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Abstract: Complex industrial processes invest a lot of money in sensors and automation

devices to monitor and supervise the process in order to guarantee the production quality and

the plant and operators safety. Fault detection is one of the multiple tasks of process monitoring

and it critically depends on the sensors that measure the significant process variables. Neverthe-

less, most of the work on fault detection and diagnosis found in literature place more emphasis

on developing procedures to perform diagnosis given a set of sensors, and less on determining

the actual location of sensors for efficient identification of faults. A methodology based on learn-

ing and classification techniques and on the information quantity measured by the Entropy con-

cept, is proposed in order to address the problem of sensor location for fault identification. The

proposed methodology has been applied to a continuous intensified reactor, the ‘open plate reac-

tor (OPR)’, developed by Alfa Laval and studied at the Laboratory of Chemical Engineering of

Toulouse. The different steps of the methodology are explained through its application to the

carrying out of an exothermic reaction.

Keywords: fault detection; sensor location; learning; classification; information theory;

intensified reactor.

INTRODUCTION

Undetected abnormal process behaviours

have a serious impact on product quality,

safety, productivity, pollution and economical

levels. Hence, chemical industries need effi-

cient automated supervision systems in

order to detect, diagnose and correct such

abnormal behaviours. In the past decades

this area has considerably attracted the atten-

tion of researchers. A variety of approaches

have been proposed for the development of

improved supervisory systems. Most of the

approaches for fault detection and diagnosis

involve, in some way, the comparison of the

observed process behaviour to a reference

model. Thus, the efficiency of the diagnosis

system depends on the number of process

sensors and the selection of the important

process variables to be monitored. Increasing

the number of sensors will increase the infor-

mation that can be obtained from the process,

but it will also increase the induced instrumen-

tation cost associated with the process

measurement system. Therefore, there is a

need to design a reliable fault-monitoring

system for the safe operation of typical indus-

trial process, allowing a reduction of the

instrumentation costs.

The problem of optimal sensor location is of

crucial importance, as all the fault-diagnosis

techniques depend on a given set of

observed fault symptoms. Nevertheless, the

emphasis of most of the work on fault diagno-

sis has been directed towards procedures to

perform diagnosis given a set of sensors

rather than on performing the actual selection

of sensors for efficient fault identification.

Some researchers have addressed the pro-

blem of sensor location for fault diagnosis.

Fault-trees with given fault probabilities were

used by (Lambert, 1977) to analyse the

location of sensors depending on the effect

of basic units (failure origins) on the process



variables. This work was the first based on a diagnosis obser-

vability criterion for the design of sensor location. Ali and

Narasimhan (1993) extended the observability measurement

for sensor network design considering the reliability of linear

processes. Chang et al. (1993) developed an optimal strat-

egy for the design of model-based fault-monitoring systems

using the concepts of fault observability and fault resolution.

They proposed a trial-and-error algorithm that uses a diagno-

sis efficiency table. Raghuraj et al. (1999) proposed algor-

ithms to solve the problem of sensor location based on

various fault diagnosis observability and reliability criteria. In

their work use is made of a digraph that represents the

cause-effect behaviour of the process to identify optimal

sensor locations.

In the framework of nonlinear systems Watanabe et al.

(1985) designed a reduced-order time-varying linear obser-

ver for full state estimation. Fault detection and diagnosis

are achieved, without any statistical test, by inspection of

the state estimates and/or several observer residuals. The
optimum sensor location problem is then solved by an

exhaustive search for minimizing the observation cost associ-

ated to each set of measurements. In the context of structural

dynamics Worden and Burrows (2001) presented several

methods such as: an heuristic method based on iterative

insertion/deletion of sensors, genetic algorithms and simu-

lated annealing, for determining sensor distributions for fault

diagnosis. Recently, Yan (2004) presented a method of

sensor placement based on diagnosability analysis and the

use of analytical redundancy relations (ARR). The evoked

approaches are in general either model-based approaches

or depend on the mathematical equations in order to rep-

resent the process.

In this paper, we address the problem of sensor location for

fault detection and diagnosis in complex industrial processes

where a mathematical or structural model is not always avail-

able or suitable. We propose a methodology based on two

principal steps. The first step consists of using classification

techniques in order to identify all the observable faults with

all the possible measurable process variables. Then, accord-

ing to the characteristics of the identified classes, the infor-

mation entropy criterion is used to select a minimum

number of sensors which allows the resolution of a maximum

number of faults under single-fault and multiple-fault assump-

tions. The overall methodology will be presented in the follow-

ing section. Then, the obtained results of its application to a

new concept of intensification reactors, the ‘open plate reac-

tor (OPR)’, developed by Alfa Laval and studied at the Lab-

oratory of Chemical Engineering of Toulouse (Prat et al.,

2005) will be detailed.

SENSOR PLACEMENT SUPPORT TOOL

The principal objective of this work is the design of an

efficient monitoring system that helps process operators to

identify faults in an efficient and fast manner. The basis of

any fault detection and diagnosis technique relies on the gen-

eration of a priori knowledge about the process faults. That is,

the characterization of all the known possible faults has to be

defined clearly. Once the process faults are characterized,

the next problem is the observation of these faults. For this,

the observability and the fault resolution conditions can be

introduced (Tanaka, 1989). The concept of observability

refers to the condition that every fault identified on a process

must be observed by at least one sensor. This ensures that

no fault (at least those known a priori) becomes unobserved

(or undetected) given a set of sensors. The resolution con-

cept refers to the ability of identifying the exact fault that

has occurred. Given the constraints on measurement

points, sensors must be placed in such a way that every

fault is resolved to the maximum possible extent.

Learning and classification techniques have been used as

a basis for the proposed sensor-location methodology.

