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Abstract

We calculate the fourth cluster coefficients of the homogeneous unitary spin 1/2 Fermi gas as functions of the internal-
state mass ratio, over intervals constrained by the 3- or 4-body Efimov effect. For this we use our 2016 conjecture
(validated for equal masses by Hou and Drut in 2020) in a numerically efficient formulation making the sum over
angular momentum converge faster, which is crucial at large mass ratio. The mean cluster coefficient, relevant for
equal chemical potentials, is not of constant sign and increases rapidly close to the Efimovian thresholds. We also
get the fourth virial coefficients, which we find to be very poor indicators of interaction-induced 4-body correlations.
We obtain analytically for all n the cluster coefficients of order n + 1 for an infinity-mass impurity fermion, matching
the conjecture for n = 3. Finally, in a harmonic potential, we predict a non-monotonic behavior of the 3 + 1 cluster
coefficient with trapping frequency, near mass ratios where this coefficient vanishes in the homogeneous case.
Keywords: Fermi gases; unitary limit; scale invariance; virial expansion; cluster expansion

1. Introduction to the problem and main results

The system. Our object of study is a three-dimensional gas of non-relativistic neutral fermions with two internal states
↑ and ↓, in the regime of maximum interaction allowed in the gas phase, i.e. in the so-called unitary limit [1, 2]: there
is no interaction between fermions in the same internal state but a binary zero-range interaction, exclusively in the
s-wave and of infinite scattering length between fermions of different internal states. 1 We consider the general case
where the fermion masses m↑ and m↓ can be different in the two internal states, which is the originality of our work.
This system is realizable in laboratory with trapped cold atomic gases and its main properties at equilibrium have
been determined experimentally, in particular its superfluidity at low temperature in the unpolarized case (with equal
numbers of ↑ and ↓ fermions) [3, 4] and its equation of state at any temperature and polarization [5, 6, 7], only in the
case m↑ = m↓ however.

Cluster and virial expansions. Given the strength of the interactions, which provides no obvious small parameter,
there are few theoretical tools for quantitatively reliable predictions on the unitary gas that can be compared to mea-
surements. One of them is the diagrammatic Monte Carlo simulation of the many-body problem on a computer
[8, 9]. Another is the cluster or virial expansion [10] of the pressure P of the spatially homogeneous infinite gas
into powers of the fugacities zσ = exp(βµσ) or of the phase space densities ρσλ3

σ in the strongly non-degenerate
regime where they tend to zero, with ρσ the density of the σ =↑, ↓ component in real space, µσ its chemical potential,

1. This situation corresponds to the replacement of the interaction potential by the Wigner-Bethe-Peierls contact conditions on the wave
function ψ of the system in each spin configuration | ↑ . . . ↑↓ . . . ↓〉 = | ↑〉⊗n↑ | ↓〉⊗n↓ : when the distance ri j between particle i in internal state ↑ and
particle j in internal state ↓ tends to zero at a fixed position Ri j of their center of mass, the positions rk of the other particles being fixed at values
different from Ri j, there exists a constant Ai j (function of Ri j and of the rk’s) such that ψ(r1, . . . , rn↑+n↓ ) = Ai j(a−1 − r−1

i j ) + O(ri j) where a is the
scattering length, and this for all i and for all j. Here, we are in the unitary limit 1/a = 0.
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λσ = (2π~2/mσkBT )1/2 its de Broglie thermal wavelength at temperature T , and β = 1/kBT [11] :

Pλ3

kBT
=

∑
(n↑,n↓)∈N2∗

bn↑,n↓z
n↑
↑

zn↓
↓

=
∑

(n↑,n↓)∈N2∗

cn↑,n↓ (ρ↑λ
3
↑
)n↑ (ρ↓λ3

↓
)n↓ (1)

To scale the pressure, it was necessary to introduce a reference de Broglie thermal wavelength λ = (2π~2/m̄kBT )1/2

depending on a mean mass m̄ to be specified. One can then try to extrapolate to the non-trivial regime zσ ≈ 1 with
heuristic recipes such as the Padé approximant [12] or optimized resummation methods [13] which take into account
the behavior of the coefficients at large orders. The cluster or virial expansion is preferred over the Monte Carlo
simulation because it is closer to the analytical calculation, the coefficients of order n being deduced from the solution
of a problem with at most n interacting fermions, i.e. with few bodies: to obtain bn↑,n↓ , it suffices to determine the
canonical partition functions of all systems with nσ or less fermions in each internal state σ.

The unitary limit. The scale invariance of the unitary gas simplifies considerably the calculation of cluster coefficients
for n > 2 (the order two, given in all generality by the Beth-Uhlenbeck formula [14, 15, 16], is not debated). Thus,
the third-order coefficients are known analytically, even if the scale invariance at the three-body level is broken by
the Efimov effect [17, 18], in sharp contrast to the model of hard sphere interaction of radius a where the coefficients
are known analytically (for bosons) only in the limiting cases λ/a � 1 [19, 20, 21, 22] or� 1 [23, 24, 25, 26]. The
harmonic regulator method [27, 28, 29, 30], consisting in trapping each component of the gas in a fictitious isotropic
harmonic potential, Uσ(r) = mσω

2r2/2, whose trapping frequency ω (common to both internal states) is made to tend
to zero at the end of the calculations, allows us to take full advantage of the scale invariance since the n-body spectrum
in the trap is deduced from the discrete set of scale exponents si of the zero energy E = 0 eigenstates in free space
[1, 31]. More precisely, we generalize the cluster expansion to the trapped case, replacing the pressure by the grand
potential Ω and taking its ratio to the partition function Z1 = 1/[2 sh(ω̄/2)]3 of a single fermion, 2 so that

−Ω

kBTZ1
=

∑
(n↑,,n↓)∈N2∗

Bn↑,n↓ (ω̄) zn↑
↑

zn↓
↓

(2)

The coefficients of the trapped case, marked by a capital letter to avoid confusion, depend only on the dimensionless
ratio ω̄ =~ω/kBT thanks to the scale invariance of the unitary gas. They are related to those of the homogeneous case
by means of the local density approximation, exact in the limit ω→ 0 [29, 30] and giving [18]:

bn↑,n↓ =
(n↑m↑ + n↓m↓)3/2

m̄3/2 Bn↑,n↓ (0
+) (3)

This method leads to an analytic integral expression of the third order coefficients because the transcendental Efimov
function Λ(s), whose roots are the scale exponents si, is known explicitly [32, 33, 34, 35] which allows to express the
coefficients as a contour integral around R+ by means of the residue theorem and then to unfold the contour on the
pure imaginary axis by analyticity on C \ R [17]. On the other hand, for non-trivial fourth order coefficients, 3 the
Efimov function is the determinant of operators M3,1(s) [36] or M2,2(s) [37] parametrically dependent on s, which we
know how to compute numerically only on the pure imaginary axis s = iS and whose imperfectly known analytical
properties in the complex plane do not guarantee a safe use of the residue theorem. Therefore reference [38] could
only produce a conjecture, which we briefly recall.

Our 2016 conjecture on the fourth cluster coefficients. As in reference [37], we introduce the integral expression
modeled on that of the third order coefficients (Λ(s) is replaced by an operator determinant):

In↑,n↓ (ω̄) =

+∞∑
`=0

∑
ε

(` + 1/2)
∫ +∞

−∞

dS
2π

sin(ω̄S )
sh ω̄

d
dS

ln det[M(`,ε)
n↑,n↓ (iS )] (4)

2. Indeed, the numerator in the first side of equation (1) can be seen, in a quantization box of arbitrarily large volume V , as the ratio between
the opposite PV of the gas grand potential and the partition function V/λ3 of a fictitious single particle of mass m̄.

3. If one of the nσ is zero, the fermions of the n-body problem are non-interacting and the corresponding B coefficient reduces to that of the ideal
gas. We thus find Bn,0(0+) = B0,n(0+) = (−1)n+1/n4 and, by means of relation (3), bn,0 = (m↑/m̄)3/2(−1)n+1/n5/2 and b0,n = (m↓/m̄)3/2(−1)n+1/n5/2.

2



where the sum is taken on the internal angular momentum ` (i.e. after separation of the center of mass) of the four-body
eigenstates and their internal parity ε = ±1 (limited to ε = 1 for ` = 0), and where the operator Mn↑,n↓ (iS ) is restricted
to the corresponding (`, ε) subspace. Then In↑,n↓ (ω̄) gives exactly Bn↑,n↓ (ω̄) (as is the case at order three) when the
asymptotic decoupled objects (independent non-monoatomic packets of fermions strongly correlated by interactions,
in terms of which the highly excited eigenstates are expressed) are distinguishable; otherwise, the quantum statistical
effect of the indistinguishability of these objects, which contributes to the cluster coefficient even if they do not interact
with each other, is missing, for the same reason that the cluster coefficients of the quantum ideal gas differ from those
of the classical ideal gas. In the (n↑, n↓) = (3, 1) configuration, called 3 + 1 for short, the possible asymptotic objects
are a ↑↑↓ triplon or a ↑↓ pairon of strongly correlated fermions; there can only be one at a time, which rules out any
quantum statistical effect. On the other hand, in the 2 + 2 configuration, the fermions can also decouple into two ↑↓
pairons of correlated fermions, which are indistinguishable bosons; since these bosons do not interact, their partition
function is easily calculated [38]. The conjecture of reference [38] is finally written

B3,1(ω̄) = I3,1(ω̄) ; B2,2(ω̄) = I2,2(ω̄) +
1

32
1

ch ω̄ ch3(ω̄/2)
(5)

the 1 + 3 case being deduced from the 3 + 1 case by exchanging the two internal states thus changing the mass ratio
α = m↑/m↓ to its inverse 1/α. For α = 1, conjecture (5) is in agreement with the quantum Monte Carlo calculation
of reference [39] up to the minimal accessible value of ω̄, ω̄ ≈ 1; it is in agreement with a recent, more powerful
numerical calculation up to values of ω̄ � 1 [40, 41]. After using relation (3), it is also in agreement with the same
powerful numerical calculation performed directly in the spatially homogeneous case of a quantization box [42].
Conjecture (5) is thus confirmed for equal masses.

