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Nuclear Structure with Discrete Non-Orthogonal Shell Model: new frontiers
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We present developments and applications for the diagonalization of shell-model hamiltonians in
a discrete non-orthogonal basis (DNO-SM). The method, and its actual numerical implementation
CARINA, based on mean-field and beyond-mean field techniques has already been applied in previous
studies and is focused on basis states selection optimization. The method is benchmarked against
a full set of sd shell exact diagonalizations, and is applied for the first time to the heavy deformed
254No nucleus.

PACS numbers: 23.20.Js, 23.20.Lv, 27.60.+j, 25.85.Ca

I. INTRODUCTION

In the recent decades, the advent of radioactive beam
factories associated with developments of more sophisti-
cated experimental methods has enabled to discover new
manisfestations of many-body nuclear dynamics in many
places of the nuclear chart. New phenomena like halo sys-
tems, two-proton radioactivity, occurence of new magic
numbers, vanishing of shell closures, soft dipole modes, or
even searches for superheavy nuclei have been observed
and have stimulated the continuous developments and
improvements of theoretical methods in order to inter-
pret such phenomena.

Among the various theoretical frameworks available,
the Shell-Model (SM) or Configuration Interaction (CI),
either in its no-core or valence space implementations,
has always been one of the most powerful methods in the
description of quantum nuclear systems [1, 2], in par-
ticular with the numerical development of efficient di-
agonalization codes which have opened the era of the
so-called ”Large Scale Shell-Model calculations” for light
and medium-mass nuclei up to A ∼ 150 [3–8] and have
become the method of choice to explain the observed nu-
clear phenomena, guide experimental programs, and not
the least, allowed for a deeper understanding of man as-
trophysical objects and processes in which exotic nuclei
often play the key role. However, its success was always
minored by the exponential growth of the systems ba-
sis involved. At the same time, variational methods with
symmetry breaking and restoration have also shown great
success for decades and have proven to a certain extent
to be applicable over the nuclear chart from the lightest
nuclear systems to the most heavy ones [9–11].

Although these methods provide distinct description,
the merging of the mean-field techniques within the shell-
model formalism has already been developed and studied
in the literature in the past, starting from the pioneer-
ing work of Ripka [12, 13], later followed by the differ-
ent VAMPIR implementations [14, 15]. One of the ma-
jor achievements up to now was proposed by the Tokyo
group with the Monte Carlo Shell-Model [16–18]. And
more recently several implementations were used, either
in an punctual manner [19, 20] or in a more ambitious

scale with the recent development of the TAURUS numer-
ical suite [21–23].

In the present work, we present the formalism of the
Discrete Non-Orthogonal Shell-Model (DNO-SM) and its
associated numerical implementation CARINA. The DNO-
SM amounts to diagonalize valence shell-model hamilto-
nians in a non-orthogonal basis with the use of beyond-
mean-field techniques. The detailled framework is ex-
posed in the next section and applications to sd shell
nuclei in comparison with exact diagonalisations are dis-
cussed in section III. The final section exposes an appli-
cation to a very heavy system in the 254No case.

II. THEORETICAL FRAMEWORK

A. Shell Model formulation revisited

1. The diagonalization dilemma

The ultimate question in the Shell Model, once a phys-
ically meaningful valence space E is equipped together
with the associated effective interaction V̂ for the prob-
lem at hand, is to tackle the secular equation

Ĥ|Ψ〉 = E|Ψ〉 (1)

where Ĥ represents the effective Hamiltonian composed
of V̂ and a one-body single-particle energy {ei} part

Ĥ =
∑
i∈E

eia
†
iai +

1

4

∑
ijkl∈E

〈ij|V̂|kl〉a†ia†jalak. (2)

{a†i} and {ai} are creation and annihilation operators sat-
isfying the common anti-commutation rules for fermionic
systems.

By defining a set of basis states B = {|φm〉,m ∈ N}
constructed from the single-particle spherical oscillator
valence space E with which we can write the eigenstate
|Ψ〉 as

|Ψ〉 =

dim(B)∑
m=1

cm|φm〉, (3)
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the classic Shell Model resolution of (1) then amounts to
addressing the eigenvalue problem

dim(B)∑
m=1

Hm′mcm = E cm′ (4)

by an exact diagonalization of the Hamiltonian matrix
Hm′m = 〈φm′ |Ĥ|φm〉 in the model space H = Span B.
Although spectacular designs of Shell Model codes have
been achieved [1] to reach space dimensions larger and
larger, it is still an inherent problem that makes diffi-
cult to extend the Shell Model applicability into heavier
mass nuclei. To deal with this dilemma, we look for a
replacement of B with a different family of basis states.
The existence of such basis takes the root in the original
idea of the Generator Coordinate Method (GCM) first
proposed in Refs. [24, 25]. As we shall discuss in the
following, it can be however viewed in an independent
status with respect to the GCM, thanks to the work of
the authors in Ref. [26].

2. Discrete non-orthogonal basis

The starting point of the GCM is the hypothesis that
one can find a family of states depending on the contin-
uous (generator) coordinate(s) q

Γ = {|Φ(q)〉 | q ∈ R} (5)

so that the latter forms a model subspace Hq = span Γ ⊆
H following the nature of the coordinate(s) q that we
choose in the generation of Γ . The core of our presenta-
tion of Hq relies on the following existence theorem first
noticed in Ref. [26]. Suppose Hq is a separable Hilbert
subspace, i.e. Hq ⊆H ⊂ L 2 where L 2 denotes the full
Hilbert space associated with the space of square inte-
grable functions, the separability property of Hq implies
the existence of a countable family

Γ0 = {|Φ(qi)〉 | i ∈ N} ⊂ Γ (6)

which is in general skew or non-orthogonal set of states
with the property Hq = span Γ0 (cf. the detailed demon-
stration given in Appendix of Ref. [26]). This enables us

to tackle now the diagonalization of Ĥ in the subspace
Hq represented by the discrete non-orthogonal basis set
Γ0. Indeed, by expressing the eigenstate |Ψ〉 as

|Ψ〉 =

∞∑
i=0

f(qi) |Φ(qi)〉, (7)

the projection of (1) in Hq becomes equivalent to the
generalized eigenvalue problem

∞∑
i=0

[
H(qi′ , qi)− E N (qi′ , qi)

]
f(qi) = 0 (8)

where O(qi′ , qi) = 〈Φ(qi′)|Ô|Φ(qi)〉 (Ô = Ĥ,1) are the
Hamiltonian and norm matrix elements and f(qi) the
expansion coefficient.

Therefore, instead of using the basis B spanning the
full model space H , the above presented theorem on
the existence (not necessarily unique) of a discrete non-

orthogonal basis set of Ĥ suggests that:

1. the diagonalization of Ĥ in Hq becomes “exact”
when Hq = H , which means the coordinate(s) q
must be chosen so as to “exhaust” in some way the
space E ;

2. the truncation of the infinite countable set Γ0 could
be done in a variational way such that the finite
sum

|Ψ〉 ≈
n∑
i=0

f(qi)|Φ(qi)〉 (9)

yields an optimal approximation.

Whether we are able to choose q to fulfil the condition
Hq = H can be verified a posteriori. What needed is
then an efficient truncation method of Γ0, which we shall
address now.

3. Truncation method with the minimization technique

The existence theorem as presented previously has en-
abled us to transform the classic Shell Model eigenvalue
problem (4), formulated in the orthonormal basis B,
into the generalized one (8) through the discrete non-
orthogonal basis Γ0. As noted earlier by the authors of
Ref. [26], the minimization technique originally proposed
by E. Caurier in Ref. [27] provides an iterative prescrip-
tion to truncate Γ0 in a variational way.

