: Constraints!ExpressionGroup (
solver <— 'choco',
expressions <— Sequence {
(s.project.tasks.cost.toConstant () =
(s.project.tasks.period.”.="(s.toConstant())).reify()
).sum() >= s.project.minLoad.toConstant (),
(s.project.tasks.cost.toConstant () x*
(s.project.tasks.period.”.="(s.toConstant())).reify()
).sum() <= s.project.maxLoad.toConstant ()

}
)

Listing 5: Sample rule that generate business constraints for a Period

Sources of the transformations used in this paper are available at https:
//github.com/TheoleCalvar/scheduling-example.

Listing 5 contains an ATL rule responsible for generating the constraints
used to generate a proper schedule. From a Period (1. 3) it generates a
ExpressionGroup (1. 5-15) containing the two constraints related to schedul-
ing. The specific solver to use can be specified in the ExpressionGroup (e.g.,
Choco in this rule at 1. 6). These two constraints ensure that the sum of the
costs of Tasks assigned to a specific Period is between minLoad and maxLoad.
Checking if a Task is assigned to the current Period is done through con-
straint reification (1. 9 and 12). It corresponds to constraints from 1. 7-12 of
Listing 4. Note that constraints on 1.9 and 12 result in multiple constraints in
Listing 4. This is because s.project.task references a collection, which is
translated into a VariableVector. During translation, constraints contain-
ing VariableVectors are expanded to simple constraints. Thus, a simple
constraint on a VariableVector can be translated into multiple constraints.

Listing 6 contains the rule that generates part of the diagram representing
a Task. A single Task generates one Rectangle, one Text, and constraints
in a ExpressionGroup. Unlike the rule in Listing 5, this one contains other
output elements that are specified in plain old ATL (I. 5-11). It contains
standard bindings between source and target elements. The movable property
of Rectangle (l. 6) is a helper added to specify that an element can be

https://github.com/TheoLeCalvar/scheduling-example
https://github.com/TheoLeCalvar/scheduling-example

32 Théo Le Calvar et al.

1 unique lazy rule Task {

2 from

3 c: Scheduling!Task

4 to

5 r : JFX!Rectangle (

6 movable <— true

7 ’

8 t : JFX!Text (

9 text <— c.code, textOrigin <— #TOP,

10 mouseTransparent <— true

1) ’

12 constraints: Constraints!ExpressionGroup (

13 solver <— 'cassowary',

14 expressions <— Sequence {

15 r.width = 1.2 % t.width.toConstant ()

16 ,r.height = 1.2 % t.height.toConstant ()

17 ,r.x.stay('MEDIUM'), r.y.stay('MEDIUM'")

18 ,2t.x =r.x 4+ 5, t.y=r.y + 2

19 ,r.x >= 0, r.y >= thisModule.Period(c.period).l.startY
20 ,r.x >= thisModule.Period(c.period).r.x -- strong
21 ,r.x + r.width <= thisModule.Period(c.period).r.x
22 + thisModule.Period(c.period).r.width --strong
23 ,r.y+r.height <= thisModule.Period(c.period).r.y
24 + thisModule.Period(c.period).r.height

25 }

26)

27 }

Listing 6: Sample rule that generates view and graphical constraints for a
Period

moved. Constraints of this rule target the Cassowary solver (1. 13). The first
two constraints give the dimensions of the Rectangle (1. 15-16). Note the
toConstant () operation, used to specify that a constant should be used
instead of a variable. Corresponding constraints are on l. 8-9 of Listing 3.
Other constraints specify the position of the Text (1. 18) and the position of
the Rectangle (1. 19-24). It is possible to attach strengths to constraints by
specifying it in a comment after the constraint (1. 20 and 22).

Stay constraints are special constraints that minimize changes to the
variables they are applied to across multiple solves. That is to say, a stayed
variable tends to keep its previous value. For instance, without stay, the
position of a rectangle is only constrained by its container position and di-
mensions meaning that the solver is allowed to choose any value verifying the
constraint. Moreover, there is no warranty that the solver will always choose
the same value leading to unpredictable changes.

