Sarah Blind

Nadia Creignou

Frédéric Olive

Locally definable vertex set properties are efficiently enumerable

We propose a general framework that allows for the study of enumeration of vertex set properties in graphs. We prove that when such a property is locally definable with respect to some order on the set of vertices, then it can be enumerated with linear delay. Our method consists in reducing the considered enumeration problem to the enumeration of paths in directed acyclic graphs. We then apply this general method to enumerate minimal connected dominating sets and maximal irredundant sets in interval graphs and in permutation graphs, as well as maximal irredundant sets in circular-arc graphs and in circular permutation graphs, with linear delay.

Preliminaries

We give here definitions and basic results concerning graphs, vertex set properties, enumeration complexity, and enumeration of paths in a DAG.

Introduction

Enumeration algorithms produce all solutions of given search problems, without repetition. Generating objects of specified properties has important applications in various domains of computer science (data mining, machine learning, artificial intelligence) as well as in other sciences, especially biology. Usual measures of complexity are rather inadequate when one focuses on enumeration. One reason is the potentially exponential number of objects to be enumerated. It renders inappropriate the traditional input-sensitive approach, which estimates efficiency by relating the total time needed to generate all the solutions to the size of the input. In contrast, the output-sensitive approach measures the time complexity of an enumeration algorithm taking into account both the size of the input and that of the output. An enumeration algorithm with total running time bounded by a polynomial depending on the sizes of the input and the output is called an outputpolynomial algorithm. The delay between the successive outputs of solutions is a finer and more relevant measure of efficiency for enumeration. We say that an output-polynomial time algorithm has linear delay if the delay between the production of two consecutive solutions is linear in the size of these two solutions.

In graph theory, enumeration often consists in generating vertex or edge subsets satisfying a given property. A famous example is that of enumerating the minimal dominating sets of a graph. This problem is particularly interesting since Kanté et al. proved in [START_REF] Mamadou | On the enumeration of minimal dominating sets and related notions[END_REF] that the longstanding open question whether there is an output-polynomial algorithm to enumerate minimal transversals of an hypergraph is equivalent to the question whether there exists an output-polynomial algorithm to enumerate minimal dominating sets of a graph. Although the question remains open in general, a large number of positive results has been obtained on particular graph classes (see e.g. [FGPS08, CHHK13, CLL15, GHK + 18, BDHR19]). In particular [START_REF] Mamadou | On the enumeration of minimal dominating sets and related notions[END_REF] proved that one can enumerate minimal dominating sets with linear delay on interval and permutation graphs. This result was obtained by a reduction to the enumeration of paths in a directed acyclic graph (DAG). In his dissertation [START_REF] Mary | Enumération des dominants minimaux d'un graphe[END_REF] Mary observed that such a reduction seems to be possible when the considered graph property presents a local character. In the present paper we materialize this observation and we put forward a general method for finding linear delay algorithms for enumeration of vertex set properties in graphs.

We consider graphs whose set of vertices is equipped with a natural order (namely, a linear order or a cyclic order). In such graphs, a property is locally definable if one can decide whether a subset of vertices respects the property by scanning its ordered list of elements through a sliding window of fixed size and by verifying that each scanned tuple satisfies some constraint. Our main result states that any locally definable vertex set property can be enumerated with linear delay after a polynomial pre-processing. This result is obtained by reducing this enumeration to that of paths in a DAG. In the case of linearly ordered graphs the reduction establishes a one-to-one correspondance between the vertex sets to enumerate and the paths in a DAG. Interestingly, in the case of cyclically ordered graphs we use a Turing reduction that requires a polynomial number of calls to the procedure that enumerates paths in a DAG.

We illustrate the applicability of this method by addressing variants of the minimal dominating set problem, namely, the minimal connected dominating set and the maximal irredundant set problems. These vertex set properties are well studied in graph theory, especially as optimisation problems. Both computing a cardinality minimum connected dominating set and computing a cardinality maximum irredundant set are NP-hard [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF][START_REF] Fellows | The private neighbor cube[END_REF]. Algorithms running in time exponential in the size of the input have been proposed for enumerating minimal connected dominating sets and maximal irredundant sets on special classes of graphs (see e.g. [START_REF] Golovach | Enumerating minimal connected dominating sets in graphs of bounded chordality[END_REF][START_REF] Golovach | Enumeration of maximal irredundant sets for claw-free graphs[END_REF]). Boros and Makino [BM16] proved that it is not possible to enumerate maximal irredundant sets with polynomial delay (and even incremental delay) unless P = NP. Here, we restrict the study of the corresponding enumeration problems to the following graph classes : interval graphs, permutation graphs, circular-arc and circular-permutation graphs. These classes have numerous applications (see e.g. [Gol85, ZSF + 94, BKK95]), and are classes in which many NP-complete problems can be solved efficiently (see [START_REF] Hans | Treewidth and pathwidth of permutation graphs[END_REF] for some examples).

In applying our method we prove that minimal connected dominating sets can be enumerated with linear delay on interval graphs and permutation graphs. As a corollary we obtain that one can compute a minimum connected dominating set on such graphs in polynomial time. We also prove that maximal irredundant sets can be be enumerated with linear delay on interval graphs, permutation graphs, circular-arc and circularpermutation graphs. Moreover on these graph classes, computing a maximum irredundant set can be done in polynomial time.

Section 2 is devoted to some general preliminaries. In Section 3 we state our main result for linearly ordered graphs, roughly speaking: collections of sets of vertices that can be locally defined with respect to a linear order on the vertices of the graph are enumerable with linear delay. We apply this result to concrete problems in Section 4 and Section 5, respectively on interval graphs and permutation graphs. In Section 6 we state a similar result for cyclically ordered graphs: collections of sets of vertices that can be locally defined with respect to a cyclic order on the vertices of the graph are enumerable with linear delay. We apply this result to maximum irredundant sets on circular-arc graphs and circular-permutation graphs in Section 7.

Graphs We refer to [START_REF] Bondy | Graph Theory[END_REF] for graph terminology. All graphs considered in this paper are finite. Let G = (V, E) be a graph and X be a subset of V. We denote by G X the subgraph of G induced by X. The set of neighbours of a vertex x is defined by N

(x) = {y ∈ V | {x, y} ∈ E} while the closed set of neighbours is N[x] = N(x) ∪ {x}. We set N[X] = x∈X N[x] and N(X) = N[X] \ X.
(For the sake of readability we often write N(x 1 , . . . , x k) instead of N({x 1 , . . . , x k }), and the same for N[x 1 , . . . , x k].) A neighbour y of some x ∈ X is a private neighbour with respect to X if y has no other neighbour in X. In other terms, the set P X (x) of private neighbours of x with respect to X fulfills P

X (x) = N[x] \ N[X \ x].
We call the set of vertices X: a dominating set if each x ∈ V \ X has a neighbour in X; an irredundant set if each x ∈ X has a private neighbour with respect to X; a minimal dominating set if it is irredundant and dominating; a minimal connected dominating set if it is a connected dominating set and for any v ∈ X, X \ {v} is either not connected or not dominating; a maximal irredundant set if it is an irredundant set maximal for inclusion.

Properties and constraints on graphs Let us define the notions of vertex set properties, constraints on graphs, and windows on ordered graphs, which will be useful to state our main result formally. Definition 2.1 A vertex set property is a recursive function P mapping each graph G = (V, E) to a collection of subsets of vertices, P G ⊆ 2 V . We say that P is a polynomial vertex set property if given G and X, one can decide in polynomial time whether X ∈ P G .

Example. The minimal dominating set property is the application that maps each graph to its collection of minimal dominating sets. The maximal irredundant set property is similarly defined. Both these properties are polynomial vertex set properties. Definition 2.2 Let G be a set of graphs. A uniform vertex constraint of arity k on G is a recursive function φ that maps each G = (V, E) of G to a set φ G ⊆ V k . We say that such a uniform constraint is decidable in polynomial time if given G and a tuple of vertices (a 1 , . . . , a k), one can decide in polynomial time whether φ G (a 1 , . . . , a k) holds.

An ordered graph (G, ≤) is a graph G whose set of vertices is equipped with a relation order ≤. Given a set of graphs G, a uniform order on G is a recursive function ≤ mapping each G ∈ G to an order of its vertices. Unless it leads to confusion, we will denote by the same symbol ≤ the above function and the order it associates with a given graph. A set of graphs G equipped with a uniform order ≤ is said uniformly ordered and denoted by (G, ≤).

