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Abstract

We propose a smooth, non-convex and content-adaptive regularisation model for single-image
super-resolution of murine Optical Coherence Tomography (OCT) data. We follow a sparse-
representation approach where sparsity is modelled with respect to a suitable dictionary generated
from high-resolution OCT data. To do so, we employ a pre-learned dictionary tailored to model
α-stable statistics in the non-Gaussian case, i.e. α < 2. The image reconstruction problem renders
here particularly challenging due to the high level of noise degradation and to the heterogeneity
of the data at hand. As a regulariser, we employ a separable Cauchy-type penalty. To favour
adaptivity to image contents, we propose a space-variant modelling by which the local degree of
non-convexity given by the local Cauchy shape parameter is estimated via maximum likelihood.
For the solution of the reconstruction problem, we consider an extension of the cautious Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm where the descent direction is suitably updated
depending on the local convexity of the functional. Our numerical results show that the combi-
nation of a space-variant modelling with a tailored optimisation strategy improves reconstruction
results and allows for an effective segmentation with standard approaches.

Keywords: Sparse representation, Cauchy regularisation, Space-Variant modelling, Non-convex
BFGS, Optical Coherence Tomography.

1. Introduction

At the core of model signal processing methodology sits the concept of sparsity. Working in
sparse domains can greatly simplify the computations and produce highly effective and promising
results. Sparsity is understood both as sparse signal and image representations (see, e.g., [31, 4,
13, 48]) but also interpreted within a statistical setting and in terms of heavy-tailed probability
density functions [44]. As far as the use of sparse representation models for the specific problem
of super-resolution is concerned, in their seminal work [51], the authors proposed a dictionary-
based approach where patches of a given low-resolution (LR) image were represented in a sparse
way with respect to a given over-complete dictionary; from such representation a high-resolution
(HR) output was then computed using the estimated coefficients in an efficient way. The proposed
approach was motivated by standard results in compressed sensing and highly relied on the use of
a suitable choice of sparsity-promoting functionals together with a double dictionary training.

Using redundant representations and sparsity as driving forces for signal and image processing
has drawn a lot of research attention in the past decade towards the design of sparsity-regularized
variational models [40, 12, 25, 26, 10, 11]. The notion of sparsity can be then described in terms
of the minimisation of the non-convex and non-continuous `0 pseudo-norm, i.e. the number of
nonzero elements of a given input vector. However, the minimisation of such penalty when com-
bined with, e.g., a quadratic data fidelity makes the composite problem NP-hard [36], so that
approximated approaches have to be considered in order to solve the problem. A popular choice
consists in replacing the `0 pseudo-norm with the convex `1 norm [14, 18], which for a certain
class of model operators has been shown to provide solutions with the desired sparsity pattern.
However, for general operators the choice of such penalty may cause an under-estimation of high
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amplitude components, an issue which is typically addressed by dropping the convexity constraint
and by considering continuous, non-smooth and non-convex functions such as `p “norms” (p < 1),
Smoothly Clipped Absolute Deviation, Minimax Concave Penalty (MCP) and Continuous Exact
relaxations, see [46] for a unified view on these regularisers with a detailed insights on both the
analytical and numerical difficulties encountered when using them. By looking at the analogous
notion of sparsity studied, e.g., [32] in a statistical setting, which we prefer to refer to as statistical
sparsity, a new class of practical sparsity-promoting regularisation terms can be derived. In this
context, sparsity has to be defined as a limiting property of a sequence of probability distributions
that governs both the rate at which probability accumulates near the origin and the rate at which
it decreases elsewhere. In the context of ultrasound and synthetic aperture radar images [1, 3],
for instance, the two sparsity notions have been related by observing that wavelet coefficients of
such images can be accurately characterised statistically by the family of heavy-tailed alpha-stable
distributions [44, 37]. Subsequently, Bayesian estimators recovering the signal component of image
coefficients in an optimal fashion were designed. One should note that unlike other distributions
employed for data modelling, which are generally empirically selected, the use of alpha-stable densi-
ties is rigorously justified by the generalised central limit theorem [44]. More recently, a variational
non-convex, but smooth penalty function derived from the Cauchy distribution (a particular case
of the alpha-stable family with α = 1) was similarly employed as a sparsity-promoting penalty for
a number of inverse imaging problems [24, 22, 23]. The smoothness of such penalty is particularly
interesting from an optimisation point of view as it allows in principle a handy numerical treatment
via gradient-based solvers.

Following [24, 22, 23], we consider in the following a sparsity-based approach relying on the use
of a Cauchy penalty for the high-resolution reconstruction of biomedical data using redundant and
dictionary-based representations. As an exemplar biomedical application, we focus on real Optical
Coherence Tomography (OCT) images, with the intent of showing the benefits of applying super-
resolution before performing any further image analysis. OCT is an in vivo non-invasive imaging
technique based on low-coherence interferometry that allows to detect ophthalmic structures at mi-
crometer resolution. OCT images show sections of the multiple layers of the retinal tissue as well as
the inner eye region (vitreous), hence they are particularly suited for the detection of anomalies and
deformations in the eyes as well as in the follow-up of ophthalmic diseases in early and later stages
such as Multiple Sclerosis, Diabetes type 1, Alzheimer’s disease, Parkinson disease, or Glaucoma,
see, e.g., [54] for a medical review. However, the poor spatial resolution and the multiplicative
nature of the (speckle) noise observed in OCT data often limit the possibility of an accurate image
analysis, which makes the use of both super-resolution (SR) and denoising/despeckling imaging
techniques crucial for the subsequent image analysis, often based on accurate (and often manual)
layer segmentation [52, 50]. A reliable reconstruction of OCT images should preserve the essen-
tial diagnostic information in the OCT images which is confined to the diagnostically significant
(DS) regions of the OCT images characterised by the layered dense structure, while denoising the
homogeneous regions consisting of the bottom part of the image (choroid and the sclera) named
as diagnostically non-significant (DN) regions [16] which occupy the majority of the pixels in the
OCT images. A tailored reconstruction method for the analysis of OCT data should thus adapt
to such data variability by means, e.g., of a space-adaptive regularisation. As far as previous ap-
proaches are concerned, in [19] the authors proposed a sparsity-based simultaneous denoising and
interpolation of OCT images, while in [16] the OCT images were super-resolved using a weighted
joint sparse representation method to adaptively reconstruct the DS regions while denoising the
DN ones. More recently, a generative adversarial network-based approach to simultaneously de-
noise and super-resolve OCT images was introduced in [20]. However, the utility of deep learning
approaches in medical imaging is still a challenge due to the scarcity of large databases of paired
LR-HR images.

