Continuous air purification by front flow photocatalytic reactor:

Modelling of the Influence of mass transfer step under

simulated real conditions

Youcef Serhane^a, Nacer Belkessa^a, Abdelkrim Bouzaza^a, Dominique Wolbert^a,

Aymen Amin Assadi^{a,*}

^a Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, F-35000 Rennes, France

*Corresponding author. Tel: +33(0)223238152, Fax: +33(0)223238120,

E-mail: <u>Aymen.assadi@ensc-rennes.fr</u>

List of figures:

Figure S1: EDX analysis of the photocatalytic medium

Figure S2: Schematic of the control system associated with a batch photocatalytic reactor

Figure S3: Diagram of the photocatalytic process using P50 for continuous treatment

Figure S4: Initial degradation rate of Cyclohexane with TiO₂ (Cellulosic) at different concentrations

under different Intensities (HR = 40 \pm 2%, T = 20 \pm 2 C°, m_{TiO2} = 0.13 g cm⁻²)

Figure S5: Linear regression of the results with Eq. (5) for UV intensity = 1.5 W m^{-2} and 12 W m^{-2}

Figure S6: Monitoring of cyclohexane degradation and accumulation of CO₂ and H₂O formed

 $(T=20 \pm 2 \ ^{\circ}C, UV intensity = 12 W m^{-2})$

Figure S7: Residence time distribution E(t) of the immobilized photoreactor (J = 18). For a flow rate of 18 L min⁻¹ corresponding to 10 seconds (HR = 5%, T= 20 ± 2 C°)

Figure S8: Linear regression of the results with Eq. (16) for Cyclohexane for different flow rates

 $(HR = 5 \%, T = 20 \pm 2 C^{\circ}, UV intensity = 20 W m^{-2})$

List of tables:

Brute formula	C ₆ H ₁₂	N° CAS	110-82-7
Molar mass	84.16 g M⁻¹	Density	0.779-0.784
Boiling point (1	80.75 °C	Vapor pressure	10.3 kPa à 20 °C
atm)			24.6 kPa à 40 °C
Odor threshold	Low : 0.52 ppm	Exposure limits	200 ppm / 700
	High : 784 ppm	(France)	mg m ⁻³

Table S1: Physicochemical properties of cyclohexane

Intensity (W m ⁻²)	1.5	12
k _{app} (mM m ⁻³ s ⁻¹)	0.0027	0.0051
K (m³ mM⁻¹)	0.128	0.0876
R ² (%)	99.8	99.6

Table S2: Value of Langmuir-Hinshelwood reaction rate constants (k) and Langmuir adsorption

constants (K)

Flow rate (L min ⁻¹)	k _{app} (mM m⁻³ s⁻¹)	K (m³ mM⁻¹)	R ² (%)	
13	0.031	2.216	99.5	
18	0.029	2.205	99.3	
36	0.028	3.792	99.8	

Table S3: Values of Langmuir-Hinshelwood constants for model I. (HR = 5 %, T=20 \pm 2 C°,

UV intensity = 20 W m^{-2})

Flow rate (L min ⁻¹)	Reynolds	Mass transfer coefficient	
		(k _m .10⁻³, m s⁻¹)	
13	1598	2.02	
18	2397	2.67	
36	4662	4.22	

Table S4: Reynolds number and mass transfer coefficients in the P50.