
HAL Id: hal-03593967
https://hal.science/hal-03593967v1

Submitted on 2 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identification and visualization of variability
implementations in object-oriented variability-rich

systems: a symmetry-based approach
Xhevahire Tërnava, Johann Mortara, Philippe Collet, Daniel Le Berre

To cite this version:
Xhevahire Tërnava, Johann Mortara, Philippe Collet, Daniel Le Berre. Identification and visualization
of variability implementations in object-oriented variability-rich systems: a symmetry-based approach.
Automated Software Engineering, 2022, pp.1-52. �10.1007/s10515-022-00329-x�. �hal-03593967�

https://hal.science/hal-03593967v1
https://hal.archives-ouvertes.fr

Automated Software Engineering manuscript No.
(will be inserted by the editor)

Identification and visualization of variability
implementations in object-oriented variability-rich
systems: a symmetry-based approach

Xhevahire Tërnava · Johann Mortara ·
Philippe Collet · Daniel Le Berre

Received: date / Accepted: date

Abstract Most modern object-oriented software systems are variability-rich,
despite that they may not be developed as product lines. Their variability is
implemented by several traditional techniques in combination, such as inheri-
tance, overloading, or design patterns. As domain features or variation points
with variants are not a by-product of these techniques, variability in code
assets of such systems is implicit, and hardly documented, hampering quali-
ties such as understandability and maintainability. In this article, we present
an approach for automatic identification and visualization of variability im-
plementation places, that is, variation points with variants, in variability-rich
systems. To uniformly identify them, we propose to rely on the existing sym-
metries in the different software constructs and patterns. We then propose to
visualize them according to their density. By means of our realized toolchain
implementing the approach, symfinder , we report on a threefold evaluation,
(i) on the identified potential variability in sixteen large open-source systems
and symfinder ’s scalability, (ii) on measuring symfinder ’s precision and ro-
bustness when mapping identified variability to domain features, and (iii) on
its usage by a software architect. Results show that symfinder can indeed help
in identifying and comprehending the variability of the targeted systems.

Xhevahire Tërnava (corresponding author)
Université de Rennes 1, Inria/IRISA, Rennes, France
E-mail: xhevahire.ternava@irisa.fr

Johann Mortara
Université Côte d’Azur, CNRS, I3S, Sophia-Antipolis, France
E-mail: johann.mortara@univ-cotedazur.fr

Philippe Collet
Université Côte d’Azur, CNRS, I3S, Sophia-Antipolis, France
E-mail: philippe.collet@univ-cotedazur.fr

Daniel Le Berre
Université d’Artois, CNRS, CRIL, Lens, France
E-mail: daniel.leberre@cril.fr

2 Xhevahire Tërnava et al.

Keywords automatic variability identification · variability visualization ·
object-oriented variability-rich systems · variability comprehention · variability
evolution · software product line engineering

1 Introduction

Most modern software-intensive systems, ranging from small-scale embedded
systems to large-scale enterprise systems to ultra-large systems of systems, are
variability-intensive [36, 30, 29]. Software variability is commonly understood
as the ability of a software system or software artifact to be efficiently extended,
changed, customized, or configured for use in a particular context [11]. Beyond
this, variability is a key fact of most, if not all, systems [36], regardless of
whether they are part of a software product line (SPL) or not, although it is
largely studied in the context of product lines [76] and product families [11].
As an anticipated change [73], variability evolves and needs to be managed,
being a relevant concern for software engineers of such systems.

In systems that are part of a product line, their variability in different lev-
els of abstraction (e.g., at the domain or implementation levels) is commonly
documented and managed in terms of features in a feature model [42, 81, 64]..
However, this is barely the case in object-oriented variability-intensive system,
often referred to as variability-rich systems, that do not follow a complete
product line approach [5]. In an object-oriented system, variability among its
software products is implemented in a single code-base using traditional tech-
niques, namely inheritance, parameters, overloading, or design patterns [28,
86, 11]. Leaving the domain variability aside, its implemented variability in
code assets is neither explicit nor documented, strongly hindering its manage-
ment. To effectively manage it, software engineers have thus to be aware of
where in the code assets is implemented variability.

To be aware of the variability in a variability-rich system, one might choose
to extract its variability or to make it explicit by migrating the system to an
SPL using any of the reverse or forward engineering approaches. Reverse en-
gineering approaches have notably been used to extract architectural views of
existing systems (e.g., [31]), but with the increasing diversity to be managed
by software applications, extracting variability information becomes as rele-
vant as other more classical models of existing software. In these approaches,
such as feature location [23, 80, 6], feature identification [44, 56], feature
delimitation (using a form of annotations) [53], or feature modularization [5],
features commonly tend to describe the domain variability of a product line or
variability-rich system and are required to be known in advance [64, 77]. But
first, domain variability is hardly documented in variability-rich systems [47].
Then, existing reverse engineering approaches use a set of software products
that are created by a clone-and-own strategy to identify their common and
varying features in order to build an SPL [60]. This is actually inapplicable
to our considered systems as their varying products share a single code-base.
Apart from this, when annotative or modularization approaches are used to

Identification and visualization of variability implementations 3

migrate to a product line, despite their respective applicability and advances,
they require substantial manual effort or imply a change on top of the under-
lying design of the system, being it object-oriented or functional.

Considering these reasons, and also that real systems are characterized by
a large amount of variability, we expect that in an object-oriented variability-
rich system one can (1) keep unchanged its main decomposition of code and
still (2) be able to automatically identify variability implementation places in
its code assets and (3) use them to comprehend the implemented variability.
We consider that the identified variability places can be abstracted in terms of
variation points (vp-s) with variants1 and used to comprehend a system’s vari-
ability. Hence, to attain these goals which make up the motivation of our work
(Section 3), a proper identification and representation of vp-s with variants of
the targeted systems is needed.

There are studies on how to address variability by traditional techniques [12,
28, 74, 86], but there is a complete lack of approaches to identify vp-s with
variants [55] implemented with different object-oriented techniques in a single
code-base system. This could be due to the fact that each technique differently
supports the implementation of vp-s with variants [55, 87]. From a reverse per-
spective, this indicates that depending on the used technique, each vp with
its variants in code assets requires its own way to be identified.

On the other hand, according to a recent mapping study by Lopez-Herrejon
et al. [54], several variability representation approaches are proposed in the
context of product lines. Most of them visualize domain variability, that is,
features in a feature model. The used terms to conduct this study also in-
clude the “variation point“ and “variant“ terms. However, the results of this
mapping study show that while there are few approaches that visualize the
variability of code assets, there is a complete lack of those that visualize vp-s
with variants. This may be a consequence of the previous issue regarding the
lack of approaches to identify vp-s with variants.

Herein, our contribution is multifold.

– Studying the variability implementation techniques, we observe a con-
ceptual relationship between the exhibit symmetry in traditional object-
oriented techniques [16, 100, 99, 34] and vp-s with variants as variability
abstractions [38]. This leads us to a symmetry-based approach to uniformly
identify different kinds of vp-s with variants, that is, realized by different
traditional techniques, within the same variability-rich system (Section 4).

– To show the feasibility of our approach, we developed symfinder (Sec-
tion 5). It automates the identification of vp-s with variants, using the
revealed symmetry in their used techniques, and visualizes them relying on
their density. symfinder currently supports the identification of those vp-s
with variants that have been realized with two widely used object-oriented
language features and four software design patterns.

– We evaluate our tooled approach in sixteen open-source systems, conduct-
ing several experiments regarding three research questions, and report their

1 Their definition is given in Section 2.1

4 Xhevahire Tërnava et al.

results (Section 6). First, using all subjects, we report on the amount of
identified variability in real variability-rich systems and the symfinder ’s
scalability (Section 7). Secondly, using two subjects, we evaluate the preci-
sion and robustness of our approach, grounded on symmetry in traditional
techniques, to identify vp-s with variants (Section 8). Thirdly, we report
an experience of a software architect on the use of symfinder in his own
system (Section 9). The last two evaluations also show that the understand-
ability of a variability-rich system is then improved by making explicit its
expected variability to its software architects.

– Lastly, symfinder is publicly available 2, as well as all our conducted ex-
periments 3. A stable version of them is archived in https://doi.org/10.

5281/zenodo.5872420.

While threats to validity (Section 10), and related work (Section 11) are
discussed, we conclude the paper by evoking future work (Section 12).

An earlier version of this approach appeared in a conference [89, 68]. There,
we reported the initial idea of the symmetry-based approach and its realiza-
tion in symfinder . Here, as a follow-up to it, both of them are substantially
extended. We reveal symmetry in two additional software design patterns and
extend symfinder accordingly, including a better rendering of variants in the
visualization. Moreover, the evaluation part is at the same time new and wider
in its approach. For the first kind of evaluation, we double the number of sub-
jects and made more precise observations. As a new evaluation, we measure
the precision and robustness of our tooled approach by substantially extending
the case study presented in [70] and providing a new one. We finally provide
an experience report on the usage of symfinder by a software architect.

2 Background

In this section, we provide the basic concepts of variation points with variants
in code assets of an object-oriented system, as well as the revealed symmetry
in object-oriented language constructs and software design patterns.

2.1 Variability in code assets of an object-oriented system

Let us consider an illustrative example of a family of geometric shapes, such as
rectangles and circles, with a Java implementation, given in Listing 1. What
is common between the Rectangle and Circle classes is factorized into the
abstract class Shape using inheritance as a variability implementation tech-
nique [38, 12]. Namely, the way for setting a new origin for Rectangle and
Circle is common, which is factorized in lines 3–7 within class Shape, while
each of them has a different way for calculating the area and perimeter.

2 https://github.com/DeathStar3/symfinder
3 https://deathstar3.github.io/symfinder-demo/jrn20.html

https://doi.org/10.5281/zenodo.5872420
https://doi.org/10.5281/zenodo.5872420
https://github.com/DeathStar3/symfinder
https://deathstar3.github.io/symfinder-demo/jrn20.html

Identification and visualization of variability implementations 5

1 /* Class level variation point , vp_Shape */
2 public abstract class Shape {
3 private Point origin; // Point defined
4 // Constructor omitted
5 public void newOrigin(Point o) {
6 origin.setPoint(o.getX(), o.getY());
7 }
8 public abstract double area();
9 public abstract double perimeter (); /*...*/

10 }

11 /* First variant , v_Rectangle , of vp_Shape */
12 public class Rectangle extends Shape {
13 private final double width , length;
14 // Constructor omitted
15 public double area() {
16 return width * length;
17 }
18 public double perimeter () {
19 return 2 * (width + length);
20 }
21 /* Method level variation point , vp_Draw */
22 /* Variant v_drawCoordinates of vp_Draw */
23 public void draw(int x, int y) {
24 // rectangle at (x, y, width , length)
25 System.out.println("Rectangle at (" + x + ", " + y + ")");
26 }
27 /* Variant v_drawPoint of vp_Draw */
28 public void draw(Point p) {
29 // rectangle at (p.x, p.y, width , length)
30 System.out.println("Rectangle at (" + p.getX() + ", " + p.getY() + ")")

;
31 }
32 }

33 /* Second variant , v_Circle , of vp_Shape */
34 public class Circle extends Shape {
35 private final double radius;
36 // Constructor omitted
37 public double area() {
38 return Math.PI * Math.pow(radius , 2);
39 }
40 public double perimeter () {
41 return 2 * Math.PI * radius;
42 }
43 }

Listing 1: Example of variability implementations. The vp Shape and vp Draw

represent two vp-s at the class and method levels, respectively

Besides, overloading is used to implement the two ways for drawing any of
the considered shapes, namely the draw() method in Rectangle, lines 22–26
and 27–31. Despite its small size, we consider this example as representative of
code assets in a variability-rich system where several object-based techniques
are used together, such as inheritance, overloading, or design patterns, in a
single code-base.

When object-oriented or functional programming paradigms are used, code
assets consist of three parts: core, commonalities, and variations [91, 14, 7].
The core part is what remains of the system in the absence of any particular

6 Xhevahire Tërnava et al.

feature, that is, the assets that are included in any of its final software prod-
ucts [91]. A commonality is the common part between the related variations
of given code assets, while variations indicate how and when should code as-
sets vary [36]. Variability of code assets is used to differentiate the software
products within an SPL or variability-rich system. After commonalities are
factorized from the variations and implemented, commonalities can be consid-
ered as part of the core [91], except when they represent some optional code
assets, in which case they become part of variations [88]. Such commonalities
and variations are usually abstracted in terms of variation points (vp-s) with
variants, respectively [38, 20, 77], which are related to concrete elements in
code assets [40]. In the presented work, we state the following definition.

Definition 1 A variation point identifies one or more locations at which the
variation will occur [38], while the way that a variation point is going to vary
is expressed by its variants.

For instance, based on the presented concepts and Definition 1, the class
Shape in Listing 1 is common, thus a class level variation point, for two variants
Rectangle and Circle. Likewise is the method level variation point of draw

(lines 21–31) with its two variants in lines 22–26 and 27–31. In this example,
variability is implemented by inheritance and overloading, respectively.

2.2 Symmetry in object-oriented software constructs

Most of the object-oriented language constructs and software design patterns,
such as classes, inheritance, overloading, overriding, strategy pattern, and dec-
orator pattern, are well-known as traditional variability implementation tech-
niques [38, 5]. Besides, inspired by Alexander’s theory of centers [1], several
other works show that object-oriented techniques and software design patterns
also exhibit a form of symmetry [16, 15, 99, 100, 34, 98].

Definition 2 Symmetry is immunity to a possible change [78, 79].

This is the common symmetry definition, which has two components: (1) pos-
sibility of change and (2) immunity. For instance, in natural sciences, the
symmetry of an object is a transformation (e.g., reflection, rotation, or trans-
lation) that leaves the object seemingly unchanged [85]. Whereas, the density
of local symmetries in an object or structure is crucial for measuring its co-
herence [2, 1]. Conforming to Definition 2, the two components of symmetry
are also observed in object-oriented language constructs and software design
patterns [16, 100, 99, 98]. In Figure 1 is illustrated the observed symmetry
in inheritance and overloading, using the example in Listing 1. Specifically, in
class subtyping all classes of a type path may change, but they must preserve
and conform to the common behavior. Thus,

– the possibility of a change in the abstract class Shape materializes in its
potential different subtypes, such as Rectangle and Circle. Their shown
change regards the way the area and perimeter are computed. Whereas,

Identification and visualization of variability implementations 7

Fig. 1: An illustration of symmetry in inheritance, as subtyping, and overload-
ing using the design view of the given example in Listing 1

– the immunity to change maps to these subtypes preserving the behavior of
their supertype Shape, such as the realized behavior in newOrigin(Point).

Hence, a class subtyping defines a substitution symmetry for its subtypes,
which can be substituted as they have the same supertype. Class subtyping is
only one of the ten well-known forms of inheritance [65, p. 822]. According to
a forthcoming study, the other forms of inheritance also exhibit the property
of symmetry and can be described similarly [17].