Given two vertices u, v of such an ordered graph G, we denote by]u, v[,] -∞, v[and]u, +∞[the sets of vertices a such that u < a < v, a < v and u < a, respectivly. Besides, we denote by

[u, v],] -∞, v] and [u, +∞[the respective closures of these sets,]u, v[∪{u, v},]-∞, v[∪{v} and]u, +∞[∪{u}. Given X ⊂ V(G), the notation X = {x 1 < x 2 < . . . < x q } is meant for expressing both facts: X = {x 1 , x 2 , . . . , x q } and x 1 < x 2 < . . . < x q . Definition 2.3 Let (G, ≤) be an ordered graph and X ⊆ V(G). A k-window of X w.r.t. ≤ is a k-tuple (a 1 , . . . , a k) ∈ X k such that for each i < k, a i+1 is the ≤-successor of a i in X. Example. If V(G) is ordered and if X = {x 1 < x 2 < . . . < x q },
then the tuple (x 3 , x 4) is a 2-window and (x q-3 , x q-2 , x q-1 , x q) is a 4-window of X w.r.t. ≤.

When ≤ is clear from the context, we will talk about "k-windows of X" and we will denote the set of k-windows of X w.r.t. ≤. by W k (X).

In the following we are interested in the enumeration of vertex set properties P, that is in the following problem:

Enum_P Input : a graph G Output : all X ⊆ V(G) s.t. X ∈ P G .
Enumeration complexity Let P be a polynomial vertex set property. For a graph G taken as input, an enumeration algorithm A for P lists all elements of P G without repetitions. The running time of A is output-polynomial if it is bounded by a polynomial both in the size of G and the size of P G . Assume that the sorted list X 1 , . . . , X q describes the elements of P G as enumerated by A. For i < q, we denote by T (A, i) the time required by A until it outputs X i , and by T (A, q) the time required by A until it it outputs X q and stops. We set Delay(A, 1) = T (A, 1) and Delay(A, i) = T (A, i) -T (A, i -1) for 2 ≤ i ≤ q. We say that A has linear delay if Delay(A, 1) (referred to as the pre-processing time) is bounded by a polynomial in |G| and if furthermore Delay(A, i) is bounded by a linear function in

(|X i-1 | + |X i |) for 2 ≤ i ≤ q.
Given a directed acyclic graph G and two subsets of vertices S and T , it is well-known that paths in G from S to T can be enumerated with linear delay (see e.g., [KLM + 13]). The pre-processing consists in removing from G all vertices from which one cannot reach T . In the following we refer to this function as ClearDag. The enumeration is then obtained by a depth-first exploration of the graph, referred to as EnumPathsDag in the following. Thus the following algorithm enumerates all paths in G from S to T with linear delay:

ClearDag(G, S , T) 1 H = G 2 Let (x 1 , ..., x n) be
input: G = (V, A) a DAG, S , T ⊆ V output: an enumeration of all paths in G from S to T 1 H = ClearDag(G, S , T) 2 EnumPathsDag(H, S , T) Theorem 2.4 Given a directed acyclic graph G and two sets S , T ⊂ V(G), all paths in G from S to T can be enumerated with linear delay after a linear time pre-processing.

Local properties and enumeration on linearly ordered graphs

In [KLM + 13], Kanté et al. reduced the problem of enumerating the minimal dominating sets on an interval graph (resp. on a permutation graph) to that of enumerating paths of a directed acyclic graph, thus obtaining an efficient enumeration algorithm. We generalize this method by specifying properties whose enumeration can be reduced to enumerating paths in a DAG.

We focus on vertex set properties that can be "locally defined" with respect to a linear order on the vertices of the graph. Roughly speaking, a vertex set property P is local with respect to some class G of linearly ordered graphs if for any G ∈ G and any X ⊆ V(G), one can decide whether X ∈ P by scanning its ordered list of vertices through a sliding window of fixed size and verifying that each scanned tuple satisfies a predefined uniform constraint. The following definition formalizes this. Definition 3.1 Let (G, ≤) be a uniformly linearly ordered set of graphs. A uniform vertex set property P is locally definable on (G, ≤) if there exist an integer k > 1 and three uniform vertex constraints φ, φ min and φ max of respective arities k, k -1 and k -1, such that for any graph G ∈ G and any subset X ⊆ V(G) of cardinality ≥ k, X ∈ P G if and only if:

1. For every (x 1 , . . . , x k) ∈ W k (X): φ G (x 1 , . . . , x k).

2. For every (x 1 , . . . , x k-1) ∈ W k-1 (X) :

x 1 = min(X) ⇒ φ min G (x 1 , . . . , x k-1), x k-1 = max(X) ⇒ φ max G (x 1 , . . . , x k-1).
Furthermore, if the three constraints φ, φ min and φ max are decidable in polynomial time, then P is said to be locally definable in polynomial time on (G, ≤).

Our main result states that such locally definable properties are efficiently enumerable.

Theorem 3.2 (Enumerability in linearly ordered graphs) Let (G, ≤) be a uniformly ordered set of graphs and P be a uniform vertex set property. If P is locally definable in polynomial time on (G, ≤), then P is enumerable with linear delay.

Proof. We prove this result by reduction to the problem of enumeration of paths in a DAG. Let us consider a vertex set property P locally definable in polynomial time on G. Let k be the integer and φ, φ min and φ max be the three uniform vertex constraints associated with P by Definition 3.1. For every linearly ordered graph G = (V, E) in G, we define a new graph G ∆ = (V ∆ , E ∆) as follows:

V ∆ = {(x 1 , . . . , x k-1) ∈ V k-1 s.t. x 1 < • • • < x k-1 }
and for every (x 1 , . . . , x k-1) and (y 1 , . . . , y k-1) in V ∆ :

(x 1 , . . . , x k-1)E ∆ (y 1 , . . . , y k-1) if (x 2 , . . . , x k-1) = (y 1 , . . . , y k-2) and φ(x 1 , . . . , x k-1 , y k-1) Furthermore, we define the two following subsets of V ∆ :

S ∆ = (x 1 , . . . , x k-1) ∈ V ∆ s.t. φ min (x 1 , . . . , x k-1) T ∆ = (x 1 , . . . , x k-1) ∈ V ∆ s.t. φ max (x 1 , . . . , x k-1) .
Notice that G ∆ is a DAG since any path (x 1 , . . . , x k-1), (x 2 , . . . , x k), . . . , (x p+1 , . . . ,

x p+k-1) in G ∆ necessarily fulfills x 1 < x 2 < • • • < x p+k-1
and thus, (x 1 , . . . , x k-1) (x p+1 , . . . , x p+k-1). Now, the following equivalence directly follows from Definition 3.1 and from the definitions of V ∆ , S ∆ , E ∆ and T ∆ above: For any q ≥ k and any

X = {x 1 < x 2 < • • • < x q } ⊆ V, X ∈ P G iff (x 1 , . . . , x k-1), (x 2 , . . . , x k), . . . , (x q-k+2 , . . . , x q) is a path in G ∆ from S ∆ to T ∆ .
Therefore there is a one-to-one correspondence between the sets X of P G of size at least k and the paths in G ∆ from S ∆ to T ∆ , and as a consequence the following algorithm enumerates all elements in P G :

input: a linearly ordered graph G output: an enumeration of P G 1 Construct G ∆ , S ∆ and T ∆ 2 H ∆ = ClearDag(G ∆ , S ∆ , T ∆) 3 EnumPathsDag(H ∆ , S ∆ , T ∆)
Let us examine its complexity. Lines 1 and 2 correspond to the pre-processing step. Assume that φ is decidable in polynomial time, which means that there exists a constant ε such that given G a graph and a k-tuple a one can decide in time O(n ε) whether φ G (a) holds, where n denotes the number of vertices in G. Similarly assume that φ min and φ max are decidable in time O(n ν). The construction of G ∆ , S ∆ and T ∆ can be carried out in time

n k-1 O(n ν) + n k O(n ε). Once G ∆ , S ∆ , T ∆ are available, running ClearDag(G ∆ , S ∆ , T ∆) in Line 2 takes time O(| V ∆ | + | E ∆ |) = O(n k
) thanks to Theorem 2.4, which does not modify the asymptotic bound previously mentioned for Line 1.