Indeed, these techniques allow the identification and the

characterisation of all possible faults in order to establish

which features (measurable process variables) provide the

most relevant information to detect each fault. In this section

some of the techniques most commonly used to define the

process faults will be briefly reviewed. Some of the con-

cepts of Shannon’s information theory used in the algorithm

for the selection of the most relevant sensors will also be

described.

Learning and Classification Techniques

The principal aim of classification techniques when used

for fault detection is to perform an automatic classification

of elements, according to their resemblance to a reference

class or prototype. That is, to decide to which class an

observed element resembles the most. For this, a classifier

must be elaborated allowing the assignment of an observed

element to one of the existing classes. The classifier is gen-

erally designed using a training set made of the elements for

which knowledge of the membership to the various classes

may or may not be given. Each element is represented as

a vector x [ Q , RP, xT ¼ ½x1, x2, . . . , xP� where the dimen-

sion P of the space Q (description space), is the number of

attributes (available measurements) describing each

element. These attributes are called descriptors.

The next section gives a brief presentation of the main

approaches that we consider convenient for the attempted

result.

Clustering methods endeavour to find natural groups of

data, according to the similarities among the elements. Typi-

cally the similarity concept is defined as the distance between

a data vector and the cluster prototype (centre). The charac-

teristics of the prototypes are not usually known beforehand;

they are chosen randomly and updated at the same time as

the partitioning of the data is made. The K-means (Jain et al.,

1999) and Fuzzy C-means (FCM) (Bezdek, 1981) algorithms

are based on an iterative optimisation of an objective function

(e.g., variability within clusters).

JFCM (X , U, V) ¼
X

K

k¼1

X

N

i¼1

(mki)
m D2

ki (1)

Equation (1) represents the objective function for the FCM

algorithm where: X ¼ ½x
j
i � is the N � P matrix representing

the set of elements, U ¼ [mki] is the fuzzy partition matrix

with K � N dimensions which defines the membership

degree of each element xi to each class Ck, where mki [

½0, 1� and V ¼ ½v1, v2, . . . , vK� is the matrix of cluster proto-

types (centres). m [ (1, 1) is a weighting exponent that

determines the fuzziness of the resulting clusters, commonly

chosen to be m ¼ 2. The only difference with the K-means



functional is the (mkiA)
m term, since the K-means algorithm

gives a crisp assignment of the elements.

Dki
2 determines the distance measured between the element

xi and the prototype vk. For the K-means and FCM algorithms

the Euclidean distance is used leading to spherical clusters.

The Gustafson and Kessel (1979) algorithm replaces the

Euclidean distance by the Mahalanobis distance, which pro-

vides ellipsoidal clusters with different orientations and takes

into account the correlations of the data points.

A drawback of these techniques is that they are sensitive to

the selection of the initial partition since it is made in a

random way. Moreover, the number of clusters must be

given initially.

Artificial neural networks (ANN)
ANNs refer to a complex nonlinear modelling technique

initially based on a human’s neuron model. A neural net is

used to predict outputs from a set of inputs by taking linear

combinations of the inputs and then making nonlinear trans-

formations of the linear combinations using an activation

function. Before being used as classifier, a learning step con-

sisting of the determination of the network parameters has to

be performed. The most commonly used networks which per-

form with a supervised learning mode (i.e., when the

measurements in the training data set are accompanied by

labels indicating the target classes where they belong), are

the Perceptron, the multi layer perceptron (MLP) (Mange

and Tomassini, 1998), and the radial basis functions

(Looney, 1997). In the case of unsupervised learning (i.e.,

when the measurements do not have explicitly known class

labels), the network adapts itself purely in response to its

inputs and the resulting classification is examined through

global criteria. Some networks are able to model the partition

space, usually in terms of a probability density function, or by

representing the data in terms of cluster centres and widths.

This type of network includes the Gaussian mixture models,

the Kohonen networks and most recently the cluster detec-

tion and labelling (CDL) network (Eltoft and deFigueiredo,

1998; Lurette and Lecoeuche, 2003). After the learning

phase, the network is ready and it can then be used to gen-

erate predictions or to classify new data into the existing

classes.

Neural nets perform very well in complex, non-linear

domains where it becomes more and more difficult to use

classical techniques. They also perform well in noisy

domains. One of the drawbacks in using ANNs is that the

learning step process is generally very slow. Additionally,

ANNs do not provide explicit knowledge representation in

the form of rules, or in some other easily interpretable

forms. The model is implicit, hidden in the network’s structure

and the optimised weights attached to the nodes.

Principal component analysis (PCA)
PCA is a commonly used multivariate statistical technique

that acts in an unsupervised manner (Jackson, 1991; Jolliffe,

1986). They are powerful tools, able to compress data and to

reduce their dimensionality so that the essential information

is maintained and is easier to analyse than in the original

dataset. PCA can be used to compute the principal directions

of variability in data, finding an alternative set of axes from

which these data can be represented. It indicates along

which axis there is the most variation; axes are orthogonal

to each other. In this way the original set of correlated

variables are transformed into a smaller set of uncorrelated

variables. The new uncorrelated variables are linear combi-

nations of the original variables. These principal components

represent the most important directions of variability in a

dataset. When plotted, the principal components may

reveal natural clustering in the data samples.

PCA have been widely used in the process industries

(continuous and batch) for process monitoring, fault detection

and diagnosis (Ku et al., 1995; Dunia and Qin, 1998; Singhal

and Seborg, 2002).