Contributions. We propose a mathematical approach for the reconstruction of OCT data using the
framework of sparse-representation [51] and a Cauchy-type regulariser to promote sparsity. Our
proposal extends the one preliminarily studied in [45] with respect to:

(i) the design of a new sparse-representation-based reconstruction approach with focus on a
super-resolution framework;
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(ii) the use of a patch-adaptive Cauchy-type regularisation for the estimation of relevant weights
and combined with an automatic parameter estimation strategy;

(iii) the proposal of quasi-Newton optimisation scheme adapted to the local convex/non-convex
behaviour and computing effective model solutions.

In details:

(i) The proposed design of a reconstruction approach for OCT images is based on their sparse
representation with respect to a fixed high-resolution (HR) dictionary performed on a small
set of properly denoised HR images. Compared to classical approaches, see, e.g., [51], the
main advantage of the proposed approach is that it does not require the learning of a low
resolution (LR) dictionary, while allowing at the same time the reconstruction of LR data
independently on their initial resolution. Since the reference dictionary is built on HR cleaned
data, an intrinsic denoising effect within the reconstruction process is also promoted.

(ii) The patch-wise heterogeneity of image contents is taken into account by the design of a patch-
adaptive Cauchy regularisation term whose local degree of regularisation and non-convexity
is adapted to the local image statistics. The proposed estimation strategy relies entirely on
the use of the given LR data. As such, it can be performed offline making the proposed
approach parameter-free. While sharing few analogies with the space-variant regularisation
approaches (see, e.g., [21, 42] and references therein) the proposed strategy is significantly
different from others used in space-variant noise analysis (see, e.g., [5, 17, 7]) where the
estimation is done to better describe heterogeneous noise (rather than solution) statistics.

(iii) The smoothness of the composite reconstruction model considered is exploited by consider-
ing a cautious modification of the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.
Differently from previous work [24, 45], where the Cauchy penalty is manipulated in terms
of its proximal operator and within a first-order proximal gradient perspective, here we ex-
ploit the smoothness of such penalty and introduce an efficient Non-Convex Cautious BFGS
(NNC-BFGS) algorithm tuning its update rules depending on the local degree of convexity
estimated from the data as in (ii).

We stress that with a slight abuse of terminology, we will refer from now on to our reconstruction
approach as super-resolution (SR), for consistency with the standard dictionary-based SR technique
proposed, e.g., in [51]. Note, however, that our approach differs from standard approaches from
two main perspectives: firstly, it relies upon a single HR dictionary and not on a LR-HR pair;
secondly, our reconstruction process favours an intrinsic denoising process which is, in general, not
a feature of classical SR techniques.

Structure of the paper. In Section 2, the SR OCT problem is formulated: Section 2.1 briefly
introduces the Cauchy-based variational model for single patch reconstruction, which is applied
in the overall SR framework described in Section 2.2. Sections 3, 4 and 5 describe in detail the
main ingredients of the proposed algorithm, respectively the role of the Cauchy-based penalty,
the definition and the estimation of the space-variant γ-map and the smooth optimisation method
designed to solve the problem. In Section 6 the proposed method is validated on several OCT data
and, finally, in Section 7 some conclusions are reported.

2. OCT SR via sparse and adaptive representation

For rh, ch, rl, cl ∈ R+ with rl ≤ rh and cl ≤ cl, the task of recovering an HR OCT image
X ∈ Rrh×ch from a noisy, and blurred LR input Y ∈ Rrl×cl can be modelled mathematically as an
inverse image reconstruction problem whose ill-posedness can be overcome by representing X in a
sparse way with respect to a given (over-complete) dictionary [51] and by introducing the following
two constraints:

1. Reconstruction Constraint : the input LR image Y is linked to the desired HR image X via
the image formation model

Y = N (Sq(K(X))) + η (C1)

where the operator K : Rrh×ch → Rrh×ch is the convolution (blur) operator corresponding
to the point spread function (PSF) κ ∈ Rs1×s2 of the OCT acquisition system, the matrix
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Sq : Rrh×ch → Rrh/q×ch/q is a downsampling operator defined in terms of a factor q ∈ N∗
which maps the image K(X) = κ∗X ∈ Rrh×ch into a coarser grid by averaging/interpolation.
As any imaging technique based on detection of coherent waves, OCT images are subject to
the presence of speckle noise [43]. Consequently, N (·) is used here to denote a multiplicative
(speckle) noise degradation process, while η ∈ Rrh/q×ch/q denotes an additive component
representing white Gaussian measurement noise.

2. Sparsity Constraint : We further assume that every (square) patch x extracted from X ∈
Rrh×ch can be represented as a sparse linear combination of nd atoms of a given over-complete
dictionary D ∈ Rnp×nd which has been previously learned from HR training images. Using
a vectorised notation for x ∈ Rnp , such assumption can thus be formulated as:

x ≈ Da for some a ∈ Rnd with ‖a‖0 << nd, (C2)

where by ‖a‖0 := # {ai : ai 6= 0} we denote the `0 pseudo-norm of the vector a.

2.1. Patch reconstruction via adaptive space-variant modelling

As discussed in the introduction, OCT data show very heterogeneous contents: different regions
of the images considered enclose in fact varying levels of texture information, which translate into
diverse sparsity patterns of the nd atoms (nd > np) with respect to given dictionary D ∈ Rnp×nd .
We then combine (C1) with (C2) to define the local relation between each vectorised square patch

y ∈ Rnp/q
2

extracted from the LR observed image Y and the corresponding coefficient vector ay,
thus finally writing the patch-based sparse representation problem:

find ay ∈ Rnd such that y = N (Sq(K(Day))) + η with ‖ay‖0 << nd. (My)

Solving the reconstruction problem under model (My) is challenging since:

• [Ill-Posedness] it is an inherently ill-posed problem;

• [NP-hardness] it is NP-hard, due to the presence of the `0 pseudo-norm;

• [Heterogeneity] it is patch-dependent, due to the heterogeneous (possibly very different)
content of each image patch.

To address these challenges, we consider in the following a variational space-variant and sparsity-
inducing approach. In particular, we consider a penalised variational problem for the retrieval of
the coefficients ay where the shape parameter of the penalty considered is tuned depending on the
content of each patch y. To do so, we define a space-variant prior information function, called in
the following γ-map, which assigns to each image patch y of the LR image a value γy > 0 based on
a local estimation of the sparsity level of y. The details about the choice of this particular func-
tion will be outlined in Section 4. Starting from (My), we thus consider the following variational
optimisation problem

find a∗y ∈ argmin
a∈Rnd

{f(a) := f1(a) + f2(a; γy)} (Py)

f1(a) :=
1

2
‖y − SqKD(a)‖22, f2(a; γy) :=

nd∑
i=1

φ(ai; γy),

where, for any LR patch y, a∗y is an approximation of the sparse coefficient vector representing the
HR patch x ∈ Rnp in terms of the over-complete dictionary D.