The enumeration is then accomplished in Line 3, with linear delay with respect to the original graph as stated in Theorem 2.4 since the size of the paths in G ∆ is linear in the size of the vertex sets they represent in G.

Remark 3.3 The above algorithm enumerates sets of size ≥ k only. Nevertheless, it can be easily extended so that it enumerates sets of all cardinalities. Indeed, there are at most O(n k-1) sets of size < k, and for such a set X one can decide in polynomial time whether X belongs to P G . Therefore a list of the sets of P G of size less than k can be built within the pre-processing set, and they can be later enumerated from this list at the beginning of the enumeration phase. For all the vertex set properties P considered in this paper, one can decide whether a fixed size set X belongs to P G in time O(n). Therefore, the consideration of all these sets requires a total time O(n k) and does not increase the complexity of the pre-processing step. From now on, we will not mention the specific treatment of these "small" vertex sets, since it does not affect our results.

In the following two sections, we apply Theorem 3.2 on interval graphs and permutation graphs.

Enumeration in interval graphs

Interval graphs and locally definable basic properties

An intersection graph is a graph whose vertices can be mapped onto sets in such a way that two vertices are adjacent if and only if their corresponding sets intersect. The collection of sets related to the vertices is called the intersection model of the graph. An intersection graph is an interval graph if its intersection model is composed of intervals on the real line. If G = (V, E) is such a graph, we denote by [s(x), e(x)] the interval associated with a vertex x and we assume without loss of generality that all endpoints are pairwise distinct. There is a natural linear order ≤ defined on the set of vertices of an interval graph: x ≤ y if s(x) ≤ s(y). When dealing with interval graphs we always implicitely refer to this order.

A vertex set X in an interval graph has no nested intervals if for all vertices x < y in X we get e(x) < e(y).

In such vertex sets, several basic properties can be defined locally. Moreover, the fact that a set of vertices of an interval graph does not contain any nested intervals is also locally checkable, as stated in the following lemma.

Lemma 4.1 Let X be a set of vertices in an interval graph G. Then X has no nested intervals if and only if for all (x, y) ∈ W 2 (X), e(x) < e(y).

Proof. The left-to-right direction is immediate. Conversely, suppose that for all (x, y) ∈ W 2 (X), e(x) < e(y). Write X = {x 1 < x 2 < . . . < x q } and consider two vertices x i < x j in X. Then we have x i < x i+1 < . . . < x j and thus by assumption, e(x i) < e(x i+1) < • • • < e(x j). Lemma 4.2 Let G = (V, E) be an interval graph, and X ⊆ V such that X has no nested intervals (Connectivity) X is connected if and only if for every (x, y) ∈ W 2 (X), y ∈ N(x).

(Domination) X is dominating if and only if for every (x, y) ∈ W 2 (X):

-]x, y[⊆ N(x) ∪ N(y); -x = min(X) ⇒] -∞, x[⊆ N(x); -y = max(X) ⇒]y, +∞[⊆ N(y) (Private neighborhood) For every (x, y, z) ∈ W 3 (X) -P X (y) = P {x,y,z} (y); -x = min(X) ⇒ P X (x) = P {x,y} (x); -z = max(X) ⇒ P X (z) = P {y,z} (z).
Proof.

(Connectivity) Let (x, y) be in W 2 (X). Because y ∈ N(x), any two successive vertices in X are adjacent and hence X is connected. Conversely, suppose that y N(x), that is e(x) < s(y). On the one hand, any w in X such that w < x ends before e(x) according to the hypothesis made on X. On the other hand, any z in X such that y < z starts after s(y). This situation prohibits the existence of a path from x to y, thus contradicting the connectivity of X.

(Domination) Let v be a vertex in V \ X. such that x < v < y with (x, y) ∈ W 2 (X). If v ∈ N(x) ∪ N(y), then clearly v ∈ N(X). Conversely, suppose that v N(x) ∪ N(y).
Then, e(x) < s(v) and e(v) < s(y). For any w in X such that w < x we have e(w) < e(x) by assumption on X, thus e(w) < s(v) and hence v N(w). For any z in X such that y < z we have s(y) < s(z), thus e(v) < s(z) and hence v N(z). Therefore, v N(X).

Extremal cases, namely when v < min(X) or v > max(X), can be handled in a similar way. (Private neighborhood) Suppose (x, y, z) ∈ W 3 (X). It is clear that P X (y) ⊆ P {x,y,z} (y), so let us prove the converse inclusion. Let u ∈ P {x,y,z} (y). Since u is a neighbour of y, but not a neighbour of x, it starts after x ends, e(x) < s(u). Since u is a neighbour of y, but not a neighbour of z, it ends before z starts, e(u) < s(z). Hence, e(x) < s(u) < e(u) < s(z). For any w in X such that w < x we have e(w) < e(x) by assumption on X, thus e(w) < s(u) and hence u N(w). For any t in X such that z < t we have s(z) < s(t), thus e(u) < s(t) and hence u N(t). Therefore, u ∈ N[y] \ N[X \ {y}], i.e., u ∈ P X (y).

Extremal cases can be handled in a similar way.

The next lemma states that on interval graphs, irredundant sets and minimal connected dominating sets do not contain nested intervals. Lemma 4.2 will then enable us to design local characterizations of these properties for interval graphs.

Lemma 4.3 Let X be an irredundant set or a minimal connected dominating set of an interval graph. Then X has no nested intervals.

Proof. The existence of x, y ∈ X fulfilling [s(x), e(x)] ⊂ [s(y), e(y)] clearly contradicts the fact that X is an irredundant (resp. a minimal connected dominating) set.

In the sequel, we illustrate our method in enumerating successively minimal connected dominating sets and maximal irredundant sets on interval graphs.

Interval graphs and minimal connected dominating sets

We denote by MCDS the vertex set property that associates with each graph the collection of its minimal connected dominating sets.

Proposition 4.4 (MCDS on interval graphs) On interval graphs, the minimum connected dominating sets are enumerable with linear delay after a pre-processing in time O(n 3).

Proof. We prove that the minimal connected dominating set property is locally definable in polynomial time on interval graphs. The above proposition then follows from Theorem 3.2. Let X be a set of vertices of an interval graph G = (V, E). By definition, X is a minimal connected dominating set of G if: (i) X is connected; (ii) X is dominating; (iii) for every y ∈ X, either P X (y) ∅ or X \ {y} is disconnected.

According to Lemma 4.3, a minimal connected dominating set has no nested intervals. Under this condition (that is itself locally definable, see Lemma 4.1) the notions of connectivity, domination and private neighborhood are all locally definable in interval graphs through windows of size at most 3, thanks to Lemma 4.2. Therefore, we conclude that we need windows of size 3 in order to characterize minimal connected dominating sets.

More precisely, general window (x, y, z) will be used to check the connectivity between x and y, as well as between y and z.

Observe that if X is connected, then] min(X), max(X)[is dominated by X. Hence, if X is connected, in order to check whether X is a dominating set, we only need to verify that both]-∞, min(X)[and] max(X), +∞[are dominated by X. This will be done through extremal windows (min(X), y) and (y, max(X)). Now, it remains to deal with minimality. By the removal of one element either we loose the connectivity (when an internal element is removed) or we keep the connectivity and loose the domination (when an extremal element is removed). Thus, a window (x, y, z) will also be used to check that X \ y is not connected anymore, in checking that z N(x). The extremal windows (min(X), y) and (y, max(X)) will be used to check that X \ min(X) and X \ max(X) are not dominating anymore, i.e., P X (min(X)) ∅ and P X (max(X)) ∅.

From these observations we get that X ∈ MCDS(G) if and only if

• for every (x, y, z) ∈ W 3 (X):

e(x)<e(y)<e(z)

y ∈ N(x) and z ∈ N(y);

-z N(x)
• for (x, y) ∈ W 2 (X) such that x = min(X):

-∀v < x , v ∈ N(x) ; -P {x,y} (x) ∅ ;
• for (y, z) ∈ W 2 (X) such that z = max(X):

-∀v > z , v ∈ N(z) ; -P {y,z} (z) ∅.
Clearly, this characterization shows that MCDS is locally definable on the class of interval graphs (see Definition 3.1). According to Theorem 3.2 there is a linear delay enumeration algorithm for MCDS, whose pre-processing step requires to compute all triples and pairs of vertices that satisfy the conditions appearing in the characterization.

