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Abstract

We present an analytical and numerical stabilitglysis of Soret-driven convection in a
porous cavity saturated by a binary fluid. Both thechanical equilibrium solution and the
mono-cellular flow obtained for particular rangdstlee physical parameters of the problem
are considered. The porous cavity, bounded by bota infinite or finite boundaries, is
heated from below or from above. The two horizomgtes are maintained at different
constant temperatures while no mass flux is impodéte influence of the governing
parameters and more particularly the role of thEassion ratio, characterizing the Soret
effect and the normalized porosity, are investigated theoretically and numerically.

From the linear stability analysis, we find titfa¢ equilibrium solution loses its stability

via a stationary bifurcation or a Hopf bifurcatidepending on the separation ratio and the



normalized porosity of the medium. The role of gueosity is important, when it decreases,
the stability of the equilibrium solution is reiméed.

For a cell heated from below, the equilibrium soltloses its stability via a stationary
bifurcation when the separation ratjo>, (Le,£), while for ¢ <y, (Le,£), it loses stability
via a Hopf subcritical bifurcation. The oscillatorgolution is unstable and becomes
stationary.

For a cell heated from above, the equilibrium sotuis linearly stable ity >0, while a
stationary or an oscillatory bifurcation occurgif< 0.

The results obtained from the linear stability el are widely corroborated by direct 2D
numerical simulations.

In the case of long-wave disturbances, ok 0 and fory higher than a particular value

called ¢ we observe that the mono-cellular flow leads teeparation of the species

mono’!
between the two ends of the cell. First, we deteechithe velocity, temperature and
concentration fields analytically for mono-celluow. Then we studied the stability of this

flow. For a cell heated from below and fgr> ¢, ., the mono-cellular flow loses stability

via a Hopf bifurcation. As the Rayleigh number gmses, the resulting oscillatory solution
evolves to a stationary multicellular flow. Foreldeated from above arngd <0, the mono-

cellular flow remains linearly stable. We verifiadmerically that this problem admits other

stable multicellular stationary solutions for thesmge of parameters

. INTRODUCTION

Double-diffusive convection in a porous medium dagemperature and concentration
gradients has been widely studied because of itsemus fundamental and industrial

applications. Some examples of interest are theatig of moisture in fibrous insulation,



the transport of contaminants in saturated sodjngdr processes or solute transfer in the
mushy layer during the solidification of binaryails. A review of recent developments and
publications in this field is given by Nield andjBe" and by Ingham and PapThe onset of
thermosolutal convection was first studied by Nielhe cross coupling between thermal
diffusion and solutal diffusion was not taken itocount in these studies. The Soret effect
cannot be neglected in many physical processésslbeen well known for more than half a
century that, without the Soret effect, convecti®mitiated when the Rayleigh number Ra,
based on the permeability of the porous mediumeeds the value Ra 4ré. In a binary
fluid, due to the imposed temperature gradient, 8wet effect induces a vertical
concentration gradient that drastically modifiee tbensity gradient and therefore the
conditions for the onset of convection.

There are numerous studies on double-diffusive ecimn and, in some of them, the
Soret effect is taken into account. The boundanditmns are either fixed temperatures and
concentrations or imposed heat and mass fluxesompdation of most of the pertinent
information given by recent research in doubletdiife convection in porous media can be
found in the Porous Media handbook edited by Vafeor the studies concerning the Soret-
driven convection in fluid we can refer to Plattend Legro3 and to Batiste et &l. For
binary mixtures in a porous medium we can reféBriand and Steinbeftd’, to Bahloul et af.
and to Bourich et d” ™ These studies were motivated by the fact thamamy cases, the
oscillatory instabilities occur as a second biftimraas in the case of single component fluids
while, for a binary mixture in a porous cell heatemm below with negative separation ratio,
the first bifurcation corresponds to oscillatorgtability. Brand and Steinberg also point out
that, with the Soret effect, it is possible to hasgeillatory instability for a cell heated from
above. They present an amplitude equation for amllat®ry convective instability in a

porous medium cell saturated by binary mixture.nBrat af*? derive an amplitude equation



for a binary fluid in a porous medium in the vi¢ynof the intersection point between the
stationary and oscillatory curves. The slow spatrdulations are also included in the
amplitude equation near this codimension-2 bifiocatpoint. Schopf, using realistic
boundary conditions for the first time to our knedtje, compared the onset of convection in
a binary mixture saturating a porous medium withirary mixture in a narrow cell. He
showed that the fluid flows in a narrow cell angorous medium become identical when the
height-to-width ratio becomes infinite (Hele-Shawit). He used the same mathematical
formulation previously used by the Brand and Steiglgroup. The influence of the porosity
was ignored, so that Schdpfesults are correct only for a normalized porosiiyal to one.
He numerically solved the linear stability equasiorelative to the onset of Soret-driven
convection in the case of a porous medium and encse of a narrow box. Ouarzazi and
Bois'* also used the same Brand and Steinberg group matival formulation to study the
convective instability of a fluid mixture in a par® medium in the case where the prescribed
temperature gradient varies periodically in timbey found that the subharmonic instability
was always the first instability for the phenomen®he neighbourhood of the polycritical
point was also studied in the case of small foreguency.

Nield and Bejah and Quintard and Whitakérshowed that the porosity appears in the
transient term coefficient, in the species cong@maequation, while in the previous work of
Brand and Steinbefg® and of Schopf, the coefficient was taken equal to one. .In our
opinion, this is due to the inadequate physicamidation used by these authors as it was
well demonstrated in the book of Nield and Béjan

The role of the porosity is taken into accountmany recent contributions for similar
problem but for boundary conditions different froinat used in the present work. Bahloul et
al.® and Bourich et d% *’studied the stability of the flow in a horizontaleér in the case of

double diffusive convection with or without Soreffeet. They considered boundary



conditions with uniform heat flux applied on therizontal walls and impermeable adiabatic
vertical walls. They found a general analyticalusioin valid for these two cases. Their work
includes an analytical model for finite amplitudengection and numerical results allowing
the determination of the first Hopf bifurcation.rBmite amplitude convection, a comparison
is made to illustrate the difference between doubftisive convection and Soret-driven
convection in terms of Nusselt and Sherwood numbers

Bourich et al*® presented an analytical and numerical study oétSaniven convection in
horizontal porous layer heated from below by arfarm constant flux. Using the parallel
flow approximation, they determined the threshdtissubcritical and stationary convection,
depending on the governing parameters. Their nwalegolution for the full governing
equations is in good agreement with the analysolltion. These two works were extended
by Bourich et al* considering not only a shallow horizontal poroasity but also a shallow
enclosure with clear binary fluid. The relationweén a saturated porous medium cell and a
binary fluid was obtained using the Brinkman-HaZarey model in its transient form. The
critical Rayleigh numbers for the onset of osadigt and stationary convection were
determined explicitly as functions of the governipgrameters for infinite layers and
bounded boxes. At the onset of instability, theyrnfd that the wave-number is equal to zero
while for our boundary conditions the wave-numiseequal to zero only in a particular range
of the separation ratio. They also showed the digresy of critical parameters on the
normalized porosity.