Likewise, symmetry appears also in software constructs at method or func-
tion level. For instance, the method or function overloading lets you define
multiple functions of the same name but with different implementations. For
example, for each overloaded method draw() of Rectangle in Listing 1 (cf.
lines 22-26 and 27-31):

– the number of the taken parameters have changed, whereas
– the name and the return type have remained the same, unchanged.

This denotes the symmetry in overloading, which is also illustrated in Fig-
ure 1, where the name of an overloaded function remains unchanged while
its arity or types of its parameters change. Thus, overloading also defines a
substitution symmetry for the overloaded methods, meaning that they can be
substituted from one to another. Both kinds of substitutions, as symmetry
transformations, are illustrated by blue lines in Figure 1.

For most of the object-oriented language constructs and software design
patterns, it has been shown that under a certain transformation, such as sub-
stitution in subtyping or overloading, a specific property of the system is pre-
served, such as behavior in case of subtyping or structure in case of over-
loading [98]. This indicates that any of them can be described in terms of

8 Xhevahire Tërnava et al.

symmetry and appear as local symmetries in the wholeness of code assets in
an object-oriented software system.

3 Motivation

In many object-oriented variability-rich systems with a single code-base that
do not follow a product line approach [76, 5], variability in code assets is im-
plemented by different traditional techniques, such as inheritance, parameters,
overloading, or software design patterns [28, 86, 11]. The identification of such
variability is essential for its management, such as to maintain, evolve, or po-
tentially map the implemented variability to the system’s domain features [63].

But, the code units that structure such systems, namely classes or func-
tions, do not align well with domain features [4, 5]. Then, vp-s with variants
in code assets are not a by-product of traditional techniques [9]. For the men-
tioned reasons in Section 1, instead of identifying domain features in code as-
sets, identifying the varying implementation elements directly in code assets,
that is, variation points with their variants, seems to be the first and necessary
step to comprehend the variability of the class of systems we consider.

To the extent of our knowledge, there is no automated approach for iden-
tifying vp-s with variants in our context of object-oriented traditional tech-
niques. A possible reason is that traditional techniques are too diverse [55].
There is also a lack of approached to represent vp-s with variants in code
assets [54]. Hence, identifying and representing vp-s with variants that are
realized by traditional techniques seems to be cumbersome and a non-trivial
activity with poor support.

Actually, the diversity of traditional techniques is analysed in different
frameworks, taxonomies, and catalogs, by comparing them on different crite-
ria [86, 74, 28, 26, 5]. For instance, in a recent catalog, 16 traditional techniques
are compared and classified based on 24 properties [87]. But, despite these
comparative schemas, we were not aware that any common property of these
techniques exists, which property could be used to identify different kinds of
vp-s with their variants in a uniform or automated way. For example, in List-
ing 1, the vp Shape has a class level granularity and is resolved at runtime
during product derivation, whereas the vp Draw has a method level granularity
and in our case of a Java-based implementation is resolved at compile time.
Both of them resemble two vp-s with four different properties that should be
considered during their identification.

Towards a uniform approach to identify vp-s with variants, we noticed
that the majority of traditional techniques have been shown to be describable
in terms of symmetry or local symmetry [16, 99, 100], which is introduced
in the previous section. Consequently, we propose an approach based on the
property of (local) symmetry in traditional techniques to uniformly identify
vp-s with variants of a given variability-rich system. Then, as a means to
easily distinguish zones of interest with its variability, we rely on the density
of vp-s with variants to build a suitable variability visualization support.

Identification and visualization of variability implementations 9

Fig. 2: An illustration of variability concepts and their relationship as given
in Definition 3: a variation point (vpx) with its variants (v1, v2, ..., vn), com-
monality, variability, implementation technique, symmetry transformation, un-
change, changes, local symmetry, and center of variability

4 A symmetry-based approach

We now give the main principles of the proposed approach based on symme-
try for identifying potential vp-s with variants and on the density of these
symmetries for comprehending the implemented variability of a system.

4.1 vp-s with variants as local symmetries

We argue that the object-oriented language constructs and software design
patterns can be seen from two perspectives: (1) as software constructs that are
characterized with the property of symmetry and (2) as traditional variability
implementation techniques. By combining these two perspectives, we propose
an approach for identifying potential variability implementations of a system
through pinpointing places with symmetry in its code assets.

Perspective (1): According to [98], the overall symmetry of object-oriented
systems organized in classes is usually broken by introducing interfaces, ab-
stract classes, while the rise of software design patterns is also seen as a reac-
tion to this problem [16, 98]. Based on this, we first argue that the usage of
any traditional technique for implementing the variability of a system, such
as class subtyping, overloading, or design patterns, denotes the existence of a
local symmetry in the wholeness of its code assets.

Perspective (2): Then, using the fact that each implementation technique is
commonly abstracted in terms of a variation point (vp) with its variants (cf.
Section 2.1), we make the assumption that a vp with variants can be identi-
fied by the property of local symmetry. Specifically, while vp-s resemble the
unchanged parts (i.e., commonality) in the design of reusable code assets,
variants resemble their changed parts (i.e., variability). The interrelationship
between all these concepts, in two perspectives, is illustrated in Figure 2.

10 Xhevahire Tërnava et al.

Table 1: Eight object-oriented software constructs and their symmetries

Software Commonality / Variability / Symmetry
construct Unchanged Change transformation

Class subtyping Superclass / Type Subclasses Substitution
Method overloading Structure Signatures / Arity Substitution
Class as type Class / Constructor Objects Substitution

Method overriding
Signature Types of
results

Classes under
Inheritance

Substitution

Strategy pattern Strategy interface Algorithms Substitution

Factory pattern
Abstract Creator and
product

Concrete creators and
products

Factory

Decorator pattern
Components and
decorator interfaces

Concrete components
and decorators

Composition

Template pattern Template of a method Method steps Template

As vp-s with variants become much more than places where some variabil-
ity happens, we propose a new definition, which extends Definition 1.

Definition 3 In object-oriented systems, variation points with variants ab-
stract the structure (a.k.a., design) and the functionality of the implemented
variability. They represent the unchanged parts and parts that change, that is,
local symmetries, in software design that are realized by traditional techniques.

According to Figure 2 and Definition 3, vp-s with their variants mark local
symmetries in code assets. But, this does not imply that all local symmetries
in these techniques denote also variability implementations. Hence, local sym-
metries in code assets are merely potential candidates to be vp-s with variants.

Remark 1 In the following, most often we will use variation points (vp-s) and
variants instead of the long name candidate variation points and candidate
variants. Their difference is important only in Section 8, where we distinguish
which of the candidate variation points and variants are relevant.

To illustrate the deduced interrelationship in Figure 2 and its subsequent
Definition 3, the existing vp-s with variants in Listing 1 can be identified
by simply identifying the local symmetries in it. Based on Figure 1, the
first identified local symmetry is in inheritance, which implies the vp Shape

variation point (lines 1–10) with its variants, v Rectangle (lines 11–32) and
v Circle (lines 33–43). Whereas, the second identified local symmetry is in
overloading, which implies the vp Draw variation point (lines 21–31) with
v drawCoordinates (lines 22–26) and v drawPoint (27–31) variants. In addi-
tion to vp-s, identifying the variants of a vp is important, as they may have
nested variability. For example, the class Rectangle is a variant of vp Shape

but has a nested variation point, vp Draw, which has two other variants.
To automate the identification of vp-s with variants, we summarize in

Table 1 eight common software constructs and their elements of symmetries,
that is, their unchanged and changed properties of software under their specific

Identification and visualization of variability implementations 11

symmetry transformation. These data are based on existing studies and the
way to interpret symmetry on software constructs [16, 99, 100, 98]. This could
be extended to include symmetry in other language constructs and software
design patterns. Moreover, all eight software constructs in Table 1 have sym-
metry at the class or method level, indicating that any identified vp or variant
implemented by these techniques will have a class or method level granularity.
Then, distinguishing the unchanged and changed parts in a software construct,
as in Table 1, is indeed decisive for automating the identification process. The
first step of the approach thus relies on the identification of local symmetries
in these software constructs, which represent candidate vp-s with variants.

4.2 Density of candidate vp-s with variants

After the identification process, our approach aims also at facilitating the
variability comprehension of the considered system.

According to Alexander’s theory, the number of local symmetries is crucial
for measuring the coherence of a structure [1, 2]. Namely, their high density
makes easier to recognize, describe, and remember a given structure. Similarly,
we propose to use the density of candidate vp-s with variants to easily locate
and describe the most intense places with variability in a system, as a way to
analyse and comprehend its variability. This extrapolation is feasible because
of the nested nature of candidate vp-s, which corresponds to the recursive na-
ture of centers in Alexander’s meaning. For example, in Listing 1, the vp Draw

is a nested vp of the vp Shape, by being within one of its variants. This den-
sity indicates the amount of variability that is concentrated in the code assets
of Listing 1. Therefore, we give the following definition.

Definition 4 Variability density is the amount of local symmetries, as can-
didate vp-s with variants with their nested and related candidate vp-s with
variants, within a code unit or within a given part of code assets.

A quantification of this variability density is possible. It represents the
number of class level vp-s and variants related under the inheritance relation-
ship and the number of method level vp-s and variants within those vp-s. For
example, in Listing 1, there is one class level vp and two variants (related
under inheritance relationship), which have another method level vp with two
variants also (as nested within the v Rectangle). In this case, the variability
density is 6. Herein, instead of quantifying this density, we presume that within
a given part of code assets variability density can be visually perceived. For
example, the relative amount of local symmetries for the given part of code
assets in Listing 1 should be directly discerned. In this way, the comprehension
of a system’s variability can be simplified by using a visualization form that
will enable us to directly discern places with different variability densities.

12 Xhevahire Tërnava et al.

5 Automatic identification and visualization of local symmetries

To show the feasibility of our symmetry-based approach, we developed the
symfinder toolchain. In the following we detail its support for automatic iden-
tification of local symmetries in code assets of a system and their visualization.

5.1 The symfinder toolchain

Following our approach, symfinder employs symmetry in six software con-
structs to identify vp-s with variants in a system and then visualizes them
in a way that highlights their density. Figure 3 depicts the whole dockerized
toolchain of symfinder , which is publicly available4. It consists of three main
steps, corresponding to the blue boxes:

(1 & 2) It first fetches the sources of the targeted variability-rich system that
is shared on a git software-hosting platform.

(3 & 4) Then, the symfinder engine translates the relevant parts of the code
assets into elements in a Neo4j5 graph database, and queries the
graph nodes using the Cypher language6 to identify local symmetries
in each technique based on their defined commonality and variability
(cf. Table 1).

(5) Finally, it visualizes the identified local symmetries (i.e., candidate
vp-s with variants) through an appropriate visualization embedded
in a web browser.

Fig. 3: The dockerized symfinder toolchain

4 https://github.com/DeathStar3/symfinder
5 https://neo4j.com/
6 https://neo4j.com/developer/cypher/

https://github.com/DeathStar3/symfinder
https://neo4j.com/
https://neo4j.com/developer/cypher/

Identification and visualization of variability implementations 13

The toolchain uses several scripts, an engine implemented in Java, and the
Neo4j graph database. To increase its portability and facilitate its usage, it is
deployed within a Docker7 container.

As the identification (3 & 4) and visualization (5) steps constitute the
main logic of symfinder , they are detailed in the following subsections. On the
other hand, the sources fetching step (1 & 2) of the toolchain mainly aims at
automating the experiments. From a configuration file, bash and python scripts
are run to fetch sources and checkout the desired tags or commits from some
git repositories (cf. Figure 3). This enables symfinder to work easily over any
project that is publicly available on a software-hosting platform (e.g., GitHub
or GitLab). More details on the internal project structure of symfinder , with
usage guidelines, are given in a companion page (see Section 6.3).

5.2 Automatic identification

At the center of the toolchain in Figure 3 is symfinder engine. Its main purpose
is to automatically analyse the source code of a targeted software system, to
identify vp-s with variants, and to build a visual representation of them.

Local symmetries are identified according to the defined symmetry in two
first language construct and four software design pattern given in Table 1,
that is, their unchanged parts and parts that change are identified. Specif-
ically, each interface, abstract class, extended class, overloaded constructor,
overloaded method, and unchanged part in four design patterns is identified.
All together, they actually represent vp-s. Then, the classes that implement or
extend them, including the concrete overloaded constructors and methods, and
the parts as changes in four design patterns are also identified. They represent
the respective variants of each vp.

Technically, the identification process is made of three steps. First, the
source code is parsed and the structure of the implementation units of the
analysed system is stored into the Neo4j graph database, where each class,
interface, method, and constructor is represented by a node, including the
structural relationship of these nodes (e.g., a method belongs to a class). In the
version of symfinder we used for our experiments, Java was the only supported
language8. The Eclipse JDT parser is used in it to analyse Java classes. In this
step, nodes and their relationship types are queried by the Cypher language
and labeled, namely CLASS, ABSTRACT, and/or INTERFACE for nodes, EXTENDS
or IMPLEMENTS for inheritance relationships.

Secondly, we identified local symmetries in four design patterns, listed in
Table 1. Considering the state of the art methods on software design pat-
tern detection, such as structural or behavioral analysis methods [83, 35, 21]
using ASTs (Abstract Syntax Tree) [71] or graph representations of the code-
base [96], we decided to use the graph representation of the structure of the

7 https://www.docker.com/
8 A version supporting both Java and C++ is also available at https://deathstar3.

github.io/symfinder-demo/splc2020.html.

https://www.docker.com/
https://deathstar3.github.io/symfinder-demo/splc2020.html
https://deathstar3.github.io/symfinder-demo/splc2020.html

14 Xhevahire Tërnava et al.

implementation units (i.e., classes and interfaces) and to rely on its structural
analysis. This is not as precise as a behavioral analysis, but is sufficient to
identify local symmetries in basic instances of design patterns on larger sys-
tems. Although design patterns mainly rely on inheritance, they also make use
of finer-grained elements, for example, a strategy is used as a field in another
class, and a factory uses methods return types. Hence, identifying local sym-
metries in such design patterns implies being able to detect such elements and
resolve their full class name to determine if they are part of a design pattern.
In this step, the resulting graph in the Neo4j database is queried again using
the Cypher language, during another analysis of the codebase, to extract these
elements and identify local symmetries in design patterns9. Doing so allows us
to search for an exact graph match on subgraphs containing a limited number
of nodes, thus reducing the complexity [92] 10. In this step, nodes that corre-
spond to the unchanged part of the four design patterns are labeled with their
respective name, that is, STRATEGY, FACTORY, DECORATOR, or TEMPLATE.

In the last step of the identification process, the existing labeled nodes and
their relationships in the graph database are queried using Cypher so that local
symmetries, as candidate vp-s with variants, are identified. During this step,
nodes representing interfaces or abstract classes, or classes being extended, or
being the unchanged part of a design pattern, are labeled as VPs. Then, classes
or interfaces implementing or extending these vp-s are labeled as VARIANTs.

Fig. 4: The translated code of Listing 1 to a Neo4j graph

9 This second parsing stage is needed as, due to limitations of Eclipse JDT, the structure
of the whole codebase is needed in the database in order to query it and determine the
correct types of each element.
10 Our identification of local symmetries in software constructs is using a graph represen-

tation of the codebase, but it must not be confused with the graph symmetry detection or
automorphisms [61].