It proceeds as follows [27]: “the first point q0 is the
one such that |Φ(q0)〉 minimizes the energy. The second
point q1 is chosen in such a way that the energy obtained
from diagonalizing the Hamiltonian in the 2–dimensional
space spanned by |Φ(q0)〉 and |Φ(q1)〉 be a minimum. One
proceeds in the same way to determine the third basis
vector |Φ(q2)〉 etc...”.

The technique was however implemented only in toy
model examples of Hydrogen atom in molecular physics
(cf. e.g. [28]) and has never been considered in realis-
tic nuclear structure calculations. Therefore, instead of
the conventional problem represented by (Ĥ,H ,B), our
current work exploits fully this technique for the first
time in the Shell Model framework formulated in terms
of (Ĥ,Hq,Γ0). This resulting model will be from now
on referred to as Discrete Non-Orthogonal Shell Model
(DNO-SM).

To be now more precise in the practical realization of
the DNO-SM, we assume that the Projected Constrained
Hartree–Fock (PCHF) approach provides us with a basis
generation method which will be our focus in the next
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subsection. However, before going further, let us note
that, the above proposed technique suggested to mini-
mize one state at a time. More generally in order to cover
broader physical situations such as nuclear coexistences
where the potential energy surface may exhibit several
local minima or when states are not of collective nature,
it may be more preferable to obtain various excited states
by a single minimization. A generalization to deal with
the minimization of many states simultaneously shall be
presented.

B. Projected constrained Hartree-Fock basis

Having introduced the general framework of our ap-
proach to the dimensionality problem encountered in the
classic Shell Model, we present now the construction of
the many-body basis in the DNO-SM. The choice of de-
grees of freedom here is important to take into account
correlations as much as possible in the generation of
the basis. This should be inferred on physical grounds.
Moreover, the many-body basis must conserve important
symmetries of the effective Hamiltonian, in particular,
the cases associated with conserved quantities such as
the angular momentum and particle numbers. Such basis
could be built upon the Constrained Hartree-Fock (CHF)
method which relies on the rotational symmetry breaking
at the mean field to incorporate deformations. A projec-
tion onto good angular momentum can be applied later
before proceeding to the full diagonalization.

A Hartree-Fock (HF) state |Φ(q)〉 =

A∏
i=1

a†i |0〉 for a nu-

cleus of A–particles is obtained from CHF calculations
under the conditions

1

2
〈Φ|Q̂λµ + (−)µQ̂λ−µ|Φ〉 = Qλµ, (10)

〈Φ|Ĵm|Φ〉 = 〈Ĵm〉 (m = x, z), (11)

where Q̂λµ = rλYλµ(θ, ϕ) is the multipole operator ex-

pressed in terms of the spherical harmonics Yλµ and Ĵm
the components of the total angular momentum oper-
ator Ĵ. Here Qλµ and 〈Ĵm〉 are desired constraining
expectation values. Our numerical implementations of
constrained HF calculations follow the standard modi-
fied Broyden method as described in Refs. [29–31]. Fur-
thermore, to ensure the correct constraining value along
the iterative HF process, we use the augmented Lagrange
method proposed in Ref. [32].

Once this is done, the resulting HF state is projected
onto good angular momentum J through the usual pro-
cedure using the projection operator [13, 33]

PJMK(A) =
2J + 1

4π2
(
3− (−)A

)×∫ 2π

0

dα

∫ π

0

dβ

∫ γmax

0

dγ DJ∗MK(α, β, γ) R̂(α, β, γ),

(12)

where γmax =
(
3− (−)A

)
π, R̂(α, β, γ) and DJ∗MK(α, β, γ)

denote the rotation operator and the Wigner matrix [34].
The case of γmax = 4π corresponds to a HF state describ-
ing odd systems. Thus we have included the dependence
of the projection operator on the mass number A for
convenience. This provides us a family of PCHF states
characterized by the angular momentum projection onto
the intrinsic axis |K| ≤ J and the coordinate q for a given
J

Γ = {PJMK(A)|Φ(q)〉 | q ∈ R} (13)

with which we can now formulate the DNO-SM’s working
equations.

The HF procedure to generate deformed Slater deter-
minants in the construction of DNO-SM basis is imple-
mented to treat both odd– and even–nuclei without fur-
ther assumptions. More specifically, we do not impose
any self–consistent symmetries (e.g. no time-reversal, no
parity conservation) at the HF mean field to exploit at
best what is offered by the single-particle valence space
E . The construction of DNO-SM basis for odd nuclei is
done via the constrain of angular momentum components
Ĵm (m = x, z) which, as we will show later, can provide
a very good many-body basis for such nuclei. The for-
mal aspect of this approach to treat odd-mass nuclei has
been pointed out in Ref. [35]. More recently, the the-
oretical demonstration in the Hartree-Fock-Bogoliubov
framework is described in Ref. [36].

Since there is no self-consistent symmetries adopted
here, the angular momentum projection demands to per-
form the integration over Euler angles Ω = (α, β, γ) in
full intervals without restrictions. To do so, we have
developed an analytical formula that performs an exact
integration over (α, γ) whose derivation is presented in
Appendix B. The integration over β is done numerically
using the Gauss–Legendre quadrature rule.

C. DNO-SM formalism

1. Secular equation in non-orthogonal PCHF basis

Let us start with the ansatz (7) where we specify the

eigenstate of Ĥ by |αJM〉 of good total angular momen-
tum J , its projection M in the laboratory frame and
an index α labelling indices of corresponding energy lev-
els and other quantum numbers. In terms of the PCHF
states PJMK |Φ(q)〉 ∈ Γ0 ⊂ Γ, it is given by

|αJM〉 =
∑
q,K

f (J)
α (q;K) PJMK |Φ(q)〉. (14)

To simplify the notation, we omit the dependence on
mass number A in the projection operator PJMK and q is
understood to take discrete values. The projected equa-
tion (8) then becomes∑
q,K

[
HJK′K(q′, q)−E(J)

α N J
K′K(q′, q)

]
f (J)
α (q;K) = 0 (15)
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where the Hamiltonian and the norm matrix elements
O(J)
K′K(q′, q) = 〈Φ(q′)|Ô PJK′K |Φ(q)〉 (with Ô = Ĥ,1) are

evaluated through a three-fold integration over Euler an-
gles Ω = (α, β, γ)

O(J)
K′K(q′, q) =

2J + 1

4π2
(
3− (−)A

)×∫
dΩDJ∗MK(Ω) 〈Φ(q′)|ÔR̂(Ω)|Φ(q)〉.

