
HAL Id: hal-03593163
https://hal.science/hal-03593163

Submitted on 2 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

Effect of exposure time on corrosion behavior of
zinc-alloy in simulated body fluid solution:
Electrochemical and surface investigation

Deepti Jain, Shubhra Pareek, Arunava Agarwala, Rahul Shrivastava, Wafa
Sassi, Saroj Parida, Debasis Behera

To cite this version:
Deepti Jain, Shubhra Pareek, Arunava Agarwala, Rahul Shrivastava, Wafa Sassi, et al.. Effect of
exposure time on corrosion behavior of zinc-alloy in simulated body fluid solution: Electrochemi-
cal and surface investigation. Journal of Materials Research and Technology, 2021, 10, pp.738-751.
�10.1016/j.jmrt.2020.12.050�. �hal-03593163�

https://hal.science/hal-03593163
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://hal.archives-ouvertes.fr


ww.sciencedirect.com

j o u r n a l o f ma t e r i a l s r e s e a r c h a nd t e c h no l o g y 2 0 2 1 ; 1 0 : 7 3 8e7 5 1
Available online at w
journal homepage: www.elsevier .com/locate/ jmrt
Original Article
Effect of exposure time on corrosion behavior of
zinc-alloy in simulated body fluid solution:
Electrochemical and surface investigation
Deepti Jain a,1, Shubhra Pareek a, Arunava Agarwala a,
Rahul Shrivastava a, Wafa Sassi b,c, Saroj K. Parida d, Debasis Behera e,1,*

a Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur, Rajasthan, 30300, India
b �Equipe Sonochimie et R�eactivit�e des Surfaces (SRS), Institut UTINAM, Universit�e de Franche-Comet�e, Besançon,
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a b s t r a c t

Zn alloy biocompatible implant materials have wide clinical application but its suscepti-

bility to corrosion in the physiological environment due to increased exposure time is a

major constraint. Consequently, diverse electrochemical responses have been investigated

to understand the corrosion mechanism at the Zn alloy interface in different immersion

times up to 168 h. A self-protective layer of Zn(OH)2 was evidenced over the surface of Zn

alloy at higher exposure time in simulated body fluid (SBF) solution. The morphology and

chemical composition of the zinc surface has been studied by Field emission scanning

electron microscopy (FESEM), X-RAY diffraction (XRD), annulated transmission refraction

(ATR), and X-RAY Photoelectron Spectroscopy (XPS). The results indicated that the Zn alloy

predominantly forms zinc oxide or hydroxide and zinc phosphate compound as primary

corrosion products at the interface which is confirmed from the elemental ratio (Zn/O, Zn/

Cl and Zn/P 1:1, 1:2, 2:3 respectively). Additionally, FESEM results confirmed the selective

formation of nano structured Zn(OH)2 which is responsible for the protectiveness of zinc

specimen at higher exposure period. When Zn alloy was immersed in SBF solution, the

corrosion rate was found to be 0.156e0.0976 mmy�1, which proves the sustainability of Zn

alloy for biomedical applications and provides an improved degradation mechanism of Zn

alloy in SBF solution.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Bioabsorbable materials are widely used in biomedical appli-

cation [1]. A few common metallic materials like Stainless

steel [2], titanium and its alloy [3,4], cobalt based alloy are also

used as bioabsorbable material [5,6]. Sometimes these mate-

rials are required to be removed by second surgery. An ideal

orthopedic implant should have mechanical as well as

biodegradable properties. It is also assumed that during the

process of degradation, the final product should be non-toxic

to the human body and slowly degrade and get absorbed in-

side the body.

Since the last few years, Mg and Fe have been used in

orthopedic implantation. During the degradation process

Mg and its alloy show a high corrosion rate and release

hydrogen gas. Fe and its alloy also have a slow degrada-

tion rate and form an oxide layer which repels the

neighboring cells. Ghoneim et al. investigated the corro-

sion performance of the AZ91E magnesium alloy that was

used as a staple in Sleeve Gastrectomy surgery. They

investigated that potassium sorbate is used as an inhibitor

for antimicrobial and food preservative substances [7]. R.