A quadratic data fidelity term f1(·) is used to remove AWG noise, while the regularisation term
f2(·; γy) is defined in terms of the separable function φ(·; γy) which we choose to be the smooth,
non-convex Cauchy penalty of shape parameter γy > 0 previously employed, e.g., in [24, 45]. The
patch-dependent parameter γy plays a crucial twofold role in our model. Firstly, it plays the role
of the regularisation parameter, balancing the contribution of the fidelity term against the Cauchy
penalty. Secondly, it modulates the non-convexity and hence the sparsity-promoting property of
the penalty. For this reason, such parameter will be referred to as convexity parameter.

In comparison with our previous work [45], the super-resolution model (Py) extends the Cauchy-
based regularisation strategy to the space-variant case which allows to deal effectively with the
heterogeneous image contents.
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2.2. Image reconstruction from patches

We synthesise in Algorithm 1 the main steps of the proposed adaptive OCT-SR method. The
matrices D and Sq denote suitably resized matrices computed by discretising the operators D and
Sq, respectively. The matrix K represents the blurring operator corresponding to the PSF of the
OCT scan. Such operator can be either considered to be known (assuming, for instance, a Gaussian
PSF κ) or estimated as described in [33].

Algorithm 1 relies only on the HR dictionary D, thus allowing greater flexibility in the choice
of the scaling factor q which can be freely varied without recomputing the LR dictionary D as
required in standard approaches [51]. To build the HR dictionary D, we follow [39] where general
α-Stable distributions are used as prior Probability Density Functions (PDF). By setting α = 1,
we thus fix the underlying distribution to be Cauchy. Once we have extracted from Y the patches
y-s (in raster scan order with overlapping borders of dimension 1 pixel), Algorithm 1 consists in
the computation of the solution a∗y to problem (Py). We will generically denote by NNC-BFGS the
resolution method chosen to address (Py), of which a detailed description is postponed to Section
5.

The reassembling of a HR image X from the reconstructed patches is then simply obtained
following a patch-overlapping strategy. Denoting by Ωl ⊂ R2 and Ωh ⊂ R2 the LR and HR image
spaces, we consider a LR square patch y having its upper-left corner in position (il, jl) ∈ Ωl. The
position (ih, jh) ∈ Ωh of the upper-left corner of the corresponding HR patch x is then identified
by means of the following projection map Πq:

Πq : Ωl → Ωh

(il, jl) 7→ ((il − 1)q + 1, (jl − 1)q + 1).

As we are extracting overlapping patches, the reassembling procedure based on Πq generates a set of
maximum np values insisting on the same HR pixel (ih, jh). A common method is to average these
pixel values for obtaining the HR image value in Ωh. However, in order to avoid the smoothing
effect generated by averaging, we propose instead to stack all these values and take the median
one.

Algorithm 1 Adaptive OCT-SR

Input: Y , D, K, Sq
Output: X∗ % HR OCT image
Estimate the γ-map (see Section 4)

Extract overlapping patches of size
√
np

q ×
√
np

q
For each patch y

Compute a∗y by solving (Py) by NNC-BFGS (see Section 5)
Generate the HR patch xy = Da∗y

end
Stack the xy patches according to Πq

Compute median values of all overlapping pixels
Collect all the median values in X∗

The computational complexity of Algorithm 1 boils down to two bottlenecks: the offline and
resolution-independent estimation of the γ-map (which involves the LR data only and it is thus
performed before the reconstruction step) and the solution to problem (Py) for each patch. In
Section 4 we comment on the former step and include some insights on the computational times
required to build such map for a test image. As far as the reconstruction algorithm complexity is
concerned, in Section 5, we report the computational time required to solve the problem (Py) for
different patches y, extracted from a test image.

3. Sparsity-promoting Cauchy penalty

In this section we outline some important properties of the scalar Cauchy penalty functions
φ(·; γy) which contribute to the solvability of (Py).
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Figure 1: (a) Cauchy PDF for varying γ > 0. (b) Plots of different penalty functions relaxations of the `0
pseudo-norm.

From a statistical point of view, the Cauchy distribution belongs to the family of α-stable
distributions, which are heavy-tailed distributions frequently exploited in many applications rang-
ing from actuarial, financial sciences, risk management and tomographic imaging see, for example
[47, 52, 2]. More precisely, a Cauchy distribution is an α-stable distribution with α = 1. Differently
from other distributions in the family, the probability density function of Cauchy distribution, cen-
tred at the origin, can be expressed in closed-form in terms of a positive shape parameter γ > 0.
Its expression reads:

p(t; γ) =
1

π

γ

γ2 + t2
, t ∈ R. (1)

As illustrated in Fig. 1a the value of γ controls the spread of the Cauchy distribution, playing thus
the very same role as the Gaussian variance: the smaller γ, the narrower and more peaked the
shape of the distribution. The Cauchy penalty can be defined by taking the negative log-likelihood
of the corresponding Cauchy PDF. For t ∈ R, such penalty thus reads:

φ(t; γ) = − log

(
γ

γ2 + t2

)
= log

(
γ2 + t2

γ

)
, (2)

with first and second derivatives given by:

φ
′
(t; γ) =

2t

t2 + γ2
, φ

′′
(t; γ) =

2(γ2 − t2)

(t2 + γ2)2
. (3)

Fig. 1b illustrates a comparison between the Cauchy penalty (labelled as Ca), the `1 norm and
other popular penalties typically used as alternatives to `0 pseudo-norm, compare e.g. with [28, 46].
Note that the function φ(·; γ) in (2) is non-convex except for a small and limited interval around the
origin, and increases unbounded at a logarithmic rate. This latter property, formulated in Prop.1,
is fundamental both to prove the existence of solutions for problem (Py) with the penalty in (2),
as stated by the Prop.2, and for the fine-tuning of an efficient algorithmic solution, as described in
Section 5.

Proposition 1. The function φ(x ; γ) defined in (2) with γ > 0, is twice continuously differen-
tiable, coercive, bounded from below by zero, and non-convex except for the interval −γ ≤ x ≤ γ.

As a consequence of Proposition 1 the Hessian matrix Hf ∈ Rnd×nd of the function f(a) in
(Py) is indefinite and reads as follows

Hf (a) = (SqKD)T (SqKD) + diag
(
φ
′′
(ai; γ)

)
i=1,...,nd

, (4)

where φ
′′
(·) is defined as in (3), and SqKD ∈ R

np

q2
×nd . The existence of a global minimiser for

problem (Py) can be proved by standard arguments.
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Proposition 2. Let y ∈ Rnp/q
2

, γy > 0 and φ( · ; γy) : R+ → R be defined in (2). Then, the
function f in (Py) is non-convex, proper, continuous, bounded from below by zero, and coercive,
hence the problem (Py) admits a global minimiser.