(16)

The core of (16) is in the evaluation of the kernels

〈Φ(q′)|ÔR̂(Ω)|Φ(q)〉 for given pair of Slater determinants.
For these calculations, we use the minor formula as pre-
sented in Ref. [37]. This is given in Appendix A. The

matrix element O(J)
K′K(q′, q) obtained from the Euler an-

gles integration is then presented in Appendix B.
The treatment of the generalized eigenvalue prob-

lem (15) has been well documented in the framework of
the generator coordinate method (see e.g. Refs. [38–40]).
We follow the standard technique that begins with the de-

termination of the natural eigenbasis functions u
(J)
i (q;K)

of the norm matrix∑
q,K

N J
K′K(q′, q) u(J)

i (q;K) = η
(J)
i u

(J)
i (q′;K ′). (17)

By retaining only positive norm eigenvalues that we de-

note by {η(J)
i > 0, i ∈ N}, the so-called natural state

characterized by the corresponding norm eigenvalue η
(J)
i

is defined as

|η(JM)
i 〉 =

1√
η

(J)
i

∑
q,K

u
(J)
i (q;K)PJMK |Φ(q)〉,

〈η(JM)
i′ |η(JM)

i 〉 = δi′i

(18)

and satisfies the orthogonality condition. This natural
basis allows to transform the projected equation in the
non-orthogonal PCHF basis onto the usual eigenvalue
value problem of the form∑

i′

H(J)
i′i g

(J)
i′ = E(J)

α g
(J)
i (19)

where the Hamiltonian matrix now is expressed between

orthogonal natural basis states {|η(JM)
i 〉}

H(J)
i′i =

1√
η

(J)
i′ η

(J)
i

∑
q′K′,qK

u
(J)∗
i′ (q′;K ′)×

HJK′K(q′, q) u(J)
i (q;K).

(20)

The nuclear state |αJM〉 is thus a linear superposition
in the natural basis

|αJM〉 =
∑
i

g
(J)
i |η(JM)

i 〉 (21)

with the transformation onto the non-orthogonal PCHF
basis expressed through the expansion coefficient

f
(J)
α (q;K) of (14)

f (J)
α (q;K) =

∑
i

g
(J)
i√
η

(J)
i

u
(J)
i (q;K). (22)

One can notice that f
(J)
α (q;K) is not properly normal-

ized and does not represent the probability amplitude of
finding a given configuration of Γ0. To be able to ana-
lyze the content of the nuclear states, we can define the
normalized probability amplitude to find a component
PJMK |Φ(q)〉 in the state |αJM〉 by [38, 41]

M(J)
α (q;K) =

∑
q′,K′

[
N̂ 1/2

](J)

K′K
(q′, q) f (J)

α (q′;K ′). (23)

The corresponding probability to find the intrinsic angu-
lar momentum component K or the component q in the
state |αJM〉 is respectively given by

P(J)
α (K) =

∑
q

∣∣∣M(J)
α (q;K)

∣∣∣2,
P(J)
α (q) =

∑
K

∣∣∣M(J)
α (q;K)

∣∣∣2, (24)

with the normalization relation∑
K

P(J)
α (K) =

∑
q

P(J)
α (q) = 1. (25)

2. Truncation of the PCHF basis with the generalized
minimization technique

We come now to the truncation of the discrete fam-
ily Γ0 with the minimization technique. The idea about
how to choose states of Γ0 is quite straightforward. That
is, applying to the present case including the angular
momentum projection, based on the selection of discrete
values of the coordinate(s) q which minimizes the energy,
i.e. we let the Hamiltonian itself to choose what is the
best state from a variational viewpoint. Furthermore,
it is implicitly understood that the ground state or an
excited state has to be chosen beforehand. Then the fol-
lowing iterative procedure can be implemented:

1) Fix the state E
(J)
α to be minimized with α indexing

energy levels;

2) Define a searching region of the coordinate(s) q;

3) Start from the first point which can be chosen as
the HF minimum;

4) Solve the projected Shell Model circular equa-
tion (15) over the whole searching region of q to
find the second state and proceed the same way in

next iterations until the convergence of E
(J)
α .
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More precisely, the convergence criterion is defined by the

absolute energy gain ∆E
(J)
α (k) = E

(J)
α (k) − E(J)

α (k − 1)

at the iteration number k. If ∆E
(J)
α (k) > ε > 0 we

keep the CHF state, otherwise it is not retained. The
minimization will stop when no more states are found in
the searching region.

In practice, we observe that fixing (α, J) will exclude
in the minimization the states of Γ0 which could be rele-
vant for an other state (α′, J ′). Hence, small components
of the wave functions could be missed whereas the overall
spectrum remains well described. The key point is thus,
minimizing as many excited states at the same time as
possible will eventually lead to the improvement of one
and another mutually and also the ground state. This
idea leads us to generalize the above iterative procedure
in the following way: we let the minimization process
to determine not only the coordinate(s) q but also the
state (α, J) that gains the most energy at a given iter-
ation. This is done by comparing the energy differences

{∆E(J)
α } for every state (α, J) in a given set of nuclear

states which we want to describe. The procedure then
continues until we find no more states satisfying the con-

dition max{∆E(J)
α } > ε, which defines the convergence

criterion in this scheme. We will comment on the choice
of ε in the following.

The minimization procedure as such requires an or-
ganizational scheme of partitioning the coordinate(s) q,
which form in general a multi-dimensional surface. Al-
though it is possible to determine all of them simultane-
ously in principle, it might not be necessary to do so. The
reason is that, as a consequence of the existence theorem,
different countable sets Γ0 ⊂ Γ could be qualified as basis
for Hq. In this work, we define the following organization
of the coordinate(s) q. Only the deformation parameters
Qλµ are determined from the minimization process. The

cranking components 〈Ĵm〉 (m = x, z) are not. Instead,
they are fixed in advance. That is, we perform the min-
imization in the deformation surface {Qλµ} associated

to each value of 〈Ĵm〉 = J
(1)
m , J

(2)
m , J

(3)
m , ... ordered from

input.

3. Choice of the coordinate(s) q

In order the generate Γ0, in this present work, we limit
ourselves to quadrupole deformations (axial and triaxial)
as the common choice of generator coordinates for triax-
ial systems [41], whose expectation values in a HF state
|Φ〉 are denoted by Q20, Q22 respectively

Q20 =

√
16π

5

∑
τ=p,n

e(τ)
mass 〈Φ|Q̂(τ)

20 |Φ〉 (26)

Q22 =

√
8π

5

∑
τ=p,n

e(τ)
mass 〈Φ|

(
Q̂

(τ)
2−2 + Q̂

(τ)
22

)
|Φ〉. (27)

In this particular case, we use the usual Hill-Wheeler
(β, γ) parameters [42] which are related to (Q20, Q22)

through the total quadrupole moment Q =
√
Q2

20 +Q2
22

β =
b2Q
√

5π

3r2
0A

5/3
, γ = arctan

(Q22

Q20

)
(28)

where b2 (in fm2) is the harmonics oscillator parame-
ter [43–45]

b2 =
41.4

45A−1/3 − 25A−2/3
, (29)

and A and r0 = 1.2 (in fm) are the nuclear mass number
and radius parameter.

Within the shell-model formalism, the use of valence
spaces and truncation of the Hilbert space implies the
need of effective hamiltonians as well as effective opera-
tors. Effective operators can be derived by Many-Body
Perturbation Theory [46] but quadrupole operators are
usually renormalized with the use of an effective charge.
The effective charge have been defined by several authors,
we use here the notation defined in Ref. [44]:

e
(p)
el = (1 + χp)e, e

(n)
el = χne (30)

with χ being the electric polarization charge. χ value is
intimately connected to the valence space used and can
be derived by Many-Body Perturbation Theory [46] and
is shell dependent but for 0~ω spaces, the microscopic
Dufour-Zuker [47] χp = 0.31, χn = 0.46 are standard
values. Finally, for the mass quadrupole operators, we
will use

e(p)
mass = e(n)

mass = (1 + χp + χn)e (31)

to be consistent with the deformation parameters defined
above.

III. BENCHMARK AND COMPARISON IN SD
NUCLEI

A. Even nuclei

To assess the quality of the PCHF basis Γ0 against the
oscillator one in the classic Shell Model, we perform a
systematic comparison of two models in even sd nuclei
using the USDB effective interaction [48].