Content of the study. The idea of the present work is to believe in the validity of conjecture (5) for any mass ratio α
and to access the corresponding fourth cluster and virial coefficients, by numerically calculating the determinant of
the operators M(`,ε)

n↑,n↓ (iS ), and then integrating over S and summing over ` and ε in expression (4). In reality, we still
have to put bounds on the mass ratio, because the method of solving the four-body problem in a harmonic trap, at the
basis of expression (5), assumes separability of the internal Schrödinger equation in hyperspherical coordinates; this
is true only if there is no Efimov scale invariance breaking at the three-body level, which constrains us to the intervals

for B3,1 : α < α3 body
c ' 13.60697 ; for B1,3 : α >

1

α
3 body
c

' 0.0734917 ; for B2,2 :
1

α
3 body
c

< α < α
3 body
c (6)

where α3 body
c , also noted α2,1

c , is the threshold for the appearance of the three-body Efimov effect in the ↑↑↓ system,
which occurs in the three-body internal momentum channel L = 1 [32, 43]. In using form (5) of the conjecture, it is
also important to ensure that there is no four-body Efimov effect; 4 indeed, it was shown that such an effect occurs only
in the 3 + 1 or 1 + 3 configuration [36, 37], at mass ratio α4 body

c = α3,1
c or its inverse, hence the additional conditions

for B3,1 : α < α4 body
c ' 13.3842 ; for B1,3 : α >

1

α
4 body
c

' 0.074715 (7)

Once the cluster coefficients are known, the virial coefficients cn↑,n↓ are easily deduced, as rational functions of bn′
↑
,n′
↓

of total order n′
↑

+ n′
↓

less than or equal to n↑ + n↓: 5

c1,0 = b1,0 ; c2,0 = −b2,0 ; c3,0 =
4b2

2,0

b1,0
− 2b3,0 ; c4,0 = −3b4,0 −

20b3
2,0

b2
1,0

+
18b3,0b2,0

b1,0
; c1,1 = −b1,1 (8)

4. This is improvable. One could complement the 3 + 1-body contact condition of the usual zero range interaction model of footnote 1 by
means of a length called 〈〈 3 + 1-body parameter 〉〉 in the (`, ε) = (1,+1) [36] channel where the 3 + 1-body Efimov effect occurs. In this case,
B3,1(0+) and b3,1 would be smooth functions of α at α = α

4 body
c . Reference [18] proves and implements this for B2,1(0+) that is in the 2 + 1 body

problem.
5. To obtain them, we replace in the expansion of the pressure in the third side of equation (1) the densities by their virial expansion ρσλ3 =∑

(n↑ ,n↓)∈N2∗ nσbn↑ ,n↓ z
n↑
↑

z
n↓
↓

from the thermodynamic relation ρσ = ∂µσP, and we adjust the cn↑ ,n↓ order by order (for example with the help of a
formal calculation software) to find the expansion in the second side of equation (1). It is simpler, at first, to write the virial expansion in the form of
Pλ3/kBT =

∑
(n↑ ,n↓)∈N2∗ an↑ ,n↓ (ρ↑λ

3)n↑ (ρ↓λ3)n↓ and then, once the coefficients an↑ ,n↓ have been calculated, to use the relation cn↑ ,n↓ = an↑ ,n↓/(t
n↑
↑

t
n↓
↓

)
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c2,1 = −2b2,1 +
4b1,1b2,0

b1,0
+

b2
1,1

b0,1
; c3,1 = −3b3,1−

b3
1,1

b2
0,1

−
6b2

1,1b2,0

b1,0b0,1
−

24b1,1b2
2,0

b2
1,0

+
3b1,1b2,1

b0,1
+

12b2,0b2,1

b1,0
+

9b1,1b3,0

b1,0

(9)

c2,2 = −3b2,2 −
3b3

1,1

b0,1b1,0
− 9b2

1,1

b0,2

b2
0,1

+
b2,0

b2
1,0

 + 6b1,1

(
b1,2

b0,1
−

2b0,2b2,0

b0,1b1,0
+

b2,1

b1,0

)
+

6b0,2b2,1

b0,1
+

6b1,2b2,0

b1,0
(10)

plus the equations obtained by exchanging the two internal states ↑ and ↓. Our expressions of cn,0 are in agreement
with equation (10.33) of reference [10], except that they extend it to a ratio m↑/m̄ different from unity through the
coefficient b1,0 = λ3/λ3

↑
.

Before presenting our results, we need to choose the reference mass m̄. To do so, we rely on the particular form
of the cluster expansion commonly used in the literature for equal fugacities, which puts the number of internal states
of the fermions as a factor of the series,

Pλ3

kBT
zσ=z
≡ 2

+∞∑
n=1

bnzn with bn =
1
2

n∑
n↑=0

bn↑,n−n↑ (11)

see in particular references [5, 7] where b4 is measured for equal masses. 6 Having pulled out such a factor is only
of interest if the coefficient b1 takes the very simple value equal to one. From footnote 3, we thus derive the natural
choice 7

b1 = 1 =⇒ m̄3/2 =
1
2

(m3/2
↑

+ m3/2
↓

) hence
1
λ3 =

1
2

 1
λ3
↑

+
1
λ3
↓

 (12)

This choice also makes the virial expansion very simple in the case of equal phase space densities in the two internal
states: one then has the nice expression ρσλ3

σ = ρλ3/2 for the joint value, where ρ = ρ↑ + ρ↓ is the total density, and
one sets as in equation (11):

Pλ3

kBT
ρσλ

3
σ=ρλ3/2
≡ 2

+∞∑
n=1

cn(ρλ3/2)n with cn =
1
2

n∑
n↑=0

cn↑,n−n↑ (13)

The results. We plot the unitary gas non-trivial fourth cluster coefficients (different from those of the ideal gas)
as functions of the mass ratio α in figure 1a (the values b4,0 = −(m↑/m̄)3/2/32 and b0,4 = −(m↓/m̄)3/2/32 taken
from footnote 3 are thus not represented but of course contribute to b4). The logarithmic scale used on the x-axis
highlights the α ↔ 1/α symmetry. For a mass ratio α = 1, we find the value b4 = 0.030(1) conjectured by reference
[38] and confirmed numerically by reference [42]. As we move away from this point, the behavior of b4 is first
imposed by b2,2 which causes it to change sign (the black curve and the green curve are almost parallel), before
b3,1 or b1,3 prevails at high mass ratios α or 1/α and causes b4 to rise to large and positive values. At the α4 body

c

or 1/α4 body
c thresholds of the 3 + 1- or 1 + 3-body Efimov effect, marked by dotted vertical lines, b4 has a finite

limit but an infinite derivative like b3,1 or b1,3, see section 2 below and footnote 4. On the other hand, b2,2 remains

where we have put tσ = (m̄/mσ)3/2. Note that b1,0t↑ = b0,1t↓ = 1, and that a1,0 = a0,1 = 1 whatever the reference mass m̄ according to the ideal gas
law P = (ρ↑ + ρ↓)kBT . Replacing bn,0 and b0,n by their expressions given in footnote 3, we finally get c3,1 = (−3/4 + 1/

√
3)b1,1 − (3/

√
2)b2,1 −

3b3,1 + 3b1,1(b2,1 + b1,1/
√

8)t↓ −b3
1,1t2
↓
, c2,2 = −3[b2,2 + (b1,2 + b2,1)/

√
8 + b1,1/8] + (9

√
2/8)b2

1,1(t↑ + t↓) + 6b1,1(b2,1t↑ + b1,2t↓)−3b3
1,1t↑t↓ (the ideal

gas coefficients c4,0 and c0,4 are given in explicit form later in the main text). We easily derive b11 from equation (3) knowing that B1,1(0+) = 1/2.
On the other hand, b2,1 and b1,2 are computed numerically from explicit integral expressions of reference [18].

6. The values of b4 measured at ENS and MIT are in agreement with each other but within a factor ' 2 and respectively within ' 2σ and
' 3.5σ of the now accepted value [42], where σ is the experimental uncertainty. In the case of ENS, the discrepancy is due to the fact that all usable
pressure data are of fugacity z > 1 and their naive extrapolation to z = 0 fails. Indeed, the series (11) converges slowly and cannot be truncated to a
good approximation at n = 4 even for a value as small as z = 0.22, see the augmented version [44] of publication [38] which draws this conclusion
from the high precision equation of state obtained by diagrammatic Monte Carlo [13, 8].