The onset of oscillatory binary fluid convection & two dimensional domain with
realistic boundary conditions on all boundariesdetermined as function of the fluid
parameters and the aspect ratio of the contain.tBatiste et al. The critical parameters
were obtained for two particular values of Lewisarikllt, and separation ratio numbers as

function of the aspect ratio. The choice of thegical parameters was motivated by the



experiments associated ide/He and water ethanol mixture. Sovran et®dh their study
related to the onset of Soret-driven convectioannnfinite porous layer also considered the
effect of porosity.

The existence of multiple solutions and the infleeenf the Soret effect on convection in a
horizontal porous domain under cross temperatudecancentration gradients are discussed
by Bennacer et af. Mojtabi et al*® give a linear stability analysis of free conventio a
binary mixture with variable Soret coefficient. ltabsé® presents a detailed analysis of
steady state regimes in a thermogravitational colfion a binary liquid with variable Soret
coefficient. Charrier-Mojtabi et &P consider the influence of the direction of viboation the
stability threshold of two-dimensional Soret-driveanvection in an infinite layer filled with
a binary mixture, which can be heated from belowWrom above. They concluded that the
vertical vibration has stabilizing effect while therizontal vibration has destabilizing effect
on the onset of convection. The case associatddtiatabsence of vibrations corresponds to
the present problem. Recently, Ryzhkov ef'akxtended the theoretical framework for
describing multicomponent mixtures with Soret effedhree-dimensional numerical
modeling of Soret-driven convection in a cubic dédled with a binary mixture of water
(90%) and isopropanol (10%) was performed by Sheetet af%. These authofs observed
instability occurring in this binary fluid with negive Soret coefficient and for a cubic cell
heated from above.

In a porous medium, the use of Darcy's law simggithe hydrodynamic equations and, in

most cases, makes an analytical determination efcthical thermal Rayleigh numbRg,

possible, even for the realistic case of impervibasndary conditions (no mass flux across
the boundaries).
The aim of our work is to study the linear and muedr stability of the equilibrium

solution and the mono-cellular flow that appearsdar certain conditions, in a horizontal



porous layer filled by a binary fluid and heatednfr below or above. The Soret effect is

taken into account and the influence of both thgasstion ratioy and the normalized

porosity £ is studied. In a first part, in the case of realiboundary conditions, an analytical
solution giving the critical Rayleigh number andweanumber is obtained for both infinite
and confined cells. With these realistic boundargditions the critical wave-number at the
onset of convection is not constant, contrary eéodase of the unrealistic boundary conditions
used previously (prescribed concentration on thentaries, see Brand and SteinBetgnd
Nield and Bejaf). The critical Rayleigh number of the Hopf bifutiom varies withyy and

£, whereas, for stationary bifurcation, it only de@e on¢ . In a second part, an analytical
model based on the parallel flow approximationrngppsed in order to describe the mono-
cellular flow obtained at the onset of convectidrhus the critical Rayleigh number
corresponding to the loss of stability of mono-aill flow is predicted. The study is
completed by numerical simulations of the full gaweg equations.

Il . Mathematical formulation

We consider a rectangular cavity of aspect ratis L/ H where L is the width in the
horizontal x direction andH is the height of the cavity in the vertical z diien (the gravity
acceleration isg = —g k). The cavity is filled with a porous medium satecdhby a binary fluid
and the Soret effect is taken into account. Theermgable horizontal walls (z = 0, z = H) are

maintained at different and constant temperatilifefor z = 0 andT, for z = H, with T, <T,
or T, >T,. The vertical walls (x = 0, x=L) are impermeableladiabatic. All the boundaries

are assumed rigid.
We consider an isotropic and homogeneous porougimetlVe assume that Darcy’s law is

valid and that the Oberbeck-Boussinesq approximatso applicable: the thermophysical



properties of the binary fluid are considered camisexcept the density in the buoyancy term

which varies linearly with the local temperaturel amass fraction:
P =pA-5 (T -T)-B(C-Q)) (1)
where B and B, are respectively the thermal and mass expansiefii@ents of the binary

fluid, T is the dimensional temperature and C tlassrfraction of the denser componena(d
Ci correspond to the reference state). We also esethier standard assumptions (local thermal

equilibrium, negligible viscous dissipation, etc.).

The resulting dimensionless governing conservagumations for mass, momentum, energy

and chemical species, with the Soret effect takBnaccount are:

aVv =0
V =-0P+RaT +yCk
a—T+V.DT =0T (2)
ot
acC 1

¢2= +v oc=—=(0’c-0°T)
ot Le

The reference scales are H for the lengtR/(A" /(pc)”) for the time (where\" and (pc)” are
respectively the effective thermal conductivity dret capacity of the porous mediuna)H

for the velocity witha=\"/(pc); (a is the effective thermal diffusivity\T =T, -T, for the

temperature andAC =-ATC;(1-C;)D1/D for the mass fraction, wher€;,Dy, D" are

respectively the initial or reference mass fractibve thermo-diffusion and the mass-diffusion
coefficient of the denser component.

The dimensionless boundary conditions are:

T:1forz:0;T:Oforzzl;a—T:a—C:Oforx:O,A,
ox  0Xx (3)

OCh =0T for z=0,1, VIh=00UOM 0o



The problem under consideration depends on fivedimensional parameters: the thermal
Rayleigh number, Ra=Kgpt H AT (pc)s I(\ V), the separation ratio
W=-(B./B;)(D;/D)C,(1-C)), the Lewis numberLe=a/D", the normalized porosity

e=&* (), I(pc) (wheree* is the porosity) and the aspect ratio IAFH .

1. LINEAR STABILITY OF EQUILIBRIUM SOLUTION

A. Onset of Soret-driven convection in an infinite horizontal cdll

It is easy to show that there exists a mechanaualibrium solution characterized by:
V=0 T,=1-z C,=C, +1/2-z 4)
whereC, is the initial mass fraction.
In order to analyze the stability of this conduetisolution, we introduce a vertical velocity

component perturbatiom, and perturbations of temperatur@, and concentration¢. We

assume that the perturbations, (6, c) are small and we obtain the following linearized

equations:
62
O°w-Ra— (0+yc)=0
ox
%—D%?:w (5)
ot
&e%—Dz(c—H)zwLe
ot
with the boundary conditions:
a—W:@:ﬁzo for x=0 and x= A z
0z O0x O0X
oc 046 ©
w=fg=—-—=0 for z=0 and =10 X

0z 0z
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For simplicity, we introducey =c-8, so that (5) reads :

02

02w - RaF(H(lﬂlf)ﬂ///?) =0
X
99 _ 0%°6=w (7)
ot
&em -0%(7) = wLe
ot
with:
a—W:a—”:ﬁzo for x=0 and x= AO z
0z 0X O0X
o ®)
w=fg=—-=0 for z=0 and =10 X
0z
The perturbation quantities are chosen as follows:
(W, 8,17) = (W, 8,7 ) exp(kx+ot) 9)

where k is the wave-number in the horizontal dicect(ox) and 1°=-1, and ¢ is the

temporal amplification of the perturbation.