Remark: the ATL code listed in this section is slightly simplified from the
original code, which can be consulted on GitHub using the link given above.
Notably, the rule of Listing 5 is actually used in ATL refining mode, the
JavaFX elements in Listing 6 also have identifiers, and an additional Figure

Title Suppressed Due to Excessive Length 33

element should also be created in Listing 6 in order to encapsulate both
JavaFX elements along with their constraints. These elements have been
removed to simplify the listings here. Thus, we can focus on the new support
for constraints, rather than on classical ATL mechanisms. Otherwise, these
missing elements do not add much complexity.

7.3 Performance overview

Actual models used in MDE may be large, and performance may become
critical. In our approach, we have identified several limiting factors.

The first one is due to AOF itself, the incremental backend that is used to
perform incremental transformations and synchronizations. We have already
shown that AOF can be as efficient as other state of the art approaches [11,
19]. Even if AOF still has performance issues with some structures of expres-
sions [20,25], we are working on solutions to limit these effects.

The other main limiting factor of our approach is related to the chosen
constraint solver. We have scaled our different case studies and test projects
to assess the performance of solvers. We confirmed that Cassowary [3], an
incremental linear solver originally designed for graphical interfaces, is not
a limiting factor, even for transformations including thousands of variables
and constraints. We were surprised to observe that the JavaFX rendering
algorithm was indeed the limiting factor for large interactive diagrams. In-
cremental solvers are not common but new approaches, such as [45], add
incrementality to existing solvers.

On the other hand, using Choco, we quickly reached a point where the
solving time was noticeable to the user. Therefore, in order to use Choco on
larger inputs, the way the user interacts with the diagrams should be adapted.
For instance, it is possible to let the user manually trigger a resolution instead
of automatically solving each time a Task is moved from one Period to
another.

One important point is that the complexity of the constraint problem
depends on the number of input elements, but also on the constraints defined
in the transformation. Indeed, these elements are instantiated for each input
element matched by a rule. For instance, for the graphical constraints of the
scheduling case study we have:

— 10 constraints per Period,
— 11 constraints per Task,

— 12 constraints per Requisite and Corequisite.

34 Théo Le Calvar et al.

For the scheduling part we have:
— 2 constraints per Period,
— 5 constraints per Task.

However, due to VariableVectors, constraints contained into other con-
straints (via the reify operator) and their encoding in the solver, the actual
number of constraints in the solver can be different.

For the smallest example (3 Periods, 3 Tasks, and 2 Requisites) we have
87 constraints for the graphical part and 78 constraints for the scheduling
part. With the larger example (5 Periods, 20 Tasks, 15 Requisites, and 3
Corequisites), the number of graphical constraints grows to 487, and the
number of scheduling constraints grows to 466. Cassowary had no issue deal-
ing with this number of constraints, however Choco solving time started to
become noticeable. Solving times are around 20ms but generating the con-
straint problem and propagating new values take around 80ms. Propagation
of new value can trigger several calls to Cassowary if properties shared be-
tween Cassowary and Choco are updated.

However, constraint solving constitutes an active field of research. There
are several international competitions such as the SAT Competition®, the
XCSP3 Competition®, the MiniZinc Challenge”, or the International Timetabling
Competition®. Solvers are improved each year and they are now able to han-
dle relatively complex problems.

8 Discussion

In this paper we only considered a weak integration of constraints in model
transformation. The constraint solver is only used to complete small parts of
the model: numerical values of properties and relations. However, other types
of solver, more powerful, could handle more complex situations like cases in
which the solver can decide that new elements should be added to the model.
This is a limitation imposed by the kind of solver used in our prototype, not
by the overall approach. The Cassowary solver is limited to linear constraints
on double precision floating point values. However, thanks to this limitation
the solver is able to deal with dynamic problems, which significantly reduces
latency. For instance, in our diagram visualization example, while moving

http://www.satcompetition.org/
http://xcsp.org/competition
https://www.minizinc.org/challenge.html

