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The Clay millennium problem regarding the Navier-Stokes equations is one of the seven famous difficult 
and significant mathematical problems. Although it is known that the set of Navier-Stokes equations has 
a unique smooth local time solution under the assumptions of the millennium problem, it is not known 
whether this solution can always be extended for all times smoothly, which is called the regularity (no 
blow-up) of the Navier-Stokes equations in 3 dimensions. Of course, the natural outcome would be that 
the regularity also holds for 3 dimensions since we know that it holds in 2 dimensions. Compared to the 
older solution proposed by Kyritsis (2021a) for the non-periodic setting without external forcing, this 
paper solves it also for the case with the periodic setting without external forcing. The strategy is based 
again in discovering new momentum density invariants derived from the well-known Helmholtz-Kelvin-
Stokes theorem of the velocity circulation. 
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INTRODUCTION 
 
My first attempt to solve the millennium problem about the 
regularity of the Navier-Stokes equations problem was 
during the spring 2013 (uploaded at that time see 
references Kyritsis K. October 2013) and eventually in 
Kyritsis K (2018), Kyritsis K (2021a). The solution has also 
been published as a chapter in a book by Kyritsis (2021c) 
and also as a whole book devoted to it by Kyritsis (2021d). 
The latter book also contains the solution of the 3rd Clay 
Millennium problem in computational complexity, since 
the author has solved 2 of the 7 millennium problems 
(Kyritsis, 2021b). The author has also solved the 3rd 
Millennium problem P vs NP in computational complexity 
with 3 different successive solutions each one simpler that 
the previous. (see references Kyritsis K (2019) and 

Kyritsis K (2021b), Kyritsis K (2021d).)  In the paper by 
Kyritsis (2017b), there is also an alternative 3rd solution to 
the 4th Clay Millennium problem based on the additional 
hypothesis of the conservation of particles. The other  
solution has no additional hypothesis other than those of 

the formulation of the problem by the Clay Mathematical 
Institute. 
The main objective of the current paper is to solve it also 
(regularity, no blow-up of the Navier-Stokes equations) for 
the periodic case too with initial data as in the standard 
formulation of the 4th Clay Millennium Problem for the 
homogeneous case (no external forcing) See last 
paragraph 4 . It is proved that in the periodic case too, 
without external forcing, not only there is no Blow-up in 
finite time but not even at the time T=+∞. 

An attempt has been made to keep the length of this 
paper as short as possible to encourage reading it and to 
make the solution as easy to understand as possible.  

The main core of the solution is the paragraphs 3. In this 

paragraph 3 is discussed what is that probably we do not 

understand with the Navier-Stokes equations, and the 

well-known Helmholtz-Kelvin-Stokes theorem of velocity 

circulation is extended to new momentum density 

invariants of the flow. Based on these new invariants we 

are able to prove in theorem 3.4 that the vorticity cannot  

MRP 



 

blow up (thus regularity) The paragraph 2 is devoted to  

reviewing the standard formulation of the 4th Clay 

Millennium problem, while the 4th paragraph simply 

applies trivially the results of the paragraph 3 to solve the 

4th Clay Millennium problem as well for  the periodic 

homogeneous case (no external forcing). 

 

THE STANDARD FORMULATION OF THE 4TH 
MILLENNIUM CONJECTURE ABOUT THE NAVIER-
STOKES EQUATIONS AND SOME  CRITERIA OF 
REGULARITY. 

 

In this paragraph we highlight the basic parts of the 
standard formulation of the 4th Clay millennium problem 
as in  Fefferman C.L.  2006. 
The Navier-Stokes equations are given by  (by R we 
denote the field of  the  real numbers, ν>0 is the density 
normalized viscosity coefficient ) 
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a)  with initial conditions  u(x,0)=u0(x)   

   x∈R3                    

b) and u0 (x) ∈  C∞ divergence-free vector 
field on R3                                              (eq.2.3)   

If ν=0 then we are taking about the Euler 
equations and inviscid case.  
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 is the Laplacian operator 

.The Euler equations are (eq2.1), (eq2.2), 
(eq2.3) when  ν=0.  

It is reminded to the reader, that in the equations of 
Navier-Stokes, as in (eq. 2.1)  the density ρ, is constant, it 
is custom to normalized to 1 and omit it. 

d)  For physically meaningful solutions we 
want to make sure that u0(x) does not 

grow large as |x|. This is set by 
defining u0(x) , and f(x,t)  and called in this 
paper  Schwartz initial conditions  , to 
satify  

K

Ka

a

x xCxu  )1()( ,

0
 on R3   for any α and K                                                                                                                                                                                                                                                                                                         

.                                                                             (eq.2.4 ) 
(Schwartz used such functions to define the space of 
Schwartz distributions)  
Remark 2.1. It is important to realize that smooth 
Schwartz initial velocities after 

 
 
 (eq 2.4) will give that the initial vorticity ω0 =curl(u0) ,  in 
its supremum norm, is  bounded over all 3-space.  

|𝜕𝑥
𝑎𝜕𝑡

𝑚𝑓 (𝑥, 𝑡)| ≤ 𝐶𝑎,𝑚,𝐾(1 + |𝑥| + 𝑡)−𝐾 on R3× [𝟎, +∞) for 

any α,m,K                                                       (eq.2.5 ) 
 