1. Non-realistic boundary conditions
In this part, the porosity is taken into accountit,Bas in Refs 7-8, idealized boundary
conditions are considered for concentration pedtiosh: c¢=0, instead of

0c/0z—08/0z=0 for z=z0 and =10

With the non-realistic boundary conditions, the eotlauthors obtained, for the stationary

instability, the following critical Rayleigh numband critical wave number:

At

= —1+w(1+ o) with K =7r (10)

Ra,

For the oscillatory instability, they obtained ttr@ical parameters given by:

_ 41+ Le)
° (@+y)Le

_ 4T (g +yle(l+ Le))
A+y)LE

Ko =71, &, (11)
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where w,, is the pulsation at the onset of convection.
These results were previously mentioned by BrawdSiainberg group.
When we replace in equations (5):
(w,8,c)=(w, &, ¢&)sin(raexp( k¢t W (12)
The linear stability study leads to the homogenedgsbraic system:

k*+m —-Rak -y Rak w*] [0

-1 K*+m+1lw) O 8*|=|0 (13)

-Le (K +7m) K+m*+ lwele| |[c* | |O
The critical parameters for stationary and osatiatonset of convection are obtained by
considering that the real and imaginary parts efrtratrix determinant (Eq. 13) are equal to
zero. We obtain the same expression as in Ref8)7pr the critical Rayleigh number
associated with the stationary bifurcation. For dieillatory instability, we find the following

results mentioned byield and Bejah:

_ v
= 4T (1+ £Le)’ k.= 7 f.= 47" A+ + e Le(l+ Le)) (14)
(e+y)Le (e+y)elLé
and also for the relation between stationary adla®ry critical Rayleigh number:
-4 1+ + eyle(l+ Le
Ra. - Ra,= @+y +eple( ) (15)
A+yg@A+Le)+y)Le
Eq.14 shows that a Hopf bifurcation occurs when:
+y +eyle(l+ Le)e+y)<0 (16)

corresponding to:

1 1
v D{_E’_H 1+ Le) Le} v {_1+ (1+Le)Le _g} )
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We verify that the two roots of EQq.18,=-¢& andy = —1/(1+ (1+ Le)sLe) are equal for:
£=1/(1+Le) and, in this case(l+y +ewlLe@+ L)) +w)=(1+yw(1+Le))?* /(1+ Le), is
therefore always positive, which proves that for 1/(1+ Le) the problem does not admit a

Hopf bifurcation. This situation can be obtainethei in the case of a gas saturating an

ordinary porous medium or in the case of a binapyid saturating a medium with very low
porosity such as coale‘@[0.0Z, 0.12). For a binary mixture such as water-ethanol
(Le=100) saturating a sand porous medium[([O.S, 0.5"]) we verify that the Hopf

bifurcation occurs before the stationary one and pwolycritical point is defined by

Ra.— Ra,=0 which yields:

1 B _ A (1+ eLe+ £LE)
- ’ Racs - Ra:o -
1+ (1+ Le)cLe Lge+€ Le-1)

w,=0, Y= (18)

For fixed values of Lewis number and separatioio ratd for a cell heated from below, the
oscillatory critical Rayleigh numbeRa,, increases whe® decreases and for a cell heated
from aboveRa,, increases whew decreases as shown in Fig.1 (Le=2) and Fig. 2XQg=

We show in the next paragraph that we do not olestiey same behavior in the case of realistic

boundary conditions.

2. Realistic boundary conditions.
Contrary to the eigenvalue problem studied in sactll.A.1, the problem with realistic
boundary conditions is non-separable and thereftmenot be solved analytically. We

developed two procedures to obtain the criticalieslof (Ra, k) and Ra,, k,, w,. The

first procedure consists in solving analyticalle ttispersion equation for stationary transition
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to obtain numerically the exact values of the caitiparameters and the second one leads to

approximate values using the Galerkin method.

a. Stationary transition
In a first part, we focus on steady bifurcationeTealistic boundary conditions considered
for the concentration perturbation are:

@—%:O for z=0 and z=10 x (19)
0z 0z

With this, Eq. 7 leads to a sixth-order differehpeoblem that we transform, after a first

integration, into the following fourth-order equaati
(D? -k?)26 - Rak(l+y 1+ L8)d = Raky (a, sinh( ki+a, cosh(k (20)
whereD =0/0z anda, and a, are integration constants verifying:
§=6"=0 for z=0, z=10 x

Led(0)+ ka, =0 for z=0 O x (21)
Led' (1) + ka, coshk }+ ka, sinhk)} O for = 10

Equation. 20 is solved as follows: we first deterenihe algebraic solutions of the characteristic
equation associated with Eq. 20:

(r* -k?)> -Rak’(L+ P +yLe) =0 (22)
The general solution of the fourth order ordinaiffedential equation (Eq. 22) is given as a
combination of 4 particular independent functionsose expression depends on the sign of
Ra(l+ ¢ +ylLe). These considerations permit us to distinguisbgions of the plane (Ra;).
The solution of Eg.20 is the sum of the generaltsmi of the homogeneous associated
equation and its particular solution:

- (a,sinhkz)+ a, coshiz )
1+y +Ley

(23)
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The solution obtained depends on six arbitrary taos. When we assume that this general
solution verifies the boundary conditions (Eq. 24¢ obtain a homogeneous linear algebraic
system with six equations and six unknowns cormediog to the six constants. This system

has a non-trivial solution if the associated madi&terminant, det(Ra(k), k, L&}) is equal to

zero. The expression of this determinant was obthusing the Maple algebra code. Once we
have calculated the determinant, we obtain thetioaldbetween the Rayleigh number, the

wave-number, the Lewis number and the separattmyra

2le k ¢ R (1+y¢) sinh(R) cos(R ) coshk+

k> (2 Q+@)+Le” ¢? ) sinh(R) sinhk) sin® ¥

Le’ ¢> R Rcosh(R) sinh(k) cos® 3

2le ¢ k R (1+¢) cosh(R) coshk) sinRd Le ¢> R R sinh(
-2 Le ¢ k (I+¢) ( Bsinh(Rp R sin(R)F O

where ;

Ra,=Ra/@r@+gLe), R =(k+Ra)k. R=(Ra, KKk
We can then determine the exact value of the sttyocritical Rayleigh number and the
corresponding critical wave-number function of #eparation ratio and the Lewis number
(Table ).
For: 1+¢ +yLe=0, Eq. 20 is solved analytically, using the Maplgetira code. We
obtain two possible dispersion equations correspgro the first and the second bifurcation
Ra = f(K(Letl)/ Le and Ra= ,f X Lel)/ | (24)
where:
f(k)=8k(“+€" - eé-1)/2RE-2kE+2 Ker ' 2 Ke- P& %e 1
f(K)=8K(E - & - &+)/2kbr2k¥+2 ke “e2 *e *e *el
The first and second dispersion equations leackotisply to:

Ra, =-12(Le+1)/Le k=0 and

25
Ra, = -230.4(Le+ 1)/Le, k = 3.4020 L (3)
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We demonstrate in this case that the lines -1/(1+ Le) is not an asymptote of the curve
Ra.(¢), as is the case with the non-realistic boundarydiions, but intersect®a. (¢ ) at
Ra, =-12(Let+ 1)/ Le.

