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Introducing Force Feedback in Model Predictive Control

Sébastien Kleff1,2, Ewen Dantec2,3, Guilhem Saurel1, Nicolas Mansard2,3, Ludovic Righetti1,4

Abstract— In the literature about model predictive control
(MPC), contact forces are planned rather than controlled.
In this paper, we propose a novel paradigm to incorporate
effort measurements into a predictive controller, hence allowing
to control them by direct measurement feedback. We first
demonstrate why the classical optimal control formulation,
based on position and velocity state feedback, cannot handle
direct feedback on force information. Following previous ap-
proaches in force control, we then propose to augment the
classical formulations with a model of the robot actuation,
which naturally allows to generate online trajectories that
adapt to sensed position, velocity and torques. We propose a
complete implementation of this idea on the upper part of a real
humanoid robot, and show through hardware experiments that
this new formulation incorporating effort feedback outperforms
classical MPC in challenging tasks where physical interaction
with the environment is crucial.

I. INTRODUCTION

Many tasks accomplished by humans in everyday life
require a sense of touch. For instance feeling external forces
is of primal importance when handing over an object, sanding
a rough surface or kneading dough. While the importance
of haptic feedback in robotic manipulation or locomotion
tasks is well acknowledged, recent progress in advanced
control methodology based on optimal control have reduced
our capability to account for an artificial sense of touch.
As a matter of fact, fast numerical optimal control solvers
[1] combined with torque-control capabilities of modern
robots have made nonlinear MPC a mature technology for
manipulation and locomotion, thanks to its ability to react
and reason about the future at the low control level [2], [3].
But such controllers reveal their brittleness during contact
situations: they rely on simplistic contact models with limited
capability to predict future interactions, so the resulting
policies are not meaningful. Indeed, when creating contact
with an object to fulfill a task, deciding what action to
take next should imply some awareness of the force that is
currently being applied on that object and how it may evolve
in the future.

Consequently these controllers require tedious hand-tuning
with no guarantees of success. This fundamental problem re-
mains open for MPC practitioners in robotics: how to control
contact interactions ? A common practice is to discard force
and torques sensory information in the online optimization
and to treat contacts as kinematic constraints. Although this
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hardware experiments.

approach circumvents the need for a potentially complex
model of interactions with a priori unknown environments,
it comes at the price of only being able to control forces in
a feedforward sense. Yet there are solid reasons to believe
that closing the loop on force measurements inside a MPC
framework could increase the robustness and versatility of
robots in contact tasks [4]–[6]. First, the superiority of MPC
over instantaneous control methods in online motion gener-
ation is now well established [7], [8]. Second, it is known
from the field of interaction control that stabilizing a contact
interaction requires to take into account both motion and
forces [9]. Thirdly, modern robots are increasingly equipped
with diverse sensor modalities which can be exploited, in
particular force and torque sensors [10]–[13]. In this paper
we propose to model the actuation as a low-pass filter in
order to allow feedback control on forces.

In the MPC and Trajectory Optimization (TO) literature,
contact forces are planned rather than controlled. For in-
stance, standard approaches in locomotion consist in op-
timizing contact forces as control inputs to the centroidal
dynamics [14], [15], or as auxiliary variables associated with
kinematic constraints of the whole-body dynamics [16], [17].
Other works have also proposed to discover online opti-
mized rigid contacts by solving LCPs [17], [18] or smooth
contact force models that are compatible with standard
TO algorithms [19]. While these works report experimental
evidence of the importance of utilizing predictive models
of contact forces to generate contact-rich behaviors, the
perceived forces are never fed-back and compared against
their predictions, which prevents from controlling physical
interactions.

From a different perspective, the controller proposed in
[20] presents similarities with our approach. It enforces
the actuation’s bandwidth limitation by using a frequency-
dependent cost function. In that sense, our approach resem-
bles the special case of a low-pass shaping function. But
the conceptual difference is that frequency-shaping leaves
the relation between state and control unchanged during
the optimization, while our controller reasons over higher
dimensional dynamics, which enables to naturally derive
control policies that depend on torque measurements. The
same model augmentation is exploited in [21] in order to
derive contact-aware policies for complementarity systems.