As an alternative to the Cauchy penalty in (2), the convex `1 or the non-convex Minimax
Concave Penalty (MCP) penalties can be considered as different examples sparsity-promoting
regularisers, similarly as what has been previously done in [45]. Thanks to its intrinsically tunable
degree of non-convexity, MCP is indeed advised to be among the most flexible and effective non-
smooth non-convex penalties [27]. However, its lack of smoothness forces to the use of non-smooth
optimisation methods such as proximal point algorithms [15, 21] to deal with it from a numerical
point of view. Analogous considerations hold for `1 regularisation. On the other hand, according
to Proposition 1, the function φ is twice continuously differentiable in R, so it is the cost function
in (2).

Remark 1. When the Cauchy penalty (2) is replaced by the MCP penalty, then Proposition 2 does
not hold anymore, as the overall objective function is not coercive any longer as the down-sampling
operator Sq has a nontrivial kernel and the penalty is bounded from above by a constant and from

below by zero. Note also that the linear operator SqKD ∈ Rnp/q
2×nd , with np/q

2 < nd, cannot
be full column rank for over-complete dictionaries, and the penalty is additive separable, thus we
cannot resort to convex/non-convex strategies to derive conditions on the parameter γ guaranteeing
that the associated functional in (Py) is convex as done, e.g., in [27].

4. Design of the space-variant γ-map

OCT image content is very heterogeneous. It is then desirable to design a space-variant sparsity
map so as to obtain different regularisation behaviours adapting to the different patches of the
observed image. The definition of the Cauchy regulariser φ(·; γy) in (Py) for each patch y can thus
take advantage of a patch-dependent parameter γy > 0 adapted to the local representation of the
desired solution. With the intent of defining local sparsity-promoting information, we thus define
the γ-map as the function γ : Ωl → R+ which associates to every pixel (i, j) in the LR image a
value γi,j > 0. For its construction, we thus consider for each pixel (i, j) ∈ Ωl a neighbourhood
Ni,j ⊂ Ωl of fixed size (which results in a patch ỹ = {ỹ`,κ}(`,κ)∈Ni,j

that is bigger than y) to
determine the γi,j based on an estimation strategy taking advantage of local intensity information.
For the given OCT data, we consider a Maximum Likelihood (ML) estimator of the parameter γ
which can be written as

γi,j ∈ arg max
γ

∑
(`,κ)∈Ni,j

log p(ỹ`,κ; γ) (5)

where p is the PDF in (1). The expression in (5) can be minimised using any unconstrained
function optimisation method, such as the Nelder-Mead simplex direct search approach. In our
implementation we have used Matlab’s fminsearch function. As far as the computational cost of
such procedure is concerned, the average CPU time to estimate the values γi,j based on a 9 × 9
neighbourhood for each single pixel (i, j) ∈ Ωl of a 256 × 128 image is 0.0027 seconds. The total
cumulative time sums up to 90.2026 seconds.

Once the γi,j values have been estimated for each pixel (i, j) ∈ Ω` and normalised in (0, 1], then
the whole γ-map is rescaled into a fixed range [γ, γ̄] where 0 < γ, γ̄ whose extreme values represent
the maximally sparse and the minimally sparse behaviour induced by γ in the penalty φ in (2).
This allows to better enhance the difference between its convex and its nonconvex behaviour, and
properly balance the regularisation term. To perform such rescaling we apply the nonlinear sigmoid
function

s : [0, 1]→ [0.02, 1]

t 7→ 0.5 + 0.5 tanh(6(t− 0.3)),
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Figure 2: Rescaling sigmoid function (left); LR OCT image with four different labelled patches (centre);
corresponding γ-map (right).

which is the strictly increasing function illustrated in Fig. 2(left). Finally, the value for γy appear-
ing in (Py) is computed by averaging all the values γi,j as

γy =
1
√
np

∑
(i,j)∈Iy

γi,j , (6)

where Iy ⊂ Ωl is the subset containing the coordinates of the pixels in the patch y. For the sake of
illustration, we report in Fig. 2 (right) the γ-map associated to the LR OCT image in the middle,
with values γi,j ∈ [0.1, 1] for all i, j.

To better highlight the link between the γ-value and the local morphological characteristic of
the image, we extracted four patches from different regions of the LR OCT image: one in the lower
region (patch A), one in the vitreous (patch B), two in the layers (patches C and D), see Fig. 2
(middle). The benefits of using a space-variant regularisation strategy are now illustrated in Fig.3
(first row) for both the OCT image shown in Fig. 2 and for another OCT image in Fig.3 (second
row) with more heterogeneous content in the upper region representing suspended particles in the
vitreous possibly caused by an inflammation of the eye. In Fig. 3 (left panel) the reconstructed
OCT images are obtained by solving the space-variant problem (Py) where the value γy is extracted
from the corresponding γ-maps in Fig. 3(left). For comparisons, the right panel of Fig. 3, from left
to right, shows the reconstructed OCT images obtained by applying the reconstruction problem
(Py) with several γ values, fixed for each patch, in the range γ ∈ {0.1, 0.2, 0.5, 0.9}, respectively.
As the parameter γ increases, the textured information from the LR OCT image is preserved
better and better, as well as the undesired noise in the background. By applying the proposed
space-variant approach, textured details are preserved in the DS layers region, while the noise is
suppressed in the background, DN regions.

For each selected patch, we report in Table 1 the PSNR values obtained by comparing the
solutions of (Py) for the different choice of constant γ and space-variant γy. The PSNR values
have been computed with respect to the corresponding patches extracted from the Ground Truth
HR image. We observe that the automatic space-variant procedure allows to obtain high-quality
reconstructions whose PSNR values are comparable to the ones obtained by manually tuning the
γ parameter, thus reducing the computational efforts without affecting (if not improving) the
reconstruction quality.

# Patch
γ

0.1 0.2 0.5 0.9 SV γ

A (background) 38.053 38.041 37.886 37.584 38.055 (0.08)
B (vitreus) 24.157 24.172 24.137 24.046 24.162 (0.14)
C (layers) 25.642 26.183 27.295 27.504 27.525 (0.86)
D (layers) 17.264 18.651 22.840 24.957 25.072 (0.99)

Table 1: PSNR values for SR of selected patches by solving (Py) with constant γ ∈ {0.1, 0.2, 0.5, 0.9} and
space-variant γy where the estimated γy values are reported in brackets. Best PSNR values are boldfaced.
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Figure 3: Comparisons between the proposed space-variant (SV) reconstruction approach (left) and the
one with fixed values of γ (right) on the images OCT1 (first row) and OCT2 (second row), obetained with
an upscaling factor q = 4.