These results were confirmed using the Galerkinhatetfor the perturbation quantities

(9,6, n), whereg represents the stream function perturbation:
N R N N
$=> ¢,sinhm), 6= 6,sinhm) 7= n,coshz) (26)
n=1 n=1 n=1
In Table | are reported the critical values of faw kg obtained with the exact solution and
the Galerkin method, for the stationary bifurcasi@md for different values af . In Fig.3, 4

and 5, we present the stability diagrarRs, = f(l//) obtained for Le=2, 10 and Le=100
respectively, (the solid lines are associated ¢ostiationary bifurcation). In Fig.6 the stability
diagram kc, = f((//), for Le=10, clearly shows the evolution of thetical wave-number
versus the separation ratio for stationary bifuocest For Rag <0, ke=0, [0 W<O0and

Rag, :12/(LeL|J). If Rag >0, kg—+0 for ¢ = —1/(1+ Le) and decreases progressively to

1 L Forw>;
Le+1'(40/51)Le-1 " (40/51)Le-1"

zero fory D{ ke=0 andRag =12/ (Ley).

For ¢ > 0, the denser component moves towards the cooldr Wa pure double diffusive
solution is then infinitely linearly stable wherethorizontal layer is heated from above (Ra<0)

while it looses its stability for critical Rayleigiumber smaller thadsz*which corresponds to
the critical Rayleigh number for the pure thermalgtem and for Ra>0.

For ¢ <0, the denser component moves towards the warmek Wwat Ra<O, the
equilibrium solution is not linearly stable, unlikee pure thermal problem, so we can expect

that Rag — — wheny - 0. This result was confirmed by our calculations.
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For Ra>0 and1l+ ¢ +¢Le) > 0, the downward migration of the denser componexdddo an
increase of the critical Rayleigh numbé&®g_>477°). For Ra>0 anfl+¢ +Le) < 0, we do

not obtain the transition to the stationary conveategime.

b. The case of long-wave distur bances

Although in the general case, the solution of tigerevalue problem (Eg. 7, 8), can only be
obtained numerically, the case of long-wave distndes (wave-number k=0) can be studied
analytically.

To study the behavior of long-wave disturbances, may develop the regular perturbation
method with the wavenumber k as a small paramgteour case, using the Maple algebra
code, we expand the determinant in the vicinitk= to obtain:

detRa(k), k,Leyy)=A (Ra Ly ) k+u (Ra Lg ) "k Ok (27)
where:
A(Ra, Leyw) =2 Rql+y +y L§( Rale /12— 1 (28)
The complete expression pf(Ra, Ley) is very complicated so it will be given only laterd
after simplification. When we set the expressionresponding to the order 5 of the

determinant developmem(Ra, Ley) to zero, it leads tRa, = 12/Le when k- 0, and
when we replace the expression of the critical &giilnumber inu(Ra, Ley ), we obtain:

20+ (Le+1))(9llay - 51(ky (et 1))

Ra=12/LlLe/, L = 29
H( &, Ley) 35Lek)? (29)

For Ra>0, we find the analytical expression:
Ra, =12/ Le and k=0, fory >¢ ..., =1/(40Le /51 1) (30)

and forg < Oand Ra<0, we obtaiRg,, = 1&/Le and k=0.
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These results (Eq. 30) were also obtained, afteegedious calculations, by Schthising

a method similar to that described by Knobfdch

c. Oscillatory instability
The linear stability equations (7) with the reatidioundary condition (8) are solved using
two methods. The first one is the Galerkin methdiens the perturbations are chosen as

Fourier functions and polynomial expansions:

N

(¢,6,n)= Z (¢, sin(nmz), B, sin(nmz), n,, sin(nmz))expllkx + ot) (31)
(¢,8,n)= nZN:;(cl)n (1-2)z",8,(1-2)z",n, + n”[n i 5 —n—iJz“*lJexp(lkx +at) (32)

The convergence of the critical parameters obtdnyethese two approximations is similar.
The second method used is a collocation spectridladeCf. § IV.

The purpose is to find an oscillatory instability € l«) for a Rayleigh numbeRag, smaller
than the one at which marginal stabildty= is®bserved.

The Maple Software was used for the symbolic catans of the residue and of the 88N

determinant A. With all the approximations usee, determinant has the following form:
det(A)= R(Ra kw,e, L )+ | § Ralw,e, L@ )
where R and S are real polynomial functiondR# k, w,&, Lew . The degrees of the variable

Ra and k in these functions increase accordingaotder, N, of truncation. For approximation

levels N=3, 4 and 5, the symbolic calculationshef BNx 3N determinant lead to:
det(A) = F(Ra kw,e, Ley ) E( Ra kw,e, L& )
Then det( A) = 0 implies that the real and imaginary parts foF F, areboth equal to 0.

We notice that the frequenayis a root in the equations ImjEO and Im(k)=0 and when we
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setw=0 in the equations Real(EO0 and Real(}))=0, we obtain, with higher accuracy, the value
Rac, obtained analytically above.
If «#0, it is not possible to obtain an analytical r@atgiving (Ra,, , k., w,,) as functions of
(¢,Le,y). Maple numerical software was used to determieectitical values corresponding
to the Hopf bifurcation. The values obtained bys throcedure are in good agreement with
those obtained by direct numerical simulationsgisimilocation spectral method.

For cell heated from below and fg¥ < , €he denser component migrates towards the
lower, hot plate, producing a stabilizing effect.that case, ity is smaller thag/,, a function

of the Lewis number and the normalized porosityg finst primary bifurcation is a Hopf

bifurcation. We note thaiy,decreases to zero as Le increasgs=-0.12, -5.7.18. and -

5.8.10°for Le=2, 10, 100 respectively witF1/2). We have determined the critical parameters
of the Hopf bifurcation for different values @f, Le andy . Fig. 3 and 4 report (dotted lines)
the results for Le=2 and Le=10 for different valuésthe normalized porosity =7/10, 1/2,
2/5. The curves corresponding to Le=100 (Fig.5)sarelar to that obtained for Le=10.