5
6
7
8 https://www.itc2019.org/home

http://www.satcompetition.org/
http://xcsp.org/competition
https://www.minizinc.org/challenge.html
https://www.itc2019.org/home

Title Suppressed Due to Excessive Length 35

an element, each mouse move requires solving the problem while taking into
account the new position of the moved element. Choco on the other hand is
able to solve non linear constraints on integers but is not capable of efficiently
solving dynamic problems. Whilst not built for solving dynamic problems,
Choco proved to be responsive enough to be used in this use case. Other
solvers may support more complex deltas that involve modifications of the
structure of the model, such as adding or removing elements. It is unlikely
that they would be able to solve problems in the time it takes to move the
mouse, but this may be compatible with other applications of our approach.
However, this goes beyond the scope of this paper.

We considered both satisfaction and optimization problems in Section 7.2
with the stay constraint because it is often necessary to ensure stability
when updating existing solutions. Cassowary is a linear hierarchical con-
straint solver especially designed to be used in dynamic contexts such as
graphical interfaces (see [32,44,15]). With Cassowary it is possible to add
and remove constraints at any time, it is also possible to suggest new values
for decision variables. After any modification, it can recompute a new solution
based on the previous one. This makes it relatively efficient with dynamic
problems such as graphical interfaces. During solving, Cassowary minimizes
the error associated with its constraints. It also associates a weight to every
constraint. These weights are used to determine which constraints should be
satisfied in priority. This feature is used to define behaviors by assigning a
strength and a weight to each constraint. We showed in Section 4.3 that while
not present in all solvers, hierarchical and stay constraints can easily be im-
plemented in classical solvers. Our current implementation wraps Choco in
way that makes it appear as a dynamic solver. However, this does not mean
that any solver can be used to solve any dynamic problem when there are
performance considerations.

Currently the constraint dialect supported by the ATOL constraint plugin
can be a limiting factor for the user. We are working on a geometric abstrac-
tion that would ease the development complexity, especially for users with-
out constraint programming knowledge. This geometric abstraction would
use a similar technique to the constraint plugin of ATOL. The user would be
able to write geometric constraints that would be compiled into a geometric
metamodel. This metamodel would then be transformed into constraints and
graphical elements.

Another complementary approach we are considering would be to add
support for more OCL operations already supported by ATL, but not in con-
straints. Ideally, this would enable the user to write constraints with classical
ATL expressions. These expressions would then be interpreted as constraints
that must be enforced instead of simply being evaluated.

36 Théo Le Calvar et al.

We also presented a simple strategy to make solvers collaborate by im-
posing that only one solver can write a property or relation. Other solvers
only have access to a read-only version of the property or relation. This
ensures that no cycle can occur during update propagation. Our implemen-
tation currently does not check if there are cycles, and users must make sure
of it.

Finally, in our current implementation we only considered cases where
the first solver can notify the user that no solution can be found and that
rollback is the only option. Thus, solvers down the propagation chain cannot
notify solvers upstream that their problem is unsatisfiable and that a rollback
is necessary.

9 Conclusion

This paper presents the model set exploration problem along with a frame-
work to write model transformations that generate explorable sets of models.
The model set exploration problem arises when the target model of a model
transformation contains information that cannot be derived from the source
model but also needs to respect a set of constraints in order to be valid.

This paper describes techniques to use constraint solvers to generate an
intensionally defined model set from a partially populated target model and a
set of constraints. This is enabled by bridge variables that act as synchroniza-
tion mechanisms between properties of target model elements and variables
in a constraint solver.

This approach has been applied to a case study based on schedule gen-
eration and visualization. Both generation and visualization are simple and
sufficient to illustrate the approach. This case study focuses on interactive
diagrams but the approach presented in this paper is not limited to interac-
tive applications. Small examples, as the one presented in this paper, could
be solved by any solver but solving time is a real limitation that has to be
considered in the solver choice. In fact, many solvers are not considered here
since they cannot solve interactive diagram problems fast enough. Only few
solvers are supported but we would like to add support for new ones. Espe-
cially solvers that could solve constraints over different variable domains.