5. Smooth, non-convex optimisation via cautious BFGS

From an optimisation viewpoint, the patch-dependent problem (Py) is small-sized and smooth,
although possibly non-convex. The gradient ∇f(·) of the cost function f in (Py) is Lipschitz
continuous with constant L > 0 which can be estimated by triangle inequality as L ≤ Lf1 + Lf2
where Lf1 and Lf2 are, respectively, the Lipschitz constants of the quadratic data-term and Cauchy
penalty terms in (Py), that is

Lf1 = ‖(SqHD)TSqHD‖22, Lf2 =
2

γ(x)
≤ 2

γ
< +∞. (7)

Problem (Py) can thus be solved efficiently by means of standard smooth optimisation algo-
rithms, such as, e.g., Newton-type methods, which, compared to first-order (proximal) gradient
and ADMM algorithms can achieve faster (super-linear) convergence in convex regimes, thus im-
proving overall efficiency. Furthermore, since the dimension of the patch sub-problem is low, the
computational costs required to compute an approximation of the Hessian matrix are reduced.

Recalling the range of convexity of the Cauchy penalty as in Proposition 1, we deduce that an
iterative procedure for solving the composite problem (Py) might shift along the iterations from a
convex (‖aky‖∞ ≤ γy) to a non-convex (‖aky‖∞ > γy) regime, depending on the values of the vector

ak of the estimated coefficients at the current iteration k. For patches characterised by small
values of γy, the range of convexity is very narrow and a careful strategy is required to keep the
values within the desired interval to favour the algorithm to benefit from super-linear convergence
therein.

5.1. A cautious BFGS update

The BFGS is a well-known quasi-Newton method that allows to solve smooth unconstrained
optimisation problems. Its starting point consists in considering the following quadratic model for
the objective function f to minimise at the iteration k ≥ 1:

mk(p) = fk +∇fTk p+
1

2
pTBkp, (8)

9



where Bk is a symmetric positive definite matrix approximating the Hessian of f . The method
proceeds by identifying the descent direction as the minimum point of (8) according to

pk = −(Bk)−1∇fk, (9)

xk+1 = xk + λkpk, (10)

where λk > 0 is the step-size parameter. Let B0 be any given symmetric positive-definite matrix,
then the updated matrix Bk at every iteration can be written by using the recursion formula

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
rkr

T
k

rTk sk
, (11)

where sk := xk+1 − xk, rk := gk+1 − gk, and gk := ∇f(xk). Although the local convergence of
this method is well understood [38], its global behaviour in a non-convex setting is still an open
question.

In [30] the authors propose a variation of BFGS based on a cautious update of the matrix
Bk (CBFGS) for which global and superlinear convergence is proved, under the assumption of
Wolfe-type and Armijo-type line-search strategies and Lipschitz continuous gradient continuity of
the objective function. For a suitable choice of parameters ε, α > 0, the proposed cautious update
guarantees that the matrix Bk+1 generated is symmetric and positive definite for all k, and takes
the following form

Bk+1 =

{
Bk − Bksks

T
kBk

sTkBksk
+

rkr
T
k

rTk sk
if

rTk sk
‖sk‖2 > ε‖gk‖α,

Bk otherwise.
(12)

The choice of the parameters ε and α in (12) clearly affects the practical application of the update
rules. In [30] the authors suggest to choose a fixed ε and to either vary α according to the following
criterium

α =

{
0.01 if ‖gk‖ > 1,

3 if ‖gk‖ ≤ 1,
(CBFGS1)

or to set α = 1 (CBFGS2).

5.2. Normalised NonConvex BFGS

By Proposition 1, problem (Py) is convex in the range [−γ, γ]. Outside of this range, the
standard BFGS method is not guaranteed to converge. Taking advantage of the information
encoded in the γ-map, we propose an update of the descent direction in order to deal cautiously
with non-convex subproblems. This can be done by setting a thresholding parameter γth ∈ [γ, γ̄],
beneath which the problem is treated cautiously. Instead of the strategy (12)-(CBFGS1), we
introduce in the following a cautious choice of the descent direction update, which reads:

p̃k = −Hkgk, (13)

pk =

{
p̃k if γ > γth
p̃k
‖p̃k‖ otherwise,

(14)

where Hk is the inverse of Bk, which can be updated as follows

Hk+1 = (I − ρkskrTk )Hk(I − ρkrksTk ) + ρksks
T
k , ρk = 1/(rTk sk). (15)

Our proposal (13)-(15) thus simply consists in normalising the descent direction so as to allow
the inexact linesearch to look for an overall appropriate step-size λk in (10). For values γ ≤ γth
the Cauchy penalty φ(a; γ) is likely to have a narrow range of convexity with a second derivative
with great magnitude affecting the nonlinear part of the Hessian matrix as in (4). The scaling
on pk thus prevents the approximation Hk from becoming too large, thus helping in the overall
stabilisation of the regularisation process.
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As a line-search strategy, we consider here the strong Wolfe conditions, which require that at
each k ≥ 1 the stepsize λk satisfies a sufficient decrease condition (W1) and a strong curvature
condition (W2) for some constants 0 < σ1 < σ2 < 1:

f(xk + λkpk) ≤ f(xk) + σ1λk∇fTk pk, (W1)

|∇f(xk + λkpk)T pk| ≤ σ2|∇fTk pk|. (W2)

It is possible, upon standard arguments, to prove that the proposed Normalised Non-Convex
BFGS (NNC-BFGS) update endowed with the Strong Wolfe line search preserves the positive
semi-definiteness.

Proposition 3. Let the NNC-BFGS method with strong Wolfe conditions be applied to a contin-
uously differentiable function f that is bounded from below. Assume H0 is symmetric and positive
definite. Then, for all k ≥ 1, Hk+1 is positive definite.

Proof. We first notice from (15) that the thesis holds if and only if 〈rk, sk〉 = 〈gk+1−gk, xk+1−xk〉 >
0. By induction, let us assume that Hk is positive definite. Since sk = xk+1 − xk = λkpk with pk
defined as in (13)- (14), we have:

〈gk+1 − gk, xk+1 − xk〉 = λk〈gk+1 − gk, pk〉
= λk〈gk+1, pk〉 − λk〈gk, pk〉
≥ λkσ2〈gk, pk〉 − λk〈gk, pk〉
= λk(σ2 − 1)〈gk, pk〉
= λk(σ2 − 1)〈−(Hk)−1pk, pk〉

=

{
λk(σ2 − 1)〈−(Hk)−1p̃k, p̃k〉 if γ > γth
λk

‖p̃k‖2 (σ2 − 1)〈−(Hk)−1p̃k, p̃k〉 if γ ≤ γth
> 0

where the first inequality comes from (W2), which implies

|〈gk+1, pk+1〉| ≤ σ2|〈gk, pk〉| (16)

and from the fact that 〈gk, pk〉 = 〈−(Hk)−1pk, pk〉 < 0 by assumption on Hk and the fact that the
inverse matrix of a positive definite matrix is also positive definite; while the final strict positivity
comes from the assumption σ2 < 1.

Remark 1. Note that Proposition 3 is not enough to prove a theoretical convergence result for the
NNC-BFGS algorithm. Following [41], for that one would need to show that there exists a positive
constant β > 0 such that the following relation holds

‖pk‖2H−1
k

≥ β‖rk‖2

for infinitely many k. In non-convex scenarios and for standard BFGS algorithms (without any
cautious modifications of the form described in Section 5.1), this quantitative bound is well-known
to be hard to prove. For the proposed NNC-BFGS update, the proof of this property and/or the use
of a more cautious modification of the inner update is a matter of future research.