LAMDA (learning algorithm for multivariate
data analysis)
LAMDA is a fuzzy methodology of conceptual clustering

and classification. It is based on finding the global member-

ship degree of an individual to an existing class, considering

all the contributions of each of its attributes. Attributes can be

numeric, symbolic or mixed (it is a real advantage compared

to other fuzzy classifiers which can only handle numeric

descriptors). A numeric component of x is the normalized

value of the attribute, on the contrary if the component is a

symbolic descriptor its value is called a ‘modality’. The contri-

bution of each descriptor is called the marginal adequacy

degree (MAD). When the descriptor is a numerical type, the

MAD is calculated by selecting one of the different possible

functions (Aguado and Aguilar-Martin, 1999):

‘Fuzzy’ extension of the binomial function given by

MAD½xjjrkj� ¼ r
~xj
kj (1ÿ rkj)

(1ÿ ~xj) (2)

where ~x ¼ (x ÿmin x)=(max x ÿmin x) and rkj corresponds
to the mean value for parameter (descriptor) j characterizing

class k.

Centred functions: if a prototype x̃ ¼ m has to be respected,

then a parameter smeasuring the proximity to the prototype is

introduced so that 8x = m: MAD½mjm, s� � MAD½xjm, s� and
for s1 � s2 8x = m we have the ordered adequacies

MAD½xjm, s2� � MAD½xjm, s1�. A typical function satisfying

this condition is the so called Gaussian membership:

MAD½xjjmkj, skj� ¼ e (1=2)( ~xjÿmkj=skj)
2

(3)

When the descriptor is qualitative, the observed frequency of

its attribute modality is used to evaluate the MAD. Marginal

adequacies are combined using fuzzy logic connectives

(Zadeh, 1978) as aggregation operators in order to obtain

the global adequacy degree (GAD) of an individual to a

class (Aguilar et al., 1982).

Fuzzy logic connectives are fuzzy versions of the binary

logic operators, particularly, intersection (t-norm) and union

(t-conorm). The aggregation function (Piera and Aguilar,

1991) is a linear interpolation between t-norm (g) and

t-conorm (b) as shown in equation (4), where the parameter

a, 0 � a � 1, is called exigency.

GAD(xjC) ¼ a � g ½MAD(x1jC), . . . , MAD(xPjC)�

þ (1ÿ a) � b ½MAD(x1jC), . . . , MAD(xPjC)�
(4)



The most commonly used fuzzy logic operators are:

g (a, b) ¼ a:b (t-norm) and b (a, b)

¼ aþ bÿ a:b (t-conorm)

g (a, b) ¼ min (a, b )(t-norm) and b (a, b)

¼ max (a, b)(t-conorm)

An element is assigned to the class with the maximum GAD

(see Figure 1). To avoid the assignment of a not very repre-

sentative element to a class, that is an element with a

small membership, a minimum global adequacy threshold

is employed, called the non-informative class (NIC).

If passive recognition is desired, whenever an element is

assigned to the NIC, it is considered unrecognized, whereas

if self-learning is allowed (Rakoto-Ravalontsalama and

Aguilar-Martin, 1992), a new class is created and initialized

with that element and the NIC parameters. On the contrary,

if the element is assigned to an existing class and self-

learning is selected, the parameters of this class are updated

with the values of the element. For the Gaussian membership

function, equations (5) and (6) illustrate how the new

parameters for class k are calculated, where T corresponds

to the number of assigned elements in the class.

m̂kj ¼ mkj þ
1

T þ 1
( ~xj ÿmkj) (5)

ŝ2
kj ¼ s2

kj þ
1

T þ 1
(x̃j ÿ m̂kj)

2 ÿ s2
kj

h i

(6)

By this mechanism (self-learning) it is possible either to start

a classification without any prior information, having only the

NIC as an existing class when the first element is processed,

or to initialize the procedure by introducing pre-assigned

elements given by the process expert. Moreover it is also

possible to keep active the learning ability after a previous

phase of directed learning (Kempowsky et al., 2003). The

general principle of the algorithm is illustrated in Figure 2.

A procedure has been added to map classes to states: one

state can be associated to several classes (Kempowsky,

2004). This characteristic enables one to synthesise the infor-

mation given to the operator. The number of generated

classes can be modified through a variability criterion. As it

will be seen subsequently the generation of numerous

classes can be interesting when specific short behaviour

has to be identified (for example the alarm state preceding

the established fault).

Sensor Selection Criteria

The Shannon’s information theory and
entropy concept
Information theory was proposed by Claude E. Shannon in

1948 (Shannon, 1948), it belongs to the probability field in

which a new mathematical model of communication systems

is proposed. A postulate of this theory is that information can

be treated as a measurable physical quantity, such as density

or mass. In this theory, Shannon showed that it was possible

to quantify the capacity of information introducing a numerical

value via the ‘entropy’ concept.

The concept of entropy is referred within two fields: physics

and information theory. In physics, the entropy is a measure-

ment of the disorder of energy and it increases naturally. The

disorder of a system is the number of states in which the

system can be. In information theory, the entropy is the quan-

tity that measures the information contained in a data flow. In

this work, the concepts of the two approaches are used to

calculate the entropy, i.e., the entropy depends on the

number of states in the system, and of the probability with

which an element of the system belongs to each state.

Figure 1. LAMDA algorithm: marginal and adequacies.



Shannon derived his definition of entropy (H) from the

following assumptions:

(1) H should be continuous (proportional) in pi, i.e., changing

the value of one of the probabilities by a very small

amount should only change the value of H by a small

amount.

(2) If all pi are equal, pi ¼ 1/n, then H should be a monotonic

increasing function of n. With equally likely events there is

more choice, or uncertainty, than when one event is more

probable.

(3) If a choice has to be made in two successive steps, then,

the final H should be the weighted sum of the entropies

of the two steps.

The only H satisfying the three above assumptions is of the

form:

H ¼ ÿK
X

n

i¼1

pi log pi (7)

where K is a constant chosen according to measurement

units. Quantities of the form H ¼ ÿ
Pn

i¼1 pi log pi play a central

role in information theory as measures of information, choice

and uncertainty and H is named the entropy of the set of

probabilities p1, . . . , pn.

The entropy in the case of two events with probabilities p

and q ¼ 12p, is plotted in Figure 3 as a function of p.

