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A Particle Filtering Approach for Joint
Detection/Estimation of Multipath

Effects on GPS Measurements
Audrey Giremus, Jean-Yves Tourneret, and Vincent Calmettes

Abstract—Multipath propagation causes major impairments to
global positioning system (GPS) based navigation. Multipath re-
sults in biased GPS measurements, hence inaccurate position es-
timates. In this paper, multipath effects are considered as abrupt
changes affecting the navigation system. A multiple model formu-
lation is proposed whereby the changes are represented by a dis-
crete valued process. The detection of the errors induced by mul-
tipath is handled by a Rao-Blackwellized particle filter (RBPF).
The RBPF estimates the indicator process jointly with the navi-
gation states and multipath biases. The interest of this approach
is its ability to integrate a priori constraints about the propaga-
tion environment. The detection is improved by using information
from near future GPS measurements at the particle filter (PF) sam-
pling step. A computationally modest delayed sampling is devel-
oped, which is based on a minimal duration assumption for multi-
path effects. Finally, the standard PF resampling stage is modified
to include an hypothesis test based decision step.

Index Terms—Delayed sampling, GPS navigation, multipath,
multiple models, particle filtering.

I. INTRODUCTION

RECURSIVE estimation is of primary interest for naviga-
tion and tracking problems. The issue is to compute the

kinematic state (the position and its derivative) of moving vehi-
cles from noisy measurements from a cluster of sensors. It may 
be crucial that the estimation is performed on line, for instance to 
ensure flight safety for an aircraft. The Kalman filter, introduced 
in [1] and further studied in many textbooks such as [2], has been 
applied to a wide range of practical problems. This popular algo-
rithm is optimal (in the sense that it minimizes the mean square 
estimation error) only in the case of linear Gaussian systems. 
Local linearization schemes yield computationally modest sub-
optimal solutions for a wide range of nonlinear systems. How-
ever, these approximations fail in case of severe nonlinearities.
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Particle filters (PFs) are promising alternatives in such cases.
They have recently received a renewed interest, see for instance
[3] or [4] for an overview on the subject. PFs combine impor-
tance sampling and resampling steps to generate Monte Carlo
approximations of the posterior probability density functions
(pdfs) of interest. Thus, they can cope with non standard state
space models which exhibit non-Gaussian priors and/or highly
nonlinear equations.

In many practical situations, the studied systems experience
nonlinear phenomena such as abrupt changes. These changes
can result for instance from a sensor failure or an unexpected
maneuver of the vehicle in tracking applications. They can con-
siderably degrade the estimation solution, which explains the
active research conducted for change detection. A nearly ex-
haustive overview of abrupt change algorithms can be for in-
stance found in [5]. Mean jumps in linear systems have also been
extensively studied in [6] where likelihood ratio based methods
such as the well-known generalized likelihood ratio (GLR) and
the CUSUM algorithm are proposed. Other solutions are pro-
vided by multiple model formulation. This approach assumes
the unknown states obey competing models whose parameters
depend on a latent process indicating the possible changes. In
this way, a priori information about the frequency and ampli-
tude of the changes can be directly appended to the state model.
Hence, the detection is made easier. The most popular algo-
rithms, including the Interacting Multiple Models (IMM) or the
Generalized Pseudo-Bayes (GPB), are thoroughly described in
[7]. Due to their applicability to any class of state space model,
PFs also offer a convenient solution to multiple model problems.
Efficient algorithms have been developed for that purpose in [8]
and [9].

This paper deals with GPS navigation, i.e., a vehicle esti-
mating its own motion from received satellite signals. More pre-
cisely, an improved PF is proposed to tackle the problem of
multipath which can severely degrade the GPS measurements
and thereby the positioning solution. A Rao-Blackwellized tech-
nique is applied so that multipath effects detection is handled by
a PF technique while both navigation states and multipath errors
are estimated by a bank of conditional extended Kalman filters
(EKFs). The PF efficiency is known to be greatly improved by
using near future measurements at the sampling step [10]. The
so-called delayed sampling approach has for instance been de-
veloped for adaptive detection and decoding in flat-fading chan-
nels in [11]. In this paper, delayed sampling is used to gen-
erate relevant samples for multipath detection. A computation-
ally cheaper procedure is developed that takes advantage of the



sparseness of multipath events. The proposed algorithm also in-
cludes an hypothesis test-aided resampling step. Whenever a
multipath event is detected, all the particles refuting this hypoth-
esis are penalized to speed up their removal. Thus, the estima-
tion of the incoming states is improved and no computational
cost is devoted to update irrelevant samples. The resulting al-
gorithm compares favorably with standard multiple model ap-
proaches and provides better multipath bias estimates than the
GLR algorithm.