In the first series of calculations shown in Table II,
to see the overall performance of our minimization
method, we compare the ground state and the first ex-
cited states 2+

1 , 4
+
1 energies as well as the correspond-

ing E2–transition probabilities for Neon, Magnesium,
Silicon and Argon even-even isotopes. These calcula-
tions are performed using: i) the common set of states
Jα ∈ {01, 21,2, 41, 81, 121, 161} whenever possible; ii)
practically the same (β, γ) mesh for all considered nuclei
(cf. Table I); iii) the same set of cranking components
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〈Ĵz〉 ∈ {−2,−4,−8,−12,−16} and iv) the same number
of integration points in Angular Momentum Projection,
namely, 11 points for the analytical integration over the
angles α, γ ∈ [0, 2π] and 20 Gauss–Legendre quadrature
points for the integration over the angle β ∈ [0, π]. After
a first round of minimization to find non-cranked CHF
states over the range γ ∈ [0◦, 60◦] discretized into a one-
dimensional mesh of Ng points, the minimization proce-
dure is then iterated for each above-mentioned cranking
components 〈Ĵz〉.
As we can see in Table II, the agreement between two
models is excellent for both relative energies and E2–
transition probabilities, indicating that the wave func-
tions have already converged for the considered states.
The number of CHF basis states found by the mini-
mization process is relatively small at the beginning and
the end of the shell and increases as we go to nuclei at
mid shell. Such are the cases of deformed open shell
nuclei 24Mg, 28Si which seemingly require more basis
states to capture correlations in the mixing than in oth-
ers. In the present calculations, a similar trend is ex-
hibited in the ground state binding energy difference (of
order ∼ 0.1 − 1.0 MeV) with respect to the exact result
(shown in Figure 1). There are two possible reasons for
this underbinding:
• Our minimization technique builds up the many-
body basis based on a finite set of states preliminar-
ily defined, in the present case, i.e. the set Jα ∈
{01, 21,2, 41, 81, 121, 161}, hence, indirectly omits basis
states possibly relevant for other states not included in
the set. Therefore, the representation of the effective
Hamiltonian in the truncated basis Γ0 is not fully com-
plete as the construction is under way. This is in con-
trast to the full SM diagonalization in the oscillator basis
because all many-body matrix elements of the effective
Hamiltonian are available once the valence space is de-
fined.
• The second reason may be related to the choice of the
coordinate(s) q. Here, the question that arises is which
q to be used to ensure a priori the full representation of
the effective Hamiltonian.

20 22 24 26 28 30 32
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Figure 1: Energy difference (in keV) between the DNO-
SM and the exact SM diagonalizations in the ground
state of even Ne, Mg and Si isotopes from Table II.

Table I: Discretization of the (β, γ) plane for minimization
procedure for selected sd nuclei using the USDB effective in-
teraction. The Hartree-Fock minimum energy (EHF) and cor-
responding mass quadrupole parameters (βmin, γmin) are also
given. γmin is in degree. The effective charges for protons and

neutrons are e
(p)
mass = e

(n)
mass = 1.77 (see EQ.(31)).

β Nb Ng nucleus βmin γmin (◦) EHF (MeV)

[0.1, 0.7] 11 9
20Ne 0.527 0.0 −36.404
22Ne 0.498 0.0 −53.474

[0.1, 0.53] 11 9 24Ne 0.313 23.8 −66.225

[0.1, 0.48] 7 9

26Ne 0.247 0.0 −77.258
28Ne 0.198 0.0 −83.441
24Mg 0.499 12.0 −80.965
26Mg 0.395 34.0 −98.887
28Mg 0.325 0.0 −115.625
30Mg 0.212 0.0 −126.735
28Si 0.425 60.0 −130.021
30Si 0.285 46.8 −148.238
32Si 0.221 60.0 −166.344
32S 0.0 − −176.393
34S 0.152 60.0 −198.097
36Ar 0.199 60.0 −226.611

B. Detailed analysis of 24Mg

In the second series of calculations, we investigate
the specific case of 24Mg, which is a typical exam-
ple of deformed nuclei in the sd shell. This nucleus
was extensively studied in the past within various ap-
proaches [19, 38, 39, 49, 50]. It is well established that it
has a triaxial shape in its ground state with a rotational
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Table II: Systematics comparison of the diagonalization in the model spaces Hq and H of the Shell Model in even sd nuclei.
The absolute ground state energy Egs and relative energies of the first 2+ and 4+ are given in MeV. Their reduced transition
probabilities B(E2; 2+

1 → 0+
1 ) and B(E2; 4+

1 → 2+
1 ) are in e2.fm4 unit. Nq denotes the number of CHF states |Φ(q)〉 found

with the minimization procedure.

nucleus
Hq H Egs (MeV) B(E2; 2+

1 → 0+
1 ) B(E2; 4+

1 → 2+
1 )

Nq 2+
1 4+

1 2+
1 4+

1 Hq H Hq H Hq H
20Ne 16 1.76 4.14 1.75 4.18 −40.40 −40.47 47.0 46.9 56.3 55.3
22Ne 41 1.37 3.39 1.36 3.36 −57.32 −57.58 48.1 46.9 64.0 63.3
24Ne 39 2.13 4.01 2.11 3.99 −71.26 −71.72 38.8 38.7 31.9 31.3
26Ne 26 2.12 3.72 2.06 3.51 −80.98 −81.56 39.6 38.5 37.8 33.8
28Ne 12 1.55 2.82 1.62 2.99 −86.13 −86.54 34.3 34.1 32.7 30.7
24Mg 42 1.52 4.37 1.50 4.37 −86.82 −87.10 76.1 74.4 99.1 97.5
26Mg 50 1.80 4.36 1.89 4.36 −104.56 −105.52 66.1 65.2 27.5 18.0
28Mg 50 1.40 4.07 1.52 4.17 −119.71 −120.50 62.9 60.2 75.7 67.5
30Mg 21 1.50 3.89 1.59 3.89 −129.77 −130.47 53.0 49.1 39.6 32.5
28Si 71 2.12 4.78 1.93 4.61 −135.54 −135.86 77.4 77.9 106.8 109.6
30Si 46 2.25 5.59 2.26 5.33 −154.09 −154.75 46.9 45.9 54.0 15.8
32Si 43 1.99 5.79 2.05 5.88 −170.06 −170.52 41.1 42.5 66.9 65.2
32S 50 2.05 4.55 2.16 4.65 −182.10 −182.45 48.0 46.9 69.2 66.8
34S 36 2.01 4.66 2.13 4.83 −202.08 −202.50 38.3 36.0 51.7 48.0
36Ar 12 1.81 4.46 1.82 4.49 −230.22 −230.28 50.4 50.6 63.2 62.9

band built on top. Moreover, the triaxiality manifests
itself in the existence of the so-called γ–band that was
experimentally observed. In order to examine whether
our method is able to correctly describe these features,
we explore different minimization schemes as proposed
in II C 2.

To fix ideas, let us first mention that the present calcu-
lations of 24Mg as shown in Figure 3 are performed using
the same (β, γ) discretization as in Table I and the crank-

ing components 〈Ĵz〉 ∈ {0,−2,−3,−4,−5}. Results re-
ported in the figures 3b), 3c) and 3d) are obtained from
the ground-state and many states minimizations in com-
parison with the full mesh diagonalization 3e) and the
exact SM diagonalization 3f). The searching domain for
minimizations is also the dimension of the full mesh cal-
culation which is a priori 7×9×5 = 315. In practice, our
Hartree-Fock calculations found 277 converged solutions.