The quantity H has a number of interesting properties

which substantiate it as a reasonable measure of choices

or information.

(1) H ¼ 0 if all the pi but one are zero, this one having the

value unity. Thus only when we are certain of the

outcome does H vanish. Otherwise H is positive.

(2) For a given n, H is maximum and equal to log n when all

pi are equal (i.e., 1/n). This is also intuitively the most

uncertain situation.

Information gain
The information gain in the context of diagnosis can be

seen as a measurement of the quality of the descriptor for

fault discrimination. According to the work of Fernandez

Pellon-Zambrano (2002), information gain is the measure

which makes possible the quantification of information pro-

vided by a descriptor dj allowing, therefore, the solution of

the problem of selecting the most representative features.

As presented in equation (8), the information gain is defined

as the difference between Shannon’s maximum entropy

(Hmax) and the value of the entropy for the descriptor [H(C/
dj)]. The maximum entropy corresponds indeed to the case

where the element has the same probability of belonging to

any class (pi ¼ (1=K) ) Hmax ¼ logK; K ¼ number of

classes). The entropy is then interpreted as the classification

error of an element to the class. The information gain can be

then considered as the inverse of the entropy, i.e., the maxi-

mum entropy corresponds to the minimum of information

(total uncertainty) and the smaller the entropy is the greater

the information will be

IG ¼ Hmax ÿ H Cjdj
ÿ �

(8)

where IG � 0, Hmax ¼ log K, H(Cjdj) ¼ 2Sk¼1
K (pk) log (pk)

and pk is the probability that an element belongs to the

class Ck (see Figure 4).

Figure 2. LAMDA algorithm principle: learning and recognition.

Figure 3. Entropy in the case of two possible events with probabilities
p and (12 p).

Figure 4. Information gain.



A relative information gain may also be defined as

IGR ¼
IG

Hmax

� 100% (9)

The role of a pertinent descriptor is to maximize the gain to

get a better contribution in the detection of the fault.

Design Steps of the Sensor Placement
Support Tool

Figure 5 shows a flowchart with the different stages

proceeded by the sensor placement support tool. The

four main stages are described next.

Fault identification using learning and
classification techniques
The first stage enables to identify and characterize all the

known process faults or those that can be simulated. In this

work, the classification technique used was LAMDA (soft-

ware tool SALSA) but the developed methodology is generic

and can thus implement any classification technique that

gives as a result a matrix binding the classes to the various

descriptors and therefore providing information of each

class characterizing a process situation. In this ‘profile’

matrix each row represents a failure of the process and the

columns represent all the available descriptors. From the

class profile, the contribution of each descriptor to a given

situation (class) can then be determined.

Sensor selection
In this step, the entropy and the information gain concepts

have been used as means of information measures to deter-

mine the quality of each descriptor for the discrimination of

faults, i.e., to choose consequently those enabling the

detection of all the failures and providing thereafter, relevant

information to establish a diagnosis. The proposed approach

consists of calculating the ‘probabilistic entropy’ and the

resulting information gain of each descriptor using a pro-

cedure by pairs of classes based on the class profile

matrix. Each pair is made up of the normal operation class

and a failure or abnormal situation class. The descriptor

with the greatest relative information gain will be selected

as the most relevant to identify the given process fault.

The total number of formed pairs (Z) is equal to the number

of process failures present in the learning dataset. Each pair

is described by taking the normal operation class parameters

as well as those of a given fault from the profile matrix.

Table 1 shows the representation of each pair of classes,

where Akj indicates the normalized mean value for descriptor

j characterizing class k. In the case of LAMDA algorithm Akj is

represented by rkj for the fuzzy binomial function or by mkj for

the Gaussian function. To better understand this procedure,

the estimation of the probabilistic entropy for a descriptor in

each pair of classes will be detailed:

If a descriptor dj has the same value (or more generally a

MAD) for the normal class and the failure class (i.e., there

is no change in the class profile following the occurrence of

a failure for this descriptor), then, since a probabilistic

space is considered it will have a normalized value of 0.5,

which implies that it will have a maximum entropy value

(Log2) (see Figure 3) and a null information gain. On the

other hand, if a given descriptor has very different values

for the normal class and the failure class (ex. 0 or 1), it will

have a value of minimal entropy and in consequence a maxi-

mum gain of information. This means that with this descriptor

the failure can be observed. Indeed, this descriptor will make

it possible to more easily discriminate between the normal

operation and the failure.

The procedure by pairs is carried out according to the

following steps:

Step 1: To apply the concept of entropy, we must handle a

probabilistic space because the sum of the columns on

Figure 5. Stages of the methodology for sensor location and fault diagnosis of chemical processes.



Table 1: Sk¼1
2 Akj is generally different from unity. In order to fit

the probabilistic case, each element Akj is normalized with

respect to the total sum of the considered descriptor mean

values on all the classes:

~Akj ¼
Akj

S2
k¼1Akj

(10)

where j identifies the descriptor and k the class.

Step 2: The maximum entropy (Hmax) of the resulting

classification (with two classes) is

Hmax ¼ logK ; K ¼ 2 ) Hmax ¼ log 2 (11)

Step 3: The probabilistic entropy to each descriptor is then

calculated in the following way:

H( ~Aj) ¼ ÿ
X

2

k¼1

~Akj log ~Akj (12)

Step 4: The information gain is evaluated for each

descriptor. In this way, it is possible to quantify the information

provided by a specific descriptor.

IG ¼ Hmax ÿ H( ~Aj) (13)

Step 5: Finally, the relative gain of a descriptor is obtained

using the following relation:

IG rel ¼
IG

Hmax

� 100%

The most relevant or representative descriptor (sensor) for a

given fault is that which offers the highest relative gain. This

procedure is repeated for all the ‘normal-fault’ pairs. A flow

chart of the procedure by pairs of classes is given in

Figure 6. The advantage of this procedure is that the most

relevant descriptors for each failure can be directly obtained,

since the analysis for each pair is made independently.