In another line of work, some authors have proposed to
combine nonlinear MPC with interaction control. In [22]
the authors propose an output feedback control strategy
combined with path-following MPC in order to track desired
forces and motion under nonlinear constraints. In [23], MPC
is used to achieve a desired impedance while ensuring con-



straints. In [24], indirect adaptive control is used to adjust the
impedance while interacting with an unknown environment.

In this paper we propose a new MPC paradigm that
enables to re-optimize online motions based on measured
joint torques. Our approach is based on an augmented
dynamic model of the robot that includes an actuation
model, and doesn’t require any general model of the contact
forces. We propose a comparative analysis of performance
in simulations and hardware experiments of a sanding task
on two torque-controlled robots. We also draw connections
with the existing literature of MPC and interaction control,
and discuss the implications of this proof-of-concept for
the practice of nonlinear MPC on torque-controlled robots.
Our work shows that a simple actuation model suffices
to treat forces or torques as controlled variables and that
incorporating it into MPC leads to increased performance
compared to the classical approach.

II. BACKGROUND

We start the paper by recalling the classical rigid contact
model and the consequent classical OCP used to control
complex robots in contact. Based on the formulation, we
will then draw a paradox when trying to feedback on force
measurements with such an approach, which we will use to
justify our contribution in the following section.

A. Rigid contact dynamics

A rigid contact is a kinematic constraint acting at the
point of contact between the robot and the environment.
The equations of motion of a fully-actuated robot in rigid
contact with the environment can be derived from the KKT
conditions of the convex optimization problem corresponding
to Gauss’ least constraint principle [25]

min
v̇

1

2
∥v̇ − v̇f∥2M(q) (1a)

s.t. J(q)v̇ + J̇(q)v = 0 (1b)

where q, v ∈ Rn are the vectors of joint positions and
velocities, M(q) ∈ Sn+ is the generalized inertia matrix,
J(q) ∈ R6×n is the contact Jacobian, v̇f = M(q)−1(τ −
h(q, v)) ∈ Rn is the free acceleration, h(q, v) ∈ Rn is
the vector of centrifugal, Coriolis and gravity forces and
τ ∈ Rn is the vector of joint torques. As explained in [26]
the generalized contact forces λ ∈ R6 appear in the KKT
conditions of (1) as the Lagrange multiplier associated with
the rigid contact constraint (1b). The solution to the KKT
system has the form of a constrained dynamical system with
state x ≜ (q, v) and control u ≜ τ

ẋ = f(x, u) (2a)
λ = g(x, u) (2b)

B. Classical MPC formulation

The following OCP is solved online

min
u(.),x(.)

∫ T

0

l(x(t), u(t), λ(t), t)dt+ lT (x(T )) (3)

s.t.



ẋ(t) = f(x(t), u(t))

λ(t) = g(x(t), u(t))

x(0) = x0

x(t) ∈ X
u(t) ∈ U

where x0 is the initial state, l, lT the running and terminal
costs, X ,U represent state and control constraints. We tran-
script this OCP into the following NLP

min
X,U

N−1∑
k=0

Lk(xk, uk, λk) + LN (xN ) (4)

s.t.


xk+1 = F (xk, uk)

λk = G(xk, uk)

x0 = x0

where L,LN , F,G are the discretized cost and dynamics
with sampling step ∆t. The inequality constraints are han-
dled by penalization in the cost. We use the FDDP algorithm
implemented in [1] to solve (4). The algorithm outputs a
locally optimal control policy of which we only apply the
first element to the measured state x̂

π∗
0(x̂) = u∗

0 +K0(x̂− x∗
0) (5)

The feedback gain K0 compensates small deviations around
x∗
0 and can serve to interpolate the control trajectory between

two MPC updates as the control rate usually is higher than
the update rate. For more details the reader can refer to [3].

C. Rigid contacts accept no predictive feedback

In this context, explicit force feedback is not possible
because contact forces and control torques are algebraically
coupled. While λ is used as a prediction, it is possible to
choose a control action u. But if λ is used as a measure-
ment (like the state x), it can be seen from (2b) that u
is completely determined and cannot be chosen. In fact,
λ appears as the output of a nonlinear system in with
instantaneous transfer from the input, since the feedthrough
∂λ
∂u = (JM−1JT )−1JM−1 is non-zero. In this context,
attempting to control λ with some policy u(λ) would create
an algebraic loop as u and λ would influence each other
instantaneously. On way to be able to break this loop is to
introduce delay between force and control input as suggested
in [21]. Another way is to model the contact as non-rigid as
proposed e.g. in [22]. We follow [21] and introduce delay
by modeling the actuation abstractly.