The paper is organized as follows. The problem of GPS nav-
igation in the presence of multipath is described in Section II.
Section III introduces a multiple model formulation of this
problem. Section IV proposes a fixed-lag Rao-Blackwellized
partical filter (RBPF) to solve the joint detection/estimation of
multipath effects on the GPS measurements. Simulation results
and conclusions are reported in Sections V and VI.

II. BACKGROUND

The global positioning system (GPS) is extensively used as a
navigation system due to its world-wide coverage, low cost, and
accuracy. GPS allows any vehicle equipped with a receiver to
compute its position, velocity, and so forth. GPS receivers mea-
sure time delays of signals from in-view satellites, hence range
measurements. These measurements are biased due to receiver
and satellite clock offsets. Thus, they are denoted as pseudor-
anges. Four simultaneous measurements are necessary to solve
the so-called navigation problem: estimate the vehicle position
in three-dimension and the GPS clock offset.

Multipath propagation highly degrades GPS tracking perfor-
mance. Multipath occurs when the satellite signal is reflected on
different surfaces (ground, block of buildings) before arriving
to the receiver. Therefore, the incoming signal is the sum of the
direct signal and several delayed replica. Usual GPS receivers,
based on the single-path assumption, estimate a wrong propaga-
tion delay. A closer look over GPS receiver techniques allows
us to plainly understand multipath effects. The transmitted GPS
signals are spread using pseudorandom noise (PRN) sequences
whose correlation peak is very sharp. They are correlated in the
receiver by a local shifted replica of the PRN code until maximal
correlation occurs. The local signal phase then provides the in-
coming signal time of arrival. However, the correlation peak is
distorted in the presence of one or more reflected components,
yielding biased pseudoranges [12]. Note that multipath errors
are bounded since signals with delays larger than a code chip
are uncorrelated with the direct signal. Simulations carried out
in [13] show that multipath can result in biases of up to 100 m.
Consequently, multipath appears as a critical issue.

There has been a surge of interest for mitigation techniques
in the past few years. The proposed solutions are aimed either
to recover the unbiased propagation delay or to compensate for
the induced errors on GPS measurements. A wide range of tech-
niques has been proposed in the first case. Some of these tech-
niques require to modify the receiver architecture. In [14] and
[15], a narrow correlator proves efficient to reduce the bias.
Other approaches jointly estimate the direct and reflected signal
parameters, either directly from the received signal [16] or by
means of an EKF based delay lock loop [17]. This study focuses

on the second class of methods which track multipath biases on
the GPS pseudoranges. A straightforward approach consists of
estimating jointly the navigation states and the multipath biases
from the corrupted GPS measurements. The tracking can be car-
ried out by an EKF as advocated by [18] for wireless positioning
systems. Such an algorithm has been shown to significantly im-
prove positioning accuracy in a known multipath environment.
Its main limitation is that multipath biases are estimated even
in the absence of multipaths. The a priori dynamics of biases
cannot be adjusted to cope at the same time with the abrupt
jumps and the nearly constant periods. As an alternative, this
paper presents a joint detection/estimation technique. Thus, the
state space model is modified to include multipath biases only
if a bias is detected on the GPS measurements.