Generation of a behavioural pattern of the process
The finality of this section is to obtain a behavioural model

of the process that will be used as a reference for the detec-

tion of abnormal situations. The aim is to design a classifier

characterized by a set of classes which allows the identifi-

cation of the different process situations (normal operation

and failures). The behavioural model is built up offline using

the dataset from the previously selected descriptors (process

variables) and the LAMDA learning and classification algor-

ithm through the SALSA software tool. The historical dataset

for the design of the behavioural model is obtained from all

the known available scenarios. Nevertheless, it should be

remarked that the behavioural model is far from being

complete because of the difficulty in apprehending the

exhaustiveness of the faults in a complex process. Moreover,

two or more combined faults may induce symptoms that none

of them, taken separately could produce (synergy). In

addition, progressively with the arrival of new observations,

new situations can appear in the initial structure. For this

reason, it is necessary that the monitoring system presents

an adaptive character at the moment of identifying new

situations. A proposition of how these new situations, pre-

sented as unrecognised observations, could be considered

to complete the behavioural model has been described in

Kempowsky et al. (2004). Briefly, the principle is to perform

a new learning stage considering only the unrecognised

observations and preserving the previously validated

classes. This has been called ‘active supervised learning’.

Online recognition and validation
This last part is devoted to the online recognition of faults

whose appearance and amplitude are not previously

known. This is done to validate the behavioural model as

well as the relevance of the choice of the selected sensors.

Once the behavioural model is built, online situation

assessment can be performed. This consists of a process

tracking phase, which aim is to associate every new obser-

vation to one of the possible process situations recorded in

the behavioural model.

PROCESS DESCRIPTION: ‘OPEN PLATE
REACTOR---OPR·

The methodology of sensor placement has been applied to

an intensified reactor developed by Alfa Laval. It is based on

heat exchangers technology and combines intensified mixing

and reaction with enhanced heat transfer into a single device.

This enables the heat of reaction to be removed as rapidly as

it is generated. Consequently such a reactor offers many

benefits, including improved safety, better product quality,

faster throughput and improved energy-efficiency. This allows

Table 1. Description of a normal-fault pair of classes.

Class name Descriptor 1 Descriptor 2 . . . Descriptor P

Class 1: normal state A11 A12 . . . A1P

Class 2: fault A21 A22 . . . A2P

Figure 6. Sensor selection: probabilistic procedure by pairs of
classes.



performing complex chemical reactions with a very accurate

thermal control (Haugwitz and Hagander, 2004, 2005).

The OPR is a plate heat exchanger of new design,

where one side is used as a chemical continuous reactor

and through the other side a cooling/heating thermal fluid

flows, the so called ‘utility flow’. The primary reactant

R1 flows from the inlet to the outlet of the reactor.

The secondary reactant R2 can then be injected along

the reactor side with R1 [Figure 7(a)]. Depending on

the reaction, there is a need for the utility flow to cool

(exothermic reaction) or heat (endothermic reaction) the

reactor side. Figure 7(b) displays the schematic represen-

tation of the pilot plant; two feeding loops ensure the

introduction of the reactants in the reactor at ambient

temperature. Each loop is composed of a pump, a valve

(V) and a flow rate measurement system (F).

Since the simulated faults will concern the feed (compo-

sition, temperature and flow of the primary and the second-

ary reactant) it is considered that these information are not

measured online (otherwise the diagnosis of these faults

would be trivial). Similarly, it is considered that measure-

ments of flow and temperature of the utility are not available

for the same reason. Most of the available sensors are

internal temperature sensors at different locations of the

reactor (Table 2). It is important to indicate that no online

composition measurement is available. The absence of con-

centration measurement is typical in industry especially on

chemical units involving more than a binary mixture. The

cost of online multi-component composition analysis (when

it exists) is still really prohibitive. One of the main objectives

of this work is to evaluate how a good placement of rustic

sensors (such as temperature sensors) can help to

diagnose a drift in the reactant inlet compositions affecting

the production quality without performing any direct concen-

tration measurement.

A simulation framework has been developed in order to

asses the feasibility and potentialities of new reactions car-

ried out in this reactor (Elgue et al., 2005). The dynamic for-

mulation of the model leads to a hybrid differential and

algebraic equations (DAE) system. The solution of this

system is obtained by means of a differential and algebraic

equation solver: DISCo. The peculiar characteristics of

DISCo (operator sparse option, event management pro-

cedure, automatic initialization procedure) allow the large

dynamic model (integrating up to more than 10 000

equations) to be fast and reliably solved, but also dynamics

such as start-up procedures or disturbances to be taken

into account.

Figure 7. Open plate reactor: (a) Experimental setup: the OPR (right side) and the utility system (left side), (b) Schematic representation with the
cells index.



Case Study: The Thiosulphate Reaction

Very interesting results have been obtained from the study

of the oxidation of sodium thiosulphate Na2S2O3 (R1) by

hydrogen peroxide H2O2 (R2). In a homogeneous medium,

this reaction presents the following characteristics: its stoichi-

ometry and kinetic are known, it is irreversible, fast and highly

exothermic.

The reaction scheme is as follows:

2Na2S2O3 þ 4H2O2 ! Na2S3O6 þ Na2SO4

þ 4H2O (15)

where H2O2 is used in excess to restrain any possible side

reaction.

The strong exothermicity of the thiosulphate reaction

produces many safety constraints and therefore it requires

a permanent cooling by the utility system.

Results
Failures in the OPR for the thiosulphate reaction were

simulated in the form of disturbances on the main variables:

temperatures and flows of the primary and secondary reac-

tants and of the utility system, as well as on the compositions

of the primary and secondary reactants. A shutdown of the

utility system was also included in the training dataset.