III. FORCE FEEDBACK MPC

In this section, we formulate the augmented dynamics
and OCP. The MPC scheme with force feedback is then
introduced.



A. Augmented dynamics

The actuation dynamics is modeled as low-pass filter
(LPF). The command torque w is filtered into an actuation
torque τ according to

τ̇ = ωc(w − τ) (6)

where ωc > 0 is the cut-off angular frequency in rad s−1,
i.e. ωc = 2πfc where fc is the ordinary cut-off frequency in
Hz. The augmented robot dynamics reads

ẏ :=

q̇v̇
τ̇

 =

 v
M−1(τ − h+ JTλ)

ωc(w − τ)

 (7)

where y denotes the augmented state of the robot including
the classical state x = (q, v) and the filtered torques τ , and
w is the new control input corresponding to the unfiltered
torque, that is torque reference sent to the motor. The
discretized actuation dynamics is an exponential moving
average (first order infinite impulse response filter)

τk+1 = ατk + (1− α)wk (8)

where α is related to cut-off frequency and discretization
step ∆t. Applying a zero-order hold in the Laplace domain
on the CT filter

H(s) =
ωc

s+ ωc
(9)

leads to the exponential formula α = e−2πfc∆t. Note that
fc →∞ corresponds to the case where there is no filtering,
i.e. the actuator is perfect and w goes entirely through
(α→ 0). On the opposite, fc → 0 corresponds to an infinite
filtering effect, i.e. w is fully blocked (α→ 1).

While the actuation model introduced here is simple and
abstract - a single scalar and a linear equation express the
actuation bandwidth and delay - we will show that it led
to good experimental results. In fact, this model is in some
sense generic as it should capture the linear behavior of most
other actuation models. Besides, the proposed method goes
beyond this abstract model, and other actuation models could
be considered, which we will investigate in the future.

B. Augmented OCP

The new optimal control problem yields

min
w(.),y(.)

∫ T

0

l(y(t), w(t), λ(t), t)dt+ lT (y(T ))

s.t.



ẋ(t) = f(x(t), τ(t))

τ̇(t) = ωc(w(t)− τ(t))

λ(t) = g(x(t), τ(t))

y(0) = y0

y(t) ∈ Y
w(t) ∈ W

(10)

Fig. 1: MPC scheme with augmented dynamics. The mea-
sured torque is injected into the MPC and an interpolation
of the optimal torque is sent to the actuators.

which is transcripted using the same method as for (4), using
an explicit integration scheme for the augmented state

min
Y,W

N−1∑
k=0

Lk(yk, wk, λk) + LN (yN ) (11)

s.t.


xk+1 = F (xk, τk)

τk+1 = ατk + (1− α)wk

λk = G(xk, τk)

x0 = x̂

(12)

C. MPC with force feedback

The numerical solver (FDDP [1]) computes optimal state
and control sequences

Y ∗ = {y∗0 , ..., y∗N}
W ∗ = {w∗

0 , ..., w
∗
N−1}

as well as Riccati feedback gains Kk defining a locally
optimal stabilizing policy around each shooting node

πk(ŷ) = w∗
k +Kk(yk − ŷ) (13)

We recall that y = (q, v, τ) gathers all joint measurements
(see Figure 1). At each MPC cycle, the initial state of the
OCP is set to the measured state y0 ← ŷ. We could be
tempted to apply the unfiltered optimal torque w∗

0 but it
seems safer to send a filtered torque that represents our ”best”
available reference (the torque we actually want the actuator
to produce). In fact, if the real actuator is perfectly modeled
by the LPF, it would not make any difference to send one or
the other. But if the LPF model is not accurate, the optimizer
could overestimate the filtering effect and pick an overly
aggressive torque during the optimization.

Considering that we use a filtered torque as the actual
control input, we need to be careful not to send the last
measured torque as the current command to the robot.
Indeed we have τ∗0 ← τ̂ at each MPC cycle (see Figure
1). Furthermore, it may not be satisfactory either to use
the prediction τ∗1 which lies too far in the future if the
OCP sampling rate ∆t is greater than the MPC update
rate ∆tMPC . In fact it makes more sense to use a linear
interpolation of the optimal filtered torque :

τ̃ = τ∗0 + ϵ(τ∗1 − τ∗0 ) (14)

where ϵ = ∆tMPC

∆t .