S. El-Kamel investigated that the Graphene oxide nano-

particles/polythreonine polymer nano-coating on AZ91E

Mg alloy is used new implant material for Gastrectomy

application [8]. Fekry et al. investigated electrochemical

corrosion behavior of a novel nano-composite coating on

Ti alloy in phosphate buffer solution. They examined the

novel nano-coating which shows highly antimicrobial ac-

tivity as compared to bare metal [9]. A silver nanoparticle/

graphene oxide/chitosan nano-composite coating is used

for food safety. These nanocomposites show high protec-

tion efficiency (99.0%), which is verified by polarization

curve [10]. Farghali et al. investigated a highly uniformed

nano-composite film of chitosan and gold nanoparticle on

Ti alloy. They studied that Ti alloy shows higher imped-

ance value and phase angle for AuNps/CS biocomposite

for Nyquist and Bode plot [11]. Ameer et al. investigated

electrochemical and interface analysis of Ti alloy in SBF

solution. They investigated that the Ti alloy forms a pro-

tective layer on the surface, in addition to 0.95% by weight

raftiline inulin in the presence of 10�5 M calcium levuli-

nate [12]. Chitosan biocomposite coating was reinforced

with the multiwalled-carbon nanotubes and it increases

the stability, corrosion resistance and bioactivity of the Ti

e6Ale4V alloy and the calcium carbonate (CaCO3) was

used for the surface modification by electroless deposition

[13]. Moreover, Zinc and its alloys are also used in

biomedical application due to its biodegradable nature and

ideal dissolution rate [14e16]. Zinc is an essential

component of many enzymes and also involved in various

metabolic activities [17]. 15 mg/day Zinc is recommended

in the daily diet by dieticians [18]. Zinc has many impor-

tant biological functions like gene expression [19], food

ingestion and growth [20] wound healing [21], cell division

[22], DNA replication or regeneration [23] and acts as

enzymatic co-factor in many reactions [23e26]. In many

metabolic activities, zinc helps in absorption of ions and

amino acid complexes through the small intestine and
regulates them with the help of organs like pancreas,

liver, kidney [27e29].

Metallic zinc has various properties similar to human

bones like tensile strength (126e246 MPa), Young’s modulus

(70 GPa) and density (7.14 g/cm3). Zinc alloy has high me-

chanical properties and a low melting point to convert easily

into casting materials. Zinc alloy is non-toxic to the human

body. Zn-1X binary alloy shows low corrosion rate in vivo and

in vitro conditions [30]. Zn -1Li shows good cytocompatibility

in vivo condition before and after 1e3months [31]. ZneAl alloy

demonstrates stable corrosion rates after 2 years in vivo con-

dition [32]. In ZneMg alloy, the addition of Mn, increases the

susceptibility of micro galvanic corrosion and improves the

casting process [33]. ZneMg alloy increases the mechanical

properties of the material [34]. Addition of Cu alloy with Zn,

increases its ductility and elongation nature at different

amounts of concentration [35e37].

Metallic zinc has been used in rabbit’s vascular stents

due to the slow dissolution rate, high tensile strength and

ductility [38]. Various studies have also taken place on this

subject matter like Bowne et al. has used zinc stents in

abdominal aorta of rats due to its bioabsorbable nature,

biocompatibility and ability to reduce the inflammation

that occur due to degradation products [16]. Same as Li

et al. also found that Zne1Mg alloy in mouse femora

doesn’t have any negative effect on its health and also

formed a strong new bone [30]. This indicates that Zn

alloy can also be used in vivo conditions as a bio-

absorbable stent in orthopedic implantation. Torne et al.

found that the corrosion rate of Zn alloy is increased

when it is exposed in the simulated phosphate buffer

saline (PBS), Ringer solution and decreased when present

in physiological body fluids. It is due to passivation film in

simulated fluid which has a thick layer of corrosion

products [39].

Znþ2 ion is also found in human bone marrow mesen-

chymal stem cells (hMSC) and human vascular cells ((HCECs,

HASMC, HAEC) [40e43]. Zhu et al. has also found that cell

proliferation and hMSC cell adhesion is supported by the zinc

metal and Znþ2 ions regulate gene expression and cell growth

[42]. Human plasma, Ringer solution, Henk’s solution, phos-

phate buffer saline (PBS) and different types of simulated body

fluids are used as artificial mimicking solutions for orthopedic

implantation because these solutions contain similar

composition as blood plasma [39,44e50].

From the thermodynamic point of view, standard electrode

potential of Zn lies between Mg and Fe, i.e. Mg (�2.37 V) < Zn

(�0.763 V) < Fe (�0.440 V). From this, it can also be predicted

that Zn can fulfill clinical demand as it has a middle degra-

dation rate.

In this research paper, the primary corrosion behavior of

Zn alloy in a simulated body fluid is examined. The corrosion

rates of Zn alloy in SBF at different immersion times are

observed by electrochemical measurement and immersion

tests. Interfacial processes like charge transfer, diffusion and

absorption of species are studied by EIS. Finally, the corrosion

mechanism which is given in this study explains about the

degradation process of Zn alloy and its product formation.

This study can be beneficial for in-vitro studies to choose the

suitable solution for biomedical zinc alloy.

https://doi.org/10.1016/j.jmrt.2020.12.050
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Table 1 e Elemental composition Zn alloy by OES technique.