We accept as physical meaningful solutions only if it 
satisfies  

p, u C(R3 [0,))    (eq.2.6 ) 
and  

∫ |𝑢(𝑥, 𝑡)|
ℜ3

2

𝑑𝑥 < 𝐶   for all t>=0 (Bounded or finite 

energy)                                                              (eq.2.7 ) 
Remark 2.2 It is important to realize that smooth external 
force (densities) with the Schwartz property as in (eq.2.5) 
, have not only a rule for upper bounded spatial partial 
derivatives but also the same rule for time upper bounded 
partial derivatives. 
 Remark 2.3 We must stress here that imposing 
smoothness of the coordinate functions of velocities and 
external forces of the initial t=0 data and later time t data 
in the Cartesian coordinates plus and Schwartz condition 
as in  (eq 2.5) is not equivalent with imposing similar such 
smoothness of the coordinate functions and conditions in 
the cylindrical or spherical coordinates. We will give in the 
paragraph 4, remark 4.5 an example of a strange blowup, 
where at any time t>0 the coordinates of the velocities are 
smooth and bounded in all space as functions in the polar 
coordinates and still the vorticity has infinite singularity at 
zero. 
Alternatively, to rule out problems at infinity, we may look 
for spatially periodic solutions of (2.1), (2.2), (2.3). Thus 
we assume that u0(x) , and f(x,t)  satisfy  
u0(x+ej)= u0(x), f(x+ej,t)= f(x,t),  
 p(x+ej,0)=p(x,0), for 1<=j<=3           (eq.2.8 ) 
(ej is the jth unit vector in R3)    
In place of (2.4) and (2.5), we assume that u0(x), is smooth 
and that 

|𝜕𝑥
𝑎𝜕𝑡

𝑚𝑓 (𝑥, 𝑡)| ≤ 𝐶𝑎,𝑚,𝐾(1 + 𝑡)−𝐾  on R3× [𝟎, +∞) for any 

α,m,K                                                                    (eq.2.9 ) 
We then accept a solution of (2.1), (2.2) , (2.3) as 
physically reasonable if it satisfies  
u(x+ej ,t)= u(x, t), p(x+ej , t)=p(x,t), on R3 × [𝟎, +∞)  for 
1<=j<=3                                                              (eq.2.10 ) 

and p, u C(R3 [0,))                               (eq.2.11 )                                                         
In the next paragraphs we may also write u0 instead of u0 

for the initial data velocity. 

We denote Euclidean balls by  𝐵(𝑎, 𝑟): = {𝑥 ∈ 𝑅3: ||𝑥 −

𝑎|| ≤ 𝑟}, where ||x|| is the Euclidean norm.  

The 4 sub-problems or conjectures of the  millennium 
problem are the next: 
(Conjecture A) Existence and smoothness of Navier-
Stokes solution on R3. 
Take ν>0 and n=3. Let u0(x) be any smooth, divergent-
free vector field satisfying (4). Take f(x,t) to be identically 
zero. Then there exist smooth functions p(x,t) , u(x,t) on 
R3x[0,+∞) that satisfy (2.1), (2.2), (2.3) , (2.6) , (2.7).  
 
 (Conjecture B) Existence and smoothness of Navier-
Stokes solution on R3/Z3. 



Take ν>0 and n=3. Let u0(x) be any smooth, divergent-
free vector field satisfying (8); we take f(x,t) to be 
identically zero. Then there exist smooth functions p(x,t) , 
u(x,t) on R3x[0,+∞) that satisfy (2.1), (2.2), (2.3) , (2.10) , 
(2.11).  
(Conjecture C) Breakdown of Navier-Stokes solution 
on R3 

Take ν>0 and n=3. Then there exist a smooth, divergent-
free vector field u0(x) on R3 and a smooth f(x,t) on 
R3x[0,+∞) satisfying (4), (5)  for which there exist no 
smooth solution (p(x,t) ,u(x,t)) of (2.1), (2.2), (2.3) , (2.6) , 
(2.7)  on R3x[0,+∞).   
(Conjecture D)  Breakdown of Navier-Stokes solution 
on R3/Z3 

Take ν>0 and n=3. Then there exist a smooth, divergent-
free vector field u0(x) on R3 and a smooth f(x,t) on 
R3x[0,+∞) satisfying (2.8), (2.9)  for which there exist no 
smooth solution (p(x,t) ,u(x,t)) of (2.1), (2.2), (2.3) , (2.10) 
, (2.11) on R3x[0,+∞).   
Remark 2.4. It is stated in the same formal formulation of 
the Clay millennium problem by C. L. Fefferman see  
Fefferman C.L.  2006 (see page 2nd line 5 from below) 
that the conjecture (A) has been proved to holds locally. 

“..if the time internal  [0,), is replaced by a small time 
interval [0,T), with T depending on the initial data....”. In 

other words there is >T>0, such that there exists a 

unique and smooth  solution  u(x,t)C(R3 [0,T)). See 
also  A.J. Majda-A.L. Bertozzi  ,Theorem 3.4 pp 104. In 
this paper, as it is standard almost everywhere, the term 

smooth refers to the space C 

In the next  the || ||m  is the corresponding Sobolev spaces 
norm and . We denote by  Vm ={u in  Hm(Rn) and divu=0} 
where Hm(Rn) are the Sobolev spaces with the L2 norm.  

 We must mention that in A.J. Majda-A.L. Bertozzi  
,Theorem 3.4 pp 104, Local in Time existence of Solutions 
to the Euler and Navier-Stokes equations it is proved that 
indeed if the initial velocities belong to  Vm  m>=[3/2]+2 
there exist unique smooth solutions locally in time [0,t]. 
Here, in the formulation of the millennium problem the 
hypotheses of smooth with Schwartz condition initial 
velocities   satisfies this condition therefore we have 
the existence and uniqueness of smooth solution locally 
in time, both in the non-periodic and the periodic setting 
without external forcing (homogeneous case). 
The existence and uniqueness of a smooth solutions 
locally in time is stated in the formulation by C.L. 
Fefferman  for the homogeneous cases and conjectures 
(A), (B). When a smooth Schwartz condition external force 
is added (inhomogeneous case) , it is natural to expect 
that also there should exist a  local in time unique sooth 
solution. But this I did not find to be stated in the A.J. 
Majda-A.L. Bertozzi , so I will avoid assuming it.  
We state here also two, very well-known criteria of no 
blow-up and regularity.  
In this theorem the || ||m  is the corresponding Sobolev 
spaces norm and . We denote by  Vm ={u in  Hm(Rn) and 
divu=0} where Hm(Rn) are the Sobolev spaces with the L2 

norm.  
Theorem 2.1 Velocities Sobolev norm sufficient 

condition of regularity.  Given an initial condition u0  ∈ 
Vm  m>=[3/2]+2=3.5 e.g. m=4 , then for any viscosity ν>=0 