III. PROBLEM FORMULATION

This paper proposes to handle multipath effects by a joint
detection/estimation strategy based on a multiple model for-
mulation. Multipath appearance or disappearance result in
a mean value jump in the measurement equation, hence, an
abrupt change in the state space model. The classical navigation
model is extended in this paper by including both the multipath
biases and a latent process which represents multipath
occurrences

(1)

(2)

where
• and are independent

Gaussian white noise sequences (the notation
refers to a Gaussian distribution of mean and covariance
matrix );

• is the navigation vector, composed of the four
unknowns (the vehicle position and the GPS receiver clock
offset) and their derivatives;

• is the measurement vector, formed of the GPS
pseudoranges at time . The dimension coincides with
the number of in-view GPS satellites;

• is the vector of multipath biases (each compo-
nent is associated with one of the GPS measurement);

• indicates the possible mean value jumps on the
GPS measurements at time . The vector takes its values
in a finite set , such that if a multi-
path bias appears on the th GPS measurement and
otherwise. is formed of elements denoted

. Note that, in this paper, the classical nota-
tion is used.

Denote as the vector containing the unknown
continuous valued parameters. The state and measurement
models related to and are detailed.

A. State Model

1) Navigation States/Multipath Biases: Classical dynamic
models can be used in navigation depending on the dynamic
level of the vehicle. The reader is invited to read [9] for an
overview on this subject. In this paper, the vehicle is assumed to
be in uniform motion (i.e., near constant velocity). Therefore,



a second-order model fully characterizes its dynamic behavior. 
The state vector then only includes the following parameters:

where
• is the vehicle position in the Earth centered

Earth fixed frame (ECEF), denoted ;
• is the vehicle velocity;
• are the GPS clock offset and clock drift, respec-

tively;
• and comprise the multipath biases and their deriva-

tives, respectively.
The velocity is reasonably modeled as a random walk process
(of variance ) and the position is obtained by integration.
The GPS clock drift is usually represented as a Gauss Markov
process which is integrated to yield the GPS clock offset [19].
Such a model is reasonable for short-term applications as it does
not take into account the periodical clock resets performed by
the GPS receiver. The multipath biases can be well modeled
as random walks (of variance ). The overall state matrices
are block-diagonal due to the relative independence of the kine-
matic parameters, the GPS clock parameters and the multipath
biases. They can be defined as follows:

where the block matrices , and have the following
form:

with

with

The variances and depend on the application (driving in
a urban environment, air-flight ), whereas the corresponding
values for the GPS clock parameters and have been ex-
tensively studied and are inventoried in tables [9]. The sampling
period has been denoted in the previous expressions.

2) Indicator Process: The process takes on scattered
nonzero values. Each component can be modeled as a Bernoulli
random variable:

The parameter depends on the propagation environment. For
instance, rural areas are characterized by very low values of
whereas urban areas require higher values of .

B. Measurement Model

At each time instant, the measurement vector is composed of
the pseudoranges associated with in-view GPS satellites. The
nonlinear function , appearing in (2), is the mathematical ex-
pression for the distances between the vehicle and the GPS satel-
lites which are corrupted by the additive GPS receiver clock
offset. Depending on the propagation environment, any mea-
surement can be affected by multipath at a given time instant
. An additional process is introduced to represent the pres-

ence/absence of multipath biases on the measurements. It is re-
lated to the change indicator as follows:

Note that the component is equal to (where is
the exclusive or), with (assuming no multipath at time

).
The corresponding measurement equation can finally be ex-

pressed as

where
• is the th component of the measurement vector

, or equivalently the GPS pseudorange associ-
ated with the th GPS satellite;

• is the th GPS satellite position;
• the covariance matrix of the measurement noise satis-

fies , with the standard GPS ranging error.
The previous model includes both continuous and discrete
valued processes. Moreover, the GPS measurements are non-
linearly related to the unknown state vector. Consequently,
sequential Monte Carlo methods offer an appropriate frame-
work for the estimation of the mixed state vector .