The diagram presented in these figures differsifgigntly from the one obtained in the
Rayleigh-Benard problem with a binary fluid subgettto the Soret effect (Platten and
Legros). We can also observe that the critical valuesngly differ from those obtained in
Ref. 7 in which the authors used non-realistic loiawy conditions (¢ = 0 for z = 0 and1x).
The intersection point between the stationary mbty and the oscillatory instability curves
(codimension-2 bifurcation point) is strongly atiett by the porosity factor and differs from
our analytical results obtained with non-realistorindary conditions (Eq. 18). For alt (Le)

values studied we verified that, fgr <0 and for Ra>0, the first primary bifurcation is an

oscillatory one.
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B. Analytic solution of the onset of stationary Soret-driven convection in confined cavity

Let us consider the stationary stability equatifg. 7), but using the stream function

formulation :
) 0
0%¢ + Raa—(9(1+¢/) +yn)=0
X
0%g 99 (33)
1)
0%n - Le% =0
0X

By eliminating the stream function, we obtain tharth order differential problem:

2

g+ Ra%(eawwwm =0

(34)
0%(n-Led) =0
In order to clearly define the problem, it is neszgy to add new boundary conditions:
_o0n _ _ _
=—=0 for z=0andz=1 Ox
0z

9199 _0 for x=0andx=A="L 0z (35)
ox  0x H
0’6

=0 for z=0andz=1 Ox

0z2°

To solve the problem (Eq.34 and Eq. 35), we intoedéi(x,z) =77 —Led, so that (Eq. 34)
reads :
0%(7 - Led) =0°(§(x,2)) =0 (36)
The solution of this equation is given by:
¢(x,2) = cos(yx)[Bich(yz)+Bzsh(yz)] (37)
wherey=ir/ A, B, and B are arbitrary constants. Using the boundary cmdit

on _, 08 __, 9¢ _
9z Leaz)zzo,l Lea_z)zzo,l cos(y X)[By sty 3+ B cv H-,. (38)

we obtain two additional constraints én:
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16%9), ;= -yB,cosirx)
g; (39)
Leg)zzl =-ycosx)[Bshy)+ B cliy)]
Taking this result into account, we look for sadas of the form:
0(x, z) = cos xp (2) (40)

(X, z) = cos x)j (z)
where/i(z) = Le( ) + Bcly ¥+ B gy ) depends on the two arbitrary constantsigd B.
The partial differential system (Eqg. 34) is theansformed into a fourth-order ordinary
differential equation with the unknown functi@mz D)
(D* - y*)?6(2) - y*RAL+y + LYO( 3+¢( Bty Jzr B éh1))k=0 (41)

The boundary conditions (Eqg. 39) lead to two ecq1umiin§:

96
Lea—)z:o =-yB,
Leg)zzl =-y[Bsh()+ B,ch{ )]

and the boundary conditions (Eq. 35) lead to 4 gopsiin g

=0 for z=0andz=1 Ox

2g 43)
37 =0 for z=0andz=1 Ox

Z

This new ordinary differential problem (Eq. 41, @&2d 43) is exactly the same as the one we

obtained previously for an infinite cell (Eq. 20daRl), the wave-number k being replaced
here by y=in/ A wherei ON" is the number of rolls in the x direction. Thisajytical
study leads to the distinction between three dosain

a)Ra > 0 and-1/(Le+ 1)<y <1/(40Le/5% 1. In this caseRa, andk_ are functions of
¢ and are obtained numerically. The particular cgse 0, leads toRa, = 47 and

k. =rr.

c
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b) Ra> 0 andy >1/(40Le/5} 1= Ra @ )= 12y Leandk_ () =0.

c) Ra< 0 andy <0. Here we geRa,, =12/ Ley andk_ () =0.

IV.LINEAR STABILITY OF MONO-CELLULAR SOLUTION

A. Analytical solution of the mono-cellular flow

For the limit case of a shallow cavidy>>1, we use the parallel flow approximation
(Ouriemi et af). The basic flow (subscripted “b”) is then as dalks:
V =U,(2)e,; T,(z)=bx+f(z); C,=mx+g(2) (44)
We obtain, by using the assumptions already meaticend the corresponding boundary

conditions, the velocity, temperature and concéomarofiles for the stationary solution.

T, =1-2

U, =Ramy (1/2-2z)

C, =mx+(m’ RaLew(3z° -22%))/12-z—-(m* RaLey )/ 24+ (1-mA)/ 2
m=,/(10LeRay -120) /(LeRay )

(45)

Two remarks can be made concerning the expressfothe parametan in the
concentration field. The expression under the sdgih must be positive, which means that

Ra>12/(Ley). This value ofRacorresponds to the critical Rayleigh number of dheet

of convection obtained in paragraph ih is negative or positive according to whether the
flow is clockwise or anticlockwise and both soluigoare possible depending on the initial
conditions. A similar result, giving the analytioalue of the critical Rayleigh number, was

obtained by Bahloul et &land by Mamou et &f in the case of double diffusive convection.
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B. Linear stability analysis of the mono-cellular flow

In order to study the stability of the mono-cellusmlution, we introduce and expand the
perturbations as(w,8,7)=(w(z),6(z),n(z))exp(lkx+at). The new system of

linearized equations reads :

(D? -k*)w=-Rak({1+y)8+yn)
og6-w+1k8U, = (D*-k*8 (46)
(colk-k?U,)(n+6)-mDw+ IkwDG = IK B - R/ Le

where D =d/ 0z, kis the horizontal wave-numbes,= o, + 10, andl? =-1.

The corresponding boundary conditions are:

w:o,ezo,‘;—”:o for z=0,1 47)
Z

The resulting linear problem is solved by means difth-order Galerkin method, using
the same functions as mentioned in Eq. 32.

Critical values of the Rayleigh number were obtdirfer stationary and oscillatory
bifurcations. For the values ap and Le that we studied, the critical Rayleigh number
leading to stationary bifurcation was always highiean the one leading to oscillatory
bifurcation. So, in this study, we present mairilg variations of the critical wave-number

K.+ the critical Rayleigh numbeRa,,, and the critical frequencw,,, with (/. The Lewis

number is maintained dte = 10 and the porosity at = 05. In this caseay, ., = 0.146. We

mono

and w._, . The results are illustrated in table Il. For a

co2 co2 *

determine the critical valué&,,, k
layer heated from below we can note tiid,, has a maximum fogy = 033 whereask,

admits a minimum forgy = 044. The critical frequency always increases with The
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stability study enabled us to define the interviavariation of Ra where the mono-cellular

flow remains stable thus making it possible to safgathe species of the mixture.

V.NUMERICAL SIMULATIONS

In order to corroborate the results obtained with linear stability analysis for both the
equilibrium solution and the mono-cellular solutigseveral numerical simulations were carried
out. These simulations permitted us to observeotiset of convection, for both cases, at the
critical Rayleigh number predicted by the lineardty with good agreement.