7. In the context of footnote 2, this choice amounts to taking as a reference one-body partition function Z̄1 the arithmetic mean of Z1↑ and Z1↓.
It reduces indeed to m̄ = m in the case of equal masses m↑ = m↓ = m. It ensures that the factor relating the trapped case to the homogeneous case in
equation (3) is a uniformly bounded function of the masses (bounded from above by 2(n3

↑
+ n3
↓
)1/2 according to Hölder’s inequality of parameters

p = 3/2 and q = 3). These conditions are not satisfied if we take for m̄ the reduced mass of two ↑ and ↓ fermions as in reference [18].
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Figure 1: For a spatially homogeneous unitary Fermi gas with two internal states ↑ and ↓, fourth cluster (a) and virial (b) coefficients defined by
equations (1,11,13) and predicted by conjecture (5) of reference [38], as functions of the mass ratio α = m↑/m↓. The ↑↓ zero-range interaction is
assumed to be scale-invariant in the four-body problem, which forces one to restrict oneself to the mass ratios between the critical values of the 3+1-
and 1 + 3-body Efimov effect, indicated by the vertical dotted lines. In (a), the thin vertical lines mark the points where b4 vanishes (always with
sign change), namely α ' 1.535 and α ' 10.355 on the α > 1 side, and the inset is an enlargement (the calculated points are represented by disks on
interpolation lines). In (b), the dashed curve neglects in c4 the true interaction-induced four-body component, the one ccorr

4 = −3(b1,3 +b2,2 +b3,1)/2
that depends on b3,1, b2,2 or b1,3, to represent cno corr

4 = c4 − ccorr
4 .

a smooth function, and would only exhibit an infinite derivative at the thresholds of the three-body Efimov effect,
see section 3. In figure 1b, we see that the non-trivial fourth virial coefficients (other than c4,0 = A4(m↑/m̄)3/2 and
c0,4 = A4(m↓/m̄)3/2, with A4 = (18 + 15

√
2− 16

√
6)/192 ' 1.11× 10−4) have a similar structure even though they are

of constant sign. We also notice that coefficient c4 depends little or very little on the four-body correlations induced
by the interactions: an approximation of c4 neglecting the contributions of the cluster coefficients b3,1, b2,2 and b1,3,
represented in dashed line in figure 1b, is everywhere close or very close to c4. Even if the fairly recent possibility to
prepare spatially homogeneous cold atomic gases in a flat-bottom potential box [45, 46] makes the measurement of
the virial coefficients cn very natural, since the densities ρσ are directly accessible there, this last prediction makes it
less motivating than the measurement of the cluster coefficients bn in an inhomogeneous gas according to the specific
technique for the harmonically trapped case [5], in which the chemical potentials µσ are the relevant variables to be
used. 8 For all practical purposes, we also give the fourth cluster and virial coefficients in numerical form in table 1.

Outline of the rest of the article. In the following, we explain how we were able to obtain accurate results in a
reasonable computation time, in particular by means of a convergence acceleration of the sum on ` in expression (4)
relying on an asymptotic expansion of the summand and playing an essential role near the efimovian thresholds. To
do so, we had to generalize the analytical method of reference [37], implemented for 3 + 1 bodies, to the much more
difficult case of 2 + 2 bodies. In the 3 + 1-body case, we also highlight an unexpected non-monotonic dependence of
B3,1(ω̄) in ω̄, with change of sign, for mass ratios α close to 3.5 or 6.6. Section 2 deals with the 3 + 1-body case and
section 3 with the 2 + 2-body case in a harmonic potential.

2. Cluster coefficient for 3 + 1 fermions in a trap

We explain in this section how to perform an efficient numerical calculation of the quantity I3,1(ω̄) defined by
equation (4), for any value (zero or positive) of the reduced trapping frequency ω̄ = ~ω/kBT . The desired cluster
coefficient B3,1(ω̄) follows directly from conjecture (5).

8. In a trapping potential U(r) common to both internal states and very elongated along the eigenaxis Oz, the cold-atom gases are well described
by the local density approximation, and thus have well-defined local chemical potentials on the axis µloc

σ (z) = µσ − U(0, 0, z), which makes the
measurement of the grand-canonical equation of state, and thus of the cluster coefficients, very straightforward, following the clever proposal of
reference [47], which is usable however only if U(r) is harmonic.
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α 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
b3,1 0.1837 0.1604 0.1247 0.08238 0.03726 −0.007203 −0.04762 −0.07982 −0.09941 −0.1016
b1,3 0.18374 0.18672 0.18199 0.17641 0.17133 0.16696 0.16325 0.16010 0.15740 0.15508
b2,2 −0.2445 −0.2781 −0.3469 −0.4321 −0.5283 −0.6328 −0.7448 −0.8637 −0.9890 −1.1209
b4 0.03026 0.003256 −0.05135 −0.1179 −0.19110 −0.2678 −0.3458 −0.4229 −0.4968 −0.5649

c3,1 −2.2558 −4.4056 −7.3318 −11.100 −15.773 −21.407 −28.050 −35.737 −44.495 −54.332
c1,3 −2.2558 −1.2265 −0.8296 −0.6292 −0.5114 −0.4350 −0.3820 −0.3433 −0.3139 −0.2910
c2,2 −7.1913 −7.3897 −7.7991 −8.3081 −8.8748 −9.4800 −10.111 −10.758 −11.415 −12.078
c4 −5.8513 −6.5108 −7.9801 −10.018 −12.580 −15.661 −19.271 −23.419 −28.112 −33.350
α 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5

b3,1 −0.07925 −0.02715 0.06412 0.2022 0.4010 0.6724 1.0339 1.5059 2.1195 2.9095
b1,3 0.15305 0.15128 0.14972 0.14833 0.14708 0.14597 0.14496 0.14404 0.14321 0.14244
b2,2 −1.2590 −1.4034 −1.5542 −1.7113 −1.8749 −2.0452 −2.2223 −2.4077 −2.6003 −2.8015
b4 −0.6239 −0.6709 −0.7014 −0.7116 −0.6947 −0.6447 −0.5530 −0.4101 −0.2001 0.09397

c3,1 −65.248 −77.214 −90.190 −104.10 −118.85 −134.28 −150.20 −166.33 −182.32 −197.64
c1,3 −0.2725 −0.2574 −0.2449 −0.2343 −0.2252 −0.2174 −0.2105 −0.2045 −0.1991 −0.1944
c2,2 −12.740 −13.397 −14.044 −14.676 −15.288 −15.873 −16.423 −16.926 −17.374 −17.747
c4 −39.130 −45.434 −52.239 −59.505 −67.180 −75.184 −83.417 −91.733 −99.948 −107.79
α 11 11.5 12 12.5 12.75 13 13.1 13.2 13.3 13.3842

b3,1 3.9362 5.2839 7.0993 9.7004 11.522 14.042 15.402 17.152 19.728 26.101
b1,3 0.14174 0.14109 0.14049 0.13993 0.13967 0.13941 0.13932 0.13922 0.13912 0.13904
b2,2 −3.0120 −3.2360 −3.4725 −3.7278 −3.8654 −4.0133 −4.0767 −4.1430 −4.2140 −4.2784
b4 0.5017 1.0632 1.8524 3.0250 3.8667 5.0528 5.7008 6.5428 7.7951 10.950

c3,1 −211.58 −223.04 −230.30 −230.37 −225.99 −217.03 −211.71 −205.24 −198.00 −200.77
c1,3 −0.1901 −0.1863 −0.1828 −0.1796 −0.1781 −0.1766 −0.1761 −0.1756 −0.1750 −0.1746
c2,2 −18.025 −18.163 −18.114 −17.767 −17.414 −16.864 −16.561 −16.189 −15.720 −15.213
c4 −114.90 −120.69 −124.30 −124.16 −121.79 −117.04 −114.22 −110.80 −106.95 −108.08

Table 1: Numerical values of the fourth cluster coefficients bn,4−n and virial coefficients cn,4−n of the spatially homogeneous unitary gas of two-state
↑ and ↓ fermions, tabulated as functions of the mass ratio α = m↑/m↓, for choice (12) of the reference mass m̄. As we go from bn,4−n to b4−n,n
and from cn,4−n to c4−n,n by changing α to 1/α, we restrict to α ≥ 1. We do not give the coefficients associated with the integers n = 0 and n = 4
because they are identical to those of the ideal gas, but we give the mean coefficients b4 and c4 useful in the case of equal fugacities or phase-space
densities in the two internal states, see equations (11) and (13). The uncertainties, not specified, are less than one percent. The given values are
shown graphically in figure 1.