. there exists a maximal time T* (possibly infinite) of 

existence of a unique smooth solution u  ∈ C([0,T*];Vm ) ᴖ 
C1([0,T*];Vm-2) to the Euler or Navier-Stokes equation. 
Moreover, if T*<+∞  then necessarily limt->T* ||u(. , t)||m =+∞. 

 Proof: See A.J. Majda-A.L. Bertozzi , Corollary 3.2 pp 
112). QED 

Remark 2.5 Obviously this proposition covers the periodic 
case too. 
Theorem 2.2 Supremum of vorticity sufficient 
condition of regularity 

Let the initial velocity u0 ∈ Vm  m>=[3/2]+2 , e.g. m=4, so 

that there exists a classical solution  u∈ C1([0,T] ; C2ᴖVm) 
to the 3D Euler or Navier-Stokes equations. Then : 
(i) If for any T>0 there is M1 >0 such that the vorticity 
ω=curl(u) satisfies 

∫ |𝜔(. , 𝜏)|𝐿∞ 
𝑇

0
 dτ ≤ 𝛭1 

Then the solution u exists globally in time, u∈ C1([0,+∞] ; 
C2ᴖVm) 
(ii) If the maximal time T* of the existence of the solution 

u∈ C1([0,T] ; C2ᴖVm) is finite, 
 then necessarily the vorticity accumulates so rapidly that  

𝑙𝑖𝑚𝑡→𝑇∗ ∫ |𝜔(. , 𝜏)|𝐿∞ 𝑑𝜏 = +∞                               
𝑇

0
(eq.2.12)                                                                                                            

Proof: See A.J. Majda-A.L. Bertozzi, Theorem 3.6 pp 115, 
L∞ vorticity control of regularity.    
      QED. 
Remark 2.6 Obviously this proposition covers the periodic 
case too.  
 

SOME NEW MOMENTUM DENSITY INVARIANTS OF 
THE NAVIER-STOKES EQUATIONS AFTER THE 
HELMHOLTZ-KELVIN-STOKES THEOREM.  

In the current solution of the millennium problem, we 
utilize versions of the fundamental theorem of the calculus 
(Stokes theorem etc.) These versions of the fundamental 
theorem of the calculus (Stokes theorem etc.) lead to an 
extension of the law of momentum conservation of 3D fluid 
parts to a law of 1D line density (rotatory) momentum 
conservation (Theorem 3.1) and law of 2D surface density 
(rotatory) momentum conservation (Theorem 3.2). These 
laws are very valuable for infinite divisible fluids so 
valuable as the existence of finite atoms in the atomics 
structured fluids. Without these extra laws of momentum 
density conservation, we would have no hope to solve the 
millennium problem.  As T. Tao had remarked, only an 
integral of 3D energy conservation and an integral of 3D 
momentum conservation is not adequate to derive that 
momentum point densities ρ•u, or energy point densities 
(1/2)ρ•u2  will not blow up.  

Besides the forgotten conservation law of finite particles, 
which unfortunately we cannot utilize in the case of infinite 
divisible fluids to solve the millennium problem, there are 
two more forgotten laws of conservation or 
invariants. The first of them is the obvious that during the 
flow, the physical measuring units dimensions 
(dimensional analysis) of the involved physical quantities 



(mass density, velocity, vorticity, momentum, energy, 
force point density, pressure, etc.) are conserved. It is not 
very wise to eliminate the physical magnitudes 
interpretation and their dimensional analysis when trying 
to solve the millennium problem, because the dimensional 
analysis is a very simple and powerful interlink of the 
involved quantities and leads with the physical 
interpretation, to a transcendental shortcut to symbolic 
calculations. By eliminating the dimensional analysis, 
we lose part of the map to reach our goal. 
 The 2nd forgotten conservation law or invariant, is related 
to the viscosity (friction). Because we do know that at each 
point (pointwise), the viscosity is only subtracting kinetic 
energy, with an irreversible way, and converting it to 
thermal energy, (negative energy point density), and this 
is preserved in the flow, (it can never convert thermal 
energy to macroscopic kinetic energy), we know that its 
sign does not change too, it is a flow invariant, so the 
integrated 1D or 2D work density is always of the same 
sign (negative) and as sign, an invariant of the flow.  The 
conservation or invariance of the sign of work density 
by the viscosity (friction) is summarized in the lemma 
3.1 below.   
 Finally we must not understate the elementary fact that 
the force densities Fp due to the pressures p,       
 𝐹𝑝 = −∇𝑝    are conservative, irrotational vector field, and 