The elementary instructions to be carried out while checking these conditions are either test of belonging to given neighbourhood (e.g. Does z ∈ N(x)?) or vacuity test on private neighbourhoods (e.g. Is P {x,y} (y) = ∅?). The former can be done in constant time, since one can check whether z ∈ N(x) by comparing the relative positions of s(x), s(z), e(x), e(y). The second one requires to examine all neigbhours of y and to check whether they are neigbhours of x, and therefore takes O(n) time. There are O(n 3) triples to consider, for each of them the conditions to check require constant time. There are 0(n 2) pairs of vertices (x, y) to consider, and for each of them we have to examine all v in V such that v < x (resp. such that y < v) and check whether v ∈ N(x) (resp., v ∈ N(y)) , this takes a time O(n). Moreover we have also to check whether P {x,y} (x) ∅ and whether P {x,y} (y) ∅ , this also requires time O(n). Therefore ordered pairs and triples satisfying the conditions of minimal connected domination above can be all computed in time O(n 3), thus concluding the proof.

Interval graphs and maximal irredundant sets

We denote by MIR the polynomial vertex set property that associates with each graph the collection of its maximal irredundant sets. We prove that maximal irredundant sets are efficiently enumerable on interval graphs. As in the previous subsection, it will follow from the local definability of the property on this class of graphs.

Proposition 4.5 (MIR on interval graphs) On interval graphs, the maximal irredundant sets are enumerable with linear delay after a pre-processing in time O(n 5).

Proof. Let X be a set of vertices of an interval graph G = (V, E). The set X is a maximal irredundant set if it is irredundant and if for any vertex a X, the set X + a is not irredundant anymore, where X + a denotes X ∪ {a}. In other words, X is a maximal irredundant set if every vertex in X has a private neighbour w.r.t. X, while for every vertex a X some vertex in X + a has no private neighbour w.r.t. X + a. More formally, X ∈ MIR(G) if and only if (i) for all y ∈ X, P X (y) ∅, and (ii) for all a ∈ V \ X, P X+a (s) = ∅ for some s ∈ X + a.

According to Lemma 4.3, every maximal irredundant set on an interval graph has no nested intervals, hence we can also claim that X ∈ MIR(G) if and only if the three following conditions hold:

(mir 1) X has no nested intervals;

(mir 2) for all y ∈ X, P X (y) ∅;

(mir 3) for all a X, (mir 3 .i) X + a contains nested intervals or (mir 3 .ii) ∃s ∈ X + a such that P X+a (s) = ∅.

One can verify locally that X contains no nested intervals by Lemma 4.1. Under this condition one has a local characterization of private neighborhood, see Lemma 4.2. Therefore Conditions (mir 1) and (mir 2) can be locally defined.

Let us now turn to Condition (mir 3) that reflects maximality. Suppose that x < a < y with (x, y) ∈ W 2 (X) (the extremal cases, i.e. when a < min(X) or a > max(X), can be dealt with in similar way). When X does not contain any nested interval, X ∪ a contains nested intervals if and only if either e(x) > e(a) or e(a) > e(y). Now suppose that X + a has no nested intervals. According to Lemma 4.2, the only vertices whose private neighborhood is affected by the addition of a in X are a itself and its predecessor and successor in X. Thus any s ∈ X + a fulfilling P X+a (s) = ∅ necessarily belongs to {x, a, y}, and the assertion (mir 3 .ii) amounts to: P X+a (x) = ∅ or P X+a (a) = ∅ or P X+a (y) = ∅. Furthermore, still because X + a has no nested interval, sets of the form P X+a (s) can be rewritten P {r,s,t} (s) where r (resp. t) is the predecessor (resp. the successor) of s in X + a. So, typically for every (w, x, y, z) ∈ W 4 (X) and x < a < y the assertion (mir 3 .ii) can be rewritten as: P {w,x,a} (x) = ∅ or P {x,a,y} (a) = ∅ or P {a,y,z} (y) = ∅. Therefore, a window of size 4 is sufficient to check maximality.

As a consequence, a maximal irredundant set can be defined locally on interval graphs. Irredundancy is locally checked through windows of size 3 and maximality through windows of size 4. The property of being maximal irredundant will thus be checked through windows of size 4. On window (w, x, y, z) the irredundancy will be checked on x and on y, and the maximality will be checked between x and y. On extremal window (w, x, y,) where w = min(X) we will ensure that w is irredundant and that the maximality is respected between w, x and on the left of w. Finally on extremal window (x, y, z) where z = max(X) we will ensure that not only y but also z are both irredundant and that the maximality is respected between y, z and on the right of z.

From all these observations we finally get that X ∈ MIR(G) if and only if 1. for every (w, x, y, z) ∈ W 4 (X): e(w) < e(x) < e(y) < e(z) and P {w,x,y} (x) ∅ and P {x,y,z} (y) ∅ and for every a ∈ V, Clearly, this characterization shows that MIR is locally definable on the class of interval graphs (see Definition 3.1). According to Theorem 3.2 there is a linear delay enumeration algorithm for MIR, whose preprocessing step requires to compute all 4-tuples and triples of vertices that satisfy the conditions appearing in the characterization.

Here it is useful to make a pre-computation. For all triples a < b < c in V 3 we store in a boolean table T the answers to the tests "Is P {a,b} (a) = ∅?", "Is P {a,b,c} (b) = ∅?" and "Is P {b,c} (c) = ∅?". This table can be built in time O(n 4), since there are 0(n 3) triples a < b < c to consider, and for each of them we have to examine all neighbors of the vertex under consideration. Let us come back to the complexity of the characterization of MIR. There are 0(n 4) tuples of vertices (w, x, y, z) to consider, and for each of them we have to examine all a in V such that x < a < y. The conditions we have to check then take a constant time thanks to the table T. Therefore building the appropriate 4-tuples will take a time O(n 5). Similarly building all ordered triples of vertices satisfying the conditions appearing in the above characterization will take a time O(n 4). Hence the pre-processing step of the enumeration algorithm takes O(n 5) time.

Let us conclude this section by noticing that our technique provides a polynomial-time algorithm for finding a minimum (that is, of minimal cardinality) connected dominating set, as well as a maximum irredundant set, on an interval graph.

Corollary 4.6 On interval graphs the problem of finding a minimum connected dominating set, as well as the problem of finding a maximum irredundant set, can be solved in polynomial time.

Proof.

Let us deal with the minimum connected dominating set problem (the proof for the maximum irredundant set problem is analogous). Given an interval graph, we first list the minimal connected dominating sets of size less than 3. If there are some, one of them is minimum. Otherwise, we use the algorithm invoked in the proof of Proposition 4.4 (and detailed in Theorem 3.2), which enumerates paths in a DAG. In this algorithm we replace the call to EnumPathsDag by a call to a polynomial-time procedure computing a shortest path. This provides a minimum connected dominating set.

In the next section we tackle the case of permutation graphs, which are combinatorially more involved than interval graphs. For the sake of readability, we concentrate on showing that basic properties characterizing both MCDS and MIR are locally definable. The step which consists in putting these results all together to get explicit constraints that characterize these properties through scanning windows will be left to the reader.

Enumeration in permutation graphs

A permutation graph is a graph G = (V, E) associated with a permutation f over a finite set {1 . . . , n}, that is, defined by V = {1 . . . , n} and E = {(i, f (i)), 1 ≤ i ≤ n}. Such a graph can be viewed as an intersection graph whose model is composed of segments between two parallels. In this case, each vertex x is identified by its corresponding segments and we denote by b(x) and t(x) the endpoints of x on the bottom and the top line, respectively. We linearly order the vertices of a permutation graph G = (V, E) by their bottom line endpoints:

x ≤ y if b(x) ≤ b(y). With these notations, observe that xEy if (b(x) < b(y) and t(x) > t(y)) or (b(x) > b(y) and t(x) < t(y)). Therefore, as well as for interval graphs, checking whether two vertices are adjacent will require a constant time, while testing the vacuity of a private neighbourhood with respect to a fixed size set will require linear time.