This case study also illustrates the fact that this approach can leverage
multiple solvers to solve independent parts of the problem. For instance, find-
ing a valid schedule and positioning graphical elements of the visualization.
This kind of solver collaboration is relatively limited right now but could be
improved with a deeper analysis of the constraints network.

Title Suppressed Due to Excessive Length 37

Acknowledgment

Work was partially funded by Angers Loire Métropole and RFI Atlanstic
2020. We would like to thank Daniel Varré for his helpful comments.

References

1.

10.

11.

Anastasakis, K., Bordbar, B., Kiister, J.M.: Analysis of model transformations
via alloy. In: MoDeVVa ’07, pp. 47-56 (2007)

. Apt, K.: Principles of Constraint Programming. Cambridge University Press

(2003). DOI 10.1017/CB0O9780511615320

. Badros, G.J., Borning, A., Stuckey, P.J.: The Cassowary linear arithmetic con-

straint solving algorithm. TOCHI 8(4), 267-306 (2001)

. Beldiceanu, N., Carlsson, M., Flener, P., Pearson, J.: On the reification

of global constraints. Constraints 18(1), 1-6 (2013). DOI 10.1007/
s10601-012-9132-0. URL https://doi.org/10.1007/s10601-012-9132-0

. Benhamou, F.: Heterogeneous constraint solving. In: M. Hanus, M. Rodriguez-

Artalejo (eds.) Algebraic and Logic Programming, pp. 62-76. Springer Berlin
Heidelberg, Berlin, Heidelberg (1996)

. Blazewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Weglarz, J.: Handbook

on Scheduling: From Theory to Applications. Springer Publishing Company,
Incorporated (2014)

. Boussemart, F., Lecoutre, C., Piette, C.: XCSP3: an integrated format for

benchmarking combinatorial constrained problems. CoRR abs/1611.03398
(2016)

. Biittner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of ATL Transfor-

mations Using Transformation Models and Model Finders. In: ICFEM 2012,
pp. 198-213 (2012)

. Cabot, J., Clarisé, R., Riera, D.: UMLtoCSP: a tool for the formal verification

of UML/OCL models using constraint programming. In: ASE ’07, pp. 547-548.
ACM (2007)

Calvar, T.L., Jouault, F., Chhel, F., Clavreul, M.: Efficient ATL incremental
transformations. JOT 18(3), 2:1 (2019). DOI 10.5381/jot.2019.18.3.a2

Calvar, T.L., Jouault, F., Chhel, F., Clavreul, M.: Efficient ATL incremental
transformations. J. Object Technol. 18(3), 2:1-17 (2019). DOI 10.5381/jot.
2019.18.3.a2. URL https://doi.org/10.5381/jot.2019.18.3.a2

https://doi.org/10.1007/s10601-012-9132-0
https://doi.org/10.5381/jot.2019.18.3.a2

38

Théo Le Calvar et al.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: JTL: A bidirectional
and change propagating transformation language. In: SLE 10, pp. 183-202
(2011)

Cunha, A., Macedo, N., Guimaraes, T.: Target oriented relational model
finding. In: S. Gnesi, A. Rensink (eds.) Fundamental Approaches to
Software Engineering - 17th International Conference, FASE 2014, Held
as Part of the FEuropean Joint Conferences on Theory and Practice
of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceed-
ings, Lecture Notes in Computer Science, vol. 8411, pp. 17-31. Springer
(2014). DOI 10.1007/978-3-642-54804-8_2. URL https://doi.org/10.
1007/978-3-642-54804-8_2

Diskin, Z., Wider, A., Gholizadeh, H., Czarnecki, K.: Towards a rational tax-
onomy for increasingly symmetric model synchronization. In: ICMT 2014, pp.
57-73 (2014)

Freeman-Benson, B.N., Maloney, J., Borning, A.: An incremental constraint
solver. Commun. ACM 33(1), 54-63 (1990). DOI 10.1145/76372.77531