Identification and visualization of variability implementations 15

a: Cypher query to identify variants in suptyping b: Generated visualization for Listing 1

Fig. 5: The used query to identify class variants and their visualization

For example, Figure 4 shows the Neo4j graph obtained by analysing the
source code in Listing 1. The nodes shapes.Rectangle11 and shapes.Circle

are labeled with CLASS, the node shapes.Shape as ABSTRACT, and their re-
lationship as EXTENDS. Then, using the Cypher query as in Figure 5a, the
nodes shapes.Rectangle and shapes.Circle are identified and so labeled as
VARIANTs of the node shapes.Shape, which is already identified by another
query as a VP. All used Cypher queries are based on Table 1, which we have also
documented and are available online 12. It should be noted that Neo4j is used
only as a database and not as a visualization tool (as detailed in Section 5.3.2).

5.3 Visualization

In the step 5 in Figure 3, symfinder generates a visualization with only the
identified local symmetries stored in the database.

5.3.1 Visualization principles

Two following demands guide the organization of the provided visualization.

Demand 1 One should easily discern zones of interest with regard to vari-
ability in the observed system.

To meet this demand, we exploit the analysed local symmetries and the
general notion of the density of vp-s with variants (cf. Section 4.2) to visualize
the variability of a system. As local symmetries are mainly organized around
inheritance, we decide to architecture the visualization by focusing on classes,
being nodes, in their inheritance graph, with edges representing inheritance
links (i.e., extends and implements in Java).

Going beyond plain nodes, we also choose to visualize information re-
garding the used language constructs and design patterns for implementing

11 The shapes in this path is the package’s name in Java.
12 https://deathstar3.github.io/symfinder-demo/identification-method.html

https://deathstar3.github.io/symfinder-demo/identification-method.html

16 Xhevahire Tërnava et al.

Table 2: Ten kinds of nodes and their relationships used for the visualization

Node types Node meaning Parameters Visualization

Concrete class Variation point Node with black outline

Concrete class Variant with inner vp-s 1 Node without an outline

Abstract class Variation point Node with dotted outline

Interface Variation point Black node

Constructors Variation point Node with shades of red

Overloading Variation point Node of different size

Strategy pattern Variation point Node with symbol S S

Factory pattern Variation point Node with symbol F F

Decorator pattern Variation point Node with symbol D D

Template pattern Variation point Node with symbol T T

Inheritance Edge

1 It can be neither a vp nor a variant but simply a class with inner vp-s at method
level, or a class variant without method level vp-s, if all variants are displayed

each vp with its variants. As in many software and code artifacts visualiza-
tions [48, 49, 95, 94, 90], we rely on the visual principles of preattentive per-
ception [22], using some of the seven parameters that can vary in visualization
in order to represent data, namely position, size, shape, value (lightness), color
hue, orientation, and texture. In Table 2 are shown the ten different kinds of
nodes that are used in symfinder to visualize the used techniques for realizing
vp-s with variants.

As a result, a class level vp can be more distinguishable by other method
level vp-s (e.g., through its size and intensity of colors) or if it is connected
by inheritance to other vp-s or variants. They will also all together form a
more noticeable zone in the graph, showing the density of vp-s and variants.
It should be noted that the visualization approach is based on the concept of
density and not on symmetry. Symmetry in software constructs is identified,
their inheritance relationship and density are visualized, but, one should not
confuse the two and expect any kind of symmetry in the visualization.

Demand 2 One should be able to gain a general view of the amount of vari-
ability in the observed system and a specific view of each identified vp with its
variants.

As discussed in the previous paragraphs, the graph-based representation
already provides a general view of the variability based on its density. To
improve it, we also display the total number of vp-s and variants, at class and
method levels. Then, we simply apply the classic visual information seeking
mantra of [84]: overview first, zoom and filter, then details-on-demand. We
first improve the visualization of nodes to denote the used design patterns by
their first letters. As we consider the overview complete, we add the zoom
in/out option so that a specific area of visualization with potential vp-s and
variants can be magnified. We also provide a way for filtering out solitary
nodes, as the obvious least dense part of the graph, or any given node by its

Identification and visualization of variability implementations 17

name, so in the visualization remains only those vp-s and variants that are
most likely to interest the user. Finally, while hovering over a node, the name
of each vp and variant at class level is visualized, as well as the label of the
node (e.g., VP, METHOD LEVEL VP, or STRATEGY).

5.3.2 Implementation

Although we considered using the visualization capabilities of Neo4j and other
visualization forms used in SPL engineering [54], we decided to use the D3.js
library13. It indeed allows for the visualization of highly customizable forms of
graphs, so to meet both demands mentioned above, but also a plethora of chart
types and visualization forms that help us in experimenting before devising
the current graph flavor and could help in future evolution of the toolchain.

Besides, as D3.js visualizations are written in JavaScript, only a web browser
is needed for display, facilitating portability. The implementation simply uses
JavaScript configuration files in a template for the web page that will display
the density of vp-s with variants as disconnected graphs.

5.3.3 Illustration

For completeness, Figure 5b shows the generated visualization for the example
in Listing 1. Although, to illustrate most of the provided options in the vi-
sualization, Figure 6 shows an excerpt of the visualization with the identified
local symmetries by symfinder in JFreeChart 1.5.0, a variability-rich system
among the ones we used as subjects in our experiments described in Section 6.

As a fulfillment of Demand 1, its visualization shows that several zones with
different densities of vp-s with variants can be easily discerned in JFreeChart.
Following our approach (cf. Section 4.2), the comprehension of variability for a
system can start from places with a higher density of variabilities, as potential
zones of interest. Such is the part of the graph surrounded with a blue rectangle
in Figure 6, which is manually added to the screenshot. The corresponding
magnified view is given in Figure 7.

Regarding Demand 2, the ’Show project information’ menu provides
overall numbers. In JFreeChart 1.5.0, 924 vp-s with 1,925 variants are identi-
fied (cf. as given latter in Table 3). Then, each vp with its variants is visualized
by a circle that points out the used implementation technique (cf. Table 2).
Specifically, a red node without an outline is a concrete class that represents a
variant with variability at the method level, such as the v PolarPlot in Fig-
ure 7. A red node with a dotted outline visualizes an abstract class, whereas a
black node an interface. Both of them represent a vp, such as the vp Zoomable.
Multiple shades of red nodes are used to visualize the number of constructor
overloads for each class or interface, that is, method level variability. The more
overloaded constructors are present, the more intense is the node’s color. Next,
the size of the node is in the function of the number of overloaded methods.

13 https://d3js.org/

https://d3js.org/

18 Xhevahire Tërnava et al.

Fig. 6: An excerpt of the JFreeChart 1.5.0 visualization

Fig. 7: vp-s with variants in JFreeChart 1.5.0 for the selected zone in Figure 6

For instance, the node vp XYPlot has a larger size, indicating that it has vari-
ability at method level. Further, the first letter of a design pattern is used
to mark a vp implemented by that pattern, for example, letter S is used for
the strategy pattern in vp Plot and its dotted outline denotes its relation to
an abstract class. All these information are available from the ’Show legend’

menu in visualization.

In addition, the zoom functionality is illustrated in Figures 6 and 7. As for
filtering, the ’Show/Hide variants’ menu makes possible to show or hide the
class variants without method level variability, as places with the lowest den-

Identification and visualization of variability implementations 19

sity of variability in the visualization. The ’Show project information’ also
provides an option to filter out vp-s with variants within any specific package
or class the user is not interested in. Finally, the label of a vp or variant to
its respective class in code assets appears when hovering the node, such as the
label for the vp Plot to its types and name: org.jfree.chart.plot.Plot

or for the variant of Circle in Figure 5b. It must be noted that blue names
and arrows in Figure 7 have been manually added to the screenshot, while only
the label for the vp Plot is shown on this illustration. The whole visualization
for the JFreeChart 1.5.0 is also available in the companion page.

6 Evaluation design

We now describe the designed evaluation of the proposed approach, defining
the goal and research questions, and the selected subject systems.

6.1 Goal and research questions

Following the Goal-Question-Metric process [10], we setup the following goal:
automate the identification of vp-s with variants in a real variability-rich sys-
tem, in a scalable way, and provide a handy representation of them to users
that want to comprehend the system’s variability. To address this goal, we
define three research questions.

RQ1 : What is the amount of identified variability in a real variability-
rich system? We first investigated the amount of identified variability by
symfinder in real variability-rich systems. Then, we investigated the tool’s
capabilities to run in different environments and its scalability during the
identification and visualization phases. To this end, we used sixteen sub-
jects, all of them being real open-source systems implemented in Java.
For each of them, we counted the total number of vp-s with variants and
measured the symfinder ’s execution time.

RQ2 : To what extent the identified local symmetries in a system
are actual variation points with variants, that is, are relevant to
its domain features? During the presentation of our approach in Sec-
tion 4.1, we explicated that vp-s with variants mark local symmetries in
code assets, but whether its reverse is true it needs to be proved. There-
fore, we investigated whether the identified local symmetries in a system,
often referred here as candidate vp-s with variants, are indeed variability
related, that is, whether they are relevant to the system’s domain features.
Additionally, in case that there are irrelevant local symmetries, we also
analysed how to distinguish them in the visualization. In such a way, we
aim to measure the precision and robustness of our approach.

RQ3 : To what extent symfinder can be used by software architects
to comprehend the variability of their own system? With only a
prototyped implementation, it is hard to gather user’s feedback, but we

20 Xhevahire Tërnava et al.

still aimed to evaluate the approach from a user’s perspective. We thus
investigated whether symfinder can be helpful to a real software architect
to understand the implemented variability in his own system. We report
here a subjective evaluation from the experience of Daniel Le Berre, co-
author of this paper and also software architect of Sat4j14, when he used
symfinder on his system.

6.2 Subject systems

To addresses the three given research questions, we applied symfinder to six-
teen Java-based variability-rich systems, as evaluation subjects. In the follow-
ing, we present these systems, while the experiments and obtained results for
each research question are presented in Sections 7, 8, and 9, respectively.

6.2.1 Selection criteria

For selecting the sixteen evaluation subject systems, we considered several cri-
teria: their proximity to a real-world software system, their implementation in
Java, the open-source nature of the project, their availability on a git repos-
itory, and the fact that they could contain some implemented variabilities.
Then, some of them should have a ground truth with the traces of domain
features to code assets, so to tackle RQ3. Due to the rarity of such data sets,
we will report on an experiment conducted on two systems in that particular
case. In a complementary way, at least one of the considered systems should
be studied by someone that has firsthand knowledge of its variability domain
and implementation, ideally by one of its main software architects, so to tackle
RQ3. Here, we will report on a single system with such knowledge.

By the first criterion, we aim to evaluate our tooled approach in a real-life
context, thus providing an ecological validity [41]. Whereas, by the rest of the
criteria we aim to make possible the replication of our evaluation or extend it
with new subject systems.

6.2.2 Description of selected subject systems

We first selected seven systems that are used in some previous research works
in SPL engineering (e.g., JHipster by Halin et al. [33]) or in our first publication
on symfinder (such as JavaGeom [89]). They are: Java AWT, Apache CXF,
JUnit, Apache Maven, JHipster, JFreeChart, and JavaGeom. Then, we added
seven new systems. For the time frame of 10 last years, they are under the most
starred Java projects on GitHub, with a number between 1,797 and 48,838
stars. Namely, Deeplearning4j, Elasticsearch, Jackson-Core, ZXing, Mockito,
RxJava, and Guava. A brief description of them is also given in Table 3.

14 http://www.cril.univ-artois.fr/˜leberre/

http://www.cril.univ-artois.fr/~leberre/

Identification and visualization of variability implementations 21

Finally, we selected two systems to handle the experiment with domain fea-
tures. The first one is ArgoUML, which is used in different studies on SPL engi-
neering [18, 19, 67, 70]. It has a ground truth with traces of domain features to
code assets [59]. Then, we selected Sat4j, a Java library for solving boolean sat-
isfaction and optimization problems such as SAT, MAXSAT, Pseudo-Boolean,
and Minimally Unsatisfiable Subset (MUS) problems. It is used since 2008 in
the Eclipse platform to manage its plugin dependencies [52]. Sat4j has already
been used as a benchmark for automatic testing approaches [39, 93]. Then, its
software architect is one of the authors in this paper, who has the knowledge
for its architecture, its variability domain, and its realization in the code.

6.3 Availability of systems and experiments

Details of these sixteen subject systems are presented in the first three columns
in Table 3, namely, the URL to their public repository, the analysed tag or com-
mit ID, and lines of code (LoC). All conducted experiments included in this pa-
per are also available at https://deathstar3.github.io/symfinder-demo/
jrn20.html, with extracted screenshots, more explanations on each case, and
a deployed online demonstration of the visualization.

7 Amount of variability and symfinder ’s scalability in real systems

In this section are presented the conducted experiment, our observations, and
the gained results concerning the first research question, RQ1.

7.1 Conducted experiment

By this experiment we want to reveal the amount of variability in real variability-
rich systems and whether our toolchain was able to successfully identify it
within a reasonable time.

We thus applied the symfinder toolchain in each of the sixteen subject
systems. Table 3 gives the analysed LoC 15 for each system. It can be noted
that the selected set of subject systems help us to reveal amounts of identi-
fied variability in real variability-rich systems of different sizes. To evaluate
the interoperability of our tool, we run the same experiments on three oper-
ating systems, Linux, Mac, and Windows. Finally, we recorded the execution
time taken to get through the whole toolchain up to the generation of the
visualization, making a first evaluation of the scalability of symfinder .

https://deathstar3.github.io/symfinder-demo/jrn20.html
https://deathstar3.github.io/symfinder-demo/jrn20.html

22 Xhevahire Tërnava et al.

Table 3: Sixteen variability-rich systems with their respective LoC, total num-
ber of candidate vp-s with variants, and their class or method level granularity

Subject system Class (C) and Method (M) level

Description Tag/Commit LoC #vp-s
#vari-

ants #nodes

Java AWT jb8u202-b1468 69,974 C 223 175 33
API to develop GUI M 572 1,531 –
Apache CXF 3.2.7 cxf-3.2.7 48,655 C 1,134 1,447 509
web services framework M 2,265 6,173 –
JUnit 4.12 r4.12 7,717 C 44 60 14
unit testing framework M 65 185 –
Apache Maven 3.6.0 maven-3.6.0 105,342 C 268 242 104
build automation tool M 341 906 –
JHipster 2.0.28 2.0.28 2,535 C 39 12 2
application generator M 13 44 –
JFreeChart 1.5.0 v1.5.0 94,384 C 257 277 45
charting library M 667 1,648 –
JavaGeom 7e5ee60 32,755 C 74 52 14
library of geometric shapes M 262 707 –
ArgoUML bcae373 134,367 C 327 860 85
UML diagramming application M 447 1,116 –

Deeplearning4j 1.0.0
deeplearning4j-

1.0.0-beta5
1,030,214 C 322 659 317

library for deep learning M 1,317 3,421 –
Elasticsearch 6.8.5 v6.8.5 683,527 C 1,008 1,782 398
search engine M 3,090 7,253 –

Jackson-Core 2.10.1
jackson-core-

2.10.1
3,042 C 43 25 24

streaming API M 250 732 –
ZXing 3.4.0 zxing-3.4.0 33,103 C 36 98 30
barcodes scanning library M 89 196 –
Mockito 3.1.12 v3.1.12 16,384 C 142 176 28
mocking framework for unit tests M 96 308 –
RxJava 2.2.15 v2.2.15 89,221 C 184 854 35
library for composing programs M 415 1,379 –
Guava 28.1 v28.1 87,802 C 358 238 131
Google core libraries for Java M 720 1,886 –
Sat4j 22374e5e 27,638 C 80 135 10
library for Boolean problems M 188 453 –

7.2 Amount of variability

In order to give an insight regarding the amount of variability in a real system,
we decided to observe its identified number of vp-s with variants, while distin-
guishing their class and method level granularity. The calculation of these two
metrics is automated within the symfinder toolchain and they are available
from the "Show project information" menu in visualization.