As shown in [3], the Riccati gains computed by DDP
correspond to the first-order derivatives of the optimal control
with respect to the initial state, i.e.

K0 =
∂w∗

0

∂y0
(15)

Let us split the Riccati gains between a position-velocity
part and a torque part: Kx

0 =
∂w∗

0

∂x0
and Kτ

0 =
∂w∗

0

∂τ0
. We

can express locally optimal feedback gains associated with
control (14), namely K̃ = [K̃x, K̃τ ] in terms of Kx

0 ,K
τ
0

K̃ =
∂τ̃

∂y0
=

∂τ∗0
∂y0

+ ϵ(
∂τ∗1
∂y0
− ∂τ∗0

∂y0
) (16)

where ∂τ∗
0

∂x = 0 and ∂τ∗
0

∂τ = I . Using (8)

K̃x = ϵ(1− α)Kx
0 (17)

K̃τ = I + ϵ(1− α)(Kτ
0 − I) (18)

We can now interpolate (14) at the control rate by using the
following policy

π̃(ŷ) = τ̃ + K̃x(x0 − x̂) + K̃τ (τ0 − τ̂) (19)

IV. SIMULATION ON A MANIPULATOR

In this section we compare the classical MPC and the
force feedback MPC in simulation with the 7-DoF KUKA
LBR iiwa. The task consists in drawing a circle on a flat
horizontal surface (10 cm-radius, 1.5 rad s−1) while exerting
a constant normal force (20N). The contact model used here
is a 1-D contact model that constrains the robot motion only
along the direction normal to the contact plane.

A. Sanding task formulation

1) Classical MPC: The cost function used in OCP (3) is
defined as

l(x, u, λ) = cx∥Ax(x− x0)∥2 + cu∥Au(τ − τg(q))∥2+
cλ∥Aλ(λ− λ̄)∥2 + cR∥AR(R(q)⊖ R̄)∥2+
cp∥Ap(p(q)− p̄(t)∥2 (20)

where p,R are the end-effector frame 3D position
and rotation respectively, τg(q) is the gravity torque,
Ax, Au, Ap, Aλ, AR are activation weight matrices,
cx, cu, cp, cλ, cR are scalar costs weights, ⊖ represents the
difference in SO(3).

2) Force feedback MPC: The cost function used in OCP
(10) is defined as

l(y, w, λ) = cy∥Ay(y − y0)∥2 + climy ∥By(y)∥2+
cλ∥Aλ(λ− λ̄)∥2 + cR∥AR(R(q)⊖ R̄)∥2+
cp∥Ap(p(q)− p̄(t))∥2+
cw∥Aww∥2 + climw ∥Bw(w)∥2 (21)

Ay, Aw are activation weight matrices on the augmented
state and unfiltered torque respectively, cy, climy , cw, c

lim
w are

scalar costs weights, By, Bw are weighted quadratic barriers.

Classical MPC Force feedback MPC
Avg. abs. position err. (m) 0.026 0.021

Avg. abs. force err. (N) 9.45 2.88
Max. abs. force (N) 102.4 34.01

Time not in contact (%) 5.58 0.00

TABLE I: Performance on simulated sanding task with
KUKA iiwa - imperfect actuation, perfect contact model

B. Imperfect actuation and perfect contact model

We used PyBullet as a simulation environment which
doesn’t allow the simulation of low-level actuation. In order
to simulate a sensible torque measurement, we perturb the
desired torque by scaling, noise and delays as follow

τ̂(t) = aτ̃(t− δOCP ) + b+ ητ (22a)
x̂(t) = x̂(t− δSIM ) + ηx (22b)

where ηx ∼ N (0, σx), ητ ∼ N (0, στ ) are Gaussian noise
signals capturing sensing and actuation noise, a, b are scaling
coefficients uniformly drawn from [a, ā] × [b, b̄], t is the
simulation time, δOCP is a delay due to the computation
time of the MPC and δSIM is a delay introduced by e.g.
transmission or sensing. We set a = 0.95, ā = 1.05, b =
−0.1Nm, b̄ = 0.1Nm δOCP = 1ms, δSIM = 2 simulation
cycles.