IV. A PARTICLE FILTERING APPROACH

In a Bayesian framework, all inference about the unknown
parameters is based on their posterior distribution. The joint de-
tection/estimation of multipath effects on GPS measurements is
handled by estimating the posterior pdf of the augmented state
vector conditioned on the measurements up to the
current time, denoted as . A recursive appli-
cation of Bayes’ rule allows to derive a conceptual solution to
the estimation problem. The indicator process can be marginal-
ized out to yield the posterior pdf of the navigation states and
multipath biases:

(3)

where

(4)

(5)



The pdfs and
can be estimated by parallel EKFs, provided the measurement
model nonlinearities are small enough as shown in [20]. How-
ever, the sum in (3) covers an exponentially growing number
of discrete sequences . A selection procedure needs to be
applied to keep the computational complexity constant. Several
algorithms have been developed in the literature, which are
based either on a pruning or a merging strategy (see [7] for an
overview on the subject). The most popular algorithms include
the IMM and the GPB. SMC methods also offer a convenient
and flexible framework to handle such problems. The main
difference is that the possible hypotheses are not explored ex-
haustively but randomly according to a simulation-based rule.
Indeed, PFs automatically focuses on the most likely paths
according to a combination of sampling/resampling steps. This
section shows that the GPS navigation problem defined by (1)
and (2) can be advantageously solved by a Rao-Blackwellized
technique, where only the discrete valued process distribution
is approximated by a PF approach.

A. RBPFs

Many strategies can be implemented to improve PF effi-
ciency. Rao-Blackwellization is a well-known technique to
decrease the variance of the state estimates for conditionally
linear Gaussian state space models. The principle is to solve
analytically the conditional linear part while the nonlinear part
is estimated by a PF method. This approach has received much
interest in the literature, see for instance [21]–[23] or [24].
In our application, the state space model is “almost linear”
Gaussian conditioned on the indicator sequence (“Almost
linear” means that the nonlinearities can be handled by local
linearizations without introducing too much inaccuracy). The
validity of this assertion has been discussed for instance in [20],
wherein the estimation error of an EKF is shown to meet the
posterior Cramer Rao bound for a GPS positioning problem.
The RB technique is based on the following factorization of the
unknown pdf of interest:

The conditional posterior pdfs can then be es-
timated by Gaussian distributions whose first- and second-order
moments are computed by standard recursions of EKFs. Conse-
quently, only the discrete valued process is estimated by a
PF technique. Of course, the state vector could be also es-
timated by a PF technique. However, this strategy has not been
considered here since it would require to use more particles to
obtain a slightly better estimation performance. The different
steps allowing to estimate the state vector and the indicator
sequence are detailed in what follows.

1) Estimation of : PFs provide a point mass approxima-
tion of the distribution of interest:

(6)

where denotes the Dirac distribution. The support points
are called particles, and the elementary probabilities im-

portance weights. This empirical estimation is obtained from a
combination of importance sampling/resampling steps. In a few
words, it is usually impossible to simulate the particles directly
from the target distribution . As an alternative, they are drawn
sequentially from a proposal distribution

The particles are assigned weights according to their relevance
with regard to . PFs also include a resampling step which con-
sists of generating a new set of particles according to the es-
timated discrete distribution. Thus, PF degeneracy is avoided
by selecting relevant particles. A comprehensive presentation
of these methods and their applications is found in [3].

2) Estimation of : Each particle is associated with
a conditional EKF that computes recursively

It results that the marginal distributions of the continuous valued
states are estimated by mixtures of Gaussian distributions

Note that RBPFs are very similar to classical multiple model
algorithms. Indeed, the estimation is performed from a bank of
conditional EKFs, each corresponding to a possible indicator
path or equivalently to a possible multipath scenario. The
main difference between these approaches lies in the way the in-
dicator paths are explored. The possible hypotheses are not in-
vestigated exhaustively with RBPFs, contrary to usual multiple
model algorithms. Indeed, the simulation step allows to propose
directly interesting candidates.

This paper proposes some improvements to the classical
RBPF to satisfy the detection/estimation objectives: an ap-
proximate delayed sampling technique, a fixed lag smoothing
estimation and a decision-aided resampling, resulting in the
so-called fixed-lag RBPF.