The equation system (Eq. 2) with the associatedhdemy conditions (Eq. 3) was solved
numerically using a collocation spectral method)l waown for its accuracy and a finite
element method (Comsol industrial code) with aamegtilar grid system, better suited to the
rectangular shape of the cell used. For the spentthod, the time scheme was a second order

Adams-Bashforth-Euler backward scheme (Azaiez.®).alhe influence of Leg andy for
different values of Ra was investigated for a wéth aspect ratio 210. We showed that the
numerical critical values Ranumkenumatnum) obtained for A&10, were very close to the

analytical ones obtained for an infinite cell. Foe collocation method, the spatial resolution
was 63x27 and 100x20 collocation points along thezbntal and vertical axes respectively

and for Comsol the spatial resolution was 100 =2 150 x 30.

A. Stability of the equilibrium solution: onset of stationary and Hopf bifurcations

For the onset of stationary convection, we consitlercase Le=2¢ = 0.5, ¥ =04 for

which the results of the stability analysis, obtgireither by the exact solution or the Galerkin
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method, giveRa.;=12.95 andk.s=1.94 in an infinite layer. For A=10, we find nurivaily the
critical value of the Rayleigh numbeRa,,=13 and the development of 6 rolls (Fig. 7)

which corresponds to a wave-number in an infing af k. = (nm)/A=1.89 (where n is

Cnum
the number of convective cells).
We also study the onset of the mono-cellular floedjcted by the linear theory in a layer

heated from above and for negative values of tharaéion ratioy . For Le=2£=0.5, ¢ =-0.2,
the linear theory gives:Ragszlzl(Let//)z—BO, and the numerical simulation leads to

Rasnun=-32 In Fig.8, we have plotted the streamlines, thecimocentrations and the isotherms
obtained for this case. One can observe, the dataymof the iso-concentrations which leads
to a separation of the components of the binang fikhereas the isotherms remain horizontal
(diffusive thermal state).

For the onset of oscillatory convection, by studythe evolution in time of the horizontal
velocity component in one point of the domain (¢b#ocation point (10, 10)), we numerically
determine the critical Rayleigh number and theatida corresponding to the Hopf bifurcation

for the case Le=% = 0.5, ¢ = -025. We obtain:Razyn,m=116 andw

)um=13.75. The Hopf
pulsation is calculated from the Fourier transfarhthe horizontal velocity component at the
onset of convection (Fig.9a and 9b). These resarksvery close to the theoretical ones:

Ra,=114.02 andw, =14.03. Thus the relative error is 1.7% and 2 %Hercritical Rayleigh
number and the critical wave-number respectivety. the case studied, the solution coming
from the bifurcation is unstable and the systemvw@goto a stationary state characterized by
significant velocities and a Nusselt number (rafiehe convective heat flux to the conductive
heat flux) much higher than one, showing that tleefHbifurcation is a subcritical one. Similar

results were obtained for Le=2y =-02, A=10 ande = 0.5 . We found numerically

Raconum=95.7, @,,,=10.57, keun=2.51, while the theoretical parameters aRg, =95.3,
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@,,=10.82 and =2.60 for an infinite cell. The numerical resultelahe theoretical ones are
in very good agreement. At the onset of the ogoifaconvection, we find 8 rolls (Fig. 10-a)
rotating on themselves, the temperature field @igde conductive (Fig 10-b). This solution is

not stable and evolves towards a stationary staie For Le=2y = -0.2, A=10 ande = 0.6
ande = 0.7 , we obtain respectively the critical val(&s,, =82.87, w,,=10.04, k~2.67) and

(Ra,=75.03, @w,=9.45, k~2.73). Depending on the initial conditions introdd in the
computations and on the number of collocation gofetven if this number is sufficiently
large), or for the same initial conditions but éhiferent values of the normalized porosity, the
stationary solution is characterized by 13, 11 0@rrdlls corresponding respectively to the
valuese=0.5, 0.6, and 0.7 used in the computations. Tktg®nary solutions remain stable
with decreasing Rayleigh number until their cormegpng turning points are reached. The
turning point associated with the branch with 1iBsrs obtained for Ra=64.3, with 11 rolls
for Rar,= 59.3, and with 10 rolls for Ra =58.8 (Fig. 11). By assigning the values 20 ahdb3
the aspect ratio A, we obtain other branches diosi@y stable solutions. The complete
description of all the possible flow regimes comirgm the Hopf bifurcation would require a
lot of numerical simulations, which is not the malrjective of this work.

For the particular cas@ﬂ// +tYle= O) we obtained the exact values of the critical patans
(Ras=—12Le+1)/Le ks=0). For Le =2, we obtainedy=-1/(1+Le)=-1/3 and Ras=— 18 We
studied this case numerically in order to corrotethe analytical results; we found the onset

of convection forRa,,,,, = -18.5. The flow coming from the bifurcation is mono-cédir (Fig.

12) which corresponds tk., = 0.

B. Stability of the mono-cdllular solution
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We consider the case Le=10 aprd> 0. We recall that we obtain a mono-cellular flow for
Y 2 oo = 0.146 . Fory = 033 the linear theory givesRa, = 12/(Ley)= 364.

In Fig.13, we plot the iso-concentrations and stigzes for Le= 10 ¢ = 033, Ra= 8, and

£ =0.5. A mono-cellular flow is observed. Due to thernfhdiion the denser species of the
mixture moves towards the cold wall at the tophs tell and the less dense species moves
towards the hot wall at the bottom of the cell. Theno-cellular flow advects one of the
components of the mixture towards the right parthef cavity and the other one towards the
left part and leads to a horizontal stratificatadrihe concentration field.

The linear stability of the mono-cellular flow gaie Rao=36.77, ko= 2.43and

we=546 for Le=10, ¢ = 033, and £ =0.5 in an infinite cell. Numerically, using a finite

element and spectral codes for an aspect Aatio , wE)observe, as the Rayleigh number
increases from Ra=3.64, the following scenario: 3d@4< Ra< 2(, the mono-cellular flow
remains stable. For 20<Ra<38, some oscillationgapat the beginning of the computation
and disappear after a short time, leading to algteaono-cellular flow. The duration of the
oscillation increases as Ra increases from Ra=Tat88. For 38<Ra<38.5, the oscillatory
flow is maintained for all the computing times used the frequency of the oscillations is
arenum=532. For example, for a porous cell of 1cm heightussted by a water-ethanol
mixture, the computing time used corresponds tingedsional time of nearly 1700 hours.
We present, in Fig. 14, the time evolution of tlegirontal velocity component in one point
of the domain for Ra=38 and, in Fig. 15, the stitef the flow at three different instants of
a period. For 38.6, a steady multicellular flowesalplace in the cavity (Fig. 16). For each
computation and for a fixed value of Ra, the ithidanditions introduced correspond to the
mono-cellular ones issued from eq. 45. The relagiver associated to the critical parameters

is 5 % for Ray,, and 2.6 % forw

Ci

2+ SOMe computations were performed in order toyaeal

the influence of the aspect ratio on the criticalues of the transition; we verified that the
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numerical values found for the aspect ratios 10 Zha@re very close. The bifurcation from

the mono-cellular flow was also studied for othedues of ¢/. For Le=10, é= 05we
obtained, for ¢= 02 (Rawe=3661,w2=377), (Rawwn=35.1wewn=329), and, for

=025, (Raw=36.7,w«2=45), (Rawewn=36.8, cteumn=433).