Locally definable basic properties

In the forthcoming results, we will make frequent use of the following observations. Fact 5.1 Let x < y < z be three vertices in a permutation graph G = (V, E). Then:

(i) xEz ⇒ (xEy or yEz); (ii) (xEy and yEz) ⇒ xEz. Proof. (i) x < y < z means b(x) < b(y) < b(z). But t(z) < t(x), since xEz.
Thus one cannot have t(x) < t(y) < t(z), and hence y is adjacent to either x or z. (ii) From x < y < z, xEy and yEz, we get t(z) < t(y) < t(x) and therefore, xEz.

For any set if vertices X and any x ∈ X we denote by deg X (x) its degree in X, that is card(N(x) ∩ X). Besides, we set deg(X) = max{deg X (x), x ∈ X}. Having a degree bounded by 2 is locally definable on permutation graphs, as precisely stated below. Lemma 5.2 Let X be a set of vertices of a permutation graph G. Then deg(X) ≤ 2 if and only if deg(W) ≤ 2 for every W ∈ W 6 (X).

Proof. The left-to-right direction is clear, and we only have to prove:

deg(X) ≥ 3 ⇒ ∃W ∈ W 6 (X) : deg(W) ≥ 3.
A set X of degree ≥ 3 contains windows of degree ≥ 3 (X itself, for instance). Let W be such a window of minimal size and let x and u denote its endpoints, with x < u.

We first prove that one of these endpoints has degree ≥ 3. By assumption W contains a vertex v of degree ≥ 3. If v is an endpoint of W, we are done ; if x < v < u, then x is adjacent to v, otherwise v would still have three neighbours in the window W \ {x}, thus contradicting the minimality of W. By symmetry, the same holds for u and consequently both x and u are adjacent to v. Hence they are adjacent to each other, by Fact 5.1(ii). Besides, v has a third neighbour in W. Call it y and assume, w.l.o.g., that x < y < v < u. Since both y and u are adjacent to v, they are adjacent to each other, still by Fact 5.1(ii). Finally, x, y, v belong to N(u) and hence, deg W (u) ≥ 3.

Thus, we can assume w.l.o.g. that W contains four vertices x < y < v < u such that x, u are its extremities and x, y, v ∈ N(u). Now, suppose W contains three more vertices a, b, c {x, y, v, u}. None of these vertices can belong to N(u), otherwise u would still have degree ≥ 3 in the window W \ {x}, thus contradicting the minimality of W. Therefore a, b, c are adjacent to x according to Fact 5.1(i). This entails that W \ {u} contains If v < x < y, since no vertex in]x, y[∩X is adjacent to v by assumption on y, all vertices in]x, y[∩X are adjacent to y, by Fact 5.1(i). This entails card(]x, y[∩X) ≤ deg X (y) ≤ 2 and hence dist X (x, y) ≤ 3.

(4) ⇒ Let (x, y, z, t) ∈ W 4 (X).

(i) By connectivity of X, the sets] -∞, y] and [z, +∞[are connected, i.e., there exist two adjacent vertices a, b ∈ X such that a ≤ y and z ≤ b. By Lemma 5.3(1), dist X (a, b) ≤ 3. Therefore, either a = x and b ∈ {z, t} or a = y and b ∈ {z, t, u} where u is the successor of t in X. In the later case, a has also a neighbour in {z, t}, according to Fact 5.1(i) since deg(X) ≤ 2.

(ii) If x = min(X), the same kind of argument operates in considering that since X is connected, x has a neighbour in [y, +∞[. A symmetrical argument gives the proof of (iii).

⇐ Let us set X = {x 1 < x 2 < • • • < x n } and let us denote by C the connected component of x 1 in G X . We prove by induction on i that each x i belongs to C, which is the expected result. This is clear for i = 1. It also holds for i = 2: since x 1 is adjacent to x 2 or x 3 by (ii), either x 2 ∈ N(x 1), and hence x 2 ∈ C, or x 3 ∈ N(x 1) and in this case, x 2 ∈ N(x 1 , x 3) by Fact 5.1(i), which also implies x 2 ∈ C. Now, assume the inductive hypothesis is true for all indices smaller than or equal to a given i ≥ 2. In particular, x i-1 and x i belong to C. By assumption one of these vertices is adjacent to x i+1 or x i+2 . In the first cas, x i+1 ∈ C; in the second, x i+2 ∈ C and since the vertex x i+1 is adjacent to x i or x i+2 that both belong to C, it also belongs to C.

Permutation graphs and minimal connected dominating sets

We prove here that MCDS -the vertex set property that associates with each graph the collection of its minimal connected dominating sets -is efficiently enumerable on permutation graphs. This result relies on the fact that minimal connected dominating sets have degree at most 2 in permutation graphs, which allows to define them locally.

Lemma 5.4 Any minimal connected dominating set of a permutation graph has degree at most two.

Proof.

Let X be a minimal connected dominating set of a permutation graph G. Suppose, towards a contradiction, that some v ∈ X has three neighbours x < y < z in X and assume w.l.o.g. that x < y < z < v. Whatever is the configuration of x, y, z (whether they intersect or not), one of these three vertices -say yhas no private neighbour w.r.t. {x, y, z, v}. This implies that X \ {y} remains dominant. But it also implies that X \ {y} is connected. Indeed, let u 1 . . . u i yu j . . . u k be a simple path between two vertices u 1 and u k in X. We know that u i and u j have neighbours in {x, z, v}, respectively v i and v j (otherwise u i and u j would be private neighbours of y w.r.t. {x, y, z, v}). Each of these two vertices v i and v j is either equal to v or adjacent to v and hence, u 1 . . . u i v i vv j u j . . . u k is a path from u 1 to u k in X \ {y}. Therefore X \ {y} is connected and dominating, which contradicts the minimality of X.

Proposition 5.5 (MCDS on permutation graphs) On permutation graphs, the minimal connected dominating sets are enumerable with linear delay after a pre-processing in O(n 8).

Proof. We prove that MCDS is locally definable in polynomial time on permutation graphs. The proposition will then follow from Theorem 3.2. By the very definition of minimal connected dominating sets in a permutation graph G, and since every such set has degree at most two (Lemma 5.4), X ∈ MCDS(G) if and only if the following conditions hold:

(i) deg(X) ≤ 2; (ii) X is connected; (iii) every v ∈ V \ X is dominated by X;
(iv) for every x ∈ X, either P X (x) ∅ or X \ {x} is disconnected.

According to Lemma 5.2, Condition (i) is locally definable through windows of size 6. Under this degree assumption, Lemma 5.3 guarantees the local definability of connectivity through windows of size 4 and of domination through windows of size 6 -and hence, of conditions (ii) and (iii). By Lemma 5.3(3), P X (x) ∅ iff x has some private neighbour w.r.t. {y ∈ X : dist X (x, y) ≤ 3}. Therefore, for every x ∈ X, one can check whether P X (x) ∅ through windows of size 7. Finally, if deleting x i from X breaks connectivity, then this is seeable on the windows of size 4 of X \ x i , which are not windows of X. These windows are constituted only of elements in {y ∈ X : dist X (x i , y) ≤ 3} and are contained in a single window of X of size 7 centered on x i . Typically (extremal cases can be handled similarly with smaller windows), given x i ∈ X with (x i-3 , . . . , x i+3) ∈ W 7 (X), the set X \ {x i } is no longer connected if and only if either there is no edge between {x i-3 , x i-2 } and {x i-1 , x i+1 }, or there is no edge between {x i-2 , x i-1 } and {x i+1 , x i+2 }, or there is no edge between {x i-1 , x i+1 } and {x i+2 , x i+3 }.

From these observations we conclude that minimal connected dominating sets can be locally defined through scanning windows of size 7 on permutation graphs. Therefore, according to Theorem 3.2 there is a linear delay enumeration algorithm for MCDS, whose pre-processing step requires to compute all tuples of vertices that satisfy the conditions appearing in the characterization.

Observe that the conditions on the degree and on the (non)-connectivity that have to be verified on the tuples can all be checked in constant time. For the domination, we have typically to consider for each tuple (x 1 , x 2 , x 3 , x 4 , x 5 , x 6 , x 7), all vertices v such that say x 3 < v < x 4 or x 4 < v < x 5 , and check whether they are dominated by one of the elements of the tuple. Since this has to be done for all v this requires O(n) time. Finally, deciding whether P {x 1 ,x 2 ,x 3 ,x 4 ,x 5 ,x 6 ,x 7)} (x 4) ∅ also requires linear time. Therefore, since there are O(n 7) tuples to consider, the pre-processing of the corresponding enumeration algorithm will take O(n 8) time .