Formulation of the problem. Let us first recall the expression of the operator M(`,ε)
3,1 (iS ) involved in equation (4), as it

appears in reference [36]. We are dealing with the sum of a diagonal part D1,3 and a kernel operator K3,1 acting on
functions fmz (x, u) of two continuous variables, the logarithm x ∈ R+ of the norm ratio of two wavevectors and the
cosine u = cos θ ∈ [−1, 1] of the angle between them, and a discrete variable, the magnetic quantum number mz along
the quantization axis Oz, varying in steps of two between −` and ` for ε = (−1)`, and between −` + 1 and ` − 1 for
ε = (−1)`−1 and ` , 0. It reads in a mixed Dirac and Schrödinger notation:

〈x, u|〈`,mz|M
(`,ε)
3,1 (iS )| f 〉 = D3,1(x, u) fmz (x, u) +

∫ +∞

0
dx′

∫ 1

−1
du′

∑
mz | (−1)mz =ε

K
(`)
3,1(x, u,mz; x′, u′,m′z) fm′z (x′, u′) (14)

The diagonal part is independent of angular momentum and scaling exponent iS , and the kernel K3,1 is obtained by
symmetrization of a primitive kernel K3,1 because we took advantage of the fermionic exchange symmetry of the state
vector to restrict to x > 0: 9

D3,1(x, u) =
(1 + 2α + αu/ ch x)1/2

1 + α
; K

(`)
3,1(x, u,mz; x′, u′m′z) =

∑
η,η′=±1

(ηη′)`+1K(`)
3,1(ηx, u, ηmz; η′x′, u′, η′m′z) (15)

9. In Dirac notation, K(`)
3,1 = (1 + U)K(`)

3,1(1 + U) with the Hermitian involution U = −PxeiπLx/~, the parity operator Px changing |x〉 into | − x〉
and the rotation operator of axis Ox of angle π such that exp(iπLx/~)|`,mz〉 = (−1)` |`,−mz〉 [37].
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The matrix elements of the primitive kernel depend on iS and contain an integral over a rotation angle φ around axis
Ox, Lx being the angular momentum operator along this direction:

K(`)
3,1(x, u,mz; x′, u′,m′z) =

(λλ′)3/2

[(1 + λ2)(1 + λ′2)]1/4

∫ 2π

0

dφ
2π2

(1 + λ2)iS/2e−imzθ/2〈l,mz|eiφLx/~|l,m′z〉e
im′zθ

′/2(1 + λ′2)−iS/2

1 + λ2 + λ′2 + 2α
1+α

[λu + λ′u′ + λλ′(uu′ + vv′ cos φ)]
(16)

where, as in reference [36], we have put for abbreviation:

λ = ex, λ′ = ex′ , θ = arccos u ∈ [0, π], θ′ = arccos u′ ∈ [0, π], v = sin θ, v′ = sin θ′ (17)

To evaluate I3,1(ω̄) numerically, one must first replace the operator by a matrix of finite size, by truncating the
variable x to xmax and discretizing it according to the midpoint integration method, then by discretizing the variable θ
(which we prefer to the variable u because it leads to a smooth integrand) according to the Gauss-Legendre integration
method. Then we compute the determinant of the matrix by putting it in the Cholesky form, to take advantage of the
fact that the operator M(`,ε)

3,1 (iS ) is positive in the absence of 3 + 1-body Efimov effect. Finally, we compute the
integral over S in the interval [0, S max] by the midpoint method (we need to know the logarithm of the determinant at
integer multiples of the integration step dS to obtain its derivative at half-integer multiples) and we take into account
the contribution of the omitted interval [S max,+∞[ by means of an exponential approximation A exp(−BS ) of the
logarithmic derivative of the determinant justified by reference [37] and obtained by fitting its numerical values on a
neighborhood of S max, in practice the interval [S max − 5/2, S max].

Asymptotic approximant and applications. It remains to take into account the truncation on the angular momentum
` at some `max, unavoidable in a numerical calculation. In practice, it is not reasonable to go beyond `max = 15, high
values of ` leading to a complexity O(`3) and being very expensive in time. Unfortunately, this cut-off is not sufficient
for large mass ratios α � 1 if one aims at an accuracy on B3,1(0+) better than one percent. The saving idea is to
determine an asymptotic approximant J(`,ε)

3,1 (ω̄) of the contribution I(`,ε)
3,1 (ω̄) of angular momentum ` and parity ε to the

desired quantity I3,1(ω̄). Then, instead of neglecting completely the terms I(`,ε)
3,1 (ω̄) for ` > `max, we replace them by

J(`,ε)
3,1 (ω̄) as follows,

I3,1(ω̄) '
`max∑
`=0

∑
ε

I(`,ε)
3,1 (ω̄) +

+∞∑
`=`max+1

∑
ε

J(`,ε)
3,1 (ω̄) =

`max∑
`=0

∑
ε

[
I(`,ε)
3,1 (ω̄) − J(`,ε)

3,1 (ω̄)
]

+

+∞∑
`=0

∑
ε

J(`,ε)
3,1 (ω̄) (18)

which is a method to accelerate the convergence of the series, the error tends to zero more quickly with `max. An exact
asymptotic approximant to subleading order in ` is obtained by generalizing to ω̄ , 0 the method of reference [37],
which takes the kernel K (`,ε)

3,1 as a small formal parameter and expands the logarithm of the determinant of M(`,ε)
3,1 to

second order:

ln det M(`,ε)
3,1 = ln detε[D3,1+K

(`)
3,1] = ln detε[D3,1]+ln detε[ l1+D−1

3,1K
(`)
3,1] = const+Trε

[
D−1

3,1K
(`)
3,1 −

1
2
D−1

3,1K
(`)
3,1D

−1
3,1K

(`)
3,1 + . . .

]
(19)

where the symbol ε in superscript of the trace or determinant means that we restrict ourselves to the subspace of
values of mz compatible with parity ε. The computation is done in Appendix A, and the corresponding expression
of J(`,ε)

3,1 (ω̄) is given in equation (A.3) as multiple integrals. For this already very elaborate choice, the first values of
the approximant (0 ≤ ` ≤ `max) are still easy to compute numerically with the same truncation and discretization as
for the full determinant, but it would be tedious to go to larger values of `, which is however required by the second
sum in the second side of equation (18); fortunately, the infinite series in the third side of equation (18) has a simple
integral expression, see equation (A.15), which can even be expressed analytically for ω̄ = 0+ in terms of known
functions such as the dilogarithm function, see equation (A.16). The reader can judge the efficiency of our asymptotic
approximant in figure 2, where it is compared to the numerical result. The figure shows, as a function of the mass ratio
α, in which angular momentum channels ` the approximant deviates by more than one percent from the exact value
(this is the target accuracy on the cluster coefficient); these channels must be included in the numerical sum from 0 to
`max.
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Figure 2: Contrast between the contribution I(`,ε)
3,1 of the angular momentum ` and parity ε channel to I3,1 and its asymptotic approximant J(`,ε)

3,1
given by equation (A.3), as a function of the mass ratio α = m↑/m↓ and `, in the limit ω̄ = 0+. The contrast between two real quantities a and b
is here the ratio |a − b|/(|a| + |b|). (a) Case ε = (−1)`. (b) Case ε = (−1)(`+1) (which imposes ` > 0). The numerical truncation and discretization
parameters are those of figure 3. The contrast saturates to one (as it happens for ` = 0 and ` = 5 in (a), for ` = 3 in (b)) when the two compared
quantities are of opposite signs.

An interesting by-product of our convergence acceleration method is to obtain an asymptotic equivalent of the
angular momentum ` and parity ε contribution to the cluster coefficient B3,1(0+); it suffices to keep the contribution
linear in K (`)

3,1 in equation (19) and to determine its dominant behavior at large ` with Cauchy’s integral theorem, as
done in Appendix A. We find:

I(`,ε)
3,1 (0+) ∼

`→+∞

1
2

 (1 + α)2

√
α(1 + 3α)

Im

( `

6πC0

)1/2 z0

1 + z0
z`0

 + ε
(1 + α)2

α3/2 Re

( `

2πC1

)1/2 (1 − z1)√
1 − cos ξ1

z`1


 (20)

where

C0 =
(1 − cos ξ0)(5/4 + cos ξ0)
(1/2 + cos ξ0)(z0 − 1/z0)

and C1 = 4(z1 − 1/z1)(cos ξ1 − 1/2)
[
(1 + α−1) cos ξ1 +

1 + 3α−1

4

]
(21)

with the shorthand notation cos ξn ≡ (zn + 1/zn)/2, n = 0 or 1, the complex number z0 given by equation (A.22) and
the complex number z1 = −z∗0. This is the generalization to 3 + 1 fermions of a result obtained for three bosons in
reference [48], see equation (42) of this reference. Thus, to within a power law factor, I(`,ε)

3,1 (0+) tends exponentially to
zero with `, with irregular oscillations due to the fact that the argument of z0 is in general not commensurable to π.

Born-Oppenheimer regime. In the limit α→ 0, we notice that z0 tends to zero in equation (A.22), z0 ∼ i
√
α/3, so we

expect the exponential suppression of the summand in (4) to become very fast for 3 + 1 fermions. This expectation
is confirmed numerically and, for α = 0, only the ` = 0 channel contributes. In this case, the single spin-↓ fermion
is infinitely massive and behaves for the spin-↑ fermions as a fixed pointlike scatterer, of infinite s-wave scattering
length and placed at the center of the trap. The Born-Oppenheimer approximation becomes exact and gives the
time-independent Schrödinger equation on the wave function Ψ(r↓) of the heavy particle: 10

EBOΨ(r↓) =

[
−

~2

2m↓
∆r↓ +

1
2

m↓ω2r2
↓ + W(0)

]
Ψ(r↓) (m↓ → +∞) (22)

10. The particles are at fixed temperature T so, in the m↓ → +∞ limit, the spin-↓ fermion occupies a region around the center of the trap of
radius R = O((kBT/m↓ω2)1/2). On the other hand, the Born-Oppenheimer potential W(r↓) has an energy scale kBT and varies with a length scale
λ↑, the de Broglie thermal wavelength of light fermions, if kBT > ~ω, and is of the order of ~ω and varies with a length scale (~/m↑ω)1/2, the size
of the ground vibrational state of a light fermion, otherwise. The variation of W(r↓) becomes negligible in all cases and we can replace it by W(0).
For the same reason, the so-called scalar or topological potential, which is added to the potential W in the full adiabatic approximation [49], can be
omitted.
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In the n↑ + 1 fermion trapped problem, W(0) is the energy of an eigenstate of n↑ non-interacting fermions in the
presence of the scattering center. A spin-↑ fermion of orbital quantum numbers (n, `,mz) sees the scattering center
only if ` = 0, in which case its spectrum is lowered by ~ω, thus having energy levels