VI. CONCLUSION

In this paper, we revised and extended the prolblieSoret-driven convection in a horizontal

porous medium cell filled with a binary fluid. Iine first part of the work, we studied the

onset of Soret-driven convection in an infinite qus saturated layer heated from below or

from above. The influence of a negative or posifieparation ratigz and the importance of

the role of normalized porosity, which were notet@aknto account by Brand and Steinberg
group and by Schopf, were investigated theoretically and numericatiythis paper. For
stationary bifurcations and for realistic boundaonditions, an analytical dispersion relation
giving the critical Rayleigh number and wave-numhbas been obtained for both infinite and
confined cells. A very good agreement was foundvbeeh the critical values obtained
analytically and the ones obtained by a Galerkimenical procedure. For Hopf bifurcations,
the critical parameters depend strongly on the atimed porosity. We showed that, contrary
to the result obtained by Schéhfthe binary fluid convective motion in a narrowl ckffers
from the flow in a porous medium. Indeed in a peronedium, the thermal diffusion is
effective inside the fluid and the porous matrixilelthe mass diffusion only operates inside
the fluid.

Several numerical simulations were carried outrolento corroborate the results obtained
with the linear stability analysis for the equilion solution. These simulations permitted us to
observe the onset of many stationary subcriticalveotion branches and to determine the

turning point associated with these several brasmche
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In the second part of our study, analytical anthexical techniques were used to study

the stability of the mono-cellular flow obtainedyrf¢y >0 and ¢ 2¢,,,., When the

equilibrium solution loses its stability. Direct mionear numerical simulations, using both a
spectral collocation method and a finite elementho@ corroborated the results of the linear
stability analysis and allowed us to study the dtrte of the flow which appears after the
bifurcation. We highlighted that the mono-celluldiow associated to a stratified
concentration field leads to a horizontal sepamatd the chemical species of the binary
mixture. This final result could be used to deterenexperimentally the Soret coefficient by
considering the value of the critical Rayleigh n@mhssociated to the transition between the

mono-cellular and multi-cellular flow. Indeed thetical temperature differencAT, leading

to the transition between the pure diffusive regamd the mono-cellular flow is too small to
be measured with accuracy whereas the secondtioamsnono-cellular-multi-cellular flow,

is associated with a critical temperature diffeeenich higher thafrT, .
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Le=2 Le=10 Le=100

Rac kc Rac kc Rac kc

W=01 Exact. 66.79 | 3.75_ 0 _ 00 _

Galerkin| 66.75 | 3.75_ 0 _ ) _

W=—0.05 Exact 50.12 3.41| 13946 | 4.83 00 _

Galerkin| 50.13 3.41 | 139.00 | 4.82 00 _

W=—0.07 Exact. 43.22 | 3.24 59.04 | 3.69 00 -

Galerkin| 43.22 3.24 59.03 | 3.69 00 -

weo | Exact 4T T At i3 AT i3
Galerkin| 39.48 3.14 39.47 3.1 3948 3.14
W=0.05 Exact 32.21 2.91 19.24 2.12 2.40 0.00
Galerkin| 32.20 2.92 19.25 2.1p 2.40 0.00
W=0.1 Exact 26.99 2.72 11.68 1.28 1.20 0.00
Galerkin| 27.01 2.71 11.71 1.28 1.20 0.00
W=0.15 Exact 23.09 2.55 8.00 0.00 0.8( 0.00
Galerkin| 23.09 2.55 8.01 0.00 0.80 0.00
W=0.2 Exact 20.09 2.40 6.00 0.00 0.6( 0.00
Galerkin| 20.09 2.40 6.01 0.00 0.60 0.00
W=0.25 Exact. 17.72 2.27 4.80 0.00 0.48 0.00
Galerkin| 17.72 2.27 4.81 0.00 0.48 0.00
W=0.3 Exact. 15.81 2.14 4.00 0.00 0.43 0.00
Galerkin| 15.81 2.15 4.01 0.00 0.42 0.00
W=0.35 Exact 14.24 2.03 3.43 0.00 0.34 0.00
Galerkin| 14.24 2.04 3.44 0.00 0.33 0.00
W=0.4 Exact 12.93 1.93 3.00 0.00 0.3( 0.00
Galerkin| 12.95 1.94 3.01 0.00 0.30 0.00

Table 1. Comparison between the values of thecatifRayleigh number Raand the critical
wave-number kg obtained by the exact solution and the Galerkirthoe at order 4.

Stationary bifurcations.
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Y Kco2 Raco? o2
0.15 2.60 36.53 2.81
0.16 2.58 36.54 3.03
0.17 2.57 36.56 3.23
0.18 2.55 36.57 3.42
0.19 2.54 36.59 3.60
0.20 2.53 36.61 3.77
0.21 2.52 36.63 3.93
0.22 2.51 36.65 4.08
0.23 2.50 36.66 4.23
0.24 2.49 36.68 4.37
0.25 2.48 36.70 4.50
0.26 2.47 36.71 4.63
0.27 2.46 36.73 4.76
0.28 2.45 36.74 4.88
0.29 2.45 36.75 5.01
0.30 2.44 36.76 5.12
0.31 2.44 36.76 5.24
0.32 2.43 36.77 5.35
0.33 2.43 36.77 5.46
0.34 2.42 36.77 5.57
0.35 2.42 36.77 5.68
0.36 2.41 36.76 5.78
0.37 2.41 36.75 5.89
0.38 2.41 36.74 5.99
0.39 2.41 36.73 6.09
0.40 2.40 36.71 6.19
0.41 2.40 36.70 6.29
0.42 2.40 36.67 6.39
0.43 2.40 36.64 6.48
0.44 2.40 36.61 6.58
0.45 2.40 36.58 6.68
0.46 2.40 36.54 6.77
0.47 2.40 36.51 6.87
0.48 2.40 36.46 6.96
0.49 2.40 36.42 7.06
0.50 2.40 36.37 7.15

Table Il. Critical values of the Rayleigh numb&sg,,, the wave-numbek , and the
pulsation w,,, for the oscillatory bifurcation from the mono-agir flow, for Le =10,

& = 05 and for different values of separation ra#yGalerkin method order 5).
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List of figures

Fig. 1. : Stability diagram in the case of non istad boundary conditions for Le=2, and for
different normalized porosity values=0.15, 0.2, 0.6, 0.8.). Solid line: stationary bdfation,
Dotted line: Hopf bifurcation, dashed ling:=-1/(1+ Le).