they do not contribute to the increase or decrease of the  
rotatory momentum and vorticity of the fluid during the 
flow.  Because of this we get that the conserved 1D and 
2D densities of momentum in Theorems 3.1 and 3.2 are 
only of the rotatory type.         
Anyone who has spent time to try to prove existence of 
Blow up or regularity in the various physical quantities of 
the fluid like velocity, vorticity, acceleration, force density, 
momentum, angular momentum, energy etc. he will 
observe that in the arguments the regularity and uniform 
in time boundedness propagates easily from derivatives 
to lower order of differentiation, while the blowup 
arguments propagate easily from the magnitudes to their 
derivatives. The converses are hard in proving. This is due 
to the usual properties of the calculus derivatives and 
integrals. The hard part of the proofs, must utilize forms of 
the fundamental theorem of the calculus like Stokes 
theorem, divergence theorem etc.  
 Based on the above remarks about what is not very well 
understood with Navier-Stokes equations I decided that 
elementary geometric calculus should be the 
appropriate context  to solve the millennium problem, 
and this I did indeed.  
Here in the next we apply the idea that the most valuable 
equations that govern he flow of the fluid are not literally 
the Navier-Stokes equations but the invariants or semi-
invariant properties of the flow, derived from the abstract 
multi-dimensional fundamental theorems of calculus, in 
the forms of divergence theorems, Stokes theorems, 
Greens theorems etc. Actually this is the mechanism of 
wedge-products and abstract algebra of differential forms 
which is beyond classical partial differential equations. We 
do not utilize though definitions and symbolism of wedge-
products and differential forms in his paper so as to keep 
it elementary and easy to read. The main discovery of this 

paragraph is the Helmholtz-Kelvin-Stokes theorem  3.3 
in the case of viscous flows and the resulting general 
no-blow-up theorem 3.4 for the viscous flows without 
external forcing.  A blow-up when it occurs, it will occur 
at least as blow-up of the vorticity, or of ρ•ω. If we discover 
average value invariants of the flow with physical units 
dimensions ρ•ω, that in the limit can give also the point 
value of the ρ•ω, and that are invariants independent 
from the size of averaging, it is reasonable that we can 
deduce conclusions, if the point densities can blow-up or 
not.  

 Theorem 3.1 The Helmholtz-Kelvin-Stokes theorem in 
the case of inviscid Euler equations flows without 
external force or homogeneous case. (Α 1D line 
density of rotatory momentum, conservation law). 

Let initial data in R3 so that they guarantee the existence 
of a unique smooth solution to the Euler equation in a local 

time interval [0,T]. Then at any time t ∈  [0,T]  the 
circulation Γ(c) of the velocities on a closed smooth loop 
is equal to the flux of the vorticity on smooth surface S with 
boundary the loop c, and is constant and preserved as 
both loop and surface flow with the fluid. In symbols (ρ=1 
is the density of the incompressible fluid) 

𝛤𝑐(𝑡) = 𝜌 ∮ 𝑢𝑑𝑙 =
𝑐=𝜕𝑆

𝜌 ∬ 𝜔 • 𝑑𝑠
𝑆

                      (eq. 3.1) 

Proof:  See  Majda, A.J-Bertozzi, A. L. 2002, Proposition 
1.11 and Corollary 1.3 , in page 23.  The proof is carried 
actually by integrating the Euler equations on a loop c and 
utilizing that the integral of the pressure forces (densities) 
defined as –∇p are zero as it is a conservative (irrotational) 
field of force (densities). Then by applying also the Stokes 
theorem that makes the circulation of the velocity on a 
loop equal to the flux of the vorticity on a smooth surface 
with boundary the loop (see e.g. Wikipedia Stokes 
theorem 
https://en.wikipedia.org/wiki/Stokes%27_theorem) the 
claim is obtained.      QED. 

We may notice that this circulation and surface vorticity 
flux has physical measuring units [ρ]*[ω]*[s]^2=[m]*[s]^(-
3)*[t]^(-1)[s]^2=[m]*[s]^(-1)*[t]^(-1) 
=[moment_of_inertia]*[ω]*[s]^(-3) thus angular 
momentum point density. While the ρ*ω has physical 
measuring units dimensions [ρ]*[ω]=[m]*[s]^(-3]*[t]^(-1) 
=[moment_of_inertia]*[ω]*[s]^(-2) thus 2nd spatial 
derivative of rotational momentum of point density  .  

A blow-up when it occurs, it will occur at least as blow-up 
of the vorticity, or of ρ•ω. If we discover bounded average 
value invariants of the flow with physical units dimensions 
ρ•ω, that in the limit can give also the point value of the 
ρ•ω, and that are invariants and bounded independent 
from the size of averaging, it is reasonable that we can 
deduce conclusions, if the point densities can blow-up or 
not.  



Here we convert the surface vorticity flux invariant of 
Helmholtz-Κelvin-Stokes to one with 3D integration which 
will be more convenient in the arguments as the volumes 
are preserved by incompressible flows and most 
important, the integration is 3-dimensional which can be 
utilized to define average values of the vorticity (flux) on 
3D finite particles..  

We will prove at first a lemma about the 3D volume 
integral of Theorem 3.2, and convergence of average 
values of vorticity, based on this 3D integral,  to point 
values to vorticity. 

We define an average value for the volume 3D integral of 
vorticity flux.  

Definition 3.1  We define as average value on ball in   of 

the vorticity ω , denoted by 𝜔̅𝐵 ,the unique constant value 
of the vorticity on the interior of the ball that would give the 

same 3D  flux of vorticity on  the ball,  ρ∫ ∬ 𝜔̅ • 𝑑𝑠
𝑆

𝜋

0
 = 

ρ∫ ∬ 𝜔 • 𝑑𝑠
𝑆

𝜋

0
.   This average value 𝜔̅ of the vorticity is of 

course the   

||𝜔̅𝐵|| = |
𝜌 ∫ ∬ 𝜔•𝑑𝑠𝑑𝜃𝑆

𝜋
0

|𝛣|
|                                      (eq.3.2) 

 and its direction is that of the vertical axis of the ball Β                           

Where |Β|=(4/3)*π*r3  is the volume of the ball B, of radius 

r,  and | |𝜔̅̅ ̅
𝐵||  is the Euclidean norm of the vector.  A more 

detailed symbolism of the average vorticity is the 

𝜔̅(𝑥𝑡 , 𝑡)𝐵(𝑟,𝑡) 