εn,`,mz =

{
(2n + ` + 3/2)~ω if ` > 0
(2n + 1/2)~ω if ` = 0 (n ∈ N,−` ≤ mz ≤ `) (23)

Since the Born-Oppenheimer energy EBO is the sum of W(0) and a vibrational energy level of a spin-↓ particle in the
trap, we conclude that

lim
α→0+

Zn↑,1 = Z1Zscat
n↑ (24)

where Zscat
n↑ is the canonical partition function of a ideal gas of n↑ fermions with spectrum (23), i.e. in the presence

of the fixed scatterer, Z1 is as in equation (2) the partition function of a single fermion and Zn↑,1 is that of the unitary
gas of n↑ + 1 trapped fermions. It is convenient to calculate its deviation ∆Zn↑,1 from that of the ideal gas of n↑ + 1
trapped fermions, since (23) differs from the ordinary spectrum only in the zero angular momentum channel. Taking
into account Fermi statistics via the Pauli exclusion principle, and equations (80) to (83) of reference [38] which relate
the cluster coefficients of the trapped system to the few-body partition functions, we find that

B1,1(ω̄) = Z−1
1 ∆Z1,1 →

α→0+

1
2 ch(ω̄/2)

; B2,1(ω̄) = Z−1
1 ∆Z2,1 − Z1B1,1 →

α→0+
−

1
8 ch2(ω̄/2) ch ω̄

(25)

B3,1(ω̄) = Z−1
1 ∆Z3,1 − Z2,0B1,1 − Z1B2,1 →

α→0+

1
16 ch3(ω̄/2)(ch ω̄)(2 ch ω̄ − 1)

(26)

The value (26) of the limit is in perfect agreement with our numerical calculation of expression (4) not only for ω̄ = 0+,
where B3,1(0+) → 1/16 = 0.0625, as seen in figure 3a, but, as we have verified, for all ω̄, which is an additional test
of conjecture (5) in the 3 + 1-body case. 11 Let us point out in passing that it is possible to go to the next orders by
using the grand-canonical version of equation (24),

Ξ =
z↓→0 then α→0+

Ξ↑ + z↓Z1Ξscat
↑

+ O(z2
↓) (27)

where Ξ↑ (Ξscat
↑

) is the grand partition function of the ideal gas of spin-↑ fermions of fugacity z↑ in the absence
(presence) of the scattering center and Ξ is that of the two-component unitary gas. Expanding the grand potential
Ω = −kBT ln Ξ as in equation (2), we obtain 12

+∞∑
n↑=0

zn↑
↑

lim
α→0+

Bn↑,1(ω̄) =
Ξscat
↑

Ξ↑
=

+∞∏
n=0

1 + z↑e−(2n+1/2)ω̄

1 + z↑e−(2n+3/2)ω̄ = exp

 +∞∑
s=1

(−1)s+1zs
↑

2s ch(sω̄/2)

 (28)

In the special case ω̄ = 0+, the exponential in the fourth side of (28) reduces to
√

1 + z↑, easy to expand into powers
of z↑, hence the result at all orders in terms of Euler’s Γ function:

lim
α→0+

Bn↑,1(0+) =
(−1)n↑Γ(n↑ − 1/2)

n↑! Γ(−1/2)
∀n↑ ∈ N (29)

The results. Our numerical results for I3,1(0+), hence for the cluster coefficient B3,1(0+) from equation (5), are given
explicitly in table 2 and are plotted as functions of the mass ratio in figure 3a, with no error bars but with an uncertainty
of less than one percent. We find that B3,1(0+) is positive, except over an interval [α1, α2], as best seen on the

11. In the 2 + 1-body case, starting from the analytic integral expression of B2,1(ω̄) of reference [18] in terms of the transcendental Efimov
function Λ

(`)
2,1 on the pure imaginary axis, and by showing in the limit α → 0+ that Λ

(`)
2,1(iS ) tends to 1 for ` > 0 and tends to 1 + 1/ ch(πS/2) for

` = 0 (for example by means of equation (46) of reference [35]), we find the second result in equation (25).
12. A sum over an integer s in the fourth side was introduced by taking the logarithm of the infinite product in the third side, expanding around

1 the function ln into an integer series of index s and then summing over n the resulting geometric series.
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Figure 3: (a) Fourth cluster coefficient B3,1(0+) of the unitary Fermi gas in an infinitesimally stiff harmonic trap, as a function of the mass ratio
α = m↑/m↓. Disks (connected by a thin line): Our numerical calculation of expression (4) for (n↑, n↓) = (3, 1) and application of conjecture
(5), with truncation parameters xmax = 5, S max = 25, `max = 15 and discretization dx = 1/10, dS = 1/8, nθ = 37 (this is the number of
values of θ in the Gauss-Legendre integration method); for α > 10 and 0 ≤ ` ≤ 5, we take instead xmax = 20 and nθ = 25 to keep the error
below one percent. We use the convergence acceleration method (18) and extrapolate to S max = +∞ as explained in the text. Blue dashed line:
cubic fit to the variable X = (α4 body

c − α)1/2 on the interval 10 ≤ α ≤ 13.3, i.e. B3,1(0+) = 2.4401 − 2.1627X + 0.64137X2 − 0.069596X3,
where α4 body

c ' 13.3842 is the 3 + 1-body efimovian threshold (vertical solid line). Red dashed line: same on the interval 12.5 ≤ α ≤ 13.3,
i.e. B3,1(0+) = 2.4637 − 2.2834X + 0.82318X2 − 0.15269X3. The inset is an enlargement showing better B3,1(0+) vanishing with sign change at
α1 ' 3.412 and α2 ' 6.678 (vertical black dotted lines). (b) Same for the half-second derivative (1/2)B′′3,1(0+) of the cluster coefficient with respect
to the reduced trapping frequency ω̄ = ~ω/kBT , with the differences that (i) we do not give a fit in the variable X, (ii) we put error bars because
the relative uncertainty may now exceed one percent, (iii) we include a magnification in the enlargement to make it clear that the second zero (with
sign change) of (1/2)B′′3,1(0+) is very close to but distinct from that of B3,1(0+) (always indicated by a vertical dotted line).

α 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
B3,1 0.02297 0.01764 0.01289 0.008233 0.003651 −0.000697 −0.004571 −0.007623 −0.00946 −0.00964
B1,3 0.02297 0.02775 0.03116 0.03387 0.03611 0.03802 0.03967 0.04110 0.04236 0.04349
α 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5

B3,1 −0.00751 −0.00257 0.006065 0.01912 0.0379 0.06354 0.09769 0.1423 0.2003 0.275
B1,3 0.04449 0.04539 0.04621 0.04695 0.04763 0.04825 0.04882 0.04935 0.04983 0.05029
α 11 11.5 12 12.5 12.75 13 13.1 13.2 13.3 20

B3,1 0.3721 0.4996 0.6714 0.9176 1.090 1.329 1.457 1.623 1.867
B1,3 0.05071 0.05110 0.05147 0.05182 0.05198 0.05214 0.05220 0.05227 0.05233 0.05523

Table 2: Numerical values of the fourth cluster coefficients B3,1(0+) and B1,3(0+) of the unitary Fermi gas in an infinitesimal stiffness trap, tabulated
as functions of the mass ratio α = m↑/m↓. Since we go from one coefficient to the other by changing α to 1/α, we limited ourselves to α ≥ 1. The
uncertainties, not specified, are less than one percent. These values are shown graphically in figure 3a.

enlargement included in the figure. At large values of α, B3,1(0+) shows a marked growth that we attribute to the
three-body Efimov effect, but has a finite limit at the threshold of the 3 + 1-body Efimov effect where our computation
stops, reached with an infinite slope and that we determine by extrapolation, see the dashed curves in figure 3a and
the explanations which follow,

B3,1(0+) −→
α→

(
α

4 body
c

)−2.47 ± 0.03 (30)

Near the 3 + 1-body efimovian threshold. The limit α→ (α4 body
c )− in equation (30) is difficult to achieve numerically

with precision for several reasons. First, if α → +∞, the exponential decay rate ln(1/|z0|) in equation (20) tends to
zero as α−1/2 so the convergence of the series I3,1(0+) becomes slower and slower with `; fortunately, as the mass ratio
α remains below the four-body Efimovian threshold, ln(1/|z0|) does not become so small (it remains above 0.267) and
the problem is solved by the convergence acceleration (16) if one is satisfied with an error on B3,1(0+) less than one
percent (see figure 2). Secondly, the 3 + 1-body Efimov effect about to appear in the ` = 1, ε = +1 channel forces
to increase xmax to the values considered in reference [36], at least in the ` ≤ 5 angular momentum channels, which
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increases the computation time a lot and leads to a singularity of type (α4 body
c −α)1/2 which has to be taken into account

in the extrapolation from B3,1(0+) to α = α
4 body
c , see dashed lines in figure 3a and the legend of the figure. 13 Third,

the threshold for the three-body Efimov effect α2,1
c ' 13.60697 is close by and affects all momentum channels ` of the

four-body problem [37], even though it occurs in the L = 1 momentum channel of the 2 + 1 fermion problem. Indeed,
the continuum spectrum of the M(`,ε)