7.2.1 Number of vp-s with variants

Interestingly, a recent literature review on metrics in SPL engineering shows
that the number of vp-s is a useful metric for analyzing variability and its
implementation in code [25]. It is used to measure the total number of #ifdef
– blocks when preprocessors are used to implement variability. Similarly, we

15 For counting the lines of code we used gocloc: https://github.com/hhatto/gocloc/

https://github.com/JetBrains/jdk8u_jdk/tree/jb8u202-b1532/src/share/classes/java/awt
https://github.com/apache/cxf/tree/master/core/src/main/java/org/apache/cxf
https://github.com/junit-team/junit4/tree/main/src/main/java/org/junit
https://github.com/apache/maven
https://github.com/jhipster/jhipster/tree/master/jhipster-framework/src/main/java
https://github.com/jfree/jfreechart/tree/master/src/main/java/org/jfree
https://github.com/dlegland/javaGeom/tree/master/src
https://github.com/marcusvnac/argouml-spl/tree/master/src
https://github.com/eclipse/deeplearning4j/tree/master/deeplearning4j
https://github.com/elastic/elasticsearch/tree/master/server
https://github.com/FasterXML/jackson-core/tree/master/src/main/java
https://github.com/zxing/zxing/tree/master/core
https://github.com/mockito/mockito/tree/release/3.x/src/main/java/
https://github.com/ReactiveX/RxJava/tree/3.x/src/main/java
https://github.com/google/guava/tree/master/guava
https://gitlab.ow2.org/sat4j/sat4j/tree/master/org.sat4j.core
https://github.com/hhatto/gocloc/

Identification and visualization of variability implementations 23

Ja
va

A
W
T

C
X
F

JU
ni
t

M
av
en

JH
ip
st
er

JF
re
eC
ha
rt

Ja
va
G
eo
m

A
rg
oU
M
L

D
ee
pl
ea
rn
in
g4
j

E
la
st
ic
se
ar
ch

Ja
ck
so
n-
C
or
e

ZX
in
g

M
oc
ki
to

R
xJ
av
a

G
ua
va

Sa
t4
j

0

5,000

7
9
5

3
,3
9
9

1
0
9 6
0
9

5
2 9
2
4

3
3
6

7
7
4 1
,6
3
9

4
,0
9
8

2
9
3

1
2
5

2
3
8

5
9
9

1
,0
7
8

2
6
81
,7
0
6

7
,6
2
0

2
4
5 1
,1
4
8

5
6

1
,9
2
5

7
5
9 1
,9
7
6

4
,0
8
0

9
,0
3
5

7
5
7

2
9
4

4
8
4

2
,2
3
3

2
,1
2
4

5
8
8

#
v
p
-s

a
n
d

#
v
a
ri
a
n
ts

#vp-s #variants

Fig. 8: The total candidate #vp-s and #variants in each subject system

use this metric to reason on the amount of implemented variability in our
targeted systems. In contrast to the existing usage in other approaches, but in
accordance with our vp definition (cf. Definition 3), the number of vp-s now
represents the number of local symmetries in code assets and is complemented
with the number of their variants.

The three last columns in Table 3 and Figure 8 show the resulting number
of vp-s and variants that are identified by symfinder in the sixteen subject sys-
tems. For instance, the smallest analysed system, JHipster with 2,535 LoC, has
52 vp-s that in total have 56 variants. Whereas, the largest one, Deeplearning4j
with over 1 million LoC, has 1,639 vp-s, which have in total 4,080 variants.
Still, it has almost half less vp-s than Elasticsearch, which is of far smaller
size. When looking at these systems, we observed that Elasticsearch is actually
handling much more variability in its implementation than Deeplearning4j.

As a metric, the number of vp-s with variants seems useful on this sample
of systems to have an overall perception of the amount of their variability.

7.2.2 Granularity of vp-s with variants

We recorded the granularity of vp-s with variants, as we consider it important
for variability management, especially to trace variability in order to maintain
and resolve it.

The last columns in Table 3 show the number of vp-s with variants at
class and method levels that are identified in each system. The #nodes column
represents the number of classes that are not vp-s or variants but have method
level vp-s, therefore are identified and visualized. In all systems, some class
level variants are the common part, that is, a vp, for some other variants.
They are known as nested vp-s [88], for example, in Jackson-Core it looks like
there are more class level vp-s than variants, but 19 variants are also nested

24 Xhevahire Tërnava et al.

Fig. 9: The distribution of vp-s and variants at class and method levels

vp-s. Thus, following the logic of compound features in a feature model and
for simplification, we categorized them as vp-s.

Based on the values in Table 3, in Figure 9 is plotted the distribution of vp-
s and variants at class and method levels for all the systems. The distinction
between class and method levels enables to deduce some interesting findings.
In general we can observe that there are always more vp-s and variants at
the method level than at the class level. Still, particular systems can be an
exception to this, regarding the number of vp-s. For instance, JHipster and
Mockito have more vp-s at the class level than at the method level. This holds
even if we remove from consideration the nested vp-s, that are added to the
class level #vp− s values in Table 3. But, a possible reason for this could be
that JHipster is a server-side library used by the JHipster Generator which is
written in JavaScript, while we have analysed only its Java implementation
part. Then, few method level vp-s are expected for Mockito as its implemented
features are barely variable.

Besides, we also observed how this granularity is reflected in the visualiza-
tion by symfinder for each system. Interestingly, among all subject systems,
the visualization in Maven gives the impression that it has more class level
than method level vp-s, which contradicts the shown data in Table 3. This is
due to classes with method level variability, which are denoted as #nodes in
Table 3. However, from Table 3 and Figure 9, in all subject systems, there are
always far more variants at the method level than at the class level.

This study of the granularity indicates that both techniques at class and
method levels seem to be applied to implement variability, while those at
method level are more extensively used. This also confirms the versatility in
the implementation techniques and the complexity we tackle in this work.

7.3 Scalability of symfinder

The symfinder toolchain, presented in Section 5, is designed to identify and
visualize variability implementations in large code bases, where a manual anal-

Identification and visualization of variability implementations 25

Table 4: Properties of our test system

System Properties

Processor (CPU)
Intel Xeon CPU E5-2637v2, 3500 MHz, L1-Cache
16KiB

RAM 512GB RDIMM LV 1600MHz
Operating System Ubuntu 18.04.2 LTS (Bionic Beaver) 64-Bit
Filesystem EXT4
Hard Disk 250 GiB RAID5
Java Runtime Environment (JRE) OpenJDK Runtime Environment 1.8.0 201-b08
Java Virtual Machine (JVM) OpenJDK 64-Bit Server VM 1.8.0 201

Java AWT

Apache CXF

JUnit

Apache Maven

JHipster

JFreeChart

JavaGeom

ArgoUML
Deeplearning4j

Elasticsearch

Jackson-Core

ZXing
Mockito

RxJava

Guava

Sat4j

vp-s / variants

E
xe

cu
tio

n
tim

e
[H

:m
m

:s
s]

0:00:35

0:00:52

0:01:09
0:01:26

0:02:53

0:05:46

0:08:38

0:11:31
0:14:24

0:28:48

0:57:36

100 500 1000 5000 10000

Fig. 10: The symfinder ’s execution time in terms of vp-s. The size of the
bubbles represents the number of lines of code (LoC) of the subject system

ysis is not viable. To fulfill this goal, the toolchain has to be able to analyze
code bases of thousands of lines of code (LoC) and provide a visualization with
all identified vp-s and their variants, which also can be thousands of them.

7.3.1 Experiment setup and protocol

In order to make a first assessment of the scalability of our toolchain, we run
symfinder on our sixteen subject systems, which have different sizes (cf. LoC in
Table 3), and measured the evolution of the execution time depending on the
number of lines of code and the number of identified vp-s with variants in each
system. Our test environment is a virtual machine deployed on a local network
for the sole purpose of symfinder . Table 4 details the setup of the system we
used to run the experiments. Analyses are run on each system sequentially, to
prevent side effects.

26 Xhevahire Tërnava et al.

7.3.2 Results on execution time and visualization

Figure 10 summarizes the results of our experiments. The x-axis represents the
number of vp-s with variants identified by symfinder . The y-axis represents the
execution time, which corresponds to the time spent during the identification of
vp-s with variants and does not include the time needed to clone each project.
And, the size of the bubble represents the number of LoC in the system.

We can make three observations. First, the time taken to analyse real
systems is quite acceptable. Our sixteen analysed systems took between a half
minute, for JHipster, and an hour-long, for CXF. Then, the execution time
increases quite linearly with the number of identified vp-s with variants. For
instance, ZXing with 419 vp-s /variants took few less seconds to be analysed
than Mockito with 722 vp-s /variants. But, the same cannot be said for the rate
between the execution time and the analysed LoC. For instance, by comparing
the execution time for CXF, Elasticsearch, and Deeplearning4j, with their
analysed LoC (bubble size), we can observe that the execution time has a
considerable disproportion with the LoC. These three observations show that
symfinder is able to identify vp-s with variants in projects with above one
million lines of code within a reasonable time. The execution time seems to
depend in particular upon the number of identified vp-s with variants and less
upon the analysed number of LoC.

Our visualization is also able to scale on such projects. For instance, the
generated visualization of Elasticsearch16 displays 2,790 nodes representing
all its identified vp-s with variants at the class level. In the center of the
visualization, one can discern zones of a high density of variability. Then, as
the generated visualizations are embedded in HTML pages, they are easily
deployable online and need only a web browser to be viewed. Moreover, we
have successfully displayed them using Mozilla Firefox, Google Chrome, and
Safari on Windows, MacOS, and Linux.

7.4 Summarized answer to RQ1

As an answer to the first research question (RQ1), the results of our different
experiments show that real variability-rich systems (with 2K - 1M LoC) have
a considerable amount of variability (between 108 and 13K vp-s and vari-
ants), indicating that its manual identification, or their trace and refactoring
to domain features, are expensive activities that will require cumbersome ef-
fort. Hence, an automatic identification and visualization approach, such as
symfinder , can ease the fast identification (within a reasonable time, between
35 seconds to 1 hour) of potential variability places in the targeted system.

16 https://deathstar3.github.io/symfinder-demo/JRN20/standard_version/

elasticsearch-v6.8.5.html

https://deathstar3.github.io/symfinder-demo/JRN20/standard_version/elasticsearch-v6.8.5.html
https://deathstar3.github.io/symfinder-demo/JRN20/standard_version/elasticsearch-v6.8.5.html

Identification and visualization of variability implementations 27

Fig. 11: An excerpt of the visualization in ArgoUML (left) and Sat4j (right)

Fig. 12: Feature model of ArgoUML, adapted from [18]

8 Evaluation of the actual vp-s with variants

To address RQ2, we have to demonstrate that the identified local symmetries in
code assets of the targeted systems, referred to as candidate vp-s with variants,
are actually vp-s with variants. To do so we conducted two experiments in
ArgoUML and Sat4j, which are detailed in Sections 8.1 and 8.3, respectively.

8.1 Experiment for measuring precision and robustness of our approach

As we aim to gain insights into the precision and robustness of our approach,
we first prepared the needed ArgoUML’s and Sat4j’s artifacts. Then, we evalu-
ated how many of their identified local symmetries by symfinder have a map-
ping to their domain variability. To do this, we defined and automatically
measured precision and recall over this mapping.

8.1.1 Artifacts preparation

ArgoUML’s artifacts. As a first subject system for this experiment we used
ArgoUML. To the extent of our knowledge, it is one of rare publicly available
Java-based variability-rich systems that provides a feature model (FM) [18]
and a ground truth with the traces of its optional features to the code assets,
which are annotated [59]. Based on a recent and continuously updated catalog

28 Xhevahire Tërnava et al.

Fig. 13: Feature model of Sat4j

with 131 case studies used in extractive SPL approaches17 [57], ArgoUML is
the only one that is a real Java-based system with an available ground truth.

Extracted by Couto et al. [18], ArgoUML’s FM consists of 11 features,
given in Figure 12. The abstract feature ArgoUML-SPL represents conceptually
the ArgoUML’s variability domain. It has 2 mandatory features, Diagrams and
Class, and 8 optional features, State, Activity, Use Case, Collaboration,
Deployment, Sequence, Cognitive Support, and Logging. In the ArgoUML’s
ground truth [59], each of these 8 optional features has a set of traces to code
assets. In total there are 714 features traces (without duplication).

Our application of symfinder to ArgoUML identified 1,272 candidate vp-s
with variants at class level, some of which have candidate vp-s with variants at
method level (cf. Table 3). A visualization excerpt of the identified variability
in ArgoUML by symfinder is given in Figure 11 (left)18.

Sat4j’s artifacts. We then used Sat4j as a second subject for this experiment.
Its software architect prepared its ground truth for the purpose of this study.
He manually set up the Sat4j’s domain features into a feature model, given
in Figure 13, and their traces to code assets. To accomplish this, using Java
annotations, he annotated those classes, interfaces, methods, or fields in the
org.sat4j.core that belong to each domain feature19 Then, all annotations
are extracted using an internal utility tool. As an output, it provides the list
of traces into a markdown file20.

Sat4j’s feature model consists of 13 features. The abstract feature Sat4j-SPL
represents conceptually the Sat4j’s variability domain, which has 7 mandatory
features, Reader, Solver, Constraint, Deletion, Learning, Var Heuristics,
and Phase Heuristics, and 5 optional features, Solution Listener, Unit
Clause Provider, Search Listener, Simplifications, and Restarts. In

17 The catalog: https://but4reuse.github.io/espla_catalog/. According to its our last
visit on November 20, 2020.
18 The whole ArgoUML’s visualization is available at https://deathstar3.github.io/

symfinder-demo/JRN20/hotspots_version/argoUML-bcae37.html.
19 Sat4j’s code: https://gitlab.ow2.org/sat4j/sat4j/-/tree/master/org.sat4j.core
20 Sat4j’s ground truth: https://deathstar3.github.io/symfinder-demo/JRN20-files/

Features.pdf.

https://but4reuse.github.io/espla_catalog/
https://deathstar3.github.io/symfinder-demo/JRN20/hotspots_version/argoUML-bcae37.html
https://deathstar3.github.io/symfinder-demo/JRN20/hotspots_version/argoUML-bcae37.html
https://gitlab.ow2.org/sat4j/sat4j/-/tree/master/org.sat4j.core
https://deathstar3.github.io/symfinder-demo/JRN20-files/Features.pdf
https://deathstar3.github.io/symfinder-demo/JRN20-files/Features.pdf

Identification and visualization of variability implementations 29

Sat4j’s ground truth, each of these 12 concrete features has a set of traces to
its code assets. In total, there are 118 features traces.