Permutation graphs and maximal irredundant sets

The vertex set property MIR associates with each graph the collection of its maximal irredundant sets. We prove that maximal irredudant sets are efficiently enumerable on permutation graphs. Lemma 5.6 Any irredundant set of vertices in a permutation graph has degree at most 2.

Proof. Let X be an irredundant set in a permutation graph G. Suppose that some v ∈ X has three neighbours x < y < z in X. We can assume without loss of generality that x < y < z < v. Indeed if x < y < v < z for instance, then xEv, yEv and vEz imply xEz (by Fact 5.1(ii) applied to x < v < z) and yEz (by Fact 5.1(ii) applied to y < v < z). Thus we are brought back to the previous case by interchanging the roles of z and v. The two other cases (x < v < y < z and v < x < y < z) are symmetrical to the previous ones. So let us assume that x < y < z < v and x, y, z ∈ N(v).

First notice that for any three vertices a < b < c satisfying aEb and bEc, the vertex b has no private neighbour with respect to {a, b, c}. Indeed, by Fact 5.1(ii), any vertex u ∈ N(b) must fulfil uEc if u < b, and aEu if u > b.

Regarding the vertices x < y < z < v, two situations may occur: If xEy, yEz or xEz, then the situation above mentioned is realized either by x < y < v, y < z < v or x < z < v. In all cases, one vertex among {y, z} has no private neighbour with respect to {x, y, z, v}, and a fortiori, with respect to X. Thus X is not irredundant. Otherwise, x, y, z are pairwise non adjacent, then y has no private neighbour w.r.t. X. Indeed, for any a ∈ N(y) we have: If a < x, then aEx by Fact 5.1(i) since x and y are not adjacent. If x < a < v, then xEa or aEv by Fact 5.1(i). If v < a then zEa by Fact 5.1(i) since z and y are not adjacent.

Proposition 5.7 (MIR on permutation graphs) On permutation graphs, the maximal irredundant sets are enumerable with linear delay after a pre-processing in time O(n 13).

Proof.

We prove that MIR is locally definable in polynomial time on permutation graphs. The above proposition will then follow from Theorem 3.2. By the very definition of maximal irredundant sets in a permutation graph G, and since every such set has degree at most two (Lemma 5.6), X ∈ MIR(G) if and only if the following conditions hold:

(mir 1) deg(X) ≤ 2;

(mir 2) for all y ∈ X, P X (y) ∅;

(mir 3) for all a X, (mir 3 .i) deg(X + a) ≥ 3 or (mir 3 .ii) deg(X + a) ≤ 2 and ∃s ∈ X + a such that P X+a (s) = ∅.

According to Lemma 5.2, one can verify that X has degree at most 2 through windows of size 6. Under this condition, the third item of Lemma 5.3 provides us with a local characterization of Condition (ii) through windows of size 7. Therefore Conditions (mir 1) and (mir 2) can be locally defined.

Moreover, when deg(X) ≤ 2, if X + a contains a vertex v with deg X+a (v) ≥ 3, then this is detectable through windows of size 6 of X + a which are not 6-windows of X. These windows are covered by a single window of X of size 11, centered on a. Therefore, checking for all a whether deg(X + a) ≤ 2 or not can be done through windows of size 11. Now suppose that deg(X + a) ≤ 2 and that for all y ∈ X, P X (y) ∅. According to Lemma 5.3 , the only vertices whose private neighborhood is affected by the addition of a to X are a itself and the vertices at distance at most 3 from a in X. For these vertices one will have to compute their private neigborhood, which requires to look at distance at most 3 from them. As a consequence the maximality condition can be checked through windows of size 12.

From these observations we conclude that maximal irredundant sets can be locally defined through scanning windows of size 12 on permutation graphs.Therefore, according to Theorem 3.2 there is a linear delay enumeration algorithm for MIR, whose pre-processing step requires to compute all tuples of vertices that satisfy the conditions appearing in the characterization.

Here we make a pre-computation. For all ordered tuples Z of vertices of size at most 7, and for x Z, we store in a boolean table T the answers to the tests "Is P Z (x) = ∅?". This table can be built in time O(n 8), since there are 0(n 7) tuples to consider, and for each of them we have to examine all neighbors of x. The time needed to compute this table is neglectible in comparison to the number of tuples to consider. Indeed, there are O(n 12) tuples to consider. For each of them we have to consider all vertices a in V and verify some assertions respectively to the tuple and this additional vertex. With the table T all these assertions can be checked in constant time. Therefore, the pre-processing step of the enumeration algorithm takes O(n 13) time.

As in the case of interval graphs, let us conclude this section by the following interesting corollary.

Corollary 5.8 On permutation graphs the problem of finding a minimum connected dominating set, as well as the problem of finding a maximum irredundant set can be solved in polynomial time.

In the next section we show that our technique can be extended to cyclically ordered graphs. Interestingly, while the local characterizations of the property we are interested in will be somewhat simpler, the reduction of the corresponding enumeration problem to the enumeration of paths in a DAG will be more involved.

Local properties and enumeration for cyclically ordered graphs

A cyclic order is a way to arrange clockwise a set of objects in a circle. Formally, it is a ternary relation [xyz], which means that after x one reaches y before z, and which fulfills the following axioms. Given n > 3 points in a cyclically ordered set X, we write [x 1 x 2 . . . x n] when [x i x j x k] holds for any 1 ≤ i < j < k ≤ n.

For any x y in X, we say that y is the successor of x (or that x is the predecessor of y) if there is no a ∈ X satisfiying [xay]. Clearly, each element of X has one predecessor and one successor. As a consequence Definition 2.3 still has a precise meaning in the present framework. A k-window of X in a cyclically ordered graph G is a tuple (x 1 , . . . , x k) such that x i+1 is the successor of x i for each i < k. For example, if [x 1 x 2 . . . x n] holds, the 3-windows of the cyclically ordered set {x 1 x 2 . . . x n } are the tuples

(x 1 , x 2 , x 3), (x 2 , x 3 , x 4), . . . , (x n-2 , x n-1 , x n), (x n-1 , x n , x 1), (x n , x 1 , x 2).
The set of k-windows in a cyclically ordered set is still denoted by W k (X). The underlying cyclic order will always be clear from the context.

As in the previous sections, we are interested in locally definable vertex set properties. In the case of cyclic orders, this notion is more uniform than in the linear order case since there are no extremal cases to consider. Definition 6.1 Let G be a class of graphs equiped with a uniform cyclic order. A vertex set property P is locally definable on G if there exist an integer k > 1 and a uniform vertex constraint φ of arity k, such that for any G ∈ G and any X ⊆ V(G) of cardinality > k:

X ∈ P G iff ∀(x 1 , . . . , x k) ∈ W k (X), φ G (x 1 , . . . , x k).
If furthermore φ is decidable in polynomial time, then P is said to be locally definable in polynomial time.

The rest of this section is devoted to proving an analogue of Theorem 3.2. We establish that vertex set properties locally definable on a class of cyclically ordered graphs is enumerable with linear delay on this class. As previously this is done by reduction to the enumeration of paths in a dag, but the reduction is more involved. Indeed, we will use a Turing reduction, which means that we will not make only one call to the enumeration procedure of paths in a DAG but a polynomial number of such calls. Theorem 6.2 (Enumerability in cyclically ordered graphs) Let G be a class of cyclically ordered graphs and P be a uniform vertex set property. If P is locally definable in polynomial time on G , then P is enumerable with linear delay.

Proof. We reduce the problem to that of enumeration of paths in a DAG. With each cyclically ordered graph G = (V, E) in G, we associate a new directed graph G α ∆ in choosing a new point α on the circle and in setting G α ∆ = (V α ∆ , E α ∆), where:

V α ∆ = {(x 1 , . . . , x k-1) ∈ V k-1 s.t. [x 1 . . . x k-1 α]}
and for every (x 1 , . . . , x k-1), (y 1 , . . . , y k-1) ∈ V α ∆ :

(x 1 , . . . , x k-1)E α ∆ (y 1 , . . . , y k-1) if (x 2 , . . . , x k-1) = (y 1 , . . . , y k-2) and φ(x 1 , . . . , x k-1 , y k-1).