3,1 (iS ) operator is the union of continua corresponding to 2 + 1 fermions strongly
correlated by the interactions and a decoupled ↑ fermion, thus parametrized by a three-body angular momentum L
[36]. The contribution of the continuum of angular momentum L to the 3 + 1 cluster coefficient in the (`, ε) channel is
written up to a factor [37]:

I(`,ε)
3,1 (0+)|C0,L ∝

∫
R

dS
∫
R+

dk S ∂S θL(k, S )
d
dk

ln Λ
(L)
2,1(ik) (31)

The eigenmodes of the continuum have asymptotically a plane wave structure in the space of the variable x, i.e.
they are superposition, when x → +∞, of an incident wave exp(−ikx) and a reflected wave − exp[iθL(k, S )] exp(ikx)
where the phase shift θL(k, S ) is a function of the wavenumber k > 0 (fictitious because x is not a real position), of
the pure imaginary scaling exponent iS and of the three-body angular momentum L. We see in expression (31) the
transcendental Efimov function Λ

(L)
2,1 whose roots are the scaling exponents of the unitary 2 + 1-body problem with

angular momentum L. This is because the continuum modes of wavenumber k correspond to the eigenvalue Λ
(L)
2,1(ik)

of M(`,ε)
3,1 (iS ) [36]. 14 The key point now is that the lower edge of the L = 1 continuum, namely the minimum of

ΛL=1
2,1 (ik) with respect to the variable k, tends to zero when α → α2,1

c because of the 2 + 1-body Efimov effect. This
has two consequences. First, a practical consequence in the calculation of I3,1 on a computer: as the continuum is
made discrete by truncating x at xmax, its lower edge deviates from the true edge by about 1/x2

max; 15 this numerical
artifact forces to significantly increase xmax, fortunately only for four-body angular momentum channels ` ≤ 5 as long
as α ≤ 13.3. Then, a physical consequence: a second singularity appears in I3,1(0+), of the form (α2,1

c − α)1/2, again a
square root, now centered on the three-body efimovian threshold. 16 This three-body singularity occurs at a point very
close to the four-body singularity, which casts doubt on the accuracy of the extrapolation made in figure 3a which
did not take it into account. We remedy this by fitting functions including the two singularities, polynomial in the
quantities X = (α3,1

c − α)1/2 and Y = (α2,1
c − α)1/2:

I3,1(0+) = A0 + A1X + A2(Y −Y0) + A3X2 and I3,1(0+) = A0 + A1X + A2(Y −Y0) + A3X2 + A4X3 + A5(Y3 −Y3
0 ) (32)

where Y0 = (Y2 − X2)1/2 = (α2,1
c − α

3,1
c )1/2 is also the value of Y at X = 0. On the interval 10 ≤ α ≤ 13.3, this leads to

A0 = 2.495 and A0 = 2.447 hence the final result (30), which supports the more naive one in figure 3a.

Case ω̄ , 0. To conclude this section, let us briefly study the dependence in trap stiffness of the cluster coefficient
B3,1(ω̄). One way to account for this that is useful for cold atom experiments is to calculate the first deviation from

13. This singularity is present in one of the scaling exponents si of the 3+1-body unitary problem, the one s0 whose square vanishes by changing
sign at the efimovian threshold, in the `0 = 1 channel [36]. Now B3,1(0+) depends linearly on the scaling exponents. We see it well on the universal
component of the third cluster coefficient of the unitary Bose gas in equation (36) of reference [48] by making ω̄ (denoted x in this reference) tend
to zero; we also see it for 2 + 1 fermions in reference [18]. More precisely, B3,1(0+) = −(`0 + 1/2)s0 + . . . where the ellipse is a smooth function of
α in the neighborhood of α3,1

c . As s2
0 ' c0(α3,1

c − α) with c0 ' 2.2 near the threshold [36], we find that dB3,1(0+)/dX = −(`0 + 1/2)c1/2
0 ' −2.2 at

X ≡ (α3,1
c − α)1/2 = 0. This constraint is fairly well satisfied by the fits in figure 3a.

14. In the absence of a cutoff in x space (xmax = +∞), we fall into a paradox: k spans the continuous set R+ independently of the variable S
and the derivative of the eigenvalue Λ

(L)
2,1(ik) with respect to S is zero, so the continuum should not contribute to I3,1 in equation (4). The right way

to reason is to put a cutoff xmax that we make tend to infinity at the end, with the condition that the eigenmodes vanish at x = xmax. The resulting
equation θL(k, S ) = −2kxmax [2π] quantizes k, i.e. restricts it to a discrete set, and makes it S -dependent as the phase shift θL(k, S ).

15. In fact, the wavenumber k varies in steps of the order of 1/xmax, as shown in footnote 14, and ΛL=1
2,1 (ik) varies quadratically near its minimum.

16. To the left of this threshold, we write à la Weierstrass ln Λ
(L=1)
2,1 (ik) = ln[(k2 + σ2

0)/(k2 + 1)] + . . . where the ellipse is a regular function of
α even at the threshold and σ0 > 0 is the scaling exponent of the 2 + 1-body problem whose square vanishes by changing sign at the threshold.
Very close to the threshold, σ0 � 1 and, assuming as in reference [37] that θL=1(k, S ) ∼ b(S )k when k → 0, where the scattering radius b(S ) is an
unknown function of S , we find that I(`,ε),(1,+)

3,1 (0+) contains a singularity ∝
∫ +∞

0 dk[k2/(k2 +σ2
0)−k2/(k2 +1)] ∝ 1−σ0 where σ0 ∼ γ0(α2,1

c −α)1/2

and γ0 ' 0.438. We have confirmed this prediction by a specific numerical calculation of I3,1(0+) in the ` = 0 channel very close to the threshold,
going up to α = 13.59; a nice linear distribution in Y is observed and a fit gives I(`=0)

3,1 (0+) ' 0.026 + 0.040Y where the variable Y is the one in
equation (32).
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α 2.5 3 3.25 3.375 3.5 4 4.5 5 5.5
B3,1 0.00823 0.00365 0.00143 0.00035 −0.00070 −0.00457 −0.00763 −0.00947 −0.00963

1
2 B′′3,1 −0.00660 0.00055 0.00420 0.00596 0.00766 0.0140 0.0190 0.0217 0.0212
α 6.5 6.5625 6.625 6.65625 6.6875 6.71875 6.75 6.8125 6.875 6.9375

B3,1 −0.00260 −0.00174 −0.00083 −0.00035 0.00015 0.00066 0.00119 0.00229 0.00346 0.00469
1
2 B′′3,1 0.0047 0.0027 0.0007 −0.0003 −0.0013 −0.0026 −0.0037 −0.0063 −0.0088 −0.0115

Table 3: Numerical values of the fourth cluster coefficient B3,1(0+) and its half-second derivative (1/2)B′′3,1(0+) with respect to ω̄, given with their
significant digits, for the mass ratios of figure 4. The half-derivatives are plotted (some with an error bar) in figure 3b.

the zero stiffness limit, of even degree in ω̄ since the integrand of equation (4) is an even function of ω̄:

B3,1(ω̄) =
ω̄→0+

B3,1(0+) +
1
2

B′′3,1(0+)ω̄2 + O(ω̄4) (33)

This allows to quantify the error due to the local density approximation, systematically used in the experiment and
which amounts to keeping only the first term of Taylor expansion (33). It is easy to see that the small parameter
controlling this approximation can only be ω̄ in the unitary limit: the approximation only makes sense if the equi-
librium correlation length of the homogeneous gas in each internal state σ, here in the nondegenerate case the de
Broglie thermal length λσ as imposed by scale invariance, is much smaller than the spatial radius of the trapped gas
Rσ = (kBT/mσω

2)1/2; one has indeed λσ/Rσ ∝ ~ω/kBT = ω̄ � 1. To obtain an integral expression for the second
derivative B′′3,1(0+) and implement convergence acceleration, we take twice the derivative with respect to ω̄ of equation
(4) under the integral sign, equation (18) under the sum sign and expressions (A.3,A.15) and then make ω̄ tend to zero.

The result is plotted as a function of the mass ratio in figure 3b. 17 Let us try to interpret it in a naive scenario: as
in the case of equal masses m↑ = m↓ studied in reference [38], B3,1(ω̄) would simply be a monotonic function of ω̄, of
course of zero limit at infinite ω̄. The second derivative at the origin would then always have the opposite sign to the
value at ω̄ = 0. This explains figure 3b if we look on a large scale: B′′3,1(0+) seems indeed to vanish by changing sign
at the same mass ratios α = α1 and α = α2 as B3,1(0+). However, we can see on a first enlargement, in inset in figure
3b, that this scenario is faulty at α1 (it still seems to hold at α2). Indeed, as shown in figure 4a, when α approaches
α1 ' 3.412 from lower values (top to bottom curves), the function ω̄ 7→ B3,1(0+) ceases to be monotonic, becomes
convex near the origin and reaches an absolute (positive) maximum at a point ω̄0 > 0 that departed from zero before
B3,1(0+) becomes < 0. This absolute maximum holds when α continues to grow beyond α1, but its position moves
toward +∞ and out of figure 4a. A second enlargement, in the inset of figure 3b, shows that the simple scenario
also fails (but just barely) at the second nodal point α2 ' 6.678: when α approaches α2 by higher values (top-down
curves in figure 4b 18), an absolute (negative) minimum coming from the ω̄ = +∞ side approaches the origin and
becomes more pronounced, before B3,1(0+) in turn becomes < 0. For convenience, we give the values of B3,1(ω̄) and
its half-second derivative in ω̄ = 0+ in numerical form in table 3, for the mass ratios of figure 4. To conclude, let us
finally point out that the simple scenario assuming monotonicity of B3,1(ω̄) was actually highly improbable because it
implied that the 3 + 1-body cluster coefficient in the trap was zero for any stiffness, B3,1(ω̄) ≡ 0, at mass ratios where
B3,1(0+) = 0.