The numerator of this average value of vorticity has also 
the interpretation of rotational momentum average axial 
density on the ball B and relative to the axis a. A reason 
for this is that the physical dimensions of measuring units 
of this magnitude is that of rotational momentum line 
density. This is because the rotational momentum point 
density has physical dimensions 
[moment_of_inertia]*[ω]*[s]^(-3)=[m][s]^(-1)[t]^(-1), where 
[m] for mass, [s] for distance, [t] for time, and this 
magnitude has physical units dimensions, ([ρ][ω][s]^3 
)=([m][s]^(-1)[t]^(-1))[s]^(1),  thus rotational momentum 
point density integrated on  1-d line axial density. And the 
full quotient therefore has physical units dimensions 
[m][s]^(-3)[t]^(-1) )=[ρ][ω].  

Lemma 3.1 Let a ball B of radius r and center x, and the 
average vorticity 𝜔̅𝐵 in it as in the Definition 4.1 so that its  
axis a that defines the average vorticity is also the axis of 
the point vorticity ωx at the center x of the ball.   By taking 
the limit of shrinking the ball to its center x , (r->0), the 

average vorticity 𝜔̅𝐵  converges to the point vorticity ωx  . 
In symbols 𝑙𝑖𝑚

𝑟→0
 𝜔̅𝐵 = ωx . If the axis a of the ball to estimate 

the average vorticity is not the axis of the point vorticity, 
then the limit of the average vorticity will be equal to the 
projection component ωa(x,t) of the point vorticity ω(x,t) on 
the axis a.  

Proof: We simply apply an appropriate 3-dimensional 
version, with iterated integrals of the 1-dimensional 
fundamental theorem of the calculus.          QED. 

Remark 3.1. Such a limit of 3D body to a point is the same 
as the limit that from the Newton equation of force F=mγ, 
we derive the Navier-Stokes equations.  

Since the flow of a fluid under the Euler or Navier-Stokes 
equations, with or without smooth Schwartz external force 
is a smooth and continuous mapping F , then such a limit 
will be conserved to still be a valid limit during the flow. In 
other words  F(𝑙𝑖𝑚

𝐵→0
 𝜔̅𝐵)= 𝑙𝑖𝑚𝐹(

𝐹(𝐵)→0
 𝜔̅𝐵)                            

and B->0 , implies Ft(B)->0. We define of course in an 
obvious appropriate way the average vorticity Ft(𝜔̅𝐵) as in 
definition 3.1, for the flow-image of a ball B after time t. 
Simply the disc surfaces will no longer be flat, and the loop 
no longer perfect circle. But the integrals in the definition 
will be the same. Constancy of the average vorticity on 
such surfaces will only be, up to its Euclidean norm and 
vertical angle to the surface. We must notice though that 
although a relation F(𝑙𝑖𝑚

𝐵→0
 𝜔̅𝐵)= 𝑙𝑖𝑚𝐹(

𝐵→0
 𝜔̅𝐵)   would hold ,  

the value of this limit will not be the vorticity  ωF(x)   at the 
flowed point! Unfortunately, the Lemma 3.2 holds not on 
arbitrary 3D shapes and arbitrary integration 
parametrization on it, but only when we start with standard 
3D shapes like a sphere, a cylinder a cube etc. and the 
normal parametrization on them. The reason is that we 
need to take in to account in a normal way the average 
vorticity around a point in an unbiased way, that an 
arbitrary shape will not give.                        

Another important conservation point is that the relation of 
the vorticity ωx  being tangent to an axis a (or general 
curve) is conserved during inviscid Euler flows. It is the 
conservation of vorticity lines (See  Majda, A. J. –Bertozzi, 
A. L.  2002, Proposition 1.9 in page 21). Therefore for 
inviscid (and incompressible) flows the axis of the initial 
point vorticity ω(0) , which is also the axis to estimate the 
average vorticity on the ball B, will still be after the flow 
and at time t, tangent to the point vorticity ω(t).  But for 
general viscous flows this will not be so. Notice that such 
limits of average values would not work for the circulation 
of the velocity on a loop, as in the application of the 
iterated 1-dimensional fundamental theorem of the 
calculus would require boundaries of the integration.  

Lemma 3.2 Let the Euler or Navier-Stokes equations of 
incompressible fluids in the non-periodic or periodic 
setting, with smooth initial data and we assume that the 
initial data in the periodic or non-periodic case, are so that 



the supremum of the vorticity is finite denoted by Fω  on 
all 3-space at time t=0. Let the average vorticity, or 
average rotational momentum density, defined as in 
Definition 4.1 but with integration parametrization one any 
smooth 3D shape B of any size, that of course  both as a 
diffeomorphic image of a spherical ball with its spherical 
coordinates integration parametrization. Then the average 
vorticity or average rotational momentum density is also 
upper bounded by the Fω.  In symbols  

 ||𝜔̅𝐵|| = |
∫ ∬ 𝜔•𝑑𝑠𝑑𝜃𝑆

𝜋
0

|𝛣|
| ≤         Fω                 (eq. 3.3)  

Proof: Since ||ω|| <= Fω = ||(ω/||ω||)||Fω   in the flux-
integration we have for the inner product of  ω and the unit 
area vector n, (ω, n)<= ((ω/||ω||)Fω ,n)<= Fω . Thus in the 
integration we may factor out the Fω 

|
∫ ∬ 𝜔•𝑑𝑠𝑑𝜃𝑆

𝜋
0

|𝛣|
 |  ≤ |

∫ ∬ 𝐹𝜔𝑑𝑠𝑑𝜃𝑆
𝜋

0

|𝛣|
 |  =   Fω|

∫ ∬ ds𝑑𝜃S
π

0

|Β|
|=  Fω |

|𝛣|

|Β|
| 

= Fω  .         QED.   