Element Pb Al Cu Ce Mn La Mg Fe Si Zn

Wt/Wt% 0.002 0.010 0.021 0.046 0.047 0.073 0.951 1.12 1.23 96.5
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2. Materials and method

2.1. Sample preparation

Commercially available zinc alloy (96.5% Zn) was used for the

chemical, electrochemical and morphological surface experi-

ments and the alloy composition is given in Table 1 which is

obtained by optical emission spectroscopy (OES) fromMRC lab

MNIT Jaipur. The specimens were cut into

3 mm � 2 mm � 0.3 mm dimensions for the immersion test

and 1 cm2 area was used for electrochemical measurements.

Samples were grounded with silicon carbide emery papers up

to 2000 grade and then ultrasonically cleaned with ethanol

and acetone, dried in the air. The specimens were then etched

5e10 s in Kroll’s reagent (H2O: HF: HNO3 ¼ 1.5:2.5:6) to remove

native oxide layer from the surface.

2.2. Physiological solution preparation

SBF solution simulates the physiological environment similar

to human blood plasma [38] for investigation of Zn alloy

corrosion (see ESIy, Table 1). It was prepared by mixing

different concentrations of inorganic compounds as per the

reported approach [51].

2.3. Electrochemical measurement

The electrochemical measurements were performed by using

a Computer controlled Electrochemical Workstation (Poten-

tiostat, Biological Science instrument, SP-150, FRANCE) with

one compartment three electrode setup viz. Zn alloy with an

exposed area of 1 cm2 as working electrode, platinummesh as

counter electrode, and Ag/AgCl as working reference elec-

trode. The experiments were performed in 250 mL of SBF so-

lution by immersing the specimens for 2 h to establish the

stable open circuit potential (OCP). The range of frequency

was between 100 kHz and 10 mHz at open circuit potential

with 10 mV sinusoidal amplitude and 10 points per decade

were employed for each impedance data measurements.

Appropriate equivalent circuits were chosen based on fitting

data to elucidate interfacial electrochemical mechanisms of

Zn specimens. After impedance measurements, potentiody-

namic polarization studies were done at a scan rate of 1 mV/s

and scan range from cathodic to anodic direction in a poten-

tial window of �3.25 to �0.25 V.

2.4. Immersion test

Corrosion behavior of Zn alloy in SBF solution was studied

using the immersion test. The Zn alloy was immersed in

250 mL solution with an exposed total surface area of 1 cm2,

pH 7.2e7.6 adjusted by 1MHCl. pH values of the solution were

recorded before and after the immersion of specimens for
different exposure periods. The corrosion behavior and for-

mation of corrosion products were examined up to 168 h im-

mersion time. The formed corrosion products during

immersion test were removed by cleaning the specimen in a

solution containing 200 g/L to obtain exact weight loss [52].

The samples were cleaned with distilled water and rinsed

with acetone and were dried before weighing. In addition, the

corrosion rate was calculated by the following equation [53].

CR ¼ 87:6 � DW ÷ A � T � D (1)

Where.

CR ¼ Corrosion rate, mmy�1

DW ¼ Total weight loss of sample, mg.

A ¼ Original surface area exposed to the test solution, cm2

T ¼ Exposure time, hour.

D ¼ Density of metal, g/cm3

2.5. Surface morphology and component analysis

The cleaned and oxide free specimens were immersed in

250 mL of SBF solutions for different immersion periods.

Specimen’s morphology was analyzed by Field Emission

scanning electron microscope instrument (FE-SEM, Nova

nano 450 (FEI), Netherland) at room temperature. Besides,

energy dispersive X-ray spectrometer (EDS) was used for

elemental compositions. Attenuated total reflectance Fourier

transform infrared spectroscopy (ATR-FTIR, Alpha, Bruker,

Germany) technique was used to discover the functional

groups in corrosion products on the sample surface an im-

mersion period up to 168 h in the 4000-600 cm�1 wavenumber

range. X-ray diffraction pattern (XRD, Panalytical X Pert Pro,

UK) was applied to identify the phase composition of the

samples. The surface chemical composition and chemical

state of the specimens was measured after exposure in SBF

solution at a different immersion time by X-ray photoelectron

spectroscopy (XPS, Oxford instrument, Omicron ESCA, Ger-

many). XPS spectra were recorded using Al Ka mono-

chromatized X-ray radiation and the energy of excitation was

1486.6 eV with a resolution of 0.60 eV. The surface topogra-

phies (2D and 3D) were performed quantitatively through

tapping mode of atomic force microscope (AFM, Bruker, MRC

Jaipur).
3. Results and discussion

3.1. Electrochemical analysis

3.1.1. Open circuit potential (OCP)
OCP vs time values were obtained under a non-polarized

condition after 2 h immersion of Zn specimens in the test

solution shown in Fig. 1. The potential value changes in the

positive direction over the time due to the dissolution of the

bare metal surface in the SBF solution and complete removal

https://doi.org/10.1016/j.jmrt.2020.12.050
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Fig. 1 e Open Circuit Potential of Zn alloy in SBF solution at

a different immersion time.
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of pre-formed ZnO film on the Zn alloy surface [54e60]. After

2 h of themetal immersion, the oxide film formation occurs in

the presence of inorganic ions. However, the time taken in the

formation of the oxide/hydroxide layer was much less and

depends upon the concentration of other anions. Invariably

alter the behavior, this less time may be attributed to the

dissolution of the metal. The presence of the inorganic anions

concentration, depends on the formation of a corrosion

product and causes the potential of zinc electrode. The open

circuit potential (OCP), starts to shift into the noble direction

to reach steady values which becomes more positive (anodic)

as the immersion time is increased [59,61].