3. Cluster coefficient for 2 + 2 fermions in a trap

We explain in this section how to perform an efficient numerical calculation of the quantity I2,2(ω̄) defined by
equation (4), limiting ourselves for simplicity to the case ω̄ = 0+, i.e. to a trap of infinitesimal stiffness. The unitary
gas cluster coefficient B2,2(0+) can be deduced by conjecture (5). As the two internal states ↑ and ↓ play perfectly

17. For values of α close to α2, we improve the convergence acceleration method by approximating [I(`,ε)
3,1 ]′′(0+) − [J(`,ε)

3,1 ]′′(0+) for ` > `max

by A`γ Re(eiψz`0) rather than by 0 as in equation (18); the real parameters A, ψ and γ are obtained by fitting on the interval 6 ≤ ` ≤ `max, and the
complex number z0 is that of the asymptotic law (20).

18. By varying all truncation and discretization parameters in the numerical calculation, we estimate the uncertainty on the curves in figure 4b
closest to the horizontal axis to be 2 × 10−5 (e.g., for α = 6.6875); the dependencies in ω̄ represented are thus significant.
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Figure 4: Fourth cluster coefficient B3,1(ω̄) of the trapped unitary Fermi gas as a function of the reduced stiffness ω̄2 = (~ω/kBT )2 of the harmonic
potentials, for different mass ratios α = m↑/m↓ close to the nodal points α1 ' 3.412 (a) and α2 ' 6.678 (b) of B3,1(0+), which is useful for
understanding the magnifications in figure 3b, i.e., the relationship between the signs of the value and curvature of B3,1(ω̄) at the origin. In (b), the
slopes of the tangents at the origin (dotted) are taken from figure 3b.

symmetric roles here, B2,2(0+) is invariant by changing the mass ratio α into its inverse 1/α and one can limit the
numerical calculations to the case α ≥ 1. In contrast to the previous section 2, one can go up to the three-body
Efimovian threshold, α < α2,1

c , since there is no 2 + 2-body Efimov effect [37].

Formulation of the problem. Recall the expression of the Hermitian operator M(`,ε)
2,2 (iS ) given in reference [37] for

angular momentum `, parity ε = ± (restricted to + if ` = 0) and the pure imaginary scale exponent iS , with the same
Schrödinger-Dirac notation as in equation (14) but with the difference that the variable x varies on the whole real line:

〈x, u|〈`,mz|M
(`,ε)
2,2 (iS )| f 〉 = D2,2(x, u) fmz (x, u) +

∫ +∞

−∞

dx′
∫ 1

−1
du′

∑
mz | (−1)mz =ε

K(`)
2,2(x, u,mz; x′, u′,m′z) fm′z (x′, u′) (34)

with a diagonal part independent of iS , angular momentum and magnetic quantum number mz:

D2,2(x, u) =

[
α

(1 + α)2

(
1 +

u
ch x

)
+

e−x + αex

2(α + 1) ch x

]1/2

(35)

and a matrix integral kernel decomposed into three contributions K2,2 = K1 + K2 + K3 written line by line in this order:

K(`)
2,2(x, u,mz; x′, u′,m′z) =

(
ex ch x′

ex′ ch x

)iS/2 (
ex+x′

4 ch x ch x′

)1/4 ∫ 2π

0

dφ
(2π)2

e−imzθ/2〈`,mz|eiφLx/~|`,m′z〉e
im′zθ

′/2

ch(x − x′) + 1
1+α

[(u + e−x)(u′ + e−x′ ) + vv′ cos φ]

+

(
e−x ch x′

e−x′ ch x

)iS/2 (
e−x−x′

4 ch x ch x′

)1/4 ∫ 2π

0

dφ
(2π)2

eimzθ/2〈`,mz|eiφLx/~|`,m′z〉e
−im′zθ

′/2

ch(x − x′) + α
1+α

[(u + ex)(u′ + ex′ ) + vv′ cos φ]

+
(−1)`+1

4π[(u + ch x)(u′ + ch x′) ch x ch x′]1/4

(
(u′ + ch x′) ch x′

(u + ch x) ch x

)iS/2 eimzγ(x,u)〈`,mz|`,mx = 0〉〈`,mx = 0|`,m′z〉e
−im′zγ(x′,u′)(

e−x′+αex′

1+α

)
(u + ch x) +

(
e−x+αex

1+α

)
(u′ + ch x′)

(36)

with the angle γ(x, u) = arctan{th(x/2)[(1 − u)/(1 + u)]1/2}, the angle θ ∈ [0, π] such that u = cos θ and the notation
v = sin θ. The third contribution K3 is nonzero only in the parity sector ε = (−1)` (in the other sector, we have
〈`,mx = 0|`,mz〉 ≡ 0). Contrary to the first two contributions, it is a singular function of the coordinates (x, u) and
(x′, u′), diverging at the point (x = 0, u = −1), or if one prefers (x = 0, θ = π). In the numerical calculation, limited
to the rectangle (x, θ) ∈ [−xmax, xmax] × [0, π], we isolate the singularity by a half disk of radius R and center (0, π), in
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which we use a logarithmic-polar grid as in reference [37] 19, and outside of which we use the same type of grid as in
section 2.

Asymptotic approximant. It remains to implement the same convergence acceleration technique as in equation (18)
in the particular case ω̄ = 0+,

I2,2(0+) '
`max∑
`=0

∑
ε

[
I(`,ε)
2,2 (0+) − J(`,ε)

2,2 (0+)
]

+

+∞∑
`=0

∑
ε

J(`,ε)
2,2 (0+) (37)

where, as in section 2, I(`,ε)
2,2 (0+) is the contribution of the angular momentum ` and parity ε channel to the desired

quantity I2,2(0+), and J(`,ε)
2,2 (0+) is an asymptotic approximant, valid at large angular momentum. Reference [37] gives

such an approximant only in the nice parity sector ε = (−1)l−1 where K3 ≡ 0, by perturbatively treating K1 and K2
to second order in the logarithm of the determinant of M(`,ε)

2,2 (iS ). The calculation is very similar to equation (19),
with the simplification that the linear terms and the square terms are independent of S and can be absorbed into the
constant, so that only the crossed terms remain [37]:

ln det[M(`,ε)
2,2 (iS )]

ε=(−1)`−1

= const − Trε
[
D−1

2,2K1D
−1
2,2K2

]
+ . . . (38)

In the nasty parity sector ε = (−1)`, a difficulty arises: because of its divergent character, we cannot treat K3 per-
turbatively. We first perform a gauge transform on K j eliminating the S -dependence of K3 without changing the
determinant, which is indicated by a tilde,

K̃ j(x, u,mz; x′, u′,m′z) ≡
e−imzγ(x,u)

[(u + ch x) ch x]−iS/2 K j(x, u,mz; x′, u′,m′z)
eim′zγ(x′,u′)

[(u′ + ch x′) ch x′]iS/2 (39)

then we isolate a purely 〈〈 external 〉〉 part of K̃3, acting on the 〈〈 orbital 〉〉 space of (x, u) but not on that of |`,mz〉, i.e.
such that K̃3 = K̃ext

3 ⊗ |`,mx = 0〉〈`,mx = 0|. Finally, we carry out an expansion of the logarithm of the determinant in
powers of K1 and K2 without any hypothesis on K̃ext

3 :

ln det[M(`,ε)
2,2 (iS )]

ε=(−1)`
= const + ln det

 l1 +
1

D2,2 + K̃ext
3 ⊗ |`,mx = 0〉〈`,mx = 0|

(
K̃1 + K̃2

) =

const − Trx,u

[
D−1

2,2K̃
ext
3 D

−1
2,2〈`,mx = 0|(K̃1 + K̃2)|`,mx = 0〉

]
− Trε

[
D−1

2,2K̃1D
−1
2,2K̃2

]
+ Trx,u

[
D−1

2,2K̃
ext
3 D

−1
2,2〈`,mx = 0|(K̃1 + K̃2)D−1

2,2(K̃1 + K̃2)|`,mx = 0〉
]

−
1
2

Trx,u

[
D−1

2,2K̃
ext
3 D

−1
2,2〈`,mx = 0|(K̃1 + K̃2)|`,mx = 0〉D−1

2,2K̃
ext
3 D

−1
2,2〈`,mx = 0|(K̃1 + K̃2)|`,mx = 0〉

]
+ . . . (40)

In this expression appears a resummed form of the external part:

K̃ext
3 ≡ D22[D−1

22 − (D22 + K̃ext
3 )−1]D22 = K̃ext

3 − K̃ext
3 (D22 + K̃ext

3 )−1K̃ext
3 (41)

An optimal writing of K̃ext
3 is obtained by reparameterization of the Faddeev ansatz of the 2 + 2-body problem: we

consider that the functions on which operator M2,2 acts now depend on the relative wave vectors and the center of
mass of the particles 2 and 4 as in reference [50] instead of the single-particle wave vectors k2 and k4 as in references
[36, 37], which avoids the half-disk around the singularity and leads us to numerically invert an operator acting on a
single real variable instead of the two variables (x, u). This leads to a considerable saving of computation time and
simplification. The reader is referred to Appendix C for more details. We find numerically that the second term in
the third side of equation (40), formally of the first order, is actually of the same order of magnitude as the third term