Horvéth, A., Varré, D.: CSP(m): Constraint satisfaction problem over models.
In: Model Driven Engineering Languages and Systems, pp. 107-121. Springer
Berlin Heidelberg (2009). DOI 10.1007/978-3-642-04425-0_9

Horvath, A., Varré, D.: Dynamic constraint satisfaction problems over models.
Software & Systems Modeling 11(3), 385-408 (2012)

Jackson, D.: Alloy: a lightweight object modelling notation. TOSEM 11(2),
256-290 (2002)

Jouault, F., Beaudoux, O.: Efficient OCL-based Incremental Transformations.
In: 16th International Workshop in OCL and Textual Modeling, pp. 121-136
(2016)

Jouault, F., Beaudoux, O., Brun, M., Chhel, F., Clavreul, M.: Improving in-
cremental and bidirectional evaluation with an explicit propagation graph. In:
M. Seidl, S. Zschaler (eds.) Software Technologies: Applications and Foun-
dations - STAF 2017 Collocated Workshops, Marburg, Germany, July 17-
21, 2017, Revised Selected Papers, Lecture Notes in Computer Science, vol.
10748, pp. 302-316. Springer (2017). DOI 10.1007/978-3-319-74730-9_27.
URL https://doi.org/10.1007/978-3-319-74730-9_27

Jouault, F., Kurtev, I.: Transforming models with ATL. In: J.M. Bruel (ed.)
Satellite Events at the MoDELS 2005 Conference, pp. 128-138. Springer Berlin
Heidelberg, Berlin, Heidelberg (2006)

https://doi.org/10.1007/978-3-642-54804-8_2
https://doi.org/10.1007/978-3-642-54804-8_2
https://doi.org/10.1007/978-3-319-74730-9_27

Title Suppressed Due to Excessive Length 39

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Kleiner, M., Didonet Del Fabro, M., Albert, P.: Model search: Formalizing
and automating constraint solving in MDE platforms. In: ECMFA 2010, pp.
173-188 (2010)

Kleiner, M., Didonet Del Fabro, M., De Queiroz Santos, D.: Transformation
as search. In: ECMFA 2013, pp. 54-69 (2013)

Laurent Michel, Pierre Schaus, Pascal Van Hentenryck: MiniCP: A
lightweight solver for constraint programming (2018). Available from
https://minicp.bitbucket.io

Le Calvar, T., Chhel, F., Jouault, F., Saubion, F.: Using process algebra to
statically analyze incremental propagation graphs. In: OCL ’18, pp. 160-173.
Copenhague, Denmark (2018)

Le Calvar, T., Chhel, F., Jouault, F., Saubion, F.: Toward a Declarative Lan-
guage to Generate Explorable Sets of Models. In: SAC ’19, pp. 1837-1844.
Limassol, Cyprus (2019)

Leblebici, E., Anjorin, A., Schiirr, A., Hildebrandt, S., Rieke, J., Greenyer, J.:
A comparison of incremental triple graph grammar tools. Electronic Commu-
nications of the EASST 67 (2014)

Lecoutre, C.: Constraint Networks: Techniques and Algorithms. Wiley-IEEE
Press (2009)

Ludovico, I., Barriga, A., Rutle, A., Heldal, R.: Model repair with quality-
based reinforcement learning. The Journal of Object Technology 19(2), 17:1
(2020). DOIT 10.5381/j0t.2020.19.2.a17

Macedo, N., Cunha, A., Guimaraes, T.: Exploring scenario exploration. In:
A. Egyed, 1. Schaefer (eds.) Fundamental Approaches to Software Engineering
- 18th International Conference, FASE 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, London,
UK, April 11-18, 2015. Proceedings, Lecture Notes in Computer Science, vol.
9033, pp. 301-315. Springer (2015). DOI 10.1007/978-3-662-46675-9\ _20. URL
https://doi.org/10.1007/978-3-662-46675-9_20

Macedo, N., Jorge, T., Cunha, A.: A feature-based classification of model re-
pair approaches. IEEE Transactions on Software Engineering 43(7), 615-640
(2017). DOI 10.1109/TSE.2016.2620145