From Figure 3 the first thing we note is that Angular
Momentum Projection from the HF minimum gives al-
ready very good intraband transitions. In contrast, the
interband transitions BE(2; 2+

2 → 2+
1 ) or BE(2; 6+

1 →
5+

1 ) which reflect the K-mixing of the two bands are
significantly underestimated. In minimizing the ground
state alone, the interband transitions are considerably
improved and consistent with the exact SM result using
only 6 basis states. This means we have already the right
wave functions with the mixing of a few number of CHF
states, even though about ∼ 600 keV is still missing in
the ground state binding. Carrying out the same min-

imization of the ground state until no more CHF basis
vectors are found in the full mesh, we obtain 39 states
that perfectly reproduce the exact SM result. This cal-
culation also confirms that in the ground-state minimiza-
tion, 6 CHF vectors is enough to have good solutions in
this nucleus.

Now to see whether we can improve further by min-
imizing many states at the same time, as shown in the
figure 3d), we find 55 CHF states that provide an overall
better energy spectra than the ground-state minimiza-
tion but does not change much the picture. The excited
states in the figure 3d) are slightly more compressed.
This effect, as shown in Figure 5, can be traced back
to the addition of cranked CHF states which are known
to stretch down the relative spectrum, although in the
present calculation the effect is not as huge as noted in
e.g. Ref. [51].

The first difference between the two minimization
schemes are in the absolute binding energies as reported
in Table IV. Minimizing all the states provides solutions
with lower bindings which are, in addition, in excellent
agreement with the full mesh diagonalization. The sec-
ond difference that we observe is in the state decompo-
sition in the (β, γ) plane. In Figures 2a), 2b) and 2c),
for illustration, we show the contributions of CHF basis
vectors into the ground state wave function in the po-
tential energy surface of 〈Ĵz〉 = 0. By comparing the
figures 2a) and 2b), it is worth pointed out that the two
minimizations produce two sets of basis vectors which
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give energy spectra and transitions of the same quality.
The contributions of CHF states in the figure 2b) are
somehow fragmented into other configurations in the fig-
ure 2a). The effect is even more visible in the full mesh
calculation shown in the figure 2c1), which means there
is a redistribution of contributions in the final wave func-
tion when one uses ”redundant” basis states. Now, what
we observe in the figure 2c2) is the key point: the domi-
nant CHF configurations in the full mesh diagonalization
are lying in the same region as in the minimization. In
Table III, we report some of the most dominant config-
urations in the ground state as shown in Figure 2. The
most important configurations are around the Hartree-
Fock minimum and they appear in both minimization
calculations. In the full mesh calculation, apart from a
scaling effect due to the presence of many other states,
it is the same CHF configurations which contribute the
most. This clearly shows that our minimization method
picks up the ”right” physical configurations of the most
importance. This comparison also explains the reason
why the minimization using 6 states gives already a good
description.

We summarize now the essential points which can be
drawn from the present discussion:
i) There can be different sets of CHF states that provide
the same description of the relative energy spectra and
transitions.
ii) There exists specific CHF states that contribute more
significantly than others. And the minimization tells us
where to find them.
iii) One must pay attention to the interpretation because
of i), it is possible to replace some set of basis states with
an other, although it could be at the price of taking into
account more basis states than necessary.
iv) It is more advantageous to perform the minimization
than the full mesh diagonalization since basis states are
interdependent in the sense of iii). In cases where such
calculation is feasible like in the present one, the full mesh
diagonalization should expose the limit one obtains in the
minimization. By the way, it is worth noting here that in
a calculation from Monte-Carlo Shell Model of Ref. [52]
employing a stochastic sampling method to choose basis
states, 800 Hartree-Fock states stochastically chosen give
−86.91 MeV of ground state binding for 24Mg (versus the
exact value −87.08 MeV) with the USD interaction.
v) Finally, let us comment on a technical point regard-
ing the choice of ε defining the convergence criterion of
the method. For the present study, we use ε = 1 keV.
Such value seems to be too strict but is necessary to push
the method to its limit and to see whether it reproduces
the exact SM result. For that goal, this value is suffi-
cient to avoid linear redundancies in the selection of CHF
states. The redundancies among non-orthogonal states
are very well known in the generator coordinate method
and resulting from the nearly zero norm eigenvalues of
the overlap matrix. In the minimization process, they
manifest themselves through very tiny contributions in
energy of order . 10−1 keV. We therefore exclude basis

states yielding those negligible contributions.

β γ
P(J)
α (β, γ) (%)

a) ground-state b) Many-state c) Full

0.499 12.0 5.62 7.43 1.16

0.540 17.74 14.35 15.58 2.97

0.540 11.85 4.71 14.64 1.30

0.414 17.74 7.28 - 1.44

0.351 23.63 5.25 - 1.23

0.414 11.85 3.88 7.54 0.66

0.414 29.52 - 3.39 0.61

0.477 17.74 - - 1.38

0.477 23.63 - - 1.29

Table III: Contributions of CHF basis states (calculated
from (24)) into the ground state wave function in three cal-
culations shown in Figure 2a), 2b) and 2c) respectively.
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Figure 2: Structure of the ground state depicted in the
potential energy surface of 〈Ĵz〉 = 0. The yellow circles
(defined with the same scale) in a), b) and c1) repre-
sent the contribution of CHF basis vectors used in the
ground-state minimization, the many-state minimization
and the full mesh diagonalization respectively. In c2) the
red circles represent the same CHF basis vectors of c1)
but using a scaling factor of 5 times larger (see discussion
in texts).
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Jπα 0+
1 2+

1 4+
1 6+

1 8+
1

Figure 3c) −86.828 −85.288 −82.430 −78.508 −75.028

Figure 3d) −86.861 −85.353 −82.489 −78.619 −75.283

Figure 3e) −86.831 −85.322 −82.483 −78.580 −75.249

Jπα 2+
2 3+

1 4+
2 5+

1 6+
2 7+

1

Figure 3c) −82.713 −81.647 −80.744 −78.905 −77.274 −74.576

Figure 3d) −82.748 −81.695 −80.869 −79.018 −77.351 −74.661

Figure 3e) −82.761 −81.724 −80.843 −78.992 −77.370 −74.677

Table IV: Comparison of binding energies (in MeV) obtained
from the minimization of the ground state, of many states
and the full mesh diagonalization in Figures 3c), 3d) and 3e)
respectively.

Egs = −85.330 MeV Egs = −86.523 MeV

a) 1 basis vectors
Angular Momentum Projection

Kπ = 0+
0+1

2+1

4+1

6+1

73

97

94

1276

4112

8228

Kπ = 2+

2+2

3+1

4+2

5+1

6+2

7+1

3953

4905

6080

7817

9472

12079

135

97

72

42

43

9

11

13

10

2

b) 6 basis vectors
Ground-State minimization

Kπ = 0+
0+1

2+1

4+1

6+1

77

100

95

1462

4334

8415

Kπ = 2+

2+2

3+1

4+2

5+1

6+2

7+1

140

98

71

38

43

4077

5137

6197

7892

9801

12483

16

14

21

15

3
Egs = −86.828 MeV Egs = −86.860 MeV

c) 39 basis vectors
Ground-State minimization

Kπ = 0+
0+1

2+1

4+1

6+1

76

98

90

1539

4397

8320

Kπ = 2+

2+2

3+1
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5+1

6+2

7+1

4115

5181

6084

7923

9554

12253

137
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35
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21

11

3

d) 55 basis vectors
Many-State minimization
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2+1
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6+1
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1508

4372

8241

Kπ = 2+

2+2

3+1
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6+2
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136
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68