Figure 8 illustrates the eight process variables on which the

17 faults were induced.

One can notice that among the simulated disturbances and

faults, the major part concerns faults on the feed (compo-

sition, flow and temperature). Among the possible sensors

(Table 2) let us recall that none of them give an information

on the feed or on the utility inlet and there is no product com-

position measurement. So, one of the objectives of the sensor

selection procedure is to determine the best place of common

sensors (mainly temperature sensors) to diagnose a fault in

the feed composition, which means also a fault in the product

quality without composition measurement.

Selected sensors
The identification and characterization of the 17 faults was

carried out using the self-learning procedure proposed by the

classification technique LAMDA. From the profile of the

resulting classes the entropy and information gain of each

descriptor for each fault were calculated. In Table 3 the

Table 2. Available sensor measurements on the OPR considered for the selection procedure.

Sensor name Variable description Position Sensor name Variable description Position

TP_B1_1 proc. fluid temp. block 1 cell 1 3 TP_B2_ 7 proc. fluid temp. block 2 cell 27 59
TP_B1_2 proc. fluid temp. block 1 cell 2 4 TP_B3_1 proc. fluid temp. block 3 cell 1 63
TP_B1_3 proc. fluid temp. block 1 cell 3 5 TP_B3_5 proc. fluid temp. block 3 cell 5 67
TP_B1_4 proc. fluid temp. block 1 cell 4 6 TP_B3_10 proc. fluid temp. block 3 cell 10 72
TP_B1_5 proc. fluid temp. block 1 cell 5 7 TP_B3_15 proc. fluid temp. block 3 cell 15 77
TP_B1_10 proc. fluid temp. block 1 cell 10 8 TP_B3_20 proc. fluid temp. block 3 cell 20 82
TP_B1_15 proc. fluid temp. block 1 cell 15 17 TP_B3_27 proc. fluid temp. block 3 cell 27 89
TP_B1_20 proc. fluid temp. block 1 cell 20 22 FP_OUT Process fluid output flow 91
TP_B1_27 proc. fluid temp. block 1 cell 27 29 PP_IN_1 primary reactant pressure (inlet) 1
TP_B2_1 proc. fluid temp. block 2 cell 1 33 PP_IN_2 secondary reactant pressure (inlet) 3
TP_B2_5 proc. fluid temp. block 2 cell 5 37 PP_OUT Process fluid output pressure 91
TP_B2_10 proc. fluid temp. block 2 cell 10 42 TU_B1_OU Utility fluid temp. block 1 30
TP_B2_15 proc. fluid temp. block 2 cell 15 47 TU _OUT Utility fluid temp. (outlet) 90
TP_B2_20 proc. fluid temp. block 2 cell 20 52

Figure 8. Simulated disturbances for the thiosulphate reaction.



sensors issued from the probabilistic entropy procedure are

presented. The selection criterion was to choose the descrip-

tor with the greatest information gain, as the most significant

for the detection of a given fault. According to the results, nine

different descriptors were selected as the most relevant ones.

The internal temperature sensors in the first two blocks are

the most pertinent measurements. Indeed, the reaction is

highly exothermic and since there is no temperature control

within the reactor, the evolutions of the internal temperatures

distributed along the reactor provide significant information:

the faster the reaction is, more heat is produced, and conse-

quently resulting to an increase of the temperature of the

process fluid which will in return accelerate the reaction.

Moreover, finding process fluid temperature measurements

at the outlet of blocks 1 and 2 in addition to temperature

sensors in the first blocks is coherent with this exothermicity

phenomenon. It should be noted also that the first block

contains four of the nine selected sensors.

Design of the behavioural model for the
thiosulphate reaction
The next stage is to build the behaviour pattern for the thio-

sulphate reaction using as a basis the selected sensors. This

behavioural model must include the classes which define the

faults and also classes corresponding to alarm situations so

that it is able to anticipate the detection of faults. Figure 9

shows the results for the identification of the faults and

alarms with nine descriptors. A great number of classes

were generated (61 in total) since an unsupervised learning

step has been deliberately performed with the objective to

identify all the alarm states, i.e., the state preceding an

established fault. Nevertheless, as previously mentioned a

procedure has been developed which enables the mapping

of several classes into a single state [from the representation

given in Figure 9(b) to the representation given in

Figure 9(c)]. The nine selected sensors allow the observation

of all the simulated disturbances, even though there are

some false alarms with respect to the observation of a

change in the composition of the secondary reactant

(states 5 and 19). This is not surprising since a change on

the composition of the secondary reactant does not induce

a very significant variation on the observed variables [see

Figure 9(a) interval [1700, 1900]].

In Table 4 the description of the behavioural model is

presented. The table includes the name of the process situ-

ation (normal or fault), the set of classes associated to

each functional state and the number of the associated

state shown in Figure 9(c). For every set of classes related

to a failure, pre-fault and post-fault situations were identified;

they represent the states of alarm before and after the fault.

For example, for the fault associated with a decrease in the

utility feeding flow ‘#Utility_Flow (inlet)’, class 2 corresponds

to the failure when it is perfectly established, while, class 39

represents the instant when the fault starts to manifest, and

classes 19 and 55 correspond to the recovery of the process

towards the normal state. Nevertheless, for some faults it

was not possible to identify a pre-fault situation since the

disturbances were not induced progressively. Another

characteristic in this model is the existence of state 16

which represents a recovery from a decrease in the utility

flow (#Utility_Flow_Recovery) and is constituted of classes

19 and 55.

Validation of the behavioural model: recognition of
unknown faults
The validation of this methodology was carried out by

applying a recognition procedure to the elements of a new

dataset. The objective is to assign each new element to

one of the significant states of the behavioural model pre-

viously designed. The type of simulated faults constituting

the new dataset were not specified, the only information

available was the number of disturbances and their duration

(starting and ending time) see Table 5.