Besides, our application of symfinder to Sat4j identifies 866 candidate vp-s
and variants (including #nodes), from which 225 are at class level and 641 at
method level (cf. Table 3). A Sat4j’s visualization excerpt with the candidate
vp-s with variants identified by symfinder is given in Figure 11 (right)21.

8.1.2 Availability of artifacts and the automated mapping

After preparing the ground truths for both ArgoUML and Sat4j, we normalized
their data and automated the mapping22 of candidate vp-s with variants to do-
main features using traces in their respective ground truth. For instance, look-
ing at the names of candidate vp-s and variants in Figure 11, they are all ex-
pected to have a mapping to domain features in Figures 12 and 13, respectively.
Namely, judging by their names, variant v sequence.ui.FigClassifierRole

in ArgoUML is expected to be mapped to its Sequence feature, or the vp ISolver

in Sat4j to its Solver feature. The complete raw, normalized, and analysed
data are available online23.

While the ArgoUML’s ground truth was taken from an external source,
the Sat4j’s ground truth was prepared internally. To avoid any possible bias
and data manipulation, we first held a meeting with Daniel Le Berre, Sat4j’s
software architect, where we discussed the purpose of the study and the needed
data. Then, only the Sat4j’s software architect has prepared the ground truth.
Another author automated the mappings, including the mapping in ArgoUML,
which were crosschecked by the other authors. Then, we adapted two well-
known measures, namely precision and recall, as explained in the next section.
Lastly, results were discussed and reported together.

8.1.3 Measures of precision and recall

To evaluate the number of local symmetries that are actual vp-s with variants,
we define precision and recall measures in our specific context.

Precision. Let be Tgt the set of traces for all features given in the ground
truth and Ivp−v the set of all identified local symmetries by symfinder , that
is, the set of all candidate vp-s and variants. We use precision to measure the
percentage of identified local symmetries that are actually vp-s and variants.
Thus, the identified local symmetries that are mapped to the features are true
positives (TP), referred to as actual vp-s and variants. Whereas, the identified

21 The whole Sat4j’s visualization is available at https://deathstar3.github.io/

symfinder-demo/JRN20/hotspots_version/sat4j-22374e5e.html.
22 While the term ’tracing’ / ’trace links’ is used in the ground truth, we will distinguish

from this term in this experiment by using ’mapping’ / ’mapping links’ for vp-s and variants
mapped to features, although both of them have the same meaning.
23 https://deathstar3.github.io/symfinder-demo/mapping_process.html

https://deathstar3.github.io/symfinder-demo/JRN20/hotspots_version/sat4j-22374e5e.html
https://deathstar3.github.io/symfinder-demo/JRN20/hotspots_version/sat4j-22374e5e.html
https://deathstar3.github.io/symfinder-demo/mapping_process.html

30 Xhevahire Tërnava et al.

Table 5: Summarized data from the two ground truths and their results

ArgoUML Sat4j

#domain features 11 13
#features traces (normalized) 672 113
#local symmetries (class level) 1 272 225

True Positives (TP) 561 113
False Positives (FP) 711 112
False Negatives (FN) 111 0

Precision 44.10% 50.22%
Recall 83.48% 100.00%

local symmetries without a mapping are false positives (FP), referred to as
irrelevant local symmetries or not related to domain variability. Hence,

precision =
TP

TP + FP
=
|Tgt ∩ Ivp−v|
|Ivp−v|

Recall. We use recall to measure the percentage of domain features traces in
the ground truth that is used for the mapping of identified local symmetries to
features. Thus, traces that are used for the mapping are true positives (TP),
whereas those that are not used are false negatives (FN). Hence,

recall =
TP

TP + FN
=
|Tgt ∩ Ivp−v|
|Tgt|

8.2 Results of precision and recall

In ArgoUML, from the 1,272 class level candidate vp-s and variants that are
identified, our mapping tool found that 561 of them have a mapping to at
least one feature, whereas the rest 711 of them are without a mapping. Then,
from all 672 features traces, 111 of them are not used for the mapping of
candidate vp-s or variants. As expected from a non-trivial mapping, several
candidate vp-s and variants of ArgoUML are without a mapping to features in
the ground truth, and conversely. Besides, in Sat4j, out of the 225 identified lo-
cal symmetries at class level in Sat4j (cf. Table 3), our mapping solution found
that 113 of them have a mapping to at least one feature, whereas 112 of them
are without a mapping. Using the defined measurements in Section 8.1.3, we
also calculated the precision and recall for ArgoUML and Sat4j. The obtained
results are given in Table 5

The obtained precision from ArgoUML and Sat4j shows that about 44%
and 50%, respectively, of identified local symmetries are relevant to the domain
features, that is, are actual vp-s and variants. The rest, 56% and 50% of them
respectively, are irrelevant to the domain features. The obtained recall values
shows that about 83% from ArgoUML or 100% from Sat4j of features traces
in the ground truth are used for the mapping of local symmetries to features.

Identification and visualization of variability implementations 31

As a matter of fact, this considerable number of false positive local sym-
metries may have an impact on the time spent to distinguish the actual vp-s
with variants from the irrelevant local symmetries in the visualization. Al-
though expected, we observed three main reasons for such low precision.

Reason 1. The eight optional features used to extract an ArgoUML SPL are
coarse grain and are selected by authors based on the ArgoUML domain knowl-
edge [18]. Their study misses some information regarding how complete is the
given list of features. This means that the ArgoUML’s ground truth may be
incomplete, which explains the local symmetries without a mapping. The pre-
cision from Sat4j is a bit higher because its software architect was asked to
provide as much as possible a complete list of domain features and their trace
links to Sat4j’s code assets.

Reason 2. The main attention of feature identification and location approaches
is the mapping of variable features to code assets, hence mandatory features
are largely sidestepped [45]. This is due to the fact that variable features are
the configuration units during the product derivation in an SPL. For instance,
in the ArgoUML’s ground truth, the Class mandatory feature (cf. Figure 12)
does not have traces to code assets. This is justifiable as ArgoUML is used as a
benchmark to evaluate extractive SPL approaches. However, in our symmetry-
based approach, some of the identified local symmetries may have a mapping
to mandatory features. This further explains the low precision of our tooled
approach in ArgoUML and the higher precision in Sat4j. Specifically, unlike
ArgoUML, in Sat4j there are 7 mandatory features from the 13 overall features
and each of them has trace links to code assets. More precisely, looking at its
ground truth, 69% of trace links are for the 7 mandatory features.

Reason 3. It is likely that not all of our identified places with symmetry in code
are variability related, as it is the case with the usage of preprocessor directives
in C/C ++. Specifically, Zhang et al. [97] state that ”from our experience most
#ifdef blocks (e.g., 87.6% in the Danfoss SPL) are actually not variability
related, but for other purposes such as include guards or macro substitution”.
While the mechanisms are different, in object-oriented variability-rich systems,
in addition to implementing variability, the inheritance technique is likely to be
mostly used for other reasons, such as for fundamental structuring of domain
objects (e.g., in 56% of cases in the ArgoUML and 50% of cases in Sat4j).
Furthermore, after we showed the gained precision and recall to the Sat4j’s
architect, he pointed out that he had decided to annotate only the concrete
classes, but not their abstract classes, to avoid making redundant annotations.
Then, only the main variability sources have been annotated. For instance,
the code includes many examples of one interface with two concrete classes
(implementing the null object design pattern in most cases), which are not
annotated. After studying the remaining candidate vp-s that are counted as
false positives, it appears that they are mainly still variability related, but
only at the level of internal implementation, and not at the domain level (cf.

32 Xhevahire Tërnava et al.

Table 6: Precision (P) and recall (R) considering different density threshold
(i.e., regarding the #variants of a vp) values in ArgoUML and Sat4j.

Thre- ArgoUML Sat4j

shold TP FP FN P(%) R(%) TP FP FN P(%) R(%)

Non 561 711 111 44.10 83.48 113 112 0 50.22 100.00
> 2 526 638 146 45.19 78.27 109 91 4 54.50 96.46
> 3 488 554 184 46.83 72.62 97 71 16 57.74 85.84
> 4 440 482 232 47.72 65.48 84 53 29 61.31 74.34
> 5 386 413 286 48.31 57.44 67 35 46 65.69 59.29
> 6 364 379 308 48.99 54.17 56 33 57 62.92 49.56
> 7 311 327 361 48.75 46.28 48 25 65 65.75 42.48
> 8 279 309 393 47.45 41.52 39 15 74 72.22 34.51
> 9 270 297 402 47.62 40.18 38 14 75 73.08 33.63
> 10 264 283 408 48.26 39.29 38 13 75 74.51 33.63

> 15 194 203 478 48.87 28.87 18 5 95 78.26 15.93

> 20 144 179 528 44.58 21.43 2 1 111 66.67 01.77

> 30 138 132 534 51.11 20.54 No local symmetry resulted
> 40 122 114 550 51.69 18.15 No local symmetry resulted
> 50 122 114 550 51.69 18.15 No local symmetry resulted
> 60 122 114 550 51.69 18.15 No local symmetry resulted
> 70 112 57 560 66.27 16.67 No local symmetry resulted
> 80 90 0 582 100.00 13.39 No local symmetry resulted
> 90 No local symmetry resulted No local symmetry resulted

Section 9.2.3) To avoid any data manipulation, we decided to present the
original genuine experiment with current annotations.

Regarding the number of false negatives in ArgoUML (cf. Table 5), a de-
tailed analysis showed that 17% of its unused features traces usually refer to
the statements within the initialization classes, such as Main classes, or use
other external libraries. These traces have not been used for the mapping due
to the fact that symfinder does not categorize initialization classes as part of
local symmetries and filters out external libraries.

Moreover, this average precision of 47.16% in symfinder is still acceptable,
because the recall value show (91.74%, on the average) shows that symfinder
identifies almost all expected variability in a system.

8.3 Distinguishing actual vp-s with variants

The resulted precision from the two subject systems shows that about half
of the identified local symmetries by symfinder are actual vp-s with variants,
while the other half are without a mapping, or irrelevant, to domain features.
Since all identified local symmetries of a system are part of the same visualiza-
tion, we need some means to distinguish the local symmetries that are actual
vp-s with variants from the irrelevant local symmetries in visualization.

Our approach suggests that zones with the highest density of local symme-
tries in visualization contain the highest number of actual vp-s with variants
(cf. Section 4.2). Hence, we expect that the irrelevant local symmetries belong
to less dense places. To demonstrate it, we conducted the following experiment.

Identification and visualization of variability implementations 33

0 10 20 30
20%

40%

60%

80%

threshold (#variants)

%
o
f
p
re
c
is
io
n
/
re
c
a
ll ArgoUML

Precision

Recall

5 10 15 20

20%

40%

60%

80%

100%

threshold (#variants)

%
o
f
p
re
c
is
io
n
/
re
c
a
ll Sat4j

Precision

Recall

Fig. 14: Measurements based on density thresholds in ArgoUML and Sat4j

8.3.1 Experiment with the density threshold

We decided to introduce in symfinder a density threshold of local symmetries
so that only zones with a higher density than the set threshold can be fil-
tered in. We then observed how precision and recall vary for different density
thresholds. For example, if the density threshold is set to 5 then only those
local symmetries that are vp-s with more than 5 variants or other related vp-s
at class or method levels will be used to calculate precision and recall. Hence,
we aim to observe where are situated in the visualization most of the actual
vp-s with variants, so they could be easily distinguished.

Technically, we just added a configuration option to the symfinder ’s engine
where a density threshold value could be set. Then, symfinder automatically
identifies zones of higher density by adding a HOTSPOT label to local symmetries
that are candidate vp-s with a higher number than the threshold of class or
method level variants or other related candidate vp-s. These local symmetries
are then filtered in and mapped to domain features using pre-existing features
traces, such as in the cases of ArgoUML and Sat4j. As output, symfinder
provides the calculated precision and recall for the set density threshold.

8.3.2 Results depending on the density threshold

In Table 6 are given the obtained results of precision and recall, using Ar-
goUML and Sat4j, for different density threshold values. The first row shows
the results without a density threshold, which are the same as those in Table 5.
We set a continuous range of density threshold values between 2 and 10, then
we increased it by 5 or 10 until no local symmetry appeared.

From the results in Table 6, Figure 14 shows how precision and recall have
changed depending on the density threshold. In both subject systems, by in-
creasing the density threshold up to a specific value, precision is continuously
improved because true positives (TP) decrease slower than false positives (FP)
while recall is worsened because false negatives (FN) are increased. Concretely,
zones with a density threshold higher than 6 and 5 in ArgoUML and Sat4j,
respectively, contain a high number of actual vp-s with variants. This indi-

34 Xhevahire Tërnava et al.

Fig. 15: An excerpt with highlighted actual vp-s with variants in Sat4j

cates that over half of actual vp-s with variants are situated into those zones
that have more than 6 or 5 density of local symmetries. Put otherwise, as
false positives (FP) decrease faster than true positives (TP) for the density
threshold values up to 6 or 5, then most of the irrelevant local symmetries are
situated into zones with a smaller density than 6 or 5, respectively. For higher
density thresholds, precision and recall fluctuate because true positives (TP)
with false positives (FP) decrease and false negatives (FN) increases distinctly.

Furthermore, precision and recall in both subjects for up to 6 or 5 density
thresholds shows that in ArgoUML precision is improved by 4.82% and recall
is worsened by 29.31%, whereas in Sat4j precision is improved by 15.47% and
recall is worsened by 40.71%. In both cases, precision is improved slower than
recall is worsened. This indicates that although most of the irrelevant local
symmetries are in less dense zones, still these zones hold a considerable number
of local symmetries that are actual vp-s with variants. Thus, actual vp-s with
variants are spread in all zones with different density of local symmetries, but
they are slightly more concentrated into zones with higher than 6 or 5 density.

These results show that differentiating actual vp-s with variants from irrel-
evant local symmetries in the current visualization is challenging. Therefore,
whenever features traces are available, we extended the symfinder ’s visualiza-
tion by labeling and highlighting local symmetries that are actual vp-s with
variants. For example, almost the same visualization excerpt as in Figure 11
(right) is given in Figure 15 from Sat4j. Unlike in the first visualization, nodes
with a blue border in Figure 15 show those local symmetries that have a map-
ping to domain features, that is, the actual vp-s with variants. Also, hovering
over a node that is an actual vp or variant, the traces label will have as value
the feature name. For example, variant Solver in Figure 15 has two traces to
the Deletion and Simplification features.