33

41

4112

5165

5991

7842

9509

12199

17

13
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11

3

Egs = −86.831 MeV

e) 277 basis vectors
Full 7× 9× 5 (β, γ, 〈Ĵz〉) Mesh
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Egs = −87.104 MeV

f) 28503 basis vectors (m-scheme)
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Figure 3: 24Mg spectrum calculated with the USDB interaction using the DNO-SM compared to the classic SM
diagonalization. Black numbers are relative energies (in keV) and blue ones the B(E2) values (in e2.fm4). K denotes
the dominant wave–function component of different members of the band. Figures on top show the evolution of
the energy spectra between a) the Angular Momentum Projection of the Hartree-Fock minimum, b) and c) the
minimization of the ground state, and d) the minimization of all considered states. Figures at bottom present e) the

DNO-SM diagonalization in the full 7× 9× 5 (β, γ, 〈Ĵz〉) mesh (see texts) and f) the exact SM diagonalization. The
ground state binding energy (Egs) is also given for comparison.
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Figure 5: Evolution of the ground state band (top) and
the γ-band (bottom) in 24Mg as cranked CHF states are
added in the many-state minimization of Figure 3d).

To look further now into the convergence process, we
present in Figure 4 the evolution of absolute binding en-
ergies, the energy difference with respect to the exact
SM result and the transitions as a function of the num-
ber of CHF states found in the many-state minimization
of Figure 3d). The intraband and interband transitions
converge after about ∼ 5 iterations. In binding energies,
the excited state 8+

1 approaches the exact binding value
more rapidly than the ground state. This is the effect of
cranked CHF configurations and is consistent with the
slight compression of the energy spectra observed in Fig-
ure 3d), Figure 5 and Table 5.
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Figure 6: Structure of the first three yrast states 0+
1 , 2+

1

and 4+
1 in the sextant γ ∈ [0, 60◦] of the (β, γ) plane.

In Figures 6 and 7, the deformation structure of the
yrast and the γ-band first three states is visualized in
the potential energy surfaces calculated with all crank-
ing components 〈Ĵz〉 ∈ {0,−2,−3,−4,−5}. As already
shown in Figure 2, we see now in the full decomposition,
the most important states emerge from the triaxial region
around the Hartree-Fock minimum.

Physically, the triaxiality developing here is often in-
terpreted as originating from the K-mixing nature of the
ground state [41]. This feature can be understood from
the wave function analysis in K-quantum numbers as
presented in Figure 8 where contributions from partic-
ular K-components are calculated by (24). Indeed, by
construction single-K wave functions are fully preserved
by the axial contraint. The small K-mixing we observe
in this analysis hence reflects the deviation from a pure
axial picture and therefore signal the presence of triaxial
configurations which we have previously analyzed. This
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mixing via the K = 0, 2 components also explains the
weak interband transitions observed in the B(E2) values.
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Figure 7: Structure of the first three states in the γ-band
2+

2 , 3+
1 and 4+

2 in the sextant γ ∈ [0, 60◦] of the (β, γ)
plane.
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Figure 8: Decomposition of states into K–quantum num-
bers in 24Mg

As a conclusion, the analysis of the wave function
structures of 24Mg shows quantitatively the intimate con-

nection between the development of triaxiality and K–
mixing presences from a microscopic calculation using an
underlying effective interaction. The ground state K–
mixing is identified as the origin of the so-called γ-band
assigned in this nucleus from geometrical models [41].
This is highly non-trivial but expected given the quality
of the USDB interaction in this mass region.

C. Odd nuclei: example of 25Mg

The above systematic benchmark has shown our DNO-
SM’s efficiency compared to the classic SM in even nu-
clei. As previously mentioned, the present framework is
also capable to deal with odd nuclei in the same way
without further treatments of the odd particle at the
Hartree–Fock level. We find that the cranking Hartree–
Fock can provide an excellent approach to set up the ini-
tial set of PCHF states from which we construct the ba-
sis Γ0 through the diagonalization-minimization process.
To illustrate this, we present a DNO-SM calculation of
25Mg whose spectrum appears in Figure 9 compared to
the classic SM one. This nucleus is known to have for
instance two distinct bands: the ground state band of
K = 5/2 and an excited band of K = 1/2. Employing
the USDB effective interaction, this assignment is clearly
seen in the wave function structure of each member of the
bands as shown in Figure 10. The minimization is car-
ried out with a discretization of 7 points β ∈ [0.1, 0.51],
8 points γ ∈ [1.5◦, 60◦] and with cranking components

〈Ĵz〉 = −1/2,−3/2,−5/2,−7/2,−9/2. The spectrum of
two bands is reproduced remarkably well with a rms er-
ror of 44 keV, using 61 CHF states. The ground state
binding energy is found to be −93.89 MeV versus −94.40
MeV in the exact SM result.
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Figure 9: 25Mg spectrum
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Figure 10: Decomposition of states into K–quantum
numbers in 25Mg

In summary for the systematic comparison we have
performed between the classic exact SM and our newly
developed DNO-SM, we give now a brief account of its
main features as well as related questions that remain to
be answered

(i) Our DNO-SM formalism is composed of three ele-
ments: the existence theorem of discrete non-orthogonal
bases exposed in (6), the truncation scheme provided by
the minimization technique and the diagonalization tech-
nique from the GCM theory. While the latter has been
already well documented in the literature, the first ele-
ment is the most important piece from the formal point
of view (thanks to Ref. [26]) because it provides us a for-
mal language to express the Shell Model in a natural way
with an emphasis on the different representations of the
effective Hamiltonian.
(ii) Our minimization technique has proved to be a very
efficient truncation scheme in the build-up of our non-
orthogonal many-body basis for the Shell Model. In
all considered nuclei, a very few number of HF states
is needed to obtain solutions with very good agreement
with the exact SM result.
(iii) The procedure constructs the full representation
of the effective Hamiltonian in an iterative way where
we observe that DNO-SM solutions are closer and
closer from the above to the exact diagonalization limit:
Hq −→H , which means our DNO-SM is an approxima-
tion (given some particular choice of the coordinate(s)
q) to the classic SM. This point merits to be mentioned
because it points out the need to design an theoretical
approach to choose the coordinate(s) q if one wants to ob-

tain the full representation of the effective Hamiltonian.
Whether this question can be formally demonstrated a
priori without numerical calculations is an interesting
problem to investigate.
(iv) The wave functions and excitation energies converge
faster than the absolute energy. As depicted in Figure 1,
there’s some missing energy in the ground state ranging
around 50 − 900 keV depending on specific cases. How-
ever, it has practically no impacts on the wave functions
because transition probabilities are already very well re-
produced (cf. Table II). The physical origin of this miss-
ing binding energy is very likely related to (iii), i.e. the
choice of q. Here we would like to mention that the mul-
tipolarity decomposition of the effective Hamiltonian de-
signed by A. Zuker et al. (see e.g. Ref. [1]) could be
instrumental to investigate both (iii) and (iv).
(v) Lastly, the present framework is capable to treat
equally well even- and odd-mass nuclei where the crank-
ing method is found to be really efficient in the construc-
tion of the many-body basis.