B. The Fixed Lag RBPF

1) Approximate Delayed Sampling: Multipath occurrences
result in a temporary mean value jump affecting GPS measure-
ments. Consequently, near future measurements reveal useful
information about the indicator state at the current time . The
proposed algorithm makes use of future observations to gen-
erate the current particles as suggested in [11]. This procedure
is called delayed sampling. Such a method turns out to be ben-
eficial and possibly even crucial depending on the propagation
environment (urban or rural areas):

• multipath appearance/disappearance are sparse events,
hence the probability can be very low. If the particles
were only simulated according to their prior distribution,
the number of samples indicating a mean value jump
would be negligible;



• depending on their amplitudes, the induced mean value
jumps can be embedded in the measurement noise. Hence,
several observations are required to detect multipath occur-
rence;

• delayed sampling prevents false detections and, thus,
makes the algorithm more robust to outliers.

Information from near future measurements is included
by simulating from the fixed lag smoothing distribution

(for ), where is a positive
integer corresponding to the length of the observation window.
Proposals of this form significantly increase the number of
particles indicating a mean jump when multipath occurs. The
indicator vector takes value in a finite set of cardinal .
Therefore, all the possible future paths can be explored to
compute the proposal distribution as

However, the computational complexity is prohibitive since the
sum covers a growing number of values with the lag. In [11],
a low-complexity technique based on a random exploration of
the future states is presented. This paper proposes a simpler pro-
cedure where only the a priori most probable future paths are
considered. An absence of jump during the observation window
(from time to ) is a priori far more likely than any other
hypothesis due to the sparseness of multipath events. Thus, the
fixed lag smoothing proposal distribution is approximated as

The resulting distribution, referred to as approximate delayed
sampling proposal, takes the form

where .
Introduce the following notation before detailing the compu-

tations leading to the probabilities

The probabilities can be expressed as follows:

where

(7)

In (7), the predictive pdfs are
obtained by running iterations of the EKFs conditional
on the considered future paths .

2) Estimation: The filtering importance weights can be up-
dated classically as the ratio of the target and the proposal dis-
tributions. If the index refers to the drawing result for the par-
ticle (i.e., ), the weights can be classically
computed as follows:

(8)

However, the delayed sampling rather suggests a fixed-lag
smoother PF, whereby tighter estimates are computed from
the smoothing distribution . A theoretically
valid smoothing approach would require exploring the en-
tire future state space to generate candidate particles .
The difficulty is easily overcome by considering the parti-
cles as samples from the smoothing proposal

, as proposed in [11]. Smoothing
weights can then be computed as follows:

which yields

(9)

Hence, the empirical approximation of the smoothing distribu-
tion can be written as

and an estimate of the desired marginal distribution is

Fixed-lag smoothing significantly improves the estimation ac-
curacy. The continuous state estimates are obtained by com-
bining the conditional EKF outputs

(10)

Similarly, the detection can be handled by monitoring the
change probability, defined as



The corresponding fixed-lag PF approximation is given by

(11)

The change instants are expected to coincide with the estimated
probability peaks. Consequently, ad-hoc thresholds might be
chosen to decide the occurrence of a mean value jump. Next, a
different detection procedure is proposed which allows to over-
come this difficulty.

3) Decision Aided Resampling: Several difficulties may arise
when applying the proposed algorithm to real navigation sce-
narios. First, the parameters of the multipath model are difficult
to set. In particular, a too small value of the prior probability
that a mean jump occurs turns out to be very penalizing for de-
tecting multipath events. Second, a reasonable number of par-
ticles should be simulated to keep the computational cost low.
This constraint is the price for a possible on-board implementa-
tion of the positioning algorithm. Based on these remarks, multi-
path bias detection may not be clear-cut. It takes a few iterations
until all particles switch to indicate a mean jump that affects
GPS measurements. This paper argues that a careful selection
of the particles at each time step allows to improve multipath
bias tracking even if few samples are used. Classically, irrele-
vant particles are discarded on their own accord at the PF re-
sampling step. In this case, a more efficient scheme can be con-
sidered which consists of introducing an hypothesis test to aid
resampling. This section first describes the corresponding test
statistic. The subsequent modified resampling procedure is then
detailed.

Binary Hypothesis Test: The hypotheses under consideration
can be written as follows:

• : no multipath event;
• : occurrence of a mean value jump due to multipath.