Identification and visualization of variability implementations 35

8.4 Summarized answer to RQ2

As an answer to the second research question (RQ2), the calculated preci-
sion and recall on the ArgoUML and Sat4j systems show that about half
of the identified local symmetries are actual vp-s with variants (44.17% and
50.22%, respectively) while they implement a high percentage (83.48% and
100%, respectively) of all given domain features. Based on our observations,
those without a mapping could be because the available domain features are
of coarse grain, the ground truth may be incomplete with features, mandatory
features are sidestepped in the ground truth, or some of the identified local
symmetries are simply not variability related.

Thus, to a great extent, the identified local symmetries by symfinder are
actually vp-s with variants and implement up to 100% domain features. What
becomes challenging is distinguishing them in the visualization from the irrel-
evant local symmetries. Therefore, we extended the experiment and provided
evidence that zones with a higher density than 5 or 6 of local symmetries con-
tain most of the actual vp-s with variants. Although this reveals a need for
further study, notably to devise whether there is a general common thresh-
old that could be reused among systems, we believe the results still show the
suitability of our proposed visualization, based on the density of local sym-
metries. Besides, these results show that symfinder can improve variability
management of a system by making explicit its expected variability to soft-
ware architects through identifying and providing means to comprehend it.

9 An experience report

Towards addressing the third research question, RQ3, we present here an ex-
perience report on the use of symfinder in the Sat4j system by its software
architect.

9.1 Experimental setup

As opposed to the previous experiments, we decided to make an experiment
with a software architect, asking him to use symfinder for comprehending the
variability in his own variability-rich system and share his experiences. For
this experiment we selected Sat4j [51], an internal variability-rich system.Its
software architect, Daniel Le Berre 24, made the observations reported here
and also helped improving the tooled approach, making him a co-author of
this article.

In complement to reasons exposed in Section 6.2, we also chose Sat4j as it
is a research software also implemented as an example in teaching software en-
gineering. As such, it is designed according to good practices of object-oriented

24 http://www.cril.univ-artois.fr/˜leberre/

http://www.cril.univ-artois.fr/~leberre/

36 Xhevahire Tërnava et al.

a: Identified vp-s with variants for features
Heuristics with Constraints in Sat4j

b: Identified vp-s with variants for fea-
tures Restarts with Constraints database

management in Sat4j

Fig. 16: The identified vp-s with variants for four of the features in Sat4j

programming, including the good use of inheritance and design patterns to re-
alize its variability, and the uniform usage of interfaces to prevent fragility. Its
design has evolved over 15 years, mostly by enhancing its features and adding
new ones.

The source code of Sat4j is divided into four modules: core, pb, sat, and
maxsat. We used symfinder to identify the variability of only the core module,
which contains the main features of the system. The generated visualization
was then made available to the software architect.

9.2 Observations

We report here the different observations made by the architect while compre-
hending the identified variability by symfinder in Sat4j. He provided feedback
on the general interest of symfinder for a software architect and on his par-
ticular interest for Sat4j. He also formulated requests for enhancements of the
tooled approach.

9.2.1 Variability correctly identified by symfinder

Sat4j is a library of fully customizable Boolean solvers. Most features of a mod-
ern SAT solver are variable and literal heuristics, restarts, constraints database
management, as well as the ability to handle various types of constraints. The
feature model with its all features is given in Figure 13. In Sat4j, those fea-
tures are configurable using the strategy design pattern. A solver solves by
default a decision problem: several decorators are proposed to solve instead
optimization problems. Finally, prebuilt solver configurations are made avail-
able through factories.

Most of the domain variability implemented using the strategy design pat-
tern has been identified by symfinder . For instance, the heuristics are provided
by the IOrder and PhaseSelectionStrategy interfaces, the restarts using

Identification and visualization of variability implementations 37

the RestartStrategy interface, the constraints database management with
the LearnedConstraintsDeletionStrategy interface, the constraints with
the IConstr interface. Their visualization is shown in Figure 16.

Note that Sat4j has two levels of abstraction: one for Java developers not
familiar with the design of SAT solvers, and one for people with a deeper
understanding of the algorithms (master students, researchers). Such abstrac-
tions can be seen with symfinder as the inheritance between two interfaces,
see e.g., IConstr and Constr in Figure 16a.

9.2.2 Variability missed by symfinder

There are only two vp-s that symfinder could not retrieve.

First, the interface ISimplifier and its implementations providing various
clauses simplifications techniques were not detected. It is a specific tricky case
as each implementation is an anonymous inner class inside the solver class,
direct access to the state of the solver being required.

The second one is PrimeImplicantStrategy, which allows to reduce the
model found by the solver to a set of literals required to satisfy all the con-
straints. Since that feature is experimental (this is the reason why it does not
appear on Sat4j’s feature model), the concrete implementation is chosen only
if a model is found, from the value of a system property, if that computation
is requested by the user. Then the object is used directly to perform the com-
putation. Thus the interface is only found as a local variable in a method, not
as a field in the Solver class.

In both cases, the variability is implemented in a very particular way, for
either efficiency or limited scope reasons.

9.2.3 On the remaining identified variability

Some basic data structures like vectors with constant time operations not pre-
serving the order of the elements (IVec and IVecInt) are identified as vp-s.
They are not domain vp-s but implementation vp-s resulting from develop-
ers coding style or practices. IVec has two subclasses, shown in Figure 17a:
Vec the concrete implementation and ReadOnlyVec a decorator preventing
the modification of the enclosed IVec. Similarly, IVecInt has three concrete
classes: VecInt the concrete implementation, ReadOnlyVecInt the decorator,
and EmptyVecInt a null object design pattern. Most types manipulated in
Sat4j are interfaces. In some cases, there is only one or two implementations
of those interfaces. Being able to customize the minimal number of variants to
consider for detecting a strategy (to 3 for instance instead of 2 in the current
implementation) would allow to differentiate in this setting domain vp-s from
implementation vp-s. All these findings also confirm that many false positive
vp-s found in Sat4j were still variability implementations, but not related to
the domain variability envisioned by the architect.

38 Xhevahire Tërnava et al.

a: Identified vp-s with variants not related
to domain features in Sat4j

b: Identified unexpected vp-s with variants
in Sat4j

Fig. 17: The identified vp-s with variants not related to domain features and
the unexpected ones

9.2.4 General interest of symfinder for the software architect

The first feedback that was reported is that the visualization enables him
to quickly spot the main vp-s in the code. The way the nodes are grouped
together is sometimes intriguing, different from the expected design. It may
be the case that it evolved that way, or simply that the design has unexpected
consequences. The most important feature of symfinder is to provide to the
architect that global view to detect unexpected relationships and to be able
to check the details of the nodes to decide if it is a design error or not.

Checking the variability in Sat4j was as easy as to look for interfaces marked
as strategy and checking their name. Then the next steps consisted in checking
abstract classes marked as strategy, then checking remaining plain interfaces
(black node in the visualization) with several implementations, to make sure
none is missed. Finally, like for each tool, one needs some time to get used to
all the information displayed, and to learn the common patterns in the graphs.

9.2.5 Concrete interest of symfinder for Sat4j

symfinder identified the ConflictTimer interface as a strategy vp, while it
is really an interface to implement a composite: timers are based on internal
solver metrics instead of time to ensure reproducible results across platforms.
A composite design pattern allows to trigger several events, seen as one from
the solver perspective.

One can observe a double interface inheritance pattern for that interface in
Figure 17b: RestartStrategy extends ConflictTimer. In that case, it does
not correspond to the two levels of abstraction mentioned earlier. This is clearly
a bad design choice, from a variability point of view. The reason of that inher-
itance is to allow the RestartStrategy variant to be added in the composite
class of the ConflictTimer. Since all the variants have that requirement, that
choice looks the simplest one from a developer perspective. Another choice

Identification and visualization of variability implementations 39

was done later for the LearnedConstraintsDeletionStrategy interface: each
variant delegates to a specific timer, and this timer is added to the composite.
There is certainly some refactoring work to do to uniformize the design of all
vp-s.

Note however that if that inheritance link is removed, the ConflictTimer

will still be detected as a strategy, since the interface has two concrete classes
(due to the composite design pattern), thus satisfies the strategy detection
conditions.

9.2.6 Requests for enhancement

Currently, symfinder hides some variants when they are all rooted to a common
class. It happens a lot for Sat4j, since abstract classes are used to avoid as
much as possible duplicated code in concrete classes. As such, most variants
are not displayed. It does not allow for instance to identify quickly a strategy
according to its number of concrete classes. This is important for the architect,
since there is not that much textual information available by default.

It would also be nice to have a way to materialize Java packages. Most of
the time, strategy interfaces are in the same package as the solver, while their
implementation is in a dedicated package. It would be easy to quickly spot if
all the variants of a strategy have been identified that way, or whether such
practice is consistently used in the codebase 25.

On a more cosmetic point of view, it would help to have a specific color
for each strategy interface and related concrete classes, to get an idea of the
diversity of the vp-s.

Finally, the visualization could be complemented by the bulk list of all
design patterns found, to validate them more easily. The graphical view is
great to explore specific parts of the design or to highlight some zones of
interests, but it is not necessarily convenient for exhaustive analysis.

9.3 Summarized answer to RQ3

The above observations point out that symfinder provides positive answers to
all three research questions when applied to Sat4j. Even if the experiment was
made on a single system, it especially answers RQ3 and shows how symfinder
can help in understanding the implemented variability. First, it can provide a
global picture of the design of the variable software. Even if incomplete (only
inheritance relationships are displayed, not delegation ones), such a broad
picture allows to check that the variability appears at the expected places.
This is possible because the number of incorrect classifications of vp is very
low. Second, the visualization may allow to spot inconsistencies in the design,
triggered by unexpected classifications. Again, this is possible because the
number of false positives is low.

25 This request was considered and is now addressed: https://deathstar3.github.io/

symfinder-demo/splc2020.html

https://deathstar3.github.io/symfinder-demo/splc2020.html
https://deathstar3.github.io/symfinder-demo/splc2020.html

40 Xhevahire Tërnava et al.

One potential improvement would be to help the architect to spot the
missed vp-s, by providing e.g., a list of candidate interfaces not classified as
strategy. In Sat4j, those missing vp-s uncovered real design questions. It means
that the value of the tool could be built both on detected and undetected
variability.

A related question is “when in the development cycle symfinder could be
useful?”. In the particular case of Sat4j, it is clearly in the evolution phase:
the expected and actual variabilities are unlikely to differ much at design
time, because the code is written by a small team. However, when the code
evolves, this is no longer true. The questionable inheritance relationship be-
tween ConflictTimer and RestartStrategy found by symfinder results from
a new requirement from Eclipse three years after the initial design. In the
general case, symfinder may also be useful at design time if the expected and
actual variabilities may differ. However, it seems that it should be better used
when the design is settled.

10 Discussions

In this section, we discuss the cross-checked results among the three experi-
ments and threats to validity.

10.1 Cross-checking of results among three experiments for RQ1-RQ3

After conducting all three experiments, we cross-checked their results. Specif-
ically, we checked if the obtained results for one research question can verify
or help to further interpret the results for the two other questions.

First, the interpreted amount of variability in the sixteen subject systems
in Section 7.2 is related to the obtained results on precision and recall of
our tooled approach. Results on the second experiment in Section 8.4 with
ArgoUML and Sat4j show that about half of the identified local symmetries
are variability related, meaning that the rest may not be directly relevant to
their respective domain features. Therefore, the interpreted amount of vari-
ability for all subject systems on the first experiment, given in Table 3, may
require deeper insights about variability on those systems to lead to a better
interpretation.

Then, contrary to the obtained data in Table 5 for Sat4j, the deep observa-
tions of its identified variability, given in the experience report in Section 9.3,
show that it has very few false positive (FP) local symmetries. This suggests
three possible deductions. First, it is an additional indication that some of the
local symmetries in Sat4j given in Section 8.2 are falsely categorized as irrel-
evant because concrete classes are without annotations. Secondly, the large
number of false positive local symmetries identified in ArgoUML and Sat4j
could be related, to some degree, with the data normalization that we apply
in order to be able to proceed with the experiment. Thirdly, as mentioned in
Section 9.2.3, some very low level variability can be of no interest to architects.

Identification and visualization of variability implementations 41

All these cross-checked results may emphasize one interesting finding, that
the identified variability in each system is specific and to some degree requires
its own treatment and observations. Therefore, in the future, we aim to conduct
similar observations by software architects in other subject systems to report
and further cross-check the results.

10.2 Internal threats to validity

To address the RQ2, we conducted an experiment using two real variability-
rich systems, ArgoUML and Sat4j. While the ground truth of Sat4j is estab-
lished by its software architect and features traces are part of its main branch,
the ground truth of ArgoUML is established by a group of researchers. The
main threat here is that another group of researchers or the ArgoUML’s devel-
opers themselves may identify slightly different features and trace links. This
will have a direct impact on the obtained results for precision and recall of our
tooled approach calculated by ArgoUML.

Then, the software architect established the Sat4j’s ground truth to address
the RQ2 after he reported the experience with symfinder to address the RQ3.
It seems as a maturation threat, but some basic knowledge for variability in his
own system was essential to avoid adding meaningless annotations as features
traces. Moreover, the reported experience with symfinder was conducted right
after Sat4j’s software architect was introduced to the symfinder ’s approach.

During the data normalization of ArgoUML and Sat4j, we had to normalize
the method level features traces and the identified local symmetries to class
level. Including them in the experiment could have an impact on the obtained
precision and recall. Hence, considering method level feature traces and local
symmetries is inline with our future work.

10.3 External threats to validity

We only considered in our experiments Java-based variability-rich systems
as that is the focus of the prototyped toolchain. Being able to analyse more
languages would enable us to study more systems, but also projects architected
with different languages, for example, with JavaScript for the front-end and
Java for the back-end, such as in JHipster. Towards this, we just have extended
the tool support for C++ variability-rich systems [69]. Therefore, we believe
that our approach and toolchain can be extended to systems implemented by
other languages and to other used techniques, including the implementation
of variability at statement level by using the geometry of code [27, 13], for
example, using line indentation [66].

Two of these subjects were also used to address the RQ2. In both cases,
we obtained approximately the same precision and recall for symfinder and
also the same important density threshold. Despite this, the fact that there
are only two systems limits the ability to draw general conclusions about all

42 Xhevahire Tërnava et al.

other systems. For example, according to the visualization, we expect that the
density threshold would be different in the case of Apache Maven 3.6.0, which
has less variability implemented.

Finally, for addressing the RQ3 we used Sat4j. It is the only system used in
three experiments, therefore the ability to cross-check its results between the
three experiments gives more validity to the third experiment. But, as a single
analysed system in a qualitative experiment, and by one of the co-authors of
this article, generalizing its results to other systems is unfeasible.