We tuned each controller separately to achieve the best
performance, to the best of our ability. We found that MPC
parameters were very dependent on the controller. Eventually
we choose the classical MPC frequency as 500Hz with
∆t = 20ms and N = 50 nodes (1 s horizon), while the force
feedback MPC frequency was set to 250Hz with ∆t = 10ms
and N = 100 nodes (1 s horizon), and the cutoff frequency
is set to fc = 5Hz. In both cases, the simulation frequency
is 1 kHz and we allow a maximum of 5 DDP iterations at
each MPC update. The policies used are (5), (19).

We choose as performance metric the average position
tracking error, the average normal force error, the peak
normal force and the percentage of the simulation time spent
not in contact, as reported in Table I. We observe a higher
tracking performance in position and force in the case of the
force feedback MPC. Also the proposed controller results
in a lower maximum force, and maintains contact with the
environment throughout the task.

C. Imperfect actuation and disturbed contact model

In order to assess the benefit of torque feedback, we com-
pare the performances when the contact model is disturbed
and under different actuation models. The contact surface
is tilted about the y-axis by an angle ranging from −20◦
to +20◦, and for 5 different actuation models (i.e. random
pairs of (a, b) in (22)). The results are shown in Figure 2.
The position and force tracking performances are better with
the torque feedback MPC. Moreover, the maximum force is
lower than with classical MPC (about 50N vs 220N for the
20◦ angle), which can be explained by the more frequent
contact breaking (about 40% of the simulation time is spent
not in contact without torque feedback vs less than 10%



(a) Average absolute normal force error (top) and maximum normal
force magnitude (bottom)

(b) 2-norm of the position tracking error in (x, y)

(c) Percentage of the time spent not in contact

Fig. 2: Performance on the sanding task of classical MPC
(blue) and force feedback MPC (red) for a range of tilting
angles averaged over several actuation models. The proposed
controller achieves higher performance in position and force.

for the proposed approach). We also observed a smaller
standard deviation in the position tracking performance over
the actuation models (i.e. when tilting angle is fixed), which
suggests our control scheme is less sensitive to actuation
model uncertainty.

V. EXPERIMENT ON A HUMANOID

We propose now to validate the approach with hardware
experiments of the sanding task on the TALOS humanoid
robot [12] with a perturbed contact model.

A. Experimental setup

We use the same ROS-based real-time control architecture
as [3]. The MPC runs at 100Hz with 3 DDP iterations. The
OCP is solved using the Crocoddyl library [1] and rigid-body
computations are done using Pinocchio [27]. The lower level
is controlled at 2 kHz. The robot model is reduced to a 6-
dimensional model including the torso and right arm. All
other joints are position-controlled in a fixed posture. A soft
material is taped to the robot forearm to damp impacts. The
joint torque measurements are filtered with a moving average
filter.

At the time of the experiments, FT sensors in the wrist
were not available so we used joint torque measurements to
estimate the contact force λ̂

λ̂ = (ĴM̂−1ĴT )−1(γ̂ − ĴM̂−1(τ̂ − ĥ)) (23)

where the spatial acceleration γ̂ is neglected. This estimation
is not accurate enough to legitimate a thorough quantitative
analysis of performance as proposed in the previous section.
Therefore we leave this for future work and restrict ourselves
to a qualitative discussion for now, which is nevertheless
relevant for this proof of concept.

B. Sanding task

The general cost function used for both task is similar the
cost functions (20) and (21) used in simulation, the only dif-
ference being the introduction of time phases: the main task
is divided into sub-tasks with fixed time duration (posture
regularization phase, table reaching phase, contact stabilizing
phase, circle tracking phase, etc.). Hence the cost weights
cp, Ap, cR, cλ and the rigid contact constraint activeness are
made time-varying. Also for each phase switch, the OCP
is updated progressively starting from the last node in the
horizon - it empirically led to more stability than updating
all the nodes at once.

C. Results

The robot must draw 7 cm-radius circles at 1 rad s−1 on
a table. The contact model is assumed to be perfect by the
controller (perfectly horizontal table) but the real table is
tilted by an unknown angle. As in simulation, each controller
was tuned separately to the best of our abilities. We didn’t use
the torque feedback gains of equation (19) as TALOS already
has a low-level torque control loop with fixed feedback gains.