Menezes, F., Barahona, P., Codognet, P.: An incremental hierarchical con-
straint solver. In: PPCP, vol. 93, pp. 190-199 (1993)

Monfroy, E., Castro, C.: Basic components for constraint solver cooperations.
In: G.B. Lamont, H. Haddad, G.A. Papadopoulos, B. Panda (eds.) Proceedings

https://doi.org/10.1007/978-3-662-46675-9_20

40

Théo Le Calvar et al.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

of the 2003 ACM Symposium on Applied Computing (SAC), March 9-12, 2003,
Melbourne, FL, USA, pp. 367-374. ACM (2003). DOIT 10.1145/952532.952606

Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.:
MiniZinc: Towards a standard CP modelling language. In: CP ’07, pp. 529-
543. Springer (2007)

Petter, A., Behring, A., Miihlhduser, M.: Solving constraints in model trans-
formations. In: ICMT 2009, pp. 132-147 (2009)

Prud’homme, C., et al.: Choco Documentation. TASC - LS2N CNRS UMR
6241, COSLING S.A.S. (2017). URL http://www.choco-solver.org

Schatz, B., Holzl, F., Lundkvist, T.: Design-space exploration through
constraint-based model-transformation. In: ECBS ’10, pp. 173-182 (2010).
DOI 10.1109/ECBS.2010.25

Semerath, O., Nagy, A.S., Varrd, D.: A graph solver for the automated gener-
ation of consistent domain-specific models. In: ICSE ’18, pp. 969-980. ACM,
New York, NY, USA (2018). DOI 10.1145/3180155.3180186

Semerath, O., Voros, A., Varrd, D.: Iterative and incremental model generation
by logic solvers. In: Fundamental Approaches to Software Engineering, pp. 87—
103 (2016)

Sen, S., Baudry, B., Mottu, J.M.: Automatic Model Generation Strategies for
Model Transformation Testing. In: R.F. Paige (ed.) ICMT 2009, pp. 148-164
(2009)

Sen, S., Baudry, B., Precup, D.: Partial model completion in model driven
engineering using constraint logic programming. In: INAP ’07, p. 59 (2007)

Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: O. Grum-
berg, M. Huth (eds.) Tools and Algorithms for the Construction and Anal-
ysis of Systems, 13th International Conference, TACAS 2007, Held as
Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2007 Braga, Portugal, March 24 - April 1, 2007, Proceed-
ings, Lecture Notes in Computer Science, vol. 4424, pp. 632-647. Springer
(2007). DOI 10.1007/978-3-540-71209-1\-49. URL https://doi.org/10.
1007/978-3-540-71209-1_49

Varrd, D., et al.: Road to a reactive and incremental model transformation
platform: three generations of the VIATRA framework. Software & Systems
Modeling 15(3), 609-629 (2016). DOI 10.1007/s10270-016-0530-4

Wilson, M., Borning, A.: Hierarchical constraint logic programming. The Jour-
nal of Logic Programming 16(3), 277 — 318 (1993). DOI 10.1016/0743-1066(93)
90046-J

http://www.choco-solver.org
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-540-71209-1_49

Title Suppressed Due to Excessive Length 41

45. Zheng, G., Bagheri, H., Rothermel, G., Wang, J.: Platinum: Reusing constraint
solutions in bounded analysis of relational logic. In: H. Wehrheim, J. Cabot
(eds.) Fundamental Approaches to Software Engineering - 23rd International
Conference, FASE 2020, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-
30, 2020, Proceedings, Lecture Notes in Computer Science, vol. 12076, pp.
29-52. Springer (2020). DOI 10.1007/978-3-030-45234-6_2. URL https:
//doi.org/10.1007/978-3-030-45234-6_2

https://doi.org/10.1007/978-3-030-45234-6_2
https://doi.org/10.1007/978-3-030-45234-6_2

	Introduction
	Related Work
	Model Set Exploration: Definitions and Examples
	An Approach for Model Set Exploration
	Generation of Explorable Model Sets
	Implementation Overview
	Evaluation of the Approach
	Discussion
	Conclusion