It is clear from Fig. 1 that all OCP values are for 4 h

(�0.945 V), 6 h (�0.865 V), 24 h (�0.858 V), 48 h (�0.857 V), 72 h

(�0.853 V), 120 h (�0.832 V), 168 h (�0.852 V) respectively and

more than 2 h (�0.953 V vs. Ag/AgCl) and are shifted in anodic

direction with respect to time. It had also been seen that the

value of OCP for 168 h decreased and has shifted to the

cathodic direction. The reverse trend may be responsible for

the breakdown of the corrosion product on the surface. The

variation in OCP for various immersion periods, indicates a

continuous change in the morphology of metal surfaces and

corrosion products.

3.1.2. Electrochemical impedance spectroscopy (EIS)
Nyquist plot for Zn alloy in SBF solution for various periods of

immersion (Fig. 2) reveals two depressed capacitive semi-

circles between 4 h and 48 h, which gives a clear existence of

two different interfaces between Zn alloy and SBF solutions.

The small capacitive semicircles appearing in the high fre-

quency region and the large capacitive semicircles corre-

sponding to the low frequency region are attributed to the

charge transfer and surface film formation respectively at the

interface in SBF solution. But the absence of first depressed

capacitive semicircle in Fig. 2 (a) gives an evidence of non-

existence of film formation. Whereas, capacitive loop is

observed in all cases with increasing exposure period from 4

to 168 h. Inductive loop is absent in the low-frequency region
which indicates the absence of the flow of electrolyte on the

metal/film surface. Capacity growth increases the diameter of

the high-frequency capacitive semicircle. The diameter of the

high frequency capacitive loop increaseswith immersion time

resulting in high impedance values, this is due to the exis-

tence of the passive film. In addition, the film impedes the

entry of aggressive ions on the surface of the metal, thereby

decreasing the kinetics of the corrosion process [62]. It is also

assumed that the Fe present in Zn alloy in the form of pre-

cipitate to form a stable passive layer and indicates absorption

of corrosive ions [63,64]. However, disappearance and devia-

tion in first capacitive semicircles have been observed beyond

72 h of exposure period. Only one capacitive semicircle has

appeared and the low-frequency region shows the deviation

which may be due to the sample polarization.

EIS models were fitted to appropriate equivalent circuit

models and data are listed in Table 2. Analysis of Table 2 re-

veals that the high values of solution resistance, R1 are

observed for longer exposure period (123.8 U and 128.0 (U) for

120 h and 168 h respectively), which is consistent with the fact

that degradation of passive film occurs due to bulk of SBF

solution resulting reduction of first capacitive semicircles.

Here, R1 is the solution’s resistance and Q1 is the constant

phase element for anodic film formation, which is exhausted

in the place of capacitor to compensate for the non-

homogeneity and roughness of the system and used as the

double layer capacitance (Cdl). The double layer capacitance

and the CPE value of a film can be evaluated by following

equations [65].

ZCPE ¼ 1

Y� ðjuÞa (2)

Cdl ¼ Y� � ðumaxÞða�1Þ (3)

where, Z is the impedance of polarized electrode, which con-

tains a capacitance (CPE), u is the angular frequency of the

input signal. Y0 represents the proportional factor and j¼√�1

is the imaginary root. Where a ¼ 1 represents the pure

capacitance of the surface or a s 1 the system shows the

surface roughness.

Cdl ¼ ε�εA
d

(4)

where, d is the thickness of the film, A is the exposed surface

of the electrode in SBF solution, e0 is the permittivity of the

vacuum, e is the local dielectric constant. Cdl value increases

due to the formation of nano-strands and nano-fibers Zn(OH)2
corrosion product on the surface of the alloy. The corrosion

product is dissolved in the solution and formed on the alloy

surface, respectively. As a result the dielectric constant (e) of

the solution with increasing double layer thickness.