5.2.1. Numerical comparisons

We report an example of how the NNC-BFGS algorithm allows to reduce the computational
complexity required to process all individual image patches, due, in particular to its dramatic
improvement in reducing the number of iterations for challenging (i.e. associated to non-convex
problems (Py)) patches in the image. For our tests, we considered a set of 16 patches extracted
from the OCT1 test image, as displayed in the left panel of Fig. 4. Each patch is assigned to a
numbered label for referencing. These samples are indeed representative of the heterogeneity of
image contents and, as a consequence, of the different regimes of non-convexity the method may
have to deal with.

11



1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

Figure 4: OCT1 image with 16 numbered representative patches (left); histograms of the corresponding
estimated coefficient vectors a with horizontal axis spanning in the range [−0.4, 0.4] (right).

Algorithmic parameters. We compare the performance of the proposed NNC-BFGS with non-
convexity threshold in (14) fixed as γth = 0.1, BFGS and CBFGS1 with ε = 5 in order to obtain
a number of cautious updates that is consistent with the results in [30]. All methods include a
line-search defined in terms of the strong Wolfe Conditions (W2), with a stopping criterion defined
in terms of minimum step-size λmin = 0.05.

Fig. 4 (right panel) proposes a visual insight of the sparsity of the estimated coefficient vectors
a obtained by applying NNC-BFGS via an illustration of their histograms. As expected, all the
histograms are rather centered around zero, and are spread to a higher or lesser extend depending
on the particular image content considered (i.e. depending on the local estimated γy). Fig. 5 shows
the plots of the norm of the gradient ‖∇f(a)‖2 in terms of the number of iterations for all the
aforementioned methods when applied to the 16 test patches in Fig. 4. Note, in particular, that the
last row shows the convergence behaviour of the algorithm when applied in patches characterised
by a narrow convexity range and is illustrative of the importance of carefully considering with this
aspect. For all the remaining patches, the behaviour of NNC-BFGS corresponds to the one of
classic BFGS. Table 2 reports the number of iteration (nit) and the computational time required
by all methods. In addition, for CBFGS it shows the number of cautious updates (cau) and for
NNC-BFGS the value of γ computed for the patch under analysis. The NNC-BFGS outperforms
both BFGS and CBFGS in the critical cases identified by small γy as well as nonzero cau values.
Preliminary comparisons with plain gradient descent (GD) optimisation showed that convergence
for GD up to the desired tolerance is not always guaranteed within the fixed maximum number
of iterations (1000). For this reason, we decided not to add such poorly informative convergence
plots. For the same patches illustrated in Fig. 4 we also report in Fig. 6 (in blue) the maximum
absolute coefficient value ‖aky‖∞ throughout the iterations of NNC-BFGS k = 1, 2, . . . . The red
dashed line represents the threshold γth defined in (14), while the red solid line represents the
mean value of γy defined in equation (6) for the corresponding patch y. As noted at the beginning
of this section, the condition ‖aky‖∞ ≤ γy is sufficient to ensure convexity of the objective function
for each patch. This is something that thanks to the proposed NNC-BFGS we are able to control
and which shows clear advantages, e.g., in the lower patches of the image, as shown in the last row
of plots in Fig. 6, where the convexity condition is always satisfied.
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3 7 11 15

4 8 12 16

Figure 5: Gradient norm for selected patches illustrated in Fig.4. Super-linear convergence is achieved
by the proposed algorithm for patches 4, 8, 12 and 16 due to the local convexity enforcement.

6. Numerical Tests

In Section 5.2.1 we presented results that validate the choice of the proposed space variant
regularisation approach on a local level: for each subproblem (Py) we managed to show that
we can exploit the local information in order to obtain high quality results and design efficient
optimisation strategies.

In the current section we illustrate results that validate the overall SR reconstruction procedure
sketched in Algorithm 1. Specifically, we performed experiments on real data, in the form of OCT
images of murine retinas acquired by our collaborators within the AIR Lab at the University of
Bristol. The images were acquired using a Micron IV system for imaging rodent eyes (Phoenix
technologies, CA) and previously employed in [45, 8].

To build the dictionary D ∈ Rnp×nd , we used a sample of 60 noise-free HR OCT images as a
training set for the SparseDT approach detailed in [39], under the assumption that the underlying
data distribution is a Cauchy distribution. The choice of the dimensions of the dictionary - nd = 600
and np = 256 - was driven by the results of our previous work [45], where several choices were
considered and this particular combination led to the most promising results. We highlight that,
provided a certain sought resolution for the HR image solution, our method is able to deal with
different sampling factors q without the need to compute a new dictionary for each of them.

For all the experiments, we terminate the iterations of the NNC-BFGS algorithm in the inner
loop of Algorithm 1 as soon as either of the two following conditions is satisfied

k > 1000 ,
∥∥∇f(xk)

∥∥
2
< 10−3 . (17)

We will present four experimental results on the reconstruction of OCT images. First, we
validate the proposed super-resolution model for two different scaling factors q ∈ {2, 4} of the
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3 7 11 15
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Figure 6: Maximum absolute coefficient value ‖aκ‖∞ throughout the iterations κ = 1, 2, . . . (blue), mean
value of the γ-map (solid red) and threshold γth (dashed red) for some selected patches.

LR data. In the second example we will show a comparison with reconstructions obtained with
other competing nonsmooth penalties and with/without the use of space-variant regularisation. In
the third example, we compare our method with the dictionary-based reconstruction approach for
OCT images proposed in previous work [52]. Finally, in the fourth example, we will show how our
reconstruction is well-suited to improve the quality of post-processing tasks such as segmentation
of the regions within OCT images.

6.1. OCT-SR reconstruction for different upscale factors q

In our first example, we employ Algorithm 1 with the NNC-BFGS optimisation solver to re-
construct an HR image starting from noisy and LR measurements synthetically generated by a
downsampling of factor q = 2 and q = 4.

Results are shown in Fig. 7, for the OCT images OCT3 (first row) and OCT4 (second row)
and reported for the case q = 2 (left panel) and q = 4 (right panel). In each panel, column-wise,
the figures show the γ-map estimated on the LR corresponding OCT image, the LR data and the
recovered HR data, respectively.
As expected, the higher the dimension of the LR image (see case q = 2, where Y ∈ R512×256), the
more detailed the γ-map will be, and, therefore, the more accurate the reconstructed HR OCT
image (X∗ ∈ R1024×512).