Lemma 3.3 The viscosity sign forgotten invariant. 
If we integrate the force point density of the viscosity, over 
a line (1D work density) or surface (2D work density) or a 
volume (work) its sign will remain the same during the 
flow. 
 
Proof: Because we do know that pointwise, the viscosity 
is only subtracting kinetic energy, with an irreversible way, 
and converting it to thermal energy,  (negative energy 
point density), and this is preserved in the flow, (it can 
never convert thermal energy to macroscopic kinetic 
energy), we deduce that its sign does not change too it is 
a flow invariant , so the integrated 1D or 2D work density 
is always of the same sign (negative) and as sign an 
invariant of the flow.                                                   QED.   

 Theorem 3.2 A 3-dimensionl integral version of the 
Helmholtz-Kelvin-Stokes theorem. (Α 2D surface 
density of rotatory momentum, conservation law). 

Let initial data in R3 so that they guarantee the existence 
of a unique smooth solution to the Euler equation in a local 

time interval [0,T]. Then at any time t ∈ [0,T] let a sphere 
B of radius r (as in figure 4.) considered as a finite 
particle, then the azimuthal θ-angle, θ-integral on a 
meridian in spherical coordinates of the circulations Γ(c) 
of the velocities on all closed longitude smooth loops 
parallel to the equatorial loop is equal to the same θ-
integral of the surface flux of the vorticity on smooth flat 
disc surfaces S with boundary the loops c (as in figures 
4.2) , and both integrals are constant and preserved as 
both surface and volume integrals during the  flow with the 
fluid. In symbols (ρ=1 is the density of the incompressible 
fluid) 

𝜌 ∫ ∮ 𝑢𝑑𝑙𝑑𝜃 =
𝑐=𝜕𝑆

𝜋

0
𝜌 ∫ ∬ 𝜔 • 𝑑𝑠𝑑𝜃

𝑆

𝜋

0
                 (eq. 3.4) 

After (eq. 3.2)  || 𝜔̅𝐵|| = |
∫ ∬ 𝜔•𝑑𝑠𝑑𝜃𝑆

𝜋
0

|𝛣|
 |           it holds 

also 

for t ∈ [0,T]  

|| 𝜔̅̅ ̅̅ ̅
𝐵(0)|| = || 𝜔̅̅̅𝐵(𝑡)||                                          (eq. 3.5) 

Proof: We simply take the θ-azimuthal angle θ-integral of 
both sides of the equation 3.1 in the theorem 3.1. Both 
sides are preserved during the flow and so is their θ-
integrals too.  We notice that the measuring physical 
units dimensions  of the conserved quantity 

𝜌 ∫ ∮ 𝑢𝑑𝑙𝑑𝜃 
𝑐=𝜕𝑆

𝜋

0
is [mass]*[length]^(-

3)*[velocity]*[length]^(2)= [mass]*[length]^(-2)*[velocity] 
thus integration in  2-dimension surface of momentum 3D-
point-density, or equivalently  momentum 1D density 
   QED 

Theorem 3.3. The Helmholtz-Kelvin-Stokes theorem in 
the case of viscous Navier-Stokes equations flows 
without external force (homogeneous case). 

Let initial data in R3 so that they guarantee the existence 
of a unique smooth solution to the Navier-Stokes equation 
with viscosity coefficient ν>0 , in a local time interval [0,T]. 

Then at any time t ∈  [0,T]  the circulation Γ(c) of the 
velocities on a closed smooth loop is equal to the flux of 
the vorticity on smooth surface S with boundary the loop 
c, and is decreasing as both loop and surface flow with the 
fluid. In symbols (ρ=1 is the density of the incompressible 
fluid) 

𝜌 ∮ 𝑢𝑑𝑙 =
𝑐=𝜕𝑆

𝜌 ∬ 𝜔 • 𝑑𝑠
𝑆

                                        (eq. 3.1) 

And for t∈[0,T]     

  ∮ 𝑢(0)𝑑𝑙 > ∮ 𝑢(𝑡)𝑑𝑙 
𝑐=𝜕𝑆𝑐=𝜕𝑆

                                   (eq. 3.6) 

and similarly for the 3D volume integration as in Theorem 
3.2 

 for t ∈ [0,T]  

 

 𝜌 ∫ ∬ 𝜔(0) • 𝑑𝑠𝑑𝜃
𝑆

𝜋

0
> 𝜌 ∫ ∬ 𝜔(𝑡) • 𝑑𝑠𝑑𝜃

𝑆

𝜋

0
      (eq. 3.7) 

After (eq. 3.2) || 𝜔̅𝐵|| = |
∫ ∬ 𝜔•𝑑𝑠𝑑𝜃𝑆

𝜋
0

|𝛣|
 |   it holds also for 

initial finite spherical      particles    for t ∈ [0,T] 



 

  || 𝜔̅̅̅𝐵(0)|| > || 𝜔̅̅̅𝐵(𝑡)||                                              (eq. 3.8) 

Proof: Again The (eq. 3.1) is nothing else of course but 
the Stokes theorem. 