To conclude, it is worth noting that the energy differ-
ence we have found using the PCHF basis is of the same
order and consistent with what have been reported in
similar studies of Refs. [21, 22, 53, 54] where more sophis-
ticated trial wave functions of Hartree-Fock-Bogoliubov
(HFB) types with pairing correlations included explic-
itly are used (see e.g. Figure 8 of Ref. [22]). Finally,
let us mention that our definition of (β, γ) is the same
as in Refs. [21, 22] up to a factor of effective charge

e
(p)
mass = e

(n)
mass. For example, in 24Mg, omitting the ef-

fective charge would yield β = 0.499/1.77 ≈ 0.282 which
agrees well with Ref. [21] (cf. Table 1 therein). We
would like however to keep this effective charge factor for
defining mass quadrupole moments to be able to com-
pare with β2–values extracted from experimental electric
BE(2) transitions which yield, e.g. 0.605 in 24Mg.

IV. A FIRST SHELL MODEL CALCULATION
OF 254No

The quest for superheavy elements is a subject un-
der intensive experimental investigations and usually, the
predictions for the shell stabilization of the superheavy
elements predictions rely essentially on ”standard” mean-
field calculations. In the following, we will apply the
DNO-SM method to illustrate its applicability in the con-
text of superheavy systems and we propose here for the
first time, a shell-model type of description of 254No su-
perheavy nucleus, using the DNO-SM. The shell-model
valence space is spanned by the full Z=82-126 proton
major shell and the full N=126-184 neutron major shell
beyond 208Pb, namely, the single proton orbitals 0h 9

2
,

1f 7
2
, 0i 13

2
, 1f 5

2
, 2p 3

2
, 2p 1

2
, and the single neutron orbitals

1g 9
2
, 0i 11

2
, 0j 15

2
, 2d 5

2
, 3s 1

2
, 1g 7

2
, 2d 3

2
(the valence space is

illustrated in in Fig. 11) . As effective interaction, we use
the modified Kuo-Herling realistic interaction (see [55] for
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details) which was applied with great success along the
N=126 isotones [55, 56]. The single particle energies are
borrowed from 209Bi and 209Pb spectra for protons and
neutrons respectively. The electric polarization charge
here is taken to be χp = χn = 0.5 .

208Pb

νπ

0h9/2

0i13/2

1f7/2

1f5/2

2p3/2

2p1/2

0i11/2

0j15/2

1g9/2

1g7/2

2d5/2

2d3/2

1s1/2

Figure 11: Valence space above 208Pb

254No is a deformed nucleus whose spectroscopy has
been intensively investigated the recent years. In addi-
tion to the observation of its rotational Yrast structure, a
side K = 3+ band and two long lived isomers have been
observed [57, 58]. Figure 12 shows the potential energy
surface obtained for the mass (β,γ) deformation param-
eters (obtained from the mass quadrupole moments de-
fined in section II C 3. The deformation landscape shows
a clear prolate axial minimum around β ∼ 0.2 extending
moderately towards non-axial shapes.
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Figure 12: Potential Energy Surface (PES) of 254No cal-
culated with the Kuo-Herling effective interaction where
the yellow diamond is the axial HF minimum with the
mass quadrupole parameter β = 0.2.

All the considered states are calculated with the min-
imization technique over a restricted region around the
corresponding HF minimum. The spectrum of 254No re-
sulting from these calculations is shown in figure 13 as
the function of the number of HF states retained by the
minimization procedure. With a relatively small number
of basis states, we observe a fast and good convergence
of the low-lying members of the Yrast band but also for
the higher lying isomer 8− isomer. As already shown
in the previous section, the DNO-SM allows analysis of
the states under study in terms of intrinsic quantities,
namely, deformations (β, γ) and the intrinsic angular mo-
mentum. The whole low-lying spectrum is presented in
figure 14. The various states are shown and grouped in 3
structures: a Kπ = 0+ Yrast rotational band, a Kπ = 3+

multiplet and the Kπ = 8− state. There is a excellent
agreement for the reproduction of the Yrast rotational
sequence, and the 8− isomeric state. The 3− state ban-
head of the K = 3 multiplet is lying a little bit too low,
by the interband spacing is also very well reproduced.
The formalism allows to extract the fractionnal spheri-
cal occupancies of the orbitals in the valence space. The
structure of the three 0+

1 , 3+
1 and 8−1 states is shown in

Table V. with a possible large mixing of spherical or-
bital our description is richer than single quasi-particle
estimates which are often used to assign exited and iso-
meric states to a single excited configurations. This is
reflected in the partial occupancies of the whole proton
and neutron orbitals involved in the valence space. Nev-
ertheless, on can point out that both for protons and
neutrons, the fillings proceeds through the ”largest” or-
bitals and that excited 3+

1 and 8−1 states mainly differ
from the ground state by an additionnal proton particle
filling the 1h9/2 orbital, assigning these states as having
a ”proton” nature. We may recall here that we obtain an
excellent reproduction of the experimental data with no
adjustement of the effective interaction, designed more
than two decades ago. Nevertheless, in order to con-
firm the present outcome from our calculations, a broader
systematic study has been developped, and in particular
we would like to connect the slight energy shift of the
Kπ = 3+ multiplet to a specific single particle monopole
drift for a better reproductive and predictive description
of the overall region.
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Figure 13: Evolution of the lower part of 254No spectrum
with respect to the number of HF states found by the
minimization procedure.
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Figure 15: K-quantum number content of the isomeric
3+ band and the 8− state.

proton orbits 1h9/2 1i13/2 2f7/2 2f5/2 3p3/2 3p1/2

0+
1 5.66 7.99 3.44 1.58 0.76 0.57

8− 6.52 7.82 3.28 1.20 0.79 0.39

3+ 6.50 7.98 3.31 1.14 0.72 0.35

neutron orbits 1i11/2 1j15/2 2g9/2 2g7/2 3d5/2 3d3/2 4s1/2

0+
1 7.28 9.67 5.45 1.11 1.16 0.87 0.46

8− 7.29 9.04 6.07 1.12 1.15 0.88 0.45

3+ 7.31 9.94 5.43 0.99 1.07 0.83 0.43

Table V: Occupancies of the spherical orbitals for the ground
state and 8− and 3+ states.

V. CONCLUSION AND PERSPECTIVES

As a summary, in this paper we have exposed the for-
malism of the DNO-SM which amounts to diagonalize
shell-model hamiltonians in a non-orthogonal basis with
the use of beyond-mean-field techniques. Particular ef-
fort has been put into the proper selection of optimal ba-
sis state used for the diagonalisation. We benchmarked
the method over a large set of sd shell nuclei and could
reproduce the energies, and transitions probabilities of
the exact diagonalisations with minimal cost of very few
basis states. For the first time, we applied the DNO-
SM method to a superheavy system 254No which is ob-
viously far beyond the capabilities of actual diagonalisa-
tions codes. The DNO-SM formalism has also recently
been very useful in the interpretation of several exper-
imental studies [59–62] and has been to be extremely
promising both for instrinsic interpretation of shell-model
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diagonalisations, and setting new frontiers for nuclear
structure studies within the shell-model framework.
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Appendix A: Matrix elements in the PCHF basis

Considering the two-body Hamiltonian Ĥ defined
in (2), in the PCHF basis PJMK |Φ(q)〉 ∈ Γ0, it is repre-

sented by the set of matrix elements 〈Φ(q′)|ĤPJK′K |Φ(q)〉
given by (16). The calculation of this matrix element re-
quires an evaluation of the hamiltonian kernel which, for
two arbitrary Slater determinants |Φ′〉 and |Φ〉, takes the
forms (cf. e.g. Ref. [37])