The anodic electrochemical reaction comprises the charge

transfer resistance between the metal surface and interface

(R2) in parallel with the double layer capacitance [66]. R3 is the

resistance of film formation and parallel to the C3. C1 is the

double layer capacitance due to the charge transfer between

the interface and the metal alloy. C3 is the capacitance of

Zn(OH)2 corrosion product layer. This indicates the formation

of a passivation film on themetal surface. Value of R2 and R3 is

https://doi.org/10.1016/j.jmrt.2020.12.050
https://doi.org/10.1016/j.jmrt.2020.12.050


Fig. 2 e Nyquist plot (Left) corresponding equivalent circuit (Right) after immersion time (a) 2 h (b) 4 h and 6 h (c) 24 h and

48 h (d) 120 h and 168 h.
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Table 2 e EIS fitting data after various immersion times in SBF solution.

Immersion
time (h)

R1

(U.cm2)
Y0

(� 10�3Scm2S(a�1))
a1 Cdl

(mF.cm�2)
C1

(mF. cm�2)
C2

(mF. cm�2)
R2

(U. cm2)
C3

(mF. cm�2)
R3

(U. cm2)
Rp

(U.cm2)

2 109.7 3.69 0.103 149.94 e e 16.69 67.16 79.85 96.51

4 119.7 e e e 0.260 e 12.07 83.15 38.22 50.29

6 110.3 e e e 0.543 e 12.51 67.18 58.66 71.17

24 110.9 e e e e 0.3146 35.28 64.12 85.12 120.4

48 123.5 e e e e 0.1292 48.82 58.80 118.12 167.4

72 109.5 e e e e 0.6782 23.45 10.53 13.44 36.89

120 123.8 44.2 0.791 21997.0 e e 22.12 86.4 45.75 67.87

168 128.0 20.9 0.809 80860.0 e e 10 93.5 180 190

Table 3 e Summary of potentiodynamic polarization at a
different immersion time in SBF.

Time
(h)

-Ecorr
(mV/Ag/AgCl)

icorr
(mA/cm2)

ba
(mV/dec)

bc
(mV/dec)

Rp

(mU.cm2)

2 1197.997 29.995 0.002 0.001 0.0781

4 1319.576 20.837 0.001 0.010 0.995

6 1250.683 25.413 0.002 0.010 2.64

24 1314.869 38.741 0.001 0.010 18.4

48 1213.356 52.250 0.004 0.010 13.6

72 1311.810 74.431 0.002 0.009 63.9

120 1329.771 54.560 0.003 0.011 99.5

168 1387.355 57.285 0.002 0.010 64.5
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increasedwith immersion time for 24 h and 48 h and the value

of R2 and R1 is decreased for 72 h. This is a direct indication for

the formation of a passive film on the metal surface and the

tendency for C2 and C3 to decrease in the same potential area

also contributes to the formation of a passive film. When the

immersion time is increased, it results in the high frequency

capacitive loop disappearance due to breakdown of passive

film layer. After increasing the exposure time, the value R1 and

R2 is decreased for 120 h and increased for 168 h. This shows

the equilibrium phase between the metal alloy and solution.

After increasing the time, the value is also increased which is

the direct evidence of formation of a corrosion product layer

on the metal alloy surface. Polarization resistance increases

from 2 h to 48 h and decreases after 72 he120 h. This process is

showing the formation of a protective on the Zn alloy surface.

3.1.3. Potentiodynamic polarization test
Fig. 3 shows the potentiodynamic polarization (PDP) curves for

Zn alloy in SBF solution up to 168 h. The passive layer and

dissolution area formation take place on anodic region. In the

cathode area, hydrogen evolution is the possible electro-

chemical reaction. In most corrosion experiments, the anodic

area is most crucial as compared to the cathodic area, as the

metal surface passes through various oxidative changes,

which begins in a dissolution of metal specimen. Therefore,

the anodic area is more helpful to elucidate the corrosion

potential of Zn alloy in the SBF solution. In the SBF solution,

the corrosion potential of Zn alloy is approximately 1.20 V,

where both anodic and cathodic reactions are in equilibrium
Fig. 3 e (a) The Potentiodynamic polarization curve of Zn alloy

magnified polarization curve for the selected area.
as shown in Fig. 3. As a result, it is clear that the anodic area is

attributed to the passive film on the Zn alloy surface in the SBF

solution. Corrosion potential (Ecorr), corrosion current density

(icorr), Anodic Tafel slope (ba), Cathodic Tafel slope (bc) are

related parameters of the PDP curve shown in Table 3. It is

clearly seen that the values of corrosion potential (Ecorr) are

increasing with increase in exposure time and form corrosion

products in the anodic region. Zn alloy forms a thin hydroxide

layer in anodic area, which is responsible for the dissolution of

the bare metal. The corrosion potential is shifted in a negative

direction with exposure time. The corrosion current density

(icorr) is also increased with exposure time, which is respon-

sible for the breakdown of the metal alloy and formation of

corrosion product on the metal surface, while the icorr results

are found, decreasing at 120 h and 168 h due to intrinsic stable

protective layers of corrosion products, which corroborate the
at a different immersion time period in SBF solution (b)

https://doi.org/10.1016/j.jmrt.2020.12.050
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Table 4e Corrosion rates of Zn alloy in the SBF solution at
various immersion times (CRw, mmy¡1).