Fig. 2. : Stability diagram in the case of non istad boundary conditions for Le=10, and for
different normalized porosity values=0.15, 0.2, 0.6, 0.8.). Solid line: stationary bifation,
Dotted line: Hopf bifurcation, dashed ling/:=-1/(1+ Le).

Fig. 3. : Stability diagram in the case of reatishioundary conditions for Le=2, and for
different porosity values€0.4, 0.5, 0.7). Solid line: stationary bifurcati@otted line: Hopf
bifurcation, dashed lingy = -1/(1+ Le).

Fig. 4. : Stability diagram in the case of reatigboundary conditions for Le=10, and for
different porosity values€0.3, 0.4, 0.5, 0.7). Solid line: stationary bifation, Dotted line:
Hopf bifurcation, dashed liney =-1/(1+ Le).

Fig. 5. : Stability diagram in the case of reatidtioundary conditions for Le=100, and for
different porosity valuess€0.3, 0.4, 0.5, 0.7). Solid line: stationary bifation, Dotted line:
Hopf bifurcation, dashed lingy =-1/(1+ Le).

Fig. 6. : Stability diagrankc, = f(¢), for Le=10, in the case of stationary bifurcatemd
realistic boundary conditions. dashed lige= -1/(1+ Le).

Fig. 7. : Isoconcentrations (a), streamlines (k) motherms (c) for Le=2y =0.4,¢=0.5 and

R&snun=13.
Fig. 8. : Isoconcentrations (a), streamlines (k) motherms (c) for Le=2p=-0.2,¢=0.5 and
Rasnun=-32.

Fig. 9. : Onset of oscillatory convection for (ke,€)=(2, -0.25, 0.5)
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(a) Horizontal component of the velocity at thelachtion point (10, 10) versus time.
(b) Fourier transform (Ra&)c¢o nun=(116,13.75), (R&y)co 1—=(114.02,14.03).
Fig. 10. : Onset of oscillatory convection for (L, €)=(2, -0.2, 0.5)
(@) and (b) streamlines and isotherms at the onsesaiflatory convection: 8 rolls
which turn on themselves , Ra=&5.7
(c) and (d) streamlines and isotherms on the statjobranch of solution: 13 rolls,
Ra=64.5, just before the turning point, Nu=1.538
Fig. 11. : Bifurcation diagram: Nusselt number wsrfkayleigh number for Le=2)=-0.2
and A=10 for two subcritical stable branches.

Fig. 12. : Isoconcentrations and streamlines ford,@/ =-0.33,6=0.5 and Ra=-18.5.

Fig. 13. : Isoconcentrations and streamlines forllGs ¢/ =0.33,6=0.5 and Ra=8.

Fig. 14. Horizontal component of the velocity a goint (9, 0.3) versus time for (L&, €,
Ra)=(10, 0.33, 0.5, 38).

Fig. 15. : Time evolution of streamlines during exipd for (Le, ¢, €, Ra)=(10, 0.33, 0.5,
38). (a) : t=570, (b) : t=570.5, (c) t=571.

Fig. 16. : Isoconcentrations and streamlines forllGs ¢/ =0.33,6=0.5 and Rgun=38.6.
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Fig. 1. : Stability diagram in the case of non istad boundary conditions for Le=2, and for
different normalized porosity values=0.15, 0.2, 0.6, 0.8.). Solid line: stationary bifation,

Dotted line: Hopf bifurcation, dashed ling/:=-1/(1+ Le).
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Fig. 2. : Stability diagram in the case of non istad boundary conditions for Le=10, and for
different normalized porosity values=0.15, 0.2, 0.6, 0.8.). Solid line: stationary bifation,

Dotted line: Hopf bifurcation, dashed ling:=-1/(1+ Le).
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Fig. 3. : Stability diagram in the case of reatishoundary conditions for Le=2, and for
different porosity values (0.4, 0.5, 0.7). Solideli stationary bifurcation, Dotted line: Hopf

bifurcation, dashed lingy = -1/(1+ Le).
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Fig. 4. : Stability diagram in the case of reatigboundary conditions for Le=10, and for
different porosity valuess€0.3, 0.4, 0.5, 0.7). Solid line: stationary bifation, Dotted line:

Hopf bifurcation, dashed lingy = -1/(1+ Le).
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Fig. 5. : Stability diagram in the case of reatidtioundary conditions for Le=100, and for
different porosity values€0.3, 0.4, 0.5, 0.7). Solid line: stationary bifation, Dotted line:

Hopf bifurcation, dashed liney =-1/(1+ Le).
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Fig. 6. : Stability diagrankc, = f(¢), for Le=10, in the case of stationary bifurcatemd

realistic boundary conditions. dashed lige= -1/(1+ Le).
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Fig. 7. : Isoconcentrations (a), streamlines (kg motherms (c) for Le=2y =0.4,¢=0.5 and

R&snun=13.
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Fig. 8. : Isoconcentrations (a), streamlines (k) motherms (c) for Le=2p=-0.2,¢=0.5 and

R&snun-32.
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Fig. 9. : Onset of oscillatory convection for (ke,€)=(2, -0.25, 0.5)

(a) Horizontal component of the velocity at thelachtion point (10, 10) versus time.

(b) Fourier transform (Ra&)co nun=(116,13.75), (R&)co 1—=(114.02,14.03).
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Fig. 10. : Onset of oscillatory convection for (L, €)=(2, -0.2, 0.5)

(b) and (b) streamlines and isotherms at the onsesaiflatory convection: 8 rolls
which turn on themselves , Ra=g5.7
(c) and (d) streamlines and isotherms on the statiobranch of solution: 13 rolls,

Ra=64.5, just before the turning point, Nu=1.538
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Fig. 11. : Bifurcation diagram: Nusselt number wsrRayleigh number for Le=24=-0.2

and A=10 for two subcritical stable branches.
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Fig. 12. : Isoconcentrations and streamlines ford, e/ =-0.33,6=0.5 and Ra=-18.5.
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Fig. 13. : Isoconcentrations and streamlines ferllGs ¢/ =0.33,6=0.5 and Ra=8.
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Fig. 14. Horizontal component of the velocity a goint (9, 0.3) versus time for (Lé&,, €,

Ra)=(10, 0.33, 0.5, 38).
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Fig. 15. : Time evolution of streamlines durlng exipd for (Le, ¢, €, Ra)=(10, 0.33, 0.5,

38). (a) : t=570, (b) : t=570.5, (c) t=571.



Fig. 16. : Isoconcentrations and streamlines forll0s ¢ =0.33,6=0.5 and Rgun=38.6.
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