According to the Neyman-Pearson lemma, the likelihood ratio
is an appropriate test statistic to decide between the competing
hypotheses. The delayed measurements are crucial to design ef-
ficient proposal distributions. Similarly, they are expected to im-
prove the detection. Consequently, the following decision pro-
cedure is proposed:

(12)

where is the mean value jump amplitude, estimated by the
PF as

The main difficulty is to choose an appropriate threshold test
in (12). Usually, is computed as a function of the false alarm
rate, , by solving

(13)

where is the pdf of under hypothesis . Unfortu-
nately, the integral (13) is intractable because has not a
simple closed-form expression. Therefore, this paper proposes
to use an approximate test statistic which allows us to derive
a closed-form expression for the threshold.

First, the hypotheses and can be rewritten ac-
cording to the sparseness assumption:

The Bayes rule then leads to the following approximated ex-
pression for

(14)

Each likelihood appearing in the ratio (14) can be approximated
by a mixture of Gaussian resulting from the RBPF. Under the
null hypothesis, the following result can be obtained:

where and the expression of the weights
is detailed in Appendix. The parameters of the conditional dis-
tributions are computed by the

EKFs associated to the particles .
A solution to obtain a simpler expression for is to merge the
Gaussian distributions in a single one by matching the first and
second moments

with

with . Note that this approximation under-
lies the well-known IMM algorithm [7]. In our application, it
makes sense since the decision-aided resampling step automat-
ically switches to the dominating mode of the multimodal esti-
mated pdfs at each time instant. The merging strategy leads to
an appealing expression for the test statistic and the threshold

. The corresponding calculations are developed hereafter. Let
us introduce the innovations in (14) as

where

(15)



(16)

In the linear Gaussian case, Willsky has shown in his seminal
paper introducing the GLR [25] that the impact of an additive
change on the innovations could be made explicit. Therefore,
each conditional innovation satisfies

(17)

where refers to the value of the parameter if a mean jump
has occurred at time . The necessary formula to compute the
matrices are recalled for instance in [5]. The merged
innovations under hypotheses and are related the same
way

(18)

(19)

Thus, their pdfs only differ by their means

The approximated test statistic satisfies

By using the equivalent statistic

(20)

a straightforward expression of the threshold is obtained. In-
deed, the test statistic is Gaussian, hence

(21)

where
• ;

• is the standard de-

viation of .
By comparing the approximated test statistic and the cor-
responding threshold , the algorithm can state whether GPS
pseudoranges are incurring a mean jump or not.

Resampling Procedure: A straightforward use of the statistic
test would consist of directly discarding particles that indicate
the wrong hypothesis. However, the convergence properties of
the PF would not be guaranteed anymore. As an alternative, the
result of the hypothesis test can be used to design a more ef-
ficient proposal distribution for the resampling step. The pos-
sible flexibility in choosing the resampling weights has already
been emphasized for instance in [26]. Instead of resampling ac-
cording to the filtering weights, auxiliary weights may be used

TABLE I
FIXED-LAG RBPF FOR JOINT DETECTION/ESTIMATION OF MULTIPATH

DEGRADATIONS

that reflect certain “future trend.” Such approaches have already
been extensively studied as an improvement of the PF simula-
tion step (see [27] and [28]). The new set of generated particles
is assigned corrected weights according to the importance sam-
pling rule, thereby ensuring that the random samples still form
an approximation of the target distribution . If a mean
jump is detected, the following rule can be applied to compute
the auxiliary weights:

• for the particles which disagree with the
result of the test;

• , otherwise;
where the coefficient of penalization can be in-
terpreted as the chance that the associated particles survive
after a few iterations. The modified resampling operates by
randomly selecting a particle from with
probability . The particle is then assigned the filtering

weight when sample is selected. By
favoring the particles which are the more likely to live on, this
technique ensures that efficient proposals are used to simulate
the particles at the next time steps. It can be interpreted as an
attempt to reduce the variability of the PF importance weights.
The PF behavior is therefore improved for a moderate number
of particles. The final algorithm allowing us to estimate the
state vector and the indicator sequence is summarized
in Table I.