11 Related work

Reverse engineering SPL approaches. In the reengineering of clone-and-own
and legacy software systems into SPL, there is a large body of work on fea-
ture location and feature identification approaches [6]. Feature location is an
activity for automatically or manually recovering the traceability of some pre-
existing features to the reusable code assets in an SPL [80, 23, 46]. Whereas,
feature identification is an activity for identifying the common and varying
units, as potential features, among some related software systems [101, 58]. In
both cases, a set of clone-and-own or legacy systems are analysed. In contrast,
we consider the class of object-oriented software systems that are variability-
intensive but are not organized as a SPL. Then, instead of refactoring them
into an SPL by identifying their domain features, for example, by doing an
intersection of the abstract syntax tree elements of different systems, we au-
tomatically identify vp-s with variants, as two variability concepts that are
close to code and abstract the implementation techniques or the reusable de-
sign of code assets. Regarding the classification of migration SPL engineering
approaches [44], our variability identification process belongs more to reactive
or incremental approaches. As the symfinder toolchain visualizes the identified
variability implementations, we see more its usage to comprehend, and then
refactor or incrementally extend the variability of a system under development.

Preprocessor-based approaches. Approaches for analyzing the variability of
preprocessor-based systems seem more closely related to our work [53, 50, 37].
Similarly, we consider a family of systems within a single code base and study
real software. Both approaches are likely to cover a large set of the most used
variability implementation techniques in industrial settings. However, these
works aim at comprehending the usage of C/C++ preprocessor directives for
implementing variability, as a single technique, or at extracting them as fea-
tures into a feature model. On our side, we provide some tool support for
comprehending the variability of a software system implemented by a set of
object-oriented techniques, including design patterns, without refactoring it
into an SPL.

Variability visualization approaches. A recent mapping study shows that there
are several approaches and tools for variability visualization, which mostly

Identification and visualization of variability implementations 43

came from information visualization in SPL engineering [54]. The most com-
mon visualized artifacts are feature models, which use trees or graphs. But,
there are very few approaches for visualizing the variability at the code level.
The existing ones use colors [43] or bar diagrams [24]. Some visualizations for
feature-file tracing have also been proposed [3], but they are very specific. In
general, excluding the configuration process [82, 75], it is well recognized that
the majority of the tools in SPL engineering use ad hoc visualization techniques
or the available functionalities inside Eclipse [54]. In contrast, our visualization
tends to display, after filtering, trees – which are actually disconnected graphs
– conform to the nature of vp-s, variants, and their relationships. Displaying
classes, inheritance links, and some additional metrics, our visualization can
be seen as related to the ones for understanding a large set of classes, such as
polymetric views [48, 49]. However, the information we used is just focusing on
local symmetries or the potential implemented variability, but relating other
software metrics (e.g. quality metrics) to our set of information is clearly an
interesting research topic. Toward that, relations and coupling can be studied
with several advanced visualization techniques that are now used for software
understanding, such as visualizing large codes as cities [95, 94], as hotspot
maps, or as social networks [90].

Tools and prototypes. There is a large set of tools and prototypes for imple-
menting or managing variability. Mostly they are developed in the context of
SPL engineering, such as FeatureIDE [62] for forward engineering of SPLs.
Then, the industrial variant management tool pure::variants [8, 32] provides
also a variability management and visualization form for the realized variabil-
ity into a family model, including code assets. Specifically, in the configuration
editor they use a hierarchical ”file explorer style”, iconography for types of
elements and ”feature” states, and a matrix view. It is quite different from
symfinder , as pure::variants has a larger scope, using a broader range of core
assets in addition to the code assets, and is used especially during product
derivation. But, similar to us, they also abstract the realized variability, well-
known as a family model, the subject system being basically a single code-base
variability system, usually referred to as a 150% model, and the family model
being kept separated from the code assets.

12 Conclusion

Summary. Object-oriented software systems are more and more variability-
intensive. They are developed to represent a family of systems within a single
code-base, although not developed methodologically as a software product
line. The variability in these systems is implicit and hardly documented as it
is likely implemented using different traditional techniques (e.g., inheritance,
overloading, software design patterns). Still, it can be abstracted in terms of
variation points with variants and their different properties.

44 Xhevahire Tërnava et al.

In this paper, we proposed an identification approach that uses the prop-
erty of local symmetry in software constructs to highlight and abstract differ-
ent kinds of variation points with variants within a system in a unified way.
We extended previous work on software symmetry [16, 15, 99, 100, 34, 98] to
systematically map eight object-oriented software constructs, including four
design patterns, to variability abstractions. Then, we reported on a proto-
typed toolchain, symfinder , that automatically identifies the corresponding
candidate variation points with variants of a Java-based system, and provides
a first form of visualization, which relies on the density of local symmetries to
enable software architects to spot zones of interest w.r.t. variability. Besides, we
conducted a threefold evaluation. First, we applied symfinder on sixteen large
open-source systems. We used the number of candidate variation points with
variants to gain insights regarding their variability. Secondly, we evaluated the
precision and robustness of symfinder by measuring the number of candidate
vp-s with variants that are relevant through mapping them to some preexisting
domain features of two systems, ArgoUML and Sat4j. Finally, an experience
report on the application of symfinder to Sat4j is provided by its software
architect. The obtained results show that, symfinder can automatically iden-
tify the amount of candidate variability in real variability-rich systems (up to
13K vp-s with variants) and it is more robust (91.74%, on the average) than
precise (47.16%, on the average). Then, along with some extensions, it can be
particularly useful during the evolution phase of a variability-rich system.

We expect this contribution to be a concrete step towards a better com-
prehension and maintainability of variability implementation with traditional
techniques, its documentation, and also a way to resume the discussion on how
to implement and manage variability within the main decomposition of code.

Future work. In the future, we first plan to provide hints for comprehending
the identified variability in a given software system by using the visualized
density, visualized implementation techniques, and provided metrics and op-
tions in visualization by symfinder . Then, we aim to improve the scope of the
toolchain regarding the identification of symmetry in other software constructs,
being object-oriented or functional. The automation of navigation from the vi-
sualization to source code is also envisaged. We also plan to discern variability
implementation patterns in large systems. For this reason, we aim at exploit-
ing other software metrics [25]. Besides, the format of our identified vp-s with
variants is in compliance with the variability exchange language (VEL) [72],
a coming standard for exchanging the variability data among different vari-
ability management environments. Therefore, we plan to make available an
export of identified vp-s with variants to the VEL format.

Declarations

Not applicable.

Identification and visualization of variability implementations 45

References

1. Alexander C (2002) The Nature of Order: An Essay on the Art of Building
and the Nature of the Universe. Book 1: The Phenomenon of Life. Center
for Environmental Structure

2. Alexander C, Carey S (1968) Subsymmetries. Perception & Psy-
chophysics 4(2):73–77, DOI 10.3758/BF03209511

3. Andam B, Burger A, Berger T, Chaudron MR (2017) FLOrIDA: Fea-
ture location dashboard for extracting and visualizing feature traces. In:
Proceedings of the Eleventh International Workshop on Variability Mod-
elling of Software-Intensive Systems, ACM, VAMOS ’17, pp 100–107,
DOI 10.1145/3023956.3023967

4. Anquetil N, Kulesza U, Mitschke R, Moreira A, Royer JC, Rummler
A, Sousa A (2010) A model-driven traceability framework for software
product lines. Software & Systems Modeling 9(4):427–451, DOI 10.1007/
s10270-009-0120-9

5. Apel S, Batory D, Kästner C, Saake G (2016) Feature-Oriented Software
Product Lines. Springer

6. Assunção WK, Lopez-Herrejon RE, Linsbauer L, Vergilio SR, Egyed A
(2017) Reengineering legacy applications into software product lines: A
systematic mapping. Empirical Software Engineering 22(6):2972–3016,
DOI 10.1007/s10664-017-9499-z

7. Bachmann F, Clements P (2005) Variability in software product lines.
Tech. Rep. CMU/SEI-2005-TR-012, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, URL http://resources.

sei.cmu.edu/library/asset-view.cfm?AssetID=7675

8. Beuche D (2019) Industrial variant management with pure::variants. In:
Proceedings of the 23rd International Systems and Software Product Line
Conference - Volume B, ACM, pp 37–39, DOI 10.1145/3307630.3342391

9. Bosch J, Florijn G, Greefhorst D, Kuusela J, Obbink JH, Pohl K (2001)
Variability issues in software product lines. In: International Workshop
on Software Product-Family Engineering, Springer, PFE ’01, pp 13–21,
DOI 10.1007/3-540-47833-7 3

10. Caldiera VRBG, Rombach HD (1994) The goal question metric ap-
proach. Encyclopedia of Software Engineering pp 528–532, DOI 10.1002/
0471028959.sof142

11. Capilla R, Bosch J, Kang KC, et al. (2013) Systems and software vari-
ability management. Concepts Tools and Experiences

12. Coplien J, Hoffman D, Weiss D (1998) Commonality and variability
in software engineering. IEEE Software 15(6):37–45, DOI 10.1109/52.
730836

13. Coplien JO (1998) Space: The final frontier. C++ Report 10(3):11–17
14. Coplien JO (1999) Multi-Paradigm Design for C++. Addison-Wesley

Longman Publishing Co., Inc.
15. Coplien JO (2001) The future of language: Symmetry or bro-

ken symmetry? In: Proceedings of VS Live 2001, pp 1–7,

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7675
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7675

46 Xhevahire Tërnava et al.

URL https://sites.google.com/a/gertrudandcope.com/info/

Publications/Patterns/Symmetry/FutureOfLanguage

16. Coplien JO, Zhao L (2000) Symmetry breaking in software patterns. In:
International Symposium on Generative and Component-Based Software
Engineering, Springer, Springer, GCSE 2000, pp 37–54

17. Coplien JO, Zhao L (2020) Toward a general formal foundation of fesign.
symmetry and broken symmetry. (Forthcoming publication)

18. Couto MV, Valente MT, Figueiredo E (2011) Extracting software product
lines: A case study using conditional compilation. In: 2011 15th European
Conference on Software Maintenance and Reengineering, IEEE, pp 191–
200, DOI 10.1109/CSMR.2011.25

19. Cruz D, Figueiredo E, Martinez J (2019) A literature review and com-
parison of three feature location techniques using ArgoUML-SPL. In:
Proceedings of the 13th International Workshop on Variability Mod-
elling of Software-Intensive Systems, ACM, VAMOS ’19, pp 1–10, DOI
10.1145/3302333.3302343

20. Czarnecki K, Grünbacher P, Rabiser R, Schmid K, Wasowski A (2012)
Cool features and tough decisions: A comparison of variability model-
ing approaches. In: Proceedings of the Sixth International Workshop on
Variability Modeling of Software-Intensive Systems, ACM, VaMoS ’12,
pp 173–182, DOI 10.1145/2110147.2110167

21. De Lucia A, Deufemia V, Gravino C, Risi M (2010) Improving behavioral
design pattern detection through model checking. In: 2010 14th European
Conference on Software Maintenance and Reengineering, pp 176–185

22. Diehl S (2007) Software Visualization: Visualizing the Structure, Be-
haviour, and Evolution of Software. Springer Science & Business Media

23. Dit B, Revelle M, Gethers M, Poshyvanyk D (2013) Feature location in
source code: A taxonomy and survey. Journal of Software: Evolution and
Process 25(1):53–95, DOI 10.1002/smr.567

24. Duszynski S, Becker M (2012) Recovering variability information from
the source code of similar software products. In: 2012 Third International
Workshop on Product Line Approaches in Software Engineering, IEEE,
PLEASE, pp 37–40, DOI 10.1109/PLEASE.2012.6229768

25. El-Sharkawy S, Yamagishi-Eichler N, Schmid K (2019) Metrics for ana-
lyzing variability and its implementation in software product lines: A sys-
tematic literature review. Information and Software Technology 106:1–30,
DOI 10.1016/j.infsof.2018.08.015

26. Fritsch C, Lehn A, Strohm T, Bosch R (2002) Evaluating variability
implementation mechanisms. In: Proceedings of International Workshop
on Product Line Engineering, sn, PLEES ’02, pp 59–64

27. Gabriel RP (1996) Patterns of Software, vol 62. Oxford University Press
New York

28. Gacek C, Anastasopoules M (2001) Implementing product line variabil-
ities. In: Proceedings of the 2001 Symposium on Software Reusability:
Putting Software Reuse in Context, ACM, SSR ’01, pp 109–117, DOI
10.1145/375212.375269

https://sites.google.com/a/gertrudandcope.com/info/Publications/Patterns/Symmetry/FutureOfLanguage
https://sites.google.com/a/gertrudandcope.com/info/Publications/Patterns/Symmetry/FutureOfLanguage

Identification and visualization of variability implementations 47

29. Galster M (2019) Variability-intensive software systems: Product lines
and beyond. In: Proceedings of the 13th International Workshop on Vari-
ability Modelling of Software-Intensive Systems, ACM, VaMoS ’19, pp
1–1, DOI 10.1145/3302333.3302336

30. Galster M, Weyns D, Tofan D, Michalik B, Avgeriou P (2013) Variability
in software systems — a systematic literature review. IEEE Transactions
on Software Engineering 40(3):282–306, DOI 10.1109/TSE.2013.56

31. Garcia J, Ivkovic I, Medvidovic N (2013) A comparative analysis of soft-
ware architecture recovery techniques. In: 2013 28th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE), IEEE,
pp 486–496, DOI 10.1109/ASE.2013.6693106

32. pure-systems GmbH (2020) pure::variants. URL https://www.

pure-systems.com/products/pure-variants-9.html

33. Halin A, Nuttinck A, Acher M, Devroey X, Perrouin G, Heymans P
(2017) Yo variability! JHipster: A playground for web-apps analyses. In:
Proceedings of the 11th International Workshop on Variability Modelling
of Software-Intensive Systems, ACM, VAMOS ’17, p 44–51, DOI 10.1145/
3023956.3023963

34. Henney K (2003) The good, the bad, and the koyaanisqatsi. In: Proceed-
ings of the Second Nordic Pattern Languages of Programs Conference,
VikingPLoP, vol 2003, pp 1–8

35. Heuzeroth D, Holl T, Hogstrom G, Lowe W (2003) Automatic design
pattern detection. In: 11th IEEE International Workshop on Program
Comprehension, 2003., pp 94–103

36. Hilliard R (2010) On representing variation. In: Proceedings of the Fourth
European Conference on Software Architecture: Companion Volume,
ACM, ECSA ’10, p 312–315, DOI 10.1145/1842752.1842810

37. Hunsen C, Zhang B, Siegmund J, Kästner C, Leßenich O, Becker M,
Apel S (2016) Preprocessor-based variability in open-source and indus-
trial software systems: An empirical study. Empirical Software Engineer-
ing 21(2):449–482, DOI 10.1007/s10664-015-9360-1

38. Jacobson I, Griss M, Jonsson P (1997) Software Reuse: Architecture,
Process and Organization for Business Success. Addison-Wesley Profes-
sional

39. Jayaraman K, Harvison D, Ganesh V, Kiezun A (2009) jFuzz: A concolic
whitebox fuzzer for java. Proceedings of the First NASA Formal Methods
Symposium pp 121–125, URL https://ntrs.nasa.gov/search.jsp?R=

20100024457

40. John I, Lee J, Muthig D (2007) Separation of variability dimension and
development dimension. In: Proocedings of the 1st International Work-
shop on Variability Modelling of Software-Intensive Systems, VaMoS ’07,
pp 45–49