We shall utilize here the next equation (See Majda, A.J-
Bertozzi, A. L. 2002, (eq 1.61) , in page 23.) in the case of 
viscous incompressible  flows under the Navier-Stokes 
equations  

𝑑

𝑑𝑡
𝛤𝑐(𝑡) =

𝑑

𝑑𝑡
∮ 𝑢𝑑𝑙 = 𝜈 ∮ ∆𝑢𝑑𝑙 =

𝑐(𝑡)𝑐(𝑡)
− 𝜈 ∮ 𝑐𝑢𝑟𝑙 𝜔𝑑𝑙

𝑐(𝑡)
                                                                                                                                                           

,                                                                           (eq. 3.9) 

This equation is derived after applying as in Theorem 3.1 
the loop integral of the circulation at the Navier-Stokes 
equations instead at the Euler equations taking the 
material-flow derivative outside the integral, and 
eliminating the conservative, irrotational part of the 
pressure forces as gradient of the pressure. Here the 
viscosity is not zero thus the left hand of the equations is 
not zero as in the case of Euler equations, where it is 
conserved. The right hand side is nothing else than the 
loop work density of the point density of the force of 
viscosity at any time t.  And as the viscosity always 
subtracts energy, this right hand side work density is 
always negative during the flow. We notice after the 
Lemma 3.3   that the viscosity force point density  keeps 
constant sign on the trajectory path as orbital component 
during the flow and relative to the velocity on the 
trajectory. It is always as orbital component opposite to 
the motion and represents the always irreversible energy 
absorption and linear momentum and angular momentum 
decrease. Similarly, for any rotation of the fluid e.g. with 
axis the trajectory path. The viscosity force point density 
as component on the loop is always opposite to the 
rotation, it never converts thermal energy to add to linear 
or angular momentum. This opposite to motion 
monotonicity of the viscosity force density applies to the 
Navier-Stokes equations but also as opposite to rotation 

monotonicity in the vorticity equation 
𝐷𝜔

𝐷𝑡
= 𝜔 ∗ ∇u+ν∆𝜔  

(see  Majda, A.J-Bertozzi, A. L. 2002, (eq 1.33 ) and (eq 
1.50 )  in pages 13 and 20 ) .  So if we choose a direction 
of the loop so that the circulation integral on the right hand 
side is positive then this will have the same sign during the 
flow (although different absolute value), and will make the 
left hand side of the (eq. 4.9) always negative during the 
flow. But this means from the left-hand side of the 
equation that the circulation of the velocity on the loop is 
always decreasing during the flow.  
 
 
 
𝑑

𝑑𝑡
∮ 𝑢𝑑𝑙 < 0

𝑐(𝑡)
   for any t in [0,T]                                                                   

(eq. 3.10) 
Thus (eq. 3.6) is proved, and (eq. 3.7) is direct 
consequence.    

 
 
To prove the equation 3.8 we notice that due to 
incompressibility, the flow is volume preserving, thus 
|B(x(t))|=|B(x(0)| , and by dividing both sides of the 
equation 4.7 , and after the definition   

 || 𝜔̅𝐵|| = |
∫ ∬ 𝜔•𝑑𝑠𝑑𝜃𝑆

𝜋
0

|𝛣|
 |                              it holds also 

    for t ∈ [0,T]  

|| ω̅̅̅B(0)|| > || ω̅̅̅B(t)||                                           (eq. 3.8)      

QED. 

Theorem 3.4   The no blow-up theorem in finite or 
infinite time in the Euler, Navier-Stokes, periodic or 
non-periodic and homogeneous cases.  

Let the Euler or Navier-Stokes equations of 
incompressible fluids in the non-periodic or periodic 
setting (homogeneous case with no external forces), with  

a) smooth initial data and whatever else hypothesis is 
necessary so as, also to guarantee the existence and 
uniqueness of smooth solutions to the equations 
locally in time [0, T). 

 b) Furthermore we assume that the initial data in the 
periodic or non-periodic case, are such that the supremum 
of the vorticity, denoted by Fω , is finite at t=0. (In the 
periodic case, smoothness of the initial velocities is 
adequate to derive it, while in the non-periodic setting 
smooth Schwartz initial velocities is adequate to derive it) 

Then it holds that there cannot exist any finite or infinite 
time blow-up at the point vorticities during the flow.  

Proof: The proof will by contradiction. The main idea of 
the proof is to utilize that in the case of a  blow-up the 
vorticity will converge to infinite, so it will become larger 
than an arbitrary  lower bound M+Fω , Μ>0 , Fω  >0 and by 
approximating it with average flux vorticity of a 3D 
spherical particle, and tracing it back at the initial 
conditions where all is bounded by Fω ,utilizing the semi-
invariance of the average vorticity that we have proved, 
we will get that Fω  > M+Fω  . 

 

 

So let us assume that there is a blow up, in a finite time or 
infinite time T* , with the hypotheses of the theorem 4.2.  



 

Then from the Theorem 2.2 and (eq. 2.12 ) which is the 
well-known result of the control of regularity or blow up by 
the vorticity we get that , 

limt→T∗ ∫ |ω(. , τ)|L∞    dτ = +∞
T

0
                             (eq. 2.12) 

We conclude that there  will exist an infinite  sequence of 
points {xtn  , n natural number, 0<tn<T*, limn→∞𝑡𝑛 = 𝑇∗ } so 

that the point vorticity 𝜔(𝑥𝑡𝑛)   blows-up, or equivalently  

limn→∞𝜔(𝑥𝑡𝑛) = +∞ . We do not need to assume them on 
the same trajectory. Therefore, for every positive arbitrary 
large real number M0  , there is a n0  such that for all natural 
numbers n> n0 , it holds that ω(xtn)>M0 .  We choose 
M0=M00 +Fω  , for an arbitrary large positive number M00 . 
So  

 ω(xtn)>M00+Fω                                                      (eq. 3.11)  

Now we approximate this point vorticity with an average 
flux vorticity on a 3D particle after Definition 3.1 , theorem 
3.2 and Lemma 3.1.  