Figure 10 displays the results obtained during the recog-

nition phase for the unknown faults. Using the process

description given in Table 4 the new scenario was inter-

preted. For example, Fault 2 was assigned to class 8 (state

7) which corresponds to an increase of the primary reactant

composition. Faults 1 and 4 were identified as the alarm-

state of a decrease in the utility flow (class 39–state 1). A

similar case can be noticed for Faults 3 and 6 which corre-

spond to the alarm of an increase of the utility temperature

(class 58–state 2). The classifier has also assigned class

Table 3. Thiosulphate reaction: selected sensors.

Class pairs
Selected sensors
(descriptor label) Sensor description

Normal-# Utility_Flow (inlet) TP_B2_10 Proc. fluid temperature block 2 cell 10
Normal-" Utility_Flow (inlet) TP_B2_10 Proc. fluid temperature block 2 cell 10
Normal-# Utility_Temp (inlet) TU_B1_OU Utility fluid temperature block 1
Normal-" Secondary_Composition TP_B1_10 Proc. fluid temperature block 1 cell 10
Normal-" Utility_Temp (inlet) TP_B2_20 Proc. fluid temperature block 2 cell 20
Normal-# Primary_React_Flow FP_OUT Process fluid output flow
Normal-" Primary_Composition TP_B1_10 Proc. fluid temperature block 1 cell 10
Normal-" Primary_React_Flow PP_OUT Process fluid output pressure
Normal-# Primary_Composition TP_B1_10 Proc. fluid temperature block 1 cell 10
Normal-# Primary_React_Temp TP_B1_1 Proc. fluid temperature block 1 cell 1
Normal-" Primary_React_Temp TP_B1_4 Proc. fluid temperature block 1 cell 4
Normal-# Secondary_React_Flow TP_B1_10 Proc. fluid temperature block 1 cell 10
Normal-" Secondary_React_Flow TP_B1_10 Proc. fluid temperature block 1 cell 10
Normal-" Secondary_React_Temp TP_B1_5 Proc. fluid temperature block 1 cell 5
Normal-Utility_Flow_Stop TP_B1_4 Proc. fluid temperature block 1 cell 4
Normal-#Secondary_React_Temp TP_B1_10 Proc. fluid temperature block 1 cell 10
Normal-# Secondary_Composition TP_B1_5 Proc. fluid temperature block 1 cell 5



58 at the beginning of Fault 1, this can be considered as a

false alarm. However, the process behaviour at interval [25,

45] is similar to the behaviour for Faults 3 and 6. On the

other hand, Fault 5 is associated to class 61, which was

not identified as a significant class in the model (state 0).

This disturbance could represent a new situation not taken

into account during the design of the behavioural model or

a multiple-fault situation.

Consideration is now given to Table 6, which gives the real

simulated faults. According to the description given for the

unknown faults, the classifier correctly recognized three

known situations, those corresponding to Faults 1, 2 and 3.

In cases 1 and 3, two alarms were detected, since for the

two disturbances, the variations of the utility flow and the uti-

lity temperature are smaller than those presented in the

design of the behavioural model (learning stage). This

result is very important since it proves that it is possible to

diagnose fault of smaller magnitude than those during the

learning phase. Fault 2 corresponds to a fault on the feed

composition: this fault has been correctly diagnosed even if

Figure 9. Thiosulphate reaction—fault and alarm identification with nine descriptors: (a) training dataset with only nine descriptors, (b) class
generation for the identification of the different situations, (c) mapping classes into significant functional states.

Table 4. Thiosulphate reaction: mapping classes into significant
functional states.

Situation (functional state) Class number State number

Normal 5, 20, 48 4
# Utility_Flow (inlet) 2, 39�, 19þ, 55þ 1
" Utility_Flow (inlet) 34, 22�þ 17
# Utility_Temp (inlet) 4, 40�þ 3
" Utility_Temp (inlet) 3, 58�, 46þ 2
# Primary_Reactant_Flow 7, 24� 6
" Primary_Reactant_Flow 9, 26�, 47� 8
# Primary_Reactant_Temp 11, 28�, 53þ 10
" Primary_Reactant_Temp 12, 29�, 13þ 11
# Secondary_Reactant_Flow 14, 45� 12
" Secondary_Reactant_Flow 15, 43�þ 13
# S/Secondary_Reactant_Temp 52, 30� 18
" Secondary_Reactant_Temp 16, 41� 14
" Primary_Composition 8 7
# Primary_Composition 37, 10�, 42�þ 9
" Secondary_Composition 54 19
# Secondary_Composition 6 5
Utility_Flow_Shutdown 18, 17�, 31�,

49�, 32þ
15

# Utility_Flow_Recovery 19, 55 16

�Alarm, þRecovery.

Table 5. Thiosulphate reaction: dataset of
unknown situations.

Faults Start End

Fault 1 15 75
Fault 2 135 195
Fault 3 255 315
Fault 4 375 435
Fault 5 495 555
Fault 6 615 675



the magnitude was smaller than the one used in the learning

step (Figure 8).

In the case of simultaneous faults, only one of them is

recognised: for Fault 4 the decrease in the utility flow and

in Fault 6 the rise in temperature of the utility fluid. The

multi-fault situation was not included in the learning data

base since it would be impossible to consider all the cases.

Nevertheless, the results show that it is possible to identify

one of the two faults occurring simultaneously. Fault 5 is

not identified as a failure state, in fact the combined effects

of the two disturbances cancel each other: the reactor is

fed with a more concentrated reactant but the utility system

cools more, which corresponds well to a normal operation

(e.g., if there was a controller to maintain the temperature

at the output of block 1, consecutively, to an increase of the

mass fraction of a reactant, the utility flow will be increased

by the controller).