As seen in the supplementary video, the motions generated
by the force feedback MPC are smoother than with the clas-
sical controller. Our controller maintains contact throughout
the whole task while the classical controller often breaks
contact, creates more vibrations with the table. As seen on
Fig. 3a,3b, the force variations have a greater amplitude in
the case of classical MPC. The predictions of the classical
MPC (green) are perfect, which explains the large mismatch
between actual and predicted force. Our controller predicts
forces that match more closely the actual ones thanks to
its force feedback, which explains the observed improved
performance. Fig. 4a,4b show that the circle tracking is
improved with the force feedback MPC, while the classical



(a) Classical MPC

(b) Force feedback MPC

Fig. 3: Normal force during the sanding task with perturbed
contact model. The robot maintains contact despite pertur-
bations with force feedback MPC (bottom plot) whereas it
breaks contact several times with classical MPC (top plot).

controller struggles to track the circle properly because of
frequent contact breaking. We couldn’t achieve a higher
accuracy with the classical MPC as increasing the position
gains led to instability.

VI. CONCLUSION

A. Discussion

1) Contact force measurements: We have used joint
torque sensors as feedback but we further we intend to
use Cartesian force measurements as proposed in [22] and
retrieve the measured torques as τ = Mv̇ + h − JTλ. One
interesting challenge to overcome is the excitation of the
robot structural dynamics and the apparition of coupled in-
stabilities due to the non-collocation of sensor and actuators.
This will pave the way for a more general inclusion of force
sensing in MPC.

2) Riccati feedback gains: TALOS has a low-level torque
control loop with fixed feedback gains. But as Section III-
C shows, our approach naturally provides locally optimal
feedback gains on the torques. Future work therefore includes
an empirical evaluation with these gains to replace other low-
level controllers and investigate how this improves tracking
performance.

(a) Classical MPC

(b) Force feedback MPC

Fig. 4: The position tracking is more accurate with the force
feedback MPC (bottom) than with the classical controller
(top) thanks to proper control of contact interaction through
force and motion feedback.

3) Improved actuation model: A simple LPF already
shows performance improvement compared to classical
MPC, therefore we could expect even better results with a
more sophisticated actuation model.

B. Controlling physical interaction

We draw here a parallel with the existing interaction
control literature. During physical interaction, motion and
forces are coupled through the exchange of mechanical
work [28]. An important consequence is that controlling an
interaction requires to regulate force and motion dynamically.
When the mechanical energy is small enough this coupling
can be neglected but in many interesting cases it cannot (e.g.
deforming an object, scraping, etc.).

With this in mind, impedance control [29] aims at modu-
lating the robot reaction to physical interaction by regulating
the dynamic relation between force and motion. While high
impedance robots have been historically predominant, in part
for technological reasons, low impedance is required for
many tasks [30]. Explicit force feedback is an efficient way
of doing so because it scales the apparent inertia of the
robot [31]. But it can render the system non-passive and
prone to coupled instabilities [28], [32]. Therefore passivity
is classically used as a sufficient criteria for stability [28],
[33]–[35]. This condition limits the magnitude of the force



gains, and thereby the achievable bandwidth [36], [37] which
can be overly conservative: some tasks may require precisely
behaviors that are stable but not necessarily passive (e.g.
deforming an object, grinding).

This observation raises the following question: what par-
ticular impedance should a robot realize in order to execute
a given task? Note that impedance control is agnostic to
this ”inverse” impedance problem. In practice, designing a
suitable impedance is done empirically through expert fine-
tuning - which is tedious and vulnerable to uncertainties.
While we are not claiming to provide a formal solution
to this problem, we like to think of optimal control as a
way to automatize control gains synthesis, e.g. by relating
impedance modulation during contacts to a trade-off between
disturbance rejection and measurement uncertainty [38]. This
suggests that incorporating force in the optimization may
result in an optimized impedance, trading off motion and
force performance to achieve a higher-level objective.

C. Summary and future prospects

We proposed a novel paradigm to exploit force mea-
surements in MPC. By introducing an actuation dynamics
between desired torques and actual torques, we were able
to allow force feedback in optimal control which led to a
significant improvement in performances for contact tasks
compared to classical state-based MPC. We demonstrated
the benefit of this new approach through simulations and
hardware experiments. This proof of concept confirms our
intuition that MPC should tend toward multimodality by
including more sensors. We intend to continue investigating
this subjet in the future.
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