Notice that G α ∆ is a DAG since for any path in G α ∆ , say:

(x 1 , x 2 , . . . , x k-1) → (x 2 , x 3 , . . . , x k) → • • • → (x p , x p+1 , . . . , x p+k-2),
the definition of V α ∆ implies that [x i . . . x i+k-2 α] holds for each i ≤ p. In particular, we have [x 1 x 2 α], [x 2 x 3 α], . . . , [x p-1 x p α] and hence [x 1 x p-1 α], by (co 3). Therefore, the equality (x p , . . . , x p+k-2) = (x 1 , . . . , x k-1) cannot hold, since it would entail x p = x 1 and hence the assertions [x p-1 x p α] and [x 1 x p-1 α] stated above could be rephrased into [x p-1 x 1 α] and [x 1 x p-1 α], in contradiction with (co 2). Thus, there is no circuit in G α ∆ . As a consequence of Definition 6.1 and of the definition of G α ∆ , each set {x 1 , . . . , x n } ∈ P G (enumerated in such a way that [x 1 . . .

x n α] holds) defines a path (x 1 , . . . , x k-1) → (x 2 , . . . , x k) → • • • → (x n-k+2 , . . . , x n) in G α ∆ .
Observe that the converse is false. Indeed, the existence of a path (x 1 , . . . ,

x k-1) → • • • → (x n-k+2 , . . . , x n) in G α
∆ guarantees that the requirements φ(x 1 , . . . , x k), . . . , φ(x n-k+1 , . . . , x n) are fulfilled, but it does not certify the satisfaction of the k -1 additionnal constraints yet mandatory to ensure that {x 1 , . . . , x n } ∈ P G , namely: φ(x n-k+2 , . . . , x n , x 1), φ(x n-k+3 , . . . , x n , x 1 , x 2), . . . , φ(x n , x 1 , x 2 , . . . , x k-1)

(1)

In other words, the sets of vertices supporting a path in G α ∆ include all sets of P G plus some sets out of P G . So we must select among the paths in G α ∆ those that do correspond to some set of P G . In order to do so we identify all pairs of vertices (s, t) ∈ V α ∆ × V α ∆ that are endpoints of a "good" path in G α ∆ , that is, a path whose vertex support does belong to P G . Such pairs (s, t) in V α ∆ × V α ∆ fulfill the following conditions:

(i) there is at least one s, t-path in G α ∆ ;

(ii) (s, t) satisfies (1), that is, supposing s = (x 1 , . . . , x k-1) and t = (y 1 , . . . , y k-1):

φ(y 1 , . . . , y k-1 , x 1), φ(y 2 , . . . , y k-1 , x 1 , x 2), . . . , φ(y k-1 , x 1 , x 2 , . . . , x k-1).

By construction, there is a one-to-one correspondance between the sets of P G and the s, t-paths in G α ∆ whose pair of endpoints (s, t) belongs to the following set EP α (G):

EP α (G) = {(s, t) ∈ V α ∆ × V α ∆ s.t. s and t fulfill conditions (i) and (ii) above}.

All in all, we justified the following enumeration algorithm of P G :

Enumeration in circular-permutation graphs

A second example of cyclically ordered graph class is the class of circular-permutation graphs, which is also a subclass of intersection graphs. The intersection model of a circular-permutation graph is composed of straight lines between two concentric circles. We keep the same notations than in our section on permutation graphs, we order the vertices by their bottom line endpoints. Some properties locally definable on the linearly ordered permutation graphs can be expressed on circularpermutation graphs very similarly. In particular Lemma 5.2, the third item of Lemma 5.3 and Lemma 5.6 hold as well for circular-permutation graphs. Therefore, according to Theorem 6.2 we have the following result.

Proposition 7.5 On circular-permutation graphs, the maximal irredundant sets are enumerable with linear delay after a polynomial pre-processing.

Observe that, connectivity cannot be defined locally on circular-permutation graphs for the same reason as on circular-arc graphs.

The proofs of Proposition 7.4 and Proposition 7.5 give the interesting following corollary, which answers open questions, as far as we know.

Corollary 7.6 On circular-arc graphs, as well as on circular-permutation graphs, the problem of finding a maximum irredundant set can be solved in polynomial time.

Proof. Let us give the proof in the case of circular-arc graphs (the proof for circular-permutation graphs is similar). The property of maximal irredundant set is locally definable on circular-arc graphs through windows of size 7. We first exhaustively compute maximal irredundant sets of size less than 7 and put them in a list. Second, we use the enumeration algorithm implicitly used in the proof of Proposition 7.4 and described in the proof of Theorem 6.2. In this algorithm we replace all calls to EnumPathsDag(H, s, t) by calls to a polynomial-time procedure computing a longest path in H from s to t, and we add the irredudant sets corresponding to the paths so obtained to the above list. A maximum irredundant set belongs to this polynomial-size list of irredundant sets.

Conclusion

The very general study of vertex properties in ordered graphs is the main contribution of the paper. It gives insight into the helpful structure that allows for linear delay enumeration for a very broad class of graphs and problems.

We proved that if a vertex set property is locally definable on linearly ordered graphs, then the corresponding enumeration problem reduces to the enumeration of paths in directed acyclic graphs. This provides a general method to design linear delay algorithms for the enumeration of such vertex set properties on linearly ordered graphs. General results of this form are rare in enumeration theory. We illustrated this method on the class of interval graphs and on the class of permutation graphs. On such graphs we showed that the minimal connected dominating sets and the maximal irredundant sets can be enumerated with linear delay. In addition, as a corollary we obtained a polynomial time algorithm for finding a minimum connected dominating set and a maximum irredundant set on such graphs. It is worth noticing that our method, which highlights the local character of the studied properties, gives combinatorial proofs that are simpler than previously existing ones for other properties.

In a second step we extended our results to cyclically ordered graphs. We obtained a similar general method for enumerating vertex set properties on cyclically ordered graphs with linear delay. We applied it to the enumeration of maximal irredundant sets on circular-arc graphs and on circular-permutation graphs. As a corollary we provided a polynomial time algorithm for finding a maximum irredundant set in such graphs.

The collection of specific problems to which these methods can be applied is various but also leaves room for further research. A natural issue is to search for other classes of graphs and other vertex set properties to apply our method. A promising line of research is to proceed with the class of graphs of bounded linear induced matching width (see [GHK + 18]) and to define in this context an appropriate variant of the local definability of vertex set properties

x

 < a < y ⇒ e(x) > e(a) or e(a) > e(y) or P {w,x,a} (x) = ∅ or P {x,a,y} (a) = ∅ or P {a,y,t} (y) = ∅ 2. for every (x, y, z) ∈ W 3 (X): (a) If x = min(X), then P {x,y} (x) ∅ and for every a < y: x < a ⇒ e(x) > e(a) or e(a) > e(y) or P {x,a} (x) = ∅ or P {x,a,y} (a) = ∅ or P {a,y,z} (y) = ∅ a < x ⇒ e(a) > e(x) or P {a,x} (a) = ∅ or P {a,x,y} (x) = ∅ (b) If z = max(X), then P {y,z} (z) ∅ and for every a > y: a < z ⇒ e(y) > e(a) or e(a) > e(z) or P {x,y,a} (y) = ∅ or P {y,a,z} (a) = ∅ or P {a,z} (z) = ∅ z < a ⇒ e(z) > e(a) or P {y,z,a} (z) = ∅ or P {z,a} (a) = ∅

(

 co 1) [xyz] ⇒ [yzx]; (co 2) [xyz] ⇒ ¬[zyx]; (co 3) ([xyz] and [yzt]) ⇒ [xzt]; 1 (co 4) [xyz] or [zyx] for any p.w.d. x, y, z.

 Observe that the complexity of ClearDag is linear in the size of G.

		a topological ordering of H
	3 Mark all vertices in T
	4 for each i = n -1 to 1
	5	for each successor y of x i in G
	6	if y is marked
	7	mark x i
	8 Delete from H all vertices that are not marked
	9 return H
	EnumPathsDag(H, S , T)
	1 Let s and t be new vertices
	2 Add the arc (s, x) to H for all x ∈ S
	3 Add the arc (x, t) to H for all x ∈ T
	4 Generate(H, s, t, ∅)
	Generate(H, x, t, D)
	1 if x = t
	2	Output(D)
	3 else	
	4	for each successor y of x in H
	5	Generate(H, y, t, D ∪ {y})

This axiom is often written under the equivalent form: ([xyz] and [xzt]) ⇒ [xyt].