〈Φ′|ĤR̂(Ω)|Φ〉 =
∑
p∈Φ′

q∈Φ

(−)p+qMpq(Ω) 〈p|ÊR̂(Ω)|q〉+
∑

p<q∈Φ′

r<s∈Φ

(−)p+q+r+sMpqrs(Ω)〈pq|V̂R̂(Ω)|rs〉 (A1)

where Mpq(Ω),Mpqrs(Ω) are respectively first– and
second–order minors of the A × A matrix N(Ω) = D′† ·
R(Ω) · D with a rectangular matrix Dip = {C(p)

i , p ∈
Φ, i ∈ E} representing the single particle HF states in

the Slater |Φ〉. C(p)
i represents here the expansion coef-

ficient of the single-particle Hartree-Fock state |p〉 in the
single-particle Harmonic Oscillator basis {|i〉}. The ma-

trix element of the one-body single-particle energy Ê is
given by

〈p|ÊR̂(Ω)|q〉 =
∑

i1,i2,i∈E
C
′(p)
i1

C
(q)
i2

ei1iRii2(Ω). (A2)

Whereas for the two-body term, it is written
in terms of the antisymmetrized matrix element
〈JT (i1i2)|V̂|JT (i3i4)〉 of good angular momentum and
isospin J, T

〈pq|V̂R̂(Ω)|rs〉 =
∑
JMM ′

TTz
i1i2i3i4

CTTz1
2 τp

1
2 τq
CTTz1

2 τr
1
2 τs
CJMj1m1j2m2

CJM
′

j3m3j4m4
DJMM ′(Ω)C

(p)
i1
C

(q)
i2
C

(r)
i3
C

(s)
i4
〈JT (i1i2)|V̂|JT (i3i4)〉. (A3)

Here CJMj1m1j2m2
is the Clebsch–Gordan coefficient.

Appendix B: Derivation of the analytical integration
over the Euler angles α, γ

Appendix A provides the necessary elements we need
to derive an analytical formula for the integrations over
α, γ in (16). For that goal, we just need to perform the

derivation with Ô = 1, the same procedure holds for
other operators such as the Hamiltonian or transition

operators. In this case, we have the norm matrix element

N J
K′K =

2J + 1

4π2
(
3− (−)A

) ∫ dΩDJ∗MK(Ω) detN(Ω) (B1)

where we have used the equality detN(Ω) =

〈Φ′|R̂(Ω)|Φ〉. Let us rewrite this quantity in an explicit
way with a summation over all permutations σ of the
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permutation group of A–particles SA

detN =
∑
σ∈SA

sgn(σ)

A∏
λ=1

Nλ,σ(λ)

=
∑
σ∈SA

sgn(σ)

A∏
λ=1

( ∑
i1i2∈E

D′λi1Ri1i2Di2σ(λ)

)

=
∑

i1(1)i2(1)
···

i1(A)i2(A)

A∏
λ=1

D′†λi1(λ)

A∏
λ=1

Ri1(λ)i2(λ)

( ∑
σ∈SA

sgn(σ)

A∏
λ=1

Di2(λ)σ(λ)

)
.

(B2)

The norm matrix element thus becomes

N (J)
K′K =

2J + 1

4π2
(
3− (−)A

) ∑
i1(1)i2(1)
···

i1(A)i2(A)

A∏
λ=1

D′†λi1(λ)

( ∑
σ∈SA

sgn(σ)

A∏
λ=1

Di2(λ)σ(λ)

)
×

∫
dΩDJ∗MK(Ω)

A∏
λ=1

Ri1(λ)i2(λ)(Ω).

(B3)

In this form, the integration over Euler angles Ω =
(α, β, γ) is isolated and can be subject to a direct evalua-
tion using the rotation matrix in spherical oscillator ba-
sis Ri1i2(Ω) = e−iαm1djm1m2

(β)e−iγm2 . Hence, one can
write∫

dΩDJ∗MK(Ω)

A∏
λ=1

Ri1(λ)i2(λ)(Ω)

=

2π∫
0

dα eiα
[
K′−∑A

λ=1m1(λ)
] γmax∫

0

dγ eiγ
[
K−∑A

λ=1m2(λ)
]

π∫
0

dβ sinβd∗JK′K(β)

A∏
λ=1

d
j(λ)
m1(λ)m2(λ)(β)

(B4)
from which it is trivial to calculate the integrals over α, γ.
The result simply reads∫

dΩDJ∗MK(Ω)

A∏
λ=1

Ri1(λ)i2(λ)(Ω) = 2πγmax×

δ∆K′,0δ∆K,0

π∫
0

dβ sinβ d∗JK′K(β)

A∏
λ=1

d
j(λ)
m1(λ)m2(λ)(β)

(B5)

where we denote ∆K ′ = K ′ −∑A
λ=1m1(λ) and ∆K =

K−∑A
λ=1m2(λ). This form is of course not practical as

it involves summations over A! permutations. Our next
step is to recast it into the familiar expression as in (B1)
with only the integration over β being left to evaluate.
To do so, notice that

δn,0 =
1

N

N∑
k=1

ei
2πk
N n if

{
N ∈ N, N ≥ 2,

n ∈ Z, ei
2π
N n 6= 1.

(B6)

It is obvious that ∆K ′,∆K ∈ Z regardless the odd or
even mass number A so that applying this identity allows
us to obtain

∫
dΩDJ∗MK(Ω)

A∏
λ=1

Ri1(λ)i2(λ)(Ω) =
2πγmax

NαNγ
×

Nα∑
k1=1

Nγ∑
k2=1

π∫
0

dβ sinβD∗JK′K

(2πk1

Nα
, β,

2πk2

Nγ

)
×

A∏
λ=1

Ri1(λ)i2(λ)

(2πk1

Nα
, β,

2πk2

Nγ

)
(B7)

where Nα, Nγ ∈ Z are chosen according to the condi-
tion (B6). The final expression of the norm matrix ele-
ment thus reads

N J
K′K =

2J + 1

2
· 1

NαNγ

Nα∑
k1=1

Nγ∑
k2=1

π∫
0

dβ sinβ ×

D∗JK′K

(2πk1

Nα
, β,

2πk2

Nγ

)
× detN

(2πk1

Nα
, β,

2πk2

Nγ

)
.

(B8)

The same reasoning leaves us with the Hamiltonian ma-
trix element where α, γ are exactly integrated out
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HJK′K =
2J + 1

2
· 1

NαNγ

Nα∑
k1=1

Nγ∑
k2=1

π∫
0

dβ sinβ D∗JK′K

(2πk1

Nα
, β,

2πk2

Nγ

)
〈Φ′|ĤR̂

(2πk1

Nα
, β,

2πk2

Nγ

)
|Φ〉. (B9)

Nu(u = α, γ) will be chosen to ensure the conditions

ei
2π
Nu

∆Kv 6= 1 ∀v = 0, 1, 2 with



∆K0 = K −
A∑
λ=1

mi(λ) ∀i ∈ E

∆K1 = K −mi −
A−1∑
λ=1

mi′(λ) ∀i, i′ ∈ E

∆K2 = K −M(i1, i2)−
A−2∑
λ=1

mi(λ) ∀i, i1, i2 ∈ E

(B10)

with i1, i2 designating two single-particle harmonics os-
cillator states coupled to a total angular momentum

M = mi1 +mi2 .
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J. Döring, M. Górska, et al., Phys. Rev. Lett. 87,
072501 (2001), URL https://link.aps.org/doi/10.

1103/PhysRevLett.87.072501.
[57] R. Herzberg, P. Greenlees, and P. Butler, Nature 442,

896–899 (2006).
[58] R. Clark, K. Gregorich, J. Berryman, M. Ali, J. Allmond,

C. Beausang, M. Cromaz, M. Deleplanque, I. Dragojević,
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