In a diagnosis procedure the possibility to establish that an

element (here the current state) is not recognised is of pri-

mordial importance. It is therefore much more interesting for

the user or the operator to have the message: ‘the process

behaviour does not look like a normal state behaviour but it

has not been recognised as a known fault’ than to have a

wrong affectation of this state to a fault (what is the case

when an element is assigned to a wrong class). Moreover,

the unrecognized elements will enable an evolution of the

model. New classes corresponding to new faults can be cre-

ated from these only elements without modifying the existing

classes associated to the previously established faults. For

this, the ‘active supervised learning’ procedure proposed in

(Kempowsky et al., 2004) can be applied. Hence, when a sig-

nificant number of consecutive elements are assigned to the

NIC, the aim is to identify and characterize this new situation

by launching a new learning procedure. New classes are

generated from the characteristics of the alone unrecognized

elements, keeping unmodified the existing classes. The

expert will next interpret the new classes in order to charac-

terize the new behaviour.

Figure 10. Thiosulphate reaction: recognition of unknown faults.

Table 6. Thiosulphate reaction: description of simulated faults for
recognition.

Fault Description

Fault 1: Utility flow: 0.916 m3/h ! 0.3 m3/h (#FU_IN).
Fault 2: Mass fraction of thiosulphate: 0.0137 ! 0.017 ("X_MAIN).
Fault 3: Utility temperature: 13.378C ! 158C ("TU_B1_IN).
Fault 4: Simultaneous faults: mass fraction of thiosulphate:

0.0137 ! 0.0175 andutility flow: 0.916 m3/h ! 0.3 m3/h
("X_MAINþ # FU_IN).

Fault 5: Simultaneous faults: mass fraction of thiosulphate:
0.0137 ! 0.0165 and utility flow: 0.916 m3/h ! 1.5 m3/h
("X_MAINþ # FU_IN).

Fault 6: 3 Simultaneous faults: mass fraction of thiosulphate:
0.0137 ! 0.0165, utility flow: 0.916 m3/h ! 0.6 m3/h and
utility temperature: 13.378C ! 14.88C
("X_MAINþ # FU_INþ " TU_B1_IN).



Concerning the sensor selection procedure, one of its

advantages is that it provides to the user an overview of

the information gains for all the descriptors. So the user

can choose to restrict the set of descriptor to its minimum

set (adopted in this study) or to add supplementary

descriptors or to replace a descriptor by a ‘close one’ (in

term of information gain). The final selection criterion could

include a priori knowledge related to the sensor nature

such as: price, reliability, maintenance easiness, installation

facility, and so on, so the final selection criterion could be a

multi-objective criterion including not only the information

gain but also these different practical elements. The user

could easily extract a set of sensors yielding close infor-

mation gains and choose among them the one leading to a

best exploitation cost.

It is also possible from the knowledge of the information

gains to choose supplementary sensors and not to restrict

to those offering the highest gains. This possibility will be of

great importance to treat properly the case of sensor failures,

since there will have a redundancy of information but contrary

to what is done most often, this redundancy will be based on

the capacity of these supplementary sensors to produce an

information of close quality.

CONCLUSIONS

In this work, a new methodology to identify the better

location of sensors has been developed. These sensors

are chosen into a set of possible sensors including only clas-

sical sensors such as temperatures, flows and pressures.

Once the different process situations (normal and faults)

have been identified and characterized by a learning pro-

cedure performed with a classification technique, the con-

cepts of entropy and of information gain can be applied to

determine the most relevant sensors. Let us remark that

the proposed methodology is generic and can be performed

with any classification technique. This methodology has been

applied to a continuous intensified reactor: the open plate

reactor (OPR). A reaction with a highly exothermic behaviour

carried out in the OPR was used to illustrate and explain the

different steps of the proposed methodology. The results from

this example demonstrate the utility of the methodology for

processes when a mathematical or structural model is not

available or the mathematical model is too complex. This

methodology can be applied either in the design stage of

the plant as it was the case in the proposed example, or to

reduce the quantity and synthesize the information given to

the process operators, considering only the essential. More-

over, the resulting behavioural model can be used as a

base for training new operators or to analyse scenarios of

faults which have been observed on existing plants but

which have not been detected (return on experience). This

methodology can be applied easily in the design stage of

the plant. Process designers are used to run simulations

during the design stage. They have already all the needed

information in the simulation results to apply this method-

ology. The determination of sensor location has to be done

at this stage; after, during the production stage, it is generally

too late to add a sensor. Moreover, this methodology leads to

a behavioural model which can be easily updated by adding

new states with the procedure of ‘active supervised learning’.

This is a very important result since the exhaustiveness of the

faults would never be guaranteed in particular in a complex

process.

Concerning the classification technique itself, as it has

been shown, the results mainly rely on the quality of the

classification first obtained using all the possible sensors.

Most often at this stage, the user should prefer to get a

less sparse representation space (i.e., with less classes).

Until now, this quality of the classification was let to the

appreciation of the expert. In recent and actual works

(Isaza et al., 2006) studies have been devoted firstly to the

definition of indexes for analysing the quality of the obtained

partition and then to the optimization of the partition by acting

on classification design parameter such as the exigency or

the function used for the computation of the MAD. This

approach includes the two steps: the partition validation

and the clusters update. The partition quality is measured

by a validation index, from which it is decided if it is necessary

or not to modify the partition. In the second step concerning

the clusters updating, the fuzzy similarity of classes is calcu-

lated and the merging of the two similar classes is thus per-

formed. At final state, this partition validation will be coupled

with the sensor selection procedure by the integration of the

quality of the partition in the selection procedure: the ‘best’

sensors should be the ones yielding the ‘best’ information

with the ‘best’ partition.

The future works will be devoted to an experimental

validation of the sensor selection procedure. A special care

will also be devoted to study sensor failures and specially

how to take advantage of the sensor selection results to

add accurate information redundancy by a good choice of

supplementary sensors.
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