TABLE II
SIMULATION PARAMETERS

V. SIMULATION RESULTS

Several simulations have been conducted to study the per-
formance of the proposed algorithm. The state space model has
been simulated with the parameters given in Table II. These
parameters correspond to a nearly straight uniform motion.
The fault-free GPS measurements have been computed from
almanac files listing all useful information about GPS satellite
orbital motion. Different multipath scenarios have been tested
by randomly adding biases of various amplitudes and durations
to these pseudoranges. The joint detection/estimation PF has
been compared to existing methods (GLR, multiple model
algorithm) through different criteria

• detection capability: the ability to detect multipath bi-
ases of small amplitudes is investigated together with the
chance of missed detections by studying the estimated
change probability ;

• estimation accuracy: for both the navigation states and
multipath biases, Monte Carlo runs are averaged
to compute the root mean square errors (rmses) defined by

, where is the th run
estimate.

The multiple model (MM) algorithm proceeds by cutting off
the less probable branches of the growing tree of possible hy-
potheses. To allow a fair comparison, the same lag and the same
number of particles are used for the MM algorithm
and the fixed-lag Rao-Blackwellized particle filter (FL-RBPF).
The lag , equal to 5, also determines the size of the observation
window for the GLR. Finally, the penalizing factor is set to 2.

A. Bias Estimation

The accuracy achieved by the three algorithms for multipath
biases estimation is depicted on Figs. 1 and 2 for one of the sim-
ulated scenarios. Two of the GPS pseudoranges, corresponding
to the satellites with the lowest elevation angles, experience si-
multaneous multipath perturbations. Fig. 1 shows the estimated
biases versus time. The corresponding estimation errors are
plotted on Fig. 2. The GLR fails to track the biases probably
because no a priori information about the jump amplitudes is
taken into account. The two other algorithms provide better
results. However, the PF shows a smaller response time after
a mean value jump. In addition, the PF bias estimates visually
seem more stable. Note that the tracking performance of both
approaches are similar when the amplitudes of the mean jumps
are high enough.

B. Detection Capability

Posterior Change Probabilities: Fig. 3 shows the posterior
change probabilities for the MM algorithm and the particle filter
for different values of the lag . The influence of this parameter
is clearly emphasized. In the absence of lag, it is almost impos-
sible to locate mean jumps of small amplitudes. On the contrary,

Fig. 1. Estimation of multipath biases (50 Monte Carlo runs). The actual bias
is shown in solid line while the mean estimated biases are plotted as dotted lines.

Fig. 2. Multipath bias estimation errors (50 Monte Carlo runs). RBPF: Solid
line; GLR: dashed line; MM algorithm: dotted line.

the change probability peaks clearly coincide with the change
instants with a lag . Note that the peaks are more pro-
nounced for the fixed lag PF than for the MM algorithm due to
a more efficient strategy to select relevant model hypotheses.

Detection Performance: Mean jumps of different amplitudes
have been introduced on the GPS measurements to investigate
the robustness of the RBPF and the MM technique. For each sce-
nario, the mean detection delay and its standard deviation
have been computed by averaging 50 realizations. The detection
delay is defined as the absolute estimation error of the change



Fig. 3. Posterior change probabilities (50 Monte Carlo runs). (1) MM algo-
rithm. (2) Fixed Lag PF, L = 1. (3) Fixed Lag PF, L = 5.

TABLE III
DETECTION PERFORMANCE FOR MEAN JUMPS OF DIFFERENT AMPLITUDES

instants and a detection occurs whenever the estimated change
probability exceeds a given threshold. The obtained values are
reported in Table III as well as the missed detection probability

. The results confirm that biases which are embedded in
the measurement noise (amplitude inferior to 10 meters) are
difficult to detect, leading to high values of . In this case,
nearly half of the emulated mean jumps are not properly located.
A closer analysis of Table III reveals that the RBPF achieves
shorter detection delays and yields smaller values of the .
It is worth noticing that the difference between both approaches
tends to become less marked as the amplitudes of multipath er-
rors increases.

Multiple Multipath Error Detection: Finally, it is important
to ensure that the algorithms can handle several mean jumps
occurring at the same time. The simulation presented here
considers two pseudoranges degraded simultaneously. The es-
timated numbers of multipath components for 50 Monte Carlo
runs are presented in Fig. 4. The simulation results show that
RPBF provides more reliable results than the MM solution.