From a visual inspection of the γ-maps in Fig. 7 we can highlight how differently the structures
in the vitreous are numerically treated. For q = 2 many fragments of tissue suspended in the
vitreous are identified. They are characterised by a high γ value, meaning that less sparsification
is needed in those areas in order to obtain a richer reconstruction. On the contrary, for q = 4,
only the main fragments are detected in the background with LR data. Nevertheless, this does not
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Patch BFGS CBFGS NNC-BFGS
nit time nit time cau nit time γ

1 134 7.86 134 7.75 0 134 7.54 0.14
2 78 4.86 78 4.66 0 78 4.69 0.59
3 147 9.12 147 9.10 2 147 8.85 0.92
4 814 49.45 814 50.05 2 50 6.41 0.09
5 77 4.36 77 4.34 0 77 4.27 0.17
6 144 8.69 146 8.53 1 144 8.86 0.86
7 100 5.91 139 8.61 3 100 6.05 0.95
8 815 47.94 816 49.86 3 25 2.58 0.09
9 104 5.89 104 6.14 0 104 5.97 0.15
10 70 4.1 70 3.98 0 70 3.95 0.23
11 71 4.09 71 3.88 0 71 3.96 0.45
12 819 49.5 827 49.2 12 72 9.5 0.08
13 81 4.52 81 4.53 0 81 4.6 0.19
14 116 6.7 116 6.55 0 116 6.94 0.15
15 61 3.45 61 3.4 0 61 3.36 0.26
16 820 50.27 828 49.74 10 54 6.62 0.08

Table 2: Computational efficiency of BFGS, CBFGS and NNC-BFGS in terms of number of iterations
(nit) and computational time (in seconds) for the 16 patches in Fig. 4; for CBFGS we also report the
number of cautious updates throughout the iterations, while for NNC-BFGS we report the value of the
estimated γ for the current patch.

have an excessive impact on the quality of the reconstructed HR OCT image. Complementarily,
low γ values in the bottom part of the γ-maps, force the non-convexity of the penalty in (Py), thus
enforcing strong sparsity of solution, which leads to a predominantly zero reconstruction.

6.2. Comparison between different regularisation models

We now investigate how the choice of the penalty function in the inner minimisation problem
(Py) affects the overall reconstruction. Namely, we consider as a non-smooth convex penalty
f2(·) = λ‖ · ‖1, λ > 0, and as a non-smooth non-convex penalty, the MCP function defined as

ψ(t;α) :=

{
− 1

2α t
2 +

√
2
α t if |t| <

√
2α,

1 if |t| ≥
√

2α,
(MCP)

where the parameter α > 0 modulates the concavity of the regulariser [53]. We thus compare the
variational problem (Py) where the Cauchy penalty is used - denoted in the following as (Py−Ca)
- with the analogous penalty-dependent problems:

a∗y ∈ argmin
a∈Rnd

{
f(a) :=

1

2
‖y − SqKD(a)‖22 + λ

nd∑
i=1

|ai|

}
, (Py − `1)

a∗y ∈ argmin
a∈Rnd

{
f(a) :=

1

2
‖y − SqKD(a)‖22 + λ

nd∑
i=1

ψ(ai;α)

}
. (Py −MCP)

The regularisation parameter λ is globally fixed throughout the image. In this manner the effect
of the penalty is homogeneous throughout the image according to the given λ value, thus yielding
either excessive or insufficient regularisation in the different patches, contrarily to what is advisable
to deal with the high inhomogeneity of the considered OCT images. The tuning of the λ value can
be entrusted to standard selection strategies relying, for instance, on the discrepancy-principle,
Generalised Cross Validation or more sophisticated statistical approaches. However, those strate-
gies often rely on previous knowledge of either the noise level in the data and/or computationally
expensive matrix computations. On the other hand, in (Py−Ca) the value γy is estimated directly
from the data and allows for the design of an adaptive-regularisation tuning for each subprob-
lem (Py). Note that both non-smooth optimisation problems (Py − `1) and (Py −MCP) can be
efficiently solved by means of proximal gradient strategy, as explained in [45].
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q = 2 q = 4

Figure 7: Reconstruction for OCT3 (first row) and OCT4 (second row) with scaling factor q = 2 (left
panel) and q = 4 (right panel). Left panel, from left to right: γ-map (512 × 256), LR data (512 × 256),
HR reconstruction (1024× 512). Right panel, from left to right: γ-map (256× 128), LR data (256× 128),
HR reconstruction (1024× 512).

The reconstructions obtained by means of these different regularisers are compared on OCT1
image (Fig. 8, first row) and OCT2 image (Fig. 8, second row) for an upsampling factor q = 4.
The figure is divided into three panels: the left panel shows the HR reconstruction obtained with
the proposed Space Variant (SV) approach. The other HR OCT-image reconstructions illustrated
in the central and in the right panels are obtained by running Algorithm 1 with optimisation
problems (Py − `1) and (Py −MCP), respectively. For both `1 and MCP regularisers, we report
the reconstructed OCT images obtained using a global high and low λ value. For high values of λ
a good removal of the background noise is obtained, but, on the other hand, several details in the
central layered part of the OCT image are smoothed out. On the other hand, for a small value of λ
an accurate reconstruction of the textured layers is obtained, which, however, is unable to remove
the background noise at the same time.

6.3. Comparison with a dictionary-based reconstruction framework

We now compare the reconstruction obtained by the proposed approach with the dictionary-
based reconstruction approach for OCT images proposed in [52]. There, an upscaled version
of the LR image is obtained via a bicubic interpolation. Then, as a second step, HR patches are
extracted from the interpolated image and reconstructed as a linear combination of the elements of
the dictionary. This is obtained by solving for each patch an optimisation problem that is similar
to (Py), but without downsampling operator Sq and with a non-separable sparsity-promoting
generalised MCP term. The final solution is then obtained by reassembling the reconstructed
patches and taking the mean of the overlapping values upon the same pixel. We carried out a
reconstruction of factor q = 4 on images OCT1, OCT2, OCT3, and OCT4, using the dictionary D
built as above. For the remaining hyperparameters of the model (e.g. the regularisation parameter)
we kept the default settings proposed by the authors. The results are reported in Fig. 9. It can be
noticed that the last group of OCT images contain saturated values which make their inspection
more challenging. In addition, the background noise in the upper part of the images is enhanced
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(Py − Ca) (Py − `1) (Py −MCP)
SV High λ Low λ High λ Low λ

Figure 8: Effects of different regularisers in (Py) on the OCT image reconstruction.

and turned into artefacts, which might hinder a precise identification of the cells suspended in the
vitreous.

6.4. OCT-image segmentation

The poor spatial resolution and the noise observed in OCT images often limits the possibility of
an accurate subsequent image analysis, often based on a time-consuming manual layer segmentation
[50, 9]. Here, we illustrate how the use of the proposed reconstruction model may improve the
quality in OCT image segmentation.