Let a spherical ball particle B(r, xtn,)  as in theorem  3.2. 
with center xtn  and radius r>0. After Definition 3.1 ,theorem 
3.2 and Lemma 3.1. we have that  

lim
r→0

 ω̅B = ωx(tn) ,         With 

||ω̅̅ ̅̅
B|| = |

∫ ∬ ω•ds𝑑𝜃S
2π

0

|B(r,x(tn))|
 |                                           (eq. 3.2) 

Therefore for arbitrary small positive number ε>0 , there is 
radius R, with  

  𝜔̅𝐵(𝑅) > 𝜔𝑥(𝑡𝑛) − ε        

or |
∫ ∬ 𝜔•𝑑𝑠𝑑𝜃𝑆

2𝜋
0

|B(r,x(tn))|
| > 𝜔𝑥(𝑡𝑛) − ε                                (eq. 3.12) 

Thus after (eq. 3.11)   

   |
∫ ∬ 𝜔•𝑑𝑠𝑑𝜃𝑆

2𝜋
0

|B(R,x(tn))|
| > 𝑀00 + 𝐹𝜔 − ε                              (eq. 3.13) 

Now we trace back on the trajectory of the xtn   the parts of 
the  (eq. 3.13) 

 

 

 

At initial time t=0. We use the advantage that as the 
incompressible flow is volume preserving, the |B(R, x0,)|=  

|B(R, x(tn))|. We also utilize theorems 3.2, 3.3, and (eq. 

3.5), (eq. 3.8) , which prove that at the initial conditions t=0 
, this average vorticity is the same or higher  than that at 
tn  . 

|
∫ ∬ 𝜔 • 𝑑𝑠𝑑𝜃

𝑆

2𝜋

0

|B(R, x(0))|
| ≥      |

∫ ∬ 𝜔 • 𝑑𝑠𝑑𝜃
𝑆

2𝜋

0

|B(R, x(tn))|
| 

We conclude that  

|
∫ ∬ 𝜔•𝑑𝑠𝑑𝜃𝑆

2𝜋
0

|B(R,x(0))|
| > 𝑀00 + 𝐹𝜔 − ε                                (eq. 3.14) 

From the  (eq. 3.14) and (eq. 3.3) of Lemma 3.2 we 
conclude  that  

Fω>𝑀00 + 𝐹𝜔 − ε                                                     (eq. 3.15)  

But M00   was chosen in an independent way from ε>0 to 
be arbitrary large, while ε>0 can be chosen to be arbitrary 
small. Therefore, a contradiction. Thus there cannot be 
any blow-up either in finite or infinite time T*.          QED.  

Remark 3.2. Infinite initial energy. We must remark that 
we did not utilize anywhere that the initial energy was 
finite, only that the vorticity initially has finite supremum. 
Thus this result of no-blow-up can be with infinite initial 
energy too. But when applying it to the millennium problem 
we do have there also that the initial energy is finite.  
 

 THE SOLUTION OF THE 4TH CLAY MILLENNIUM 
PROBLEM ABOUT THE NAVIER-STOKES 
EQUATIONS IN THE PERIODIC AND NON-PERIODIC 
HOMOGENEOUS CASE. 

We are now in a position to prove the Conjectures (A) and 
(B) , non-periodic and periodic setting , homogeneous 
case of the Millennium problem. 
(Millennium Homogeneous Case A) Existence and 
smoothness of Navier-Stokes solution on R3. 
Take ν>0 and n=3. Let u0(x) be any smooth, divergent-
free vector field satisfying (2.4). Take f(x,t) to be identically 
zero. Then there exist smooth functions p(x,t) , u(x,t) on 
R3x[0,+∞) that satisfy (2.1), (2.2), (2.3) , (2.6) , (2.7).  

Proof: All the hypotheses of the no-blow-up theorem 4.4 
are satisfied. After remark 2.4, with the current case of the 
millennium problem there exist indeed a unique smooth 
solution locally in time [0,t] (after A.J. Majda-A.L. Bertozzi 
,Theorem 3.4 pp 104, Local in Time existence of Solutions 
to the Euler and Navier-Stokes equations) . And also the  



 

 

Schwartz condition of the initial data, guarantees that the 
supremum of the vorticity, is finite at t=0. (see Remark 2.1) 
Therefore we conclude by Theorem 4.4  that there cannot 
be any finite or infinite time blow-up. Thus from Theorem 
2.2 Supremum of vorticity sufficient condition of 
regularity we conclude that this local in time [0,t] solution 
, can be extended in [0,+∞).     
   QED 

(Millennium Homogeneous Case B) Existence and 
smoothness of Navier-Stokes solution on R3/Z3. 
Take ν>0 and n=3. Let u0(x) be any smooth, divergent-
free vector field satisfying (8); we take f(x,t) to be 
identically zero. Then there exist smooth functions p(x,t) , 
u(x,t) on R3x[0,+∞) that satisfy (2.1), (2.2), (2.3) , (2.10) , 
(2.11).  
Proof: All the hypotheses of the no-blow-up theorem 4.4 
are satisfied. After remark 2.4, with the current case of the 
millennium problem there exist indeed a unique smooth 
solution locally in time [0,t] (after A.J. Majda-A.L. Bertozzi 
,Theorem 3.4 pp 104, Local in Time existence of Solutions 
to the Euler and Navier-Stokes equations) . And also the 
compactness of the 3D torus  of the initial data, 
guarantees that the supremum of the vorticity, is finite at 
t=0. Therefore we conclude by Theorem 3.4 that there 
cannot be any finite or infinite time blow-up. Thus from 
Theorem 2.2 Supremum of vorticity sufficient 
condition of regularity and remark 2.6 (that the 
previous theorem covers the periodic setting too) we 
conclude that this local in time [0,t] solution , can be 
extended in [0,+∞).     
 
EPILOGUE 
 
In this paper, the regularity (no blow-up) of the Navier-
Stokes equations has been proven with the standard 
assumptions of the formulation of this  Millennium 
problem, and compared to the  authors' previous solution 
in Kyritsis (2021a), it has also been proved for the 
periodic setting (no external forcing).  
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