Fig. 4. Number of estimated simultaneous mean jumps for 50 Monte Carlo
runs.

Fig. 5. Mean number of particles refuting the result of the hypothesis test.

Fig. 6. Comparison of the decision-aided resampling and a classical resam-
pling procedure (50 Monte Carlo runs). Solid line: Actual bias; dashed line:
aided resampling; dotted line: classical resampling.

C. Gain of Aided-Resampling

It is important to make sure that the particles whose weights
are penalized through decision-aided resampling were likely to
disappear a few iterations later. Fig. 5 shows the average number
of particles (out of ) which do not detect a mean jump
and survive for the next iterations. The results have been ob-
tained for biases of different amplitudes by averaging 50 Monte
Carlo runs. All the particles disagreeing with the result of the hy-
pothesis test are naturally discarded after a maximum of 30 iter-
ations. The decision-aided resampling proposed in this paper is
an attempt to speed up this removal process, thereby improving
multipath bias tracking.

The impact of the decision-aided resampling on multipath
bias estimation is then investigated. The bias estimates and the
corresponding estimation errors obtained with the PF in pres-
ence or absence of decision-aided are shown on Fig. 6. The de-
cision-aided resampling yields on average tighter estimates, es-
pecially after apparition of a multipath bias.



Fig. 7. Position estimation error (50 Monte Carlo runs). Solid line: RBPF;
dashed line: MM algorithm; dotted line: GLR.

D. Position Estimation

Fig. 7 shows the position estimation errors for the three algo-
rithms so as to evaluate the impact of multipath event detection
on the navigation solution. Unsurprisingly, the GLR performs
poorly due to the inaccuracy of the bias estimates. The advan-
tage of the PF approach over the MM algorithm for change de-
tection has a slight impact on the position estimates, yielding a
smallest estimation error. However, it is important to note that
reliable multipath event detection is nonetheless crucial to in-
form the user on the trust he can place in the computed naviga-
tion solution.

Before concluding, it is worth giving a rough idea of the
computational complexity of the different algorithms. All sim-
ulations have been coded using MATLAB and performed on a
512–MHz Athlon. One run of 200 iterations requires on average
1 min for the GLR, 15 min for the MM solution and 25 min for
the proposed PF algorithm.

VI. CONCLUSION

This paper studied a particle filter algorithm to mitigate mul-
tipath effects in GPS navigation. An original approach was pro-
posed whereby the navigation algorithm jointly tackles the detec-
tion and estimation of multipath errors while inferring the vehicle
dynamics. Multipath events were considered as abrupt changes
affecting the navigation state space model. A particle filter ap-
proach was adopted due to its flexibility to explore and select
proper model hypotheses. The proposed algorithm included an
approximate fixed lag delay sampling, smoothing estimates and
a decision aided resampling. The three steps were shown to im-
prove the detection of multipath events as well as the estima-
tion of the induced biases and the navigation states. The method
compared favorably with the algorithms conventionally used for
abrupt change detection, i.e., the GLR and MM approaches.

It is important to note that this method is independent of the
GPS receiver technology so that it can be widely applied. More-
over, another advantage of the PF strategy is that it can be easily
extended to detect and estimate other perturbations, such as vari-
ance jumps due to jamming. The extension of the proposed al-
gorithm to detect and estimate interferences affecting GPS mea-
surements has been introduced in [29] and is currently under
investigation. This method could also be applied to multiple ob-
ject tracking by considering a more elaborate multipath model.
In particular, targets which are close to each other are likely to
be affected simultaneously by a multipath mean jump.

APPENDIX

PF APPROXIMATION OF THE MEASUREMENT

PREDICTIVE DISTRIBUTIONS

Section IV-B–3 argues that the PF approximates the mea-
surement predictive distributions by mixtures of Gaussian dis-
tributions. This assertion is confirmed hereafter and the corre-
sponding importance weights are computed. At time instant ,
the predictive pdfs under hypothesis can be expressed as

for . PF estimates of the conditional distributions
of the indicator vector are available

with and

for . It follows:
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