Immersion
Time (h)

Weight loss
(mg/cm2)

Corrosion rate
(mmy�1)

2 0.25 0.1569

4 0.41 0.1261

6 0.75 0.1550

24 1.14 0.0583

48 1.89 0.0482

72 2.32 0.0397

120 2.83 0.0289

168 2.97 0.0147
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findings of Impedance results. The potentiodynamic polari-

zation ismeasured by the Stern Geary equation [67]. Here, Rp is

the polarization Resistance (see Table 3).

Rp ¼ ba � bc

2:303 � icorr ðba þ bcÞ
(5)

3.2. Proposed dissolution mechanism of Zn alloy in SBF

When zinc alloy is immersed in SBF solution, Zn metal is

oxidized to Znþ2 and H2 is produced by a reduction of water in

accordance with the following reaction (Fig. 4)

Zn / Znþ2 þ 2e� (6)

H2O þ 2e� / OH� þ H2 (7)

Znþ2 reacts with OH� ion to formmetal hydroxide near the

metal surface and dehydration of Zn(OH)2 occurs to from ZnO

[68,69] in Fig. 4 (a)

Znþ2 þ 2OH� / ZnðOHÞ2 (8)

ZnðOHÞ2 / ZnO þ H2O (9)

When the immersion time is extended to 168 h the

maturing and thickening of the accumulating Zn(OH)2 layer of

the sample. The Zn(OH)2 forms a layer of precipitate on the

specimen surface. The sample is contributing to the degra-

dation of Zn alloy. The whole surface of Zn alloy was nearly

converted to corrosion product. The formation of zinc oxide
Fig. 4 e Schematic diagram of proposed mechanism of corrosion

ZnO (b) formation of ZnCl2 and ZnCO3 (c) formation of Zn3(PO)4
contributes to the nucleation of carbonate compounds. ZnCO3

with a constant solubility precipitates productmainly due to a

large amount of liberated Znþ2 ions near the surface in Fig. 4

(b).

HCO3
� þ OH� / CO3

�2 þ H2O (10)

Znþ2 þ CO3
�2 / ZnCO3 (11)

The carbonate particles continue to grow with long im-

mersion time. As a result, the sample surfaces get covered

with corrosion products. However, the weight loss continu-

ously is increased with immersion time summerized in Table

4. At this time, the Zn and Caþ2 react with PO4
�3 and is turned

into a compound Zn (PO4)3 or Ca3 (PO4)2 as the following re-

action in Fig. 4 (c).

HPO4
�2 þ OH� / PO4

�3 þ H2O (12)

Znþ2 þ PO4
�3 / Zn3ðPO4Þ2 (13)

Caþ2 þ PO4
�3 / Ca3ðPO4Þ2 (14)

Partial dissolution of corrosion products cannot protect the

Zn substrate effectively, as it is leading to the increase in icorr
with the immersion time after 168 h and a stable corrosion

product formed on the metal surface.

3.3. Immersion test

3.3.1. pH assessment, dissolution and weight loss studies
Fig. 5 Shows changes in pH vs time for the Zn alloy samples

immersed in 250 mL of simulated body fluid. The pH is

increased with increase in time, which may be ascribable to

the formation of Zn (OH)2 in the solution. The pH assessments

of SBF as a component of immersion time are presented in

Fig. 5 (a) which shows a linear increase in pH of the SBF

arrangement. It was found at the basic immersion up to 72 h.

This is due to the formation of increasing OH� ions in the

solution. Thereafter, a low increment in pH was seen by

further immersion from 120 h to 168 h and after that a

moderately steady pH of 7.97 was observed. As can be seen in

Fig. 5 (b), the dissolution rate of Zn2þ was quick in the 72 h

immersion and turned out to be moderate amid further
process of Zn alloy immersed SBF solution (a) formation of

and Ca3(PO)4.
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Fig. 5 e Variation in (a) weight loss of Zn alloy in the SBF solution (b) pH Values as a function of the immersion time.