Acknowledgements

We wish to thank Mamadou Kanté and Dieter Kratsch for having suggested us to study the minimal connected dominating set and the maximal irredundant set properties. We are very grateful to Vincent Limouzy and Arnaud Mary for fruitful discussions in an early stage of this paper. This work has been supported by the French Agence Nationale de la Recherche, GraphEn project reference ANR-15-CE40-0009 and AGGREG project reference ANR-14-CE25-0017.

a vertex of degree 3, thus contradicting the minimality of W. Hence W cannot contain three additional vertices and thus it belongs to W k (X) for k ≤ 6.

Given an ordered set of vertices X, let us define the X-distance between u and v, dist X (u, v), by:

(Here,]u, v[denotes the set of vertices lying in between u and v, whatever u is greater or smaller than v.)

The neighbours of a vertex v that minimize the X-distance to v are referred to as the nearest neighbours of v.

In the case of interval graphs we have seen that basic properties can be defined locally if they contain no nested intervals and that this last property can be checked locally. For permutation graphs, the fact that they do not contain any vertex of degree greater than 2 is the characteristic that enables us to define basic properties locally. Roughly speaking this bounded degree makes local the notion of neighbourhood, as made precise in the following lemma.

Lemma 5.3 Let X be a set of vertices in a permutation graph G, with deg(X) ≤ 2.

(1) Any two adjacent vertices x, y ∈ X verify dist X (x, y) ≤ 3.

(2) A vertex v has a neighbour in X iff it has a neighbour in the set {y ∈ X : dist X (v, y) ≤ 3}.

(3) A vertex x ∈ X has a private neighbour w.r.t. the set X iff it has a private neighbour w.r.t. the set {y ∈ X : dist X (x, y) ≤ 3}.

(4) X is connected if and only if for every (x, y, z, t) ∈ W 4 (X), (i) there is an edge between {x, y} and {z, t} and

(ii) x = min(X) ⇒ x ∈ N(y, z) and

(iii) t = max(X) ⇒ t ∈ N(y, z).

Proof. (1) Suppose there are three vertices in]x, y[∩X, i.e. dist X (x, y) ≥ 4. According to Fact 5.1(i), two of them belong either both to N(x) or both to N(y). Therefore, since vertices x and y are adjacent, one of them has three neighbours in X, in contradiction with deg(X) ≤ 2.

(2) Let x be the nearest to v among the vertices in N(v) ∩ X. We can assume w.l.o.g. that v < x (the opposite case canbe dealt with symmetrically). By assumption,]x, v[∩X contains no neighbour of v. Fact 5.1(i) then entails]x, v[∩X ⊆ N(x) and hence, since deg X (x) ≤ 2, card(]v, x[∩X) ≤ 2. This exactly means dist E (v, x) ≤ 3.

(3) Obviously, if vertex x ∈ X has a private neighbour w.r.t. the set X, then it has a private neighbour w.r.t. the set {y ∈ X : dist X (x, y) ≤ 3}. Conversely, let us prove that if a vertex v ∈ N(x) has another neighbor than x in X, then it has also such a neighbor in the set {y ∈ X : dist X (x, y) ≤ 3}. Let x ∈ X and v ∈ N(x) such that v has another neighbor than x in X. Assume that v < x. Let y be the nearest to x among the vertices in N(v) ∩ X \ {x}. Three cases occur, according to the position of y relatively to x and v:

EnumPathsDag(H, s, t)

Let us examine its complexity. Let n denote the number of vertices of G. Assume φ can be decided in time

∆ that fulfill conditions (i) and (ii) above. Checking (i) means testing reachability between s and t in

). For (ii), one must verify whether φ holds for k -1 tuples: it takes time O(n ε). Hence, Line 3 runs in time

Once EP α are available, we know all the couples (s, t) that are the endpoints of paths in G α ∆ that really correspond to some set X ∈ P G . In order to enumerate these paths without wasting time in vain explorations, we must nevertheless "clean" G α ∆ with respect to these couples of endpoints. Lines 5 to 8 are devoted to this task. The list L collects all triples (H, s, t), where s, t are the endpoints of an "authorized" path in G α ∆ , and H is the graph G α ∆ in which all vertices from which t is not reachable are cleared out. The time complexity of this whole step is bounded by

). As a consequence, Lines 1 to 8 of the algorithm, which correspond to the pre-processing step of the enumeration, take O(n 3k-2 + n 2k-2+ε) time.

After this pre-processing step, the enumeration in the strict sense is performed in Lines 9 and 10. On the one hand, observe that every call to the procedure EnumPathsDag leads to at least one solution by the choice of EP α (G). On the other hand note that the size of the paths output is linear in the size of the vertex sets they represent. Therefore, thanks to Theorem 2.4, the enumeration runs with linear delay.

7 Enumeration in circular-arc and circular-permutation graphs

Enumeration in circular-arc graphs

As a first example of cyclically ordered graph class, we consider the class of circular-arc graphs, which is a subclass of intersection graphs. The intersection model of a circular-arc graph is composed of arcs on a circle. If G is such a graph, we denote by [s(x), e(x)] the arc associated with a vertex x and we define such an arc as the set of all points u on the circle such that [s(x), u, e(x)], with s(x) and e(x) respectively the beginning and the end of x following clockwise the circle. We assume without loss of generality that all endpoints are pairwise distinct. The natural cyclic order associated with a circular-arc graph is the following: [x, y, z] if and only if [s(x), s(y), s(z)], which means that after s(x) one reaches s(y) before s(z) when following clockwise the circle Some properties locally definable on interval graphs can de defined very similary on circular-arc graphs.

Given a set of vertices X of such a graph, we say that X has no nested circular-arcs if for all distinct vertices x, y in X, [s(y), e(x), e(y)] whenever [s(x), s(y), e(x)].

Under this condition it is easy to check that the the properties of domination and private neighbourhood can be locally defined. The proofs of the two lemmas below are very similar to the proofs of Lemma 4.1 and Lemma 4.2, the only difference is that there are no extremal windows to consider.

Lemma 7.1 Let G = (V, E) be a circular-arc graph, and X ⊆ V. The set X contains no nested circular-arcs if and only if for all (x, y) ∈ W 2 (X), [s(y), e(x), e(y)] whenever [s(x), s(y), e(x)].

Lemma 7.2 Let X be a set of vertices in a circular-arc graph G with no nested circular-arcs. Then:

1. For every (x, y) ∈ W 2 (X) and every v X such that [x, v, y]: v ∈ N(X) iff v ∈ N(x, y).

2. For every (x, y, z) ∈ W 3 (X): P X (y) = P {x,y,z} (y).

Interestingly, connectivity cannot be defined locally on the class of circular-arc graphs, contrary to interval graphs. Indeed consider for instance the set X = {x 1 , . . . , x 2n } such that [s(x i), s(x i+1), e(x i)] for i n; [s(x n), e(x n), s(x n+1)]; [s(x 2n), s(x 1), e(x 2n)].

The set X is connected. Therefore, the fact that [s(x), s(y), e(x)] holds for all (x, y) ∈ W 2 (X) is not necessary to have connectivity. Suppose now that [s(x 2n), s(x 1), e(x 2n)] does not hold either, then X is not connected anymore. Intuitively this means that X has two diametrically opposite holes. This cannot be detected through a fixed size window.

Lemma 7.3 Any irredundant set of vertices in a circular-arc graph has no nested arcs.

As in Section 4 the three lemmas above together with Theorem 6.2 enable us to efficiently enumerate maximal irredundant sets on circular-arc graphs.

Proposition 7.4 On circular-arc graphs, the maximal irredundant sets are enumerable with linear delay after a polynomial pre-processing.

Proof. According to Lemma 7.2 and Lemma 7.3, maximal irredundant sets can be characterized through scanning windows of size 4 in ordered circular-arc graphs. More precisely, given such a graph G and X ⊆ V, X ∈ MIR(G) if and only if for every (w, x, y, z) ∈ W 4 (X):

1. if [s(w), s(x), e(w)] then [s(x), e(w), e(x)]; 2. P {w,x,y} (x) ∅;

3. for any a ∈ V \ X, This characterization shows that MIR is locally definable on the class of circular-arc graphs (see Definition 6.1). Therefore, according to Theorem 6.2 there is a linear delay enumeration algorithm for MIR on circular-arc graphs.