Recalling Section 4, one might think of obtaining a first partitioning result directly from the
analysis of the γ-map range, since in our estimation procedure the values γi,j are intended to
describe the inhomogeneity within the data. We illustrate an example of this preliminary test in
Fig. 10, where on the left we report the γi,j values estimated by means of the the procedure detailed
in Section 4, while on the right we illustrate its segmentation by means of a simple k-means-based
partitioning approach, where the value k = 4 was selected so as to represent different regions in
the image. As it can be noticed, such segmentation properly separates the main DS regions in
the image and spots some of the fragments of tissue suspended in the upper part. However, it
is worth recalling that such partitioning is obtained by LR OCT data hence it may lack of more
detailed HR contents. In a similar way, in Fig. 11 first left panel, we show on OCT2, OCT3 and
OCT4 how the direct segmentation of the LR data does not yield satisfactory results either. For
the segmentation step we exploited the already mentioned k-means with k = 4 and the multiphase
Chan-Vese (CV) method [49].

Better results can be obtained by performing image segmentation on the HR data, yielding in
particular higher precision in detecting the layered region within the retina and the portions of
tissue suspended in the vitreous. In particular, we show how the proposed reconstruction method
allows to obtain interesting results in combination with different segmentation models (k-means
and CV). In Fig. 11 second panel, we show this improvement with respect to the LR case (first left
panel). The application of the proposed adaptive SR preliminary process (A-OCT-SR) allowed us
to achieve remarkable results in separating the layers of the retinal structure, with simultaneous
background noise removal. This can be seen in the fact that on these images, both k-means and
CV yielded an homogeneous labelling of the layers and of the elements suspended in the vitreous.
In this example we compare the segmentations obtained on our HR results with the ones obtained
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Figure 9: Comparison on OCT1, OCT2, OCT3 and OCT4 images of LR data (first row), of the proposed
reconstruction (second row) with the reconstruction obtained using [52] (third row).

on the HR images produced by a Compressed-Sensing-based variational SR approach (CSSR)
proposed in [29]. It can be noticed that these images still reproduce the noisy, pixel-wise structure
of their LR counterparts and the corresponding k-means segmentation is fragmented, while, on
the other hand, the CV results are less accurate in fine-structure detection. Finally, in the last
panel of Fig. 11, we also compare with a joint variational Super-Resolution-and-Segmentation
approach (J-SR), introduced in [35], where the segmentation is directly obtained by promoting an
`0-sparsity piece-wise constant reconstruction. This joint segmentation approach could be optimal
in this context but it completely destroys the texture of the OCT image. In addition, this model
is difficult to tune as it is highly parameter dependent and it thus requires the operator’s expertise
in order to be used.

Figure 10: Segmentation: γi,j values of a LR OCT image (left) and their k-means partitioning with k = 4
(right)
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Figure 11: Reconstruction and segmentation of OCT2, OCT3 and OCT4, from left to right: LR image, Adaptive OCT-SR reconstruction, CSSR reconstruction, Joint
SR and segmentation.
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7. Conclusions

We proposed an adaptive, smooth and non-convex, variational approach for the reconstruc-
tion of high-resolution OCT data from low-resolution measurements using a sparse representation
framework. Motivated by statistical considerations, a Cauchy-based penalty was used to pro-
mote sparsity. Differently from more standard models, traditionally used to approximate the `0
pseudo-norm, the Cauchy penalty depends on a scale parameter whose size determines not only the
regularisation strength, but also its shape. A patch-adaptive parameter estimation strategy based
on Maximum Likelihood is proposed. It allows to take into account the heterogeneous content
observed in real OCT data. The strategy was shown to produce an adaptive map of parameters,
which self-tunes the regularisation strength depending on the type of local information observed.
In order to exploit the overall smoothness of the model considered, which combines the Cauchy
penalty with an `2 data fit, we opted for a variant of the well-known BFGS algorithm where a cau-
tious update of the descent direction is used to adapt to the different convex vs. non-convex regime.
Several numerical tests were reported showing gains in computational efficiency. We validated the
overall adaptive OCT-SR algorithm on different real OCT images. We showed the advantages
of having an adaptive regularisation model with respect to a fixed one, and compared our results
with the ones obtained by means of popular non-smooth convex/non-convex regularisers frequently
employed to enforce sparsity. Finally, we showed how the reconstructed data can be successfully
employed for image segmentation purposes by means of standard algorithms. Our future work will
focus on further investigating the advantages linked to the use of the Cauchy penalty, in order to
demonstrate the benefits of employing smooth, albeit non-convex, loss functions in solving various
inverse problems. On the one hand, we aim to demonstrate the possibility of using it as a compo-
nent within variational autoencoders, while on the other hand we hope to be able to illustrate its
benefits when techniques relying on deep unfolding (see e.g. [34, 6]) are employed.
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[46] E. Soubies, L. Blanc-Féraud, and G. Aubert. A unified view of exact continuous penalties for
`2-`0 minimization. SIAM Journal on Optimization, 27(3):2034–2060, 2017.

[47] R. Svetlozar T. In S. T. Rachev, editor, Handbook of Heavy Tailed Distributions in Finance,
volume 1 of Handbooks in Finance, pages ix–xi. North-Holland, Amsterdam, 2003.

[48] M. Unser and P. D. Tafti. An Introduction to Sparse Stochastic Processes. Cambridge Uni-
versity Press, 2014.

[49] L. A. Vese and T. F. Chan. A multiphase level set framework for image segmentation using
the mumford and shah model. International journal of computer vision, 50(3):271–293, 2002.

[50] Q. Wang, R. Zheng, and A. Achim. Super-resolution in optical coherence tomography. In
40th Annual IEEE EMBS Conference, pages 1–4, 2018.

[51] J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-resolution via sparse representation.
IEEE Trans. Image Process., 19(11):2861–2873, 2010.

[52] D. V. Zermeno, P. Mayo, L. Nicholson, and A. Achim. Super-resolution oct using sparse
representations and heavy-tailed models. In 41st Annual IEEE EMBS Conference, pages
5585–5588, 2019.

[53] C.-H. Zhang. Nearly unbiased variable selection under minimax concave penalty. Ann. Statist.,
38(2):894–942, 04 2010.

[54] A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. B. M.D. Optical coherence
tomography: a review of clinical development from bench to bedside. Journal of Biomedical
Optics, 12(5):1 – 21, 2007.

23

https://arxiv.org/abs/2104.03650
https://arxiv.org/abs/2104.03650

	Introduction
	OCT SR via sparse and adaptive representation
	Patch reconstruction via adaptive space-variant modelling
	Image reconstruction from patches

	Sparsity-promoting Cauchy penalty
	Design of the space-variant -map
	Smooth, non-convex optimisation via cautious BFGS
	A cautious BFGS update
	Normalised NonConvex BFGS
	Numerical comparisons


	Numerical Tests
	OCT-SR reconstruction for different upscale factors q
	Comparison between different regularisation models
	Comparison with a dictionary-based reconstruction framework
	OCT-image segmentation

	Conclusions