Fig. 6 e FESEM I mages of Zn alloy immersed in SBF solution for (a) Polished, (b) 2 h, (c) 168 h (The insets show the magnified

FESEM images in the squared area) and (d) atomic % obtained from EDX spectra.
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Fig. 7 e XRD spectra of Zn alloy in SBF solution for different

immersion time.
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immersion. After 120 h, the accumulated Zn2þ discharge was

around 2.83 mg cm�2. The weight loss of Zn alloy (see Table 4)

expanded insistently with 168 h time and achieved

2.97 mg cm�2 to the continued dissolution of Zn alloy in the

SBF. The formed oxide layer may exhibit rectifying charac-

teristics similar to their anodically formed passive films layer

[55,70]. It is assumed that the thickness of the oxide film layer

is increased with immersion time. This thickness of the pas-

sive film layer is controlled by the immersion time and cor-

rosivity of the surrounding environment [43]. In the solution,

presence of some aggressive ions is incorporatedwith the ZnO

surface and substitutes some oxide ions in the oxide layer

film. In the solution, the presence of aggressive ions like

Cl�,PO4
�3, HPO4

�2, SO4
�2 is incorporated in the ZnO/Zn(OH)2 film

and affect its properties [71,72]. According to a complex ion

theory of corrosion, aggressive anions may substitute some

oxide ion in the oxide film and form chemical species in the

medium. Dissolution of the metal depends upon the relative

stability of ions and the nature of anions [70,73].

3.4. Surface analysis

3.4.1. FESEM analysis
Fig. 6 (a) and (b) show the micrographs of the Zn alloy speci-

mens before and after immersion in SBF solution. Fig. 6 (a)

depicts the smooth polished surface of Zn alloy and some

scratches marks during abrasion. However, Fig. 6 (b) illus-

trates the corroded rough surface due to the aggressive attack

from the corrosive solution. The formation of some short fi-

bers is witnessed in 6 (b) due to the formation of zinc hy-

droxide on metal specimens after immersion in SBF solution

for 2 h (vide supra, section 3.1.2). On increase in the immersion

time up to 168 h, the agglomerates form a passive layer, which

is formed due to deposition of hydroxides as manifest from

corresponding enhanced EDX profile of oxygen atom.With the

prolongation of immersion time, the whole surface was

covered by nano-rods and large clusters were deposited over

the samples. This is also evident from Fig. 6 (c) that the for-

mation of Zn(OH)2 nano-strands or agglomerates observed
compared to nano-fibers in 6 (b) and polished zinc specimen 6

(a). This variation of morphology in zinc hydroxide (nano-fi-

bers, agglomerates and nano-strand) is widely changed with

varying concentrations of zinc ions [74]. The present finding of

Zn(OH)2 passive film formation after 2 h is corroborated with

the results of section 3.1.2 (vide supra) and further evidence

was given in subsequent XPS section (vide infra).

According to the EDX line scan profile, it can be seen that

the corrosion product layer contains Zn, C, S and O, which

were formed (zinc oxide/hydroxide/zinc carbonate) during the

168 h immersion time (Fig. 6 d). It was found that the intensity

of the Zn signal from the corrosion layer became weaker than

that of the substrate, since Zn dissolved during immersion

and formed corrosion products at the interface.

An EDX analysis shows that Zn degradation is gradually

increased in SBF. Meanwhile, zinc hydroxide remains the

longer signal with constant immersion on the surface of the

sample. Elemental mapping and the atomic percentage (see

ESIy Figs. S1eS3 and Table S2) for the corresponding ele-

ments are also supporting the findings.

3.4.2. XRD analysis
The XRD pattern of Zn specimens in the presence and absence

of SBF solution at 2 h and 168 h are shown in Fig. 7. The

diffraction peak at about 2q ¼ 36.27 can be indexed to (002) is

attributed to ZnO (zincite, JCPDS 36e1451), along with other

main peaks at 39.13 , 54.35 can be indexed to (311) (110) cor-

responding to the Zn(OH)2 orthorhombic structure (wulfingite,

JCPDS 38e0385). Additionally, secondary peaks at 69.93 and

77.16 corresponding to (112) (202) also confirm Zn(OH)2 [75].

Moreover, the intensities of the dominant peaks are

strengthened on all XRD profile in 168 h of exposure period

promotes the formation of Zn(OH)2 confirming the predictions

of higher exposure period favored for the transformation from

ZnO. Low intensity significant peaks (inset of Fig. 7) at 28.08

(102, JCPDS 09e0432), 30.75 (241, JCPDS 74e2275), and 32.76

(104, JCPDS 8e0049) were observed with the time prolonged,

indicating the formation of Ca3 (PO4)2, Zn3(PO4)2, and ZnCO3

respectively on surface is apparent after immersion for longer

time [53] (see ESIy and Table S3). The absence of peaks from

corrosion products comprises the amorphous state of corro-

sion products in 2 h of immersion.