41. Kamali SR, Kasaei S, Lopez-Herrejon RE (2019) Answering the call of
the wild? thoughts on the elusive quest for ecological validity in variability
modeling. In: Proceedings of the 23rd International Systems and Software
Product Line Conference - Volume B, ACM, SPLC ’19, pp 143–150, DOI

https://www.pure-systems.com/products/pure-variants-9.html
https://www.pure-systems.com/products/pure-variants-9.html
https://ntrs.nasa.gov/search.jsp?R=20100024457
https://ntrs.nasa.gov/search.jsp?R=20100024457

48 Xhevahire Tërnava et al.

10.1145/3307630.3342400
42. Kang KC, Cohen SG, Hess JA, Novak WE, Peterson AS (1990) Feature-

oriented domain analysis (FODA) feasibility study. Tech. rep., Carnegie-
Mellon Univ Pittsburgh Pa Software Engineering Inst

43. Kästner C, Trujillo S, Apel S (2008) Visualizing software product line
variabilities in source code. In: Proceedings of the 12th International
Software Product Line Conference: 2nd International Workshop on Vi-
sualisation in Software Product Line Engineering, SPLC - ViSPLE ’08,
pp 303–312

44. Krueger CW (2001) Easing the transition to software mass customiza-
tion. In: International Workshop on Software Product-Family Engineer-
ing, Springer, PFE ’01, pp 282–293, DOI 10.1007/3-540-47833-7 25

45. Krüger J, Gu W, Shen H, Mukelabai M, Hebig R, Berger T (2018) To-
wards a better understanding of software features and their character-
istics: A case study of marlin. In: Proceedings of the 12th International
Workshop on Variability Modelling of Software-Intensive Systems, Va-
MoS ’18, pp 105–112, DOI 10.1145/3168365.3168371

46. Krüger J, Berger T, Leich T (2019) Features and how to find them: A
survey of manual feature location. Software Engineering for Variability
Intensive Systems pp 153–172

47. Krüger J, Mukelabai M, Gu W, Shen H, Hebig R, Berger T (2019) Where
is my feature and what is it about? a case study on recovering feature
facets. Journal of Systems and Software 152:239–253, DOI 10.1016/j.jss.
2019.01.057

48. Lanza M, Ducasse S (2003) Polymetric views - a lightweight visual ap-
proach to reverse engineering. IEEE Transactions on Software Engineer-
ing 29(9):782–795, DOI 10.1109/TSE.2003.1232284

49. Lanza M, Ducasse S, Gall H, Pinzger M (2005) CodeCrawler: An infor-
mation visualization tool for program comprehension. In: Proceedings of
the 27th International Conference on Software Engineering, ACM, ICSE
’05, pp 672–673, DOI 10.1145/1062455.1062602

50. Le DM, Lee H, Kang KC, Keun L (2013) Validating consistency be-
tween a feature model and its implementation. In: International Con-
ference on Software Reuse, Springer, ICSR ’13, pp 1–16, DOI 10.1007/
978-3-642-38977-1 1

51. Le Berre D, Parrain A (2010) The sat4j library, release 2.2. Journal on
Satisfiability, Boolean Modeling and Computation 7(2-3):59–64, DOI
10.3233/SAT190075

52. Le Berre D, Rapicault P (2009) Dependency management for the eclipse
ecosystem: Eclipse p2, metadata and resolution. In: Proceedings of the
1st International Workshop on Open Component Ecosystems, IWOCE
’09, pp 21–30, DOI 10.1145/1595800.1595805

53. Liebig J, Apel S, Lengauer C, Kästner C, Schulze M (2010) An analy-
sis of the variability in forty preprocessor-based software product lines.
In: Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1, ACM, ICSE ’10, pp 105–114, DOI

Identification and visualization of variability implementations 49

10.1145/1806799.1806819
54. Lopez-Herrejon RE, Illescas S, Egyed A (2018) A systematic mapping

study of information visualization for software product line engineering.
Journal of Software: Evolution and Process 30(2):e1912, DOI 10.1002/
smr.1912

55. Lozano A (2011) An overview of techniques for detecting software
variability concepts in source code. In: International Conference on
Conceptual Modeling, Springer, ER ’11, pp 141–150, DOI 10.1007/
978-3-642-24574-9

56. Martinez J, Ziadi T, Bissyandé TF, Klein J, Traon YL (2016) Name sug-
gestions during feature identification: the variclouds approach. In: Pro-
ceedings of the 20th International Systems and Software Product Line
Conference, ACM, pp 119–123, DOI 10.1145/2934466.2934480

57. Martinez J, Assunção WK, Ziadi T (2017) Espla: A catalog of extractive
spl adoption case studies. In: Proceedings of the 21st International Sys-
tems and Software Product Line Conference - Volume B, ACM, SPLC
’17, pp 38–41, DOI 10.1145/3109729.3109748

58. Martinez J, Ziadi T, Bissyandé TF, Klein J, Le Traon Y (2017) Bottom-
up technologies for reuse: Automated extractive adoption of software
product lines. In: 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion, IEEE, ICSE-C ’17, pp 67–70, DOI
10.1109/ICSE-C.2017.15

59. Martinez J, Ordoñez N, Tërnava Xh, Ziadi T, Aponte J, Figueiredo E,
Valente MT (2018) Feature location benchmark with ArgoUML SPL.
In: Proceedings of the 22nd International Systems and Software Product
Line Conference - Volume 1, ACM, SPLC ’18, pp 257–263, DOI 10.1145/
3233027.3236402

60. Martinez J, Tërnava Xh, Ziadi T (2018) Software product line extraction
from variability-rich systems: The robocode case study. In: Proceedings of
the 22nd International Systems and Software Product Line Conference-
Volume 1, ACM, SPLC ’18, pp 132–142, DOI 10.1145/3233027.3233038

61. McKay BD, et al. (1981) Practical Graph Isomorphism. Department of
Computer Science, Vanderbilt University Tennessee, USA

62. Meinicke J, Thüm T, Schröter R, Benduhn F, Leich T, Saake G (2017)
Mastering Software Variability with FeatureIDE. Springer

63. Metzger A, Pohl K (2014) Software product line engineering and vari-
ability management: Achievements and challenges. In: Proceedings of
the on Future of Software Engineering, ACM, FOSE ’14, pp 70–84, DOI
10.1145/2593882.2593888

64. Metzger A, Pohl K, Heymans P, Schobbens PY, Saval G (2007) Disam-
biguating the documentation of variability in software product lines: A
separation of concerns, formalization and automated analysis. In: 15th
IEEE International Requirements Engineering Conference, IEEE, RE ’07,
pp 243–253, DOI 10.1109/RE.2007.61

65. Meyer B (1988) Object-Oriented Software Construction, vol 2. Prentice
Hall New York

50 Xhevahire Tërnava et al.

66. Miara RJ, Musselman JA, Navarro JA, Shneiderman B (1983) Pro-
gram indentation and comprehensibility. Communications of the ACM
26(11):861–867

67. Michelon GK, Linsbauer L, Assunção WK, Egyed A (2019) Comparison-
based feature location in ArgoUML variants. In: Proceedings of the 23rd
International Systems and Software Product Line Conference - Volume
A, ACM, SPLC ’19, pp 93–97, DOI 10.1145/3336294.3342360

68. Mortara J, Tërnava Xh, Collet P (2019) symfinder: a toolchain for the
identification and visualization of object-oriented variability implemen-
tations. In: Proceedings of the 23rd International Systems and Software
Product Line Conference-Volume B, ACM, SPLC ’19, Tools and Demon-
strations, pp 5–8, DOI 10.1145/3307630.3342394

69. Mortara J, Collet P, Tërnava Xh (2020) Identifying and mapping im-
plemented variabilities in java and c++ systems using symfinder. In:
24th International Systems and Software Product Line Conference, ACM,
SPLC’20, DOI 10.1145/3382025.3414987

70. Mortara J, Tërnava Xh, Collet P (2020) Mapping features to automat-
ically identified object-oriented variability implementations-the case of
ArgoUML-SPL. In: 14th International Working Conference on Variabil-
ity Modelling of Software-Intensive Systems, ACM, VaMoS ’20, pp 1–9,
DOI 10.1145/3377024.3377037

71. Niere J, Schäfer W, Wadsack JP, Wendehals L, Welsh J (2002) To-
wards pattern-based design recovery. In: Proceedings of the 24th In-
ternational Conference on Software Engineering, Association for Com-
puting Machinery, New York, NY, USA, ICSE ’02, p 338–348, DOI
10.1145/581339.581382

72. OASIS (2020) Oasis variability exchange language (vel) tc. URL https:

//www.oasis-open.org/committees/tc_home.php?wg_abbrev=vel,
[Online; accessed 25-April-2020]

73. Paskevicius P, Damasevicius R, Štuikys V (2012) Change impact anal-
ysis of feature models. In: International Conference on Information and
Software Technologies, Springer, ICIST ’12, CCIS 319, pp 108–122, DOI
10.1007/978-3-642-33308-8 10

74. Patzke T, Muthig D (2002) Product line implementation technologies.
programming language view. Tech. rep., Fraunhofer IESE

75. Pleuss A, Botterweck G (2012) Visualization of variability and configu-
ration options. International Journal on Software Tools for Technology
Transfer 14(5):497–510, DOI 10.1007/s10009-012-0252-z

76. Pohl K, Böckle G, van Der Linden FJ (2005) Software Product Line
Engineering: Foundations, Principles and Techniques. Springer Science
& Business Media

77. Rabiser R (2019) Feature modeling vs. decision modeling: History, com-
parison and perspectives. In: Proceedings of the 23rd International Sys-
tems and Software Product Line Conference-Volume B, ACM, SPLC ’19,
pp 134–136, DOI 10.1145/3307630.3342399

78. Rosen J (1995) Symmetry in Science. Springer

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=vel
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=vel

Identification and visualization of variability implementations 51

79. Rosen J (2008) Symmetry Rules: How Science and Nature are Founded
on Symmetry. Springer Science & Business Media

80. Rubin J, Chechik M (2013) A survey of feature location techniques. In:
Domain Engineering: Product Lines, Languages, and Conceptual Models,
Springer, pp 29–58, DOI 10.1007/978-3-642-36654-3-2

81. Schmid K, John I (2004) A customizable approach to full lifecycle vari-
ability management. Science of Computer Programming 53(3):259–284,
DOI 10.1016/j.scico.2003.04.002

82. Schneeweiss D, Botterweck G (2010) Using flow maps to visualize prod-
uct attributes during feature configuration. In: Proceedings of the 14th
Software Product Lines Conference, Workshop Proceedings (Volume 2 :
Workshops, Industrial Track, Doctoral Symposium, Demonstrations and
Tools), Springer, SPLC ’10, pp 219–228

83. Shi N, Olsson RA (2006) Reverse engineering of design patterns from java
source code. In: 21st IEEE/ACM International Conference on Automated
Software Engineering (ASE’06), pp 123–134

84. Shneiderman B (1996) The eyes have it: A task by data type taxonomy
for information visualizations. In: Proceedings 1996 IEEE Symposium on
Visual Languages, IEEE, pp 336–343, DOI 10.1109/VL.1996.545307

85. Stewart I, Golubitsky M (1992) Fearful Symmetry: Is God a Geometer?
Courier Corporation

86. Svahnberg M, Van Gurp J, Bosch J (2005) A taxonomy of variability
realization techniques. Software: Practice and experience 35(8):705–754,
DOI 10.1002/spe.652

87. Tërnava Xh, Collet P (2017) On the diversity of capturing variability
at the implementation level. In: Proceedings of the 21st International
Systems and Software Product Line Conference - Volume B, ACM, SPLC
’17, pp 81–88, DOI 10.1145/3109729.3109733

88. Tërnava Xh, Collet P (2017) Tracing imperfectly modular variability
in software product line implementation. In: International Conference
on Software Reuse, Springer, ICSR ’17, pp 112–120, DOI 10.1007/
978-3-319-56856-0 8

89. Tërnava Xh, Mortara J, Collet P (2019) Identifying and visualizing vari-
ability in object-oriented variability-rich systems. In: Proceedings of the
23rd International Systems and Software Product Line Conference - Vol-
ume A, pp 231–243, DOI 10.1145/3336294.3336311

90. Tornhill A (2015) Your Code as a Crime Scene: Use Forensic Techniques
to Arrest Defects, Bottlenecks, and Bad Design in Your Programs. Prag-
matic Bookshelf

91. Turner CR, Fuggetta A, Lavazza L, Wolf AL (1999) A conceptual basis
for feature engineering. Journal of Systems and Software 49(1):3–15, DOI
10.1016/S0164-1212(99)00062-X

92. Ullmann JR (1976) An algorithm for subgraph isomorphism. J ACM
23(1):31–42, DOI 10.1145/321921.321925

93. Vera-Pérez OL, Danglot B, Monperrus M, Baudry B (2019) A compre-
hensive study of pseudo-tested methods. Empirical Software Engineering

52 Xhevahire Tërnava et al.

24(3):1195–1225, DOI 10.1007/s10664-018-9653-2
94. Wettel R, Lanza M (2007) Visualizing software systems as cities. In:

2007 4th IEEE International Workshop on Visualizing Software for Un-
derstanding and Analysis, IEEE, pp 92–99, DOI 10.1109/VISSOF.2007.
4290706

95. Wettel R, Lanza M (2008) Visual exploration of large-scale system evo-
lution. In: 2008 15th Working Conference on Reverse Engineering, IEEE,
pp 219–228, DOI 10.1109/WCRE.2008.55

96. Yu D, Zhang Y, Chen Z (2015) A comprehensive approach to the recovery
of design pattern instances based on sub-patterns and method signatures.
Journal of Systems and Software 103:1 – 16, DOI https://doi.org/10.
1016/j.jss.2015.01.019

97. Zhang B, Becker M, Patzke T, Sierszecki K, Savolainen JE (2013) Vari-
ability evolution and erosion in industrial product lines: A case study. In:
Proceedings of the 17th International Software Product Line Conference,
ACM, SPLC ’13, pp 168–177, DOI 10.1145/2491627.2491645

98. Zhao L (2008) Patterns, symmetry, and symmetry breaking. Communi-
cations of the ACM 51(3):40–46, DOI 10.1145/1325555.1325564

99. Zhao L, Coplien J (2003) Understanding symmetry in object-oriented
languages. Journal of Object Technology 2(5):123–134

100. Zhao L, Coplien JO (2002) Symmetry in class and type hierarchy.
In: Proceedings of the Fortieth International Conference on Tools Pa-
cific: Objects for Internet, Mobile and Embedded Applications, Aus-
tralian Computer Society, Inc., ACM, CRPIT ’02, pp 181–189, DOI
10.5555/564092.564119

101. Ziadi T, Frias L, da Silva MAA, Ziane M (2012) Feature identification
from the source code of product variants. In: 2012 16th European Con-
ference on Software Maintenance and Reengineering, IEEE, pp 417–422,
DOI 10.1109/CSMR.2012.52

	Introduction
	Background
	Motivation
	A symmetry-based approach
	Automatic identification and visualization of local symmetries
	Evaluation design
	Amount of variability and symfinder's scalability in real systems
	Evaluation of the actual vp-s with variants
	An experience report
	Discussions
	Related work
	Conclusion