3.4.3. XPS analysis
Fig. 8 shows the XPS analysis of Zn alloy samples immersed in

the SBF solution after 2 h and 168 h,which is used to assess the

chemical composition of the samples. The C 1s spectra for 2 h

and 168 h (Fig. 8 (b-c)) indicates the presence of C on the Zn-

alloy surface. The 2 h sample indicates the presence of

adventitious carbon (binding energy 284.8 eV) [76], whereas

the 168 h sample indicates the presence of adventitious car-

bon along with a higher amount of carbonate carbon (binding

energy 287.5 eV) [77]. The small binding peak at 291.7 eV can

be clearly observed, providing evidence of trapped CO2 in the

corrosion product [78]. The formation of the ZneOH on the

specimen surface has been confirmed from the peak at

531.4 eV corresponding to the O 1s spectra ((Fig. 8 (d))

[75](along with this some oxoanions like, PO4
3�, HPO4

2� and

CO3
2� present in corrosion products in prolonged exposure

period. Fig. 8 (e). spectra display a maxima in the range of 533
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https://doi.org/10.1016/j.jmrt.2020.12.050


Fig. 8 e XPS spectra of Zn alloy (a) XPS survey overview spectra (bec) after immersion of C 1s for 2 h and 168 h in SBF (dee)

after immersion of O 1s for 2 h and 168 h in SBF (feg) after immersion of Zn 2p for 2 h and 168 h in SBF (hei) after immersion

of Cl 2p for 2 h and 168 h (j, k) after immersion of P 2p for 2 h and 168 h in SBF.
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Fig. 9 e 2-D and 3-D atomic microscope image of Zn alloy in SBF solution (aeb) polished Zn alloy (ced) 168 h immersion

period.
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and 534 eV confirmed the adsorbed multilayer H2O on zinc

specimen corrosion product [79,80]. The presence of Cl on the

surface of the Zn alloy as part of the corrosion product was

also established by XPS analysis (Fig. 8 (f, g)). The 198.3 eV and

199.5 eV binding energy is assigned for Cl 2p signal for ZnCl2
species (2 h and 168 h sample) [81] and 197.8 eV binding energy

corresponds to presence of Cl as part of KCl [82]. The binding

energy of 1021.6 eV is associated with Zn 2p3/2þelectron. This

band aging suggests that the Zn present as basic zinc car-

bonate or probably as hydrozincite [Zn5(CO3)2(OH)6], in both

2 h and 168 h samples (Fig. 8 (h, i)) [65]. A small peak at

1023.1 eV in the 2 h sample indicates the presence of Zn as

ZnCl2 which is not present in the 168 h sample. The disap-

pearance of 1023.1 eV binding energy peak in the 168 h sample

indicates the transformation of ZnCl2 as a different corrosion

product [83]. A binding energy peak at 1024.5 eV in the 168 h

sample indicates the presence of Zn as Zn3(PO4)2. The further

analysis of Fig. 8 (j) and (k) indicates the accumulation of

Zn3(PO4)2 as a corrosion product. The peaks P, 2p shifted to-

wards lower binding energy in the P and P þ Zn absorption

system, also exhibits a similar chemical environment for

phosphorus [84]. The ratio 1:2 of Zn/Cl was observed, which

confirmed the formation of ZnCl2. However, The range of 1:1

and 3:2 was observed for Zn/O, Zn/P further confirmation of

Zn(OH)2, Zn3(PO4)2 compound on the surface of Zn alloy.

3.4.4. Atomic force microscopy (AFM)
The changes in topography on the Zn alloy surface were

examined with AFM technique (2-D and 3-D tapping mode).
The surface topography of the Zn alloy changes with increase

in immersion time. The polished surface of the Zn alloy,

revealed a flat substrate, consisting of small nodular struc-

tures, which, apparently, are ordered along the polishing lines

(Fig. 9 a, b). The average roughness (Ra) of themetal alloy were

6.87 nm. After increasing the immersion time to 168 h, the

substrate surface looks rougher and the grain was observed

with an average roughness (Ra) of 115 nm (Fig. 9 c, d).
4. Conclusion

The initial corrosion behavior of Zn alloy in SBF solution was

investigated by immersion, electrochemical and surface

analysis up to 168 h to estimate the longevity of these im-

plantation materials. The Zn alloy displayed a uniform

corrosion rate in SBF solution via an immersion test. A ho-

mogenous distribution of corrosion products occurs on the

metal alloy surface. After 120 h of immersion time, the stable

corrosion products were formed over the surface of the Zn

alloy, which caused a passivation on the surface of Zn alloy.

The initial corrosion products mainly ZnO, Zn(OH)2 [Zn5(-

CO3)2(OH)6], Zn3(PO4)2, ZnCl2, etc. were obtained during the

immersion time, which was confirmed by XPS, SEM analysis.

From the XPS analysis, binding energy shifts in Zn 2p 3/2

combined with P 2p and Cl 2p spectra agrees with Zn 2p3/2

spectra, confirming the formation of Zn3(PO4)2, ZnCl2 respec-

tively. Surface roughness andmorphology was increasedwith

exposure time in SBF solution and crystalline nature of the Zn
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alloy was evaluated by XRD analysis. Hence, these observa-

tions support the uses of Zn alloy in orthopedic implantation

as a biodegradable material.
Note

XPS values obtained from NIST database (NIST XPS database

version 4.1).
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