19. We set (x, π − θ) = Ret(cosψ, sinψ), where tmin < t < 0 and 0 < ψ < π. We have chosen R = 2/5. The integration on ψ is done by the
Gauss-Legendre method with 15 points (series 0 ≤ ` ≤ 4) or 25 points (series 0 ≤ ` ≤ 6), the integration on t with the midpoint rule and a step
dt = 0.1 or dt = 0.2. We extrapolate quadratically to tmin = −∞ from the three choices tmin = −10, tmin = −20 and tmin = −40.
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α 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
B2,2 −0.03056 −0.03529 −0.04518 −0.05777 −0.07233 −0.08845 −0.1060 −0.1248 −0.1449 −0.1662
α 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5

B2,2 −0.1886 −0.2122 −0.2370 −0.2629 −0.2900 −0.3183 −0.3478 −0.3788 −0.4110 −0.4448
α 11 11.5 12 12.5 12.75 13 13.1 13.2 13.3 13.4 13.5

B2,2 −0.4801 −0.5177 −0.5575 −0.6004 −0.6235 −0.6484 −0.6590 −0.6701 −0.6819 −0.6948 −0.7097

Table 4: Numerical values of the fourth cluster coefficient B2,2(0+) of the unitary Fermi gas in an infinitesimal stiffness trap, tabulated as functions
of the mass ratio α = m↑/m↓. Since the coefficient is invariant by change of α to 1/α, we restricted ourselves to α ≥ 1. The uncertainties, not
specified, are less than one percent. These values are shown graphically in figure 6.

(their contributions to J(`,ε)
2,2 (0+) tend to zero exponentially with ` with the same rate, see figure 5a). The resummed

kernel K̃ext
3 is thus, like K1 and K2, a first-order infinitesimal; consequently, we neglect the fourth and fifth terms of

equation (40) to keep

ln det[M(`,ε)(iS )]
ε=(−1)`

= const − Trx,u

[
D−1

2,2K̃
ext
3 D

−1
2,2〈`,mx = 0|(K̃1 + K̃2)|`,mx = 0〉

]
− Trε

[
D−1

2,2K̃1D
−1
2,2K̃2

]
+ . . .

(42)
If one wants, one can undo the gauge transform (39) in the third term without changing the trace, to recover con-
tribution (38). In Appendix B, we give a more explicit expression of the asymptotic approximant J(`,ε)

2,2 (0+) deduced
from expansions (38) and (42), see equations (B.1,B.2,B.8,B.10), as well as its sum over ` and over ε, see equations
(B.11,B.16).

Application and results. The sum over ` in I2,2(0+) shows the same phenomenon of slow convergence as in I3,1(0+)
at large values of the mass ratio α. We again find that the asymptotic approximant, here J(`,ε)

2,2 (0+), tends to zero
exponentially in `, with a rate c that we compute numerically for convenience in the nice parity sector ε = (−1)`−1

and for a mass ratio α & 3: 20

J(`,ε)
2,2 (0+)

ε=(−1)`−1

=
`→+∞

ε exp[−c` + O(ln `)] (43)

The rate c is plotted as a function of the mass ratio in figure 5b. Here, as in section 2, a c ∝ α−1/2 law is observed at
large mass ratios. In this regime, the convergence acceleration method is an indispensable aid to numerical calculation,
as shown in figure 5c. It allows us to obtain the fourth cluster coefficient B2,2(0+) of the trapped system, given in
numerical form in table 4 and plotted as a function of the mass ratio in figure 6, with an uncertainty of less than one
percent in a reasonable computation time. Because of the 2 + 1-body Efimov effect, this coefficient has a (α2,1

c − α)1/2

singularity near the threshold, for the same reason as discussed around equation (31) in section 2. We take this into
account in the dashed fits in figure 6, to obtain the extrapolation

B2,2(0+) −→
α→(α3 body

c )−
− 0.737 ± 0.007 (44)

Acknowledgements: This work was supported by Japanese 〈〈 Grants-in-Aid for Scientific Research 〉〉 KAKENHI
Grant Number 21H00116.

Appendix A. Asymptotic approximant of I(`,ε)
3,1

(ω̄), its sum over ` and ε, its dominant behavior

The asymptotic approximant. To obtain an approximation J(`,ε)
3,1 (ω̄) at large ` of the contribution I(`,ε)

3,1 (ω̄) of angular
momentum ` and parity ε to the quantity I3,1(ω̄) of equation (4), we use the notations of section 2 and start from

20. The dominant behaviors in the two parity sectors differ only in their power laws in `. When the mass ratio is too close to 1, J(`,ε=(−1)`−1)
2,2 (0+)

tends to zero while oscillating which makes numerical rate extraction more difficult.
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Figure 5: Some numerical results on the asymptotic approximant J(`,ε)
2,2 (0+) of the contribution I(`,ε)

2,2 (0+) of angular momentum ` and parity ε to the

quantity I2,2(0+) in equation (4). (a) For a mass ratio α = 5 and the nasty parity sector ε = (−1)`, absolute value of the three terms of J(`,ε)
2,2 (0+) in

expression (B.1) (symbols ◦, +, and × in that order) as a function of angular momentum `. (b) Rate c of exponential decay with ` of J(`,ε)
2,2 (0+) as in

equation (43), as a function of the square root of the inverse mass ratio. The error bars give the deviation between values of c from various fitting
functions (for ε = (−1)`−1, ln |J(`,ε)

2,2 (0+)| is taken as an affine function of ` plus one term ∝ 1/`, or plus one term ∝ ln `, or plus both). The dashed

line is an affine extrapolation to α−1/2 = 0. (c) For α = 13.3 and ε = (−1)`, exact value I(`,ε)
2,2 (0+) obtained numerically (squares) and asymptotic

approximant J(`,ε)
2,2 (0+) (stars) as functions of `.

Figure 6: Fourth cluster coefficient B2,2(0+) of the unitary Fermi gas
in a harmonic trap of infinitesimal stiffness, as a function of the mass
ratio α = m↑/m↓ restricted to α ≥ 1 by α ↔ 1/α symmetry. Disks
(connected by a thin line): Our numerical calculation of expression (4)
for (n↑, n↓) = (2, 2) and application of conjecture (5), with parameters
xmax = −xmin = 20 and nθ = 15 in the series 0 ≤ ` ≤ 4, xmax = −xmin =

5 and nθ = 25 in the series 0 ≤ ` ≤ 6 (the overlap of the two series
serves as a check), and in all cases dx = 1/15, S max = 12, dS = 12/100
(see footnote 19 for the treatment of the singularity of the integral kernel
at (x, θ) = (0, π)). We use the convergence acceleration method (37) and
the same extrapolation to S max = +∞ as in section 2. Thin vertical line:
three-body efimovian threshold α = α2,1

c . Blue dashed line: cubic fit
in the variable Y = (α2,1

c − α)1/2 on the interval 10 ≤ α ≤ 13.5, i.e.
B2,2(0+) = −0.73742 + 0.061673Y + 0.074061Y2 − 0.0084386Y3. Red
dashed line: same on the interval 12.5 ≤ α ≤ 13.5, i.e. B2,2(0+) =

−0.73761 + 0.062206Y + 0.073901Y2 − 0.0086514Y3.
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expansion (19). A clever calculation of the trace on x > 0 allows us to collect contributions making x and −x appear
and to reduce to integrals on the whole real line, in which we only have to take the traces on the variables u and mz:

ln det M(`,ε)
3,1 = const −

∫
R

dx eiS xTrεu,mz
[〈x|K̄(`)

3,1|−x〉eiπLx/~]+
∫
R2

dx dx′eiS xTrεu,mz
[〈x|K̄(`)

3,1|x
′〉〈x′|K̄(`)

3,1|−x〉eiπLx/~]

−
1
2

∫
R2

dx dx′eiS (x−x′)Trεu,mz
[〈x|K̄(`)

3,1|x
′〉eiπLx/~〈−x′|K̄(`)

3,1|−x〉eiπLx/~] + . . . (A.1)

where the rotation operator of axis Ox of angle π comes from footnote 9 and we have introduced the primitive kernel
(16) divided on the left by the diagonal part (15) and taken with zero scale exponent, i.e. K̄(`)

3,1 ≡ D
−1
3,1K(`)

3,1(iS = 0). The
contributions kept to the second side of equation (A.1) constitute an even, regular, real-valued and rapidly decaying
function of S , that is −φ(`,ε)(S ). So we can integrate by parts over S in equation (4) and we recognize the Fourier
component of −φ(`,ε)(S ) at frequency ω̄:

J(`,ε)
3,1 (ω̄) =

(` + 1/2)ω̄
sh ω̄

∫ +∞

−∞

dS
2π

e−iω̄Sφ(`,ε)(S ) (A.2)
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easy to obtain from (A.1) by means of the identity in the sense of distributions
∫
R exp(ikS ) dS = 2πδ(k). A long but

not difficult calculation, treating the contributions to φ(`,ε)(S ) in the order they appear, finally gives:

J(`,ε)
3,1 (ω̄) =

(` + 1/2)ω̄

π sh ω̄
√

2 ch ω̄

∫ 1

−1

du
D3,1(ω̄, u)

∫ 2π

0

dφ
2π

T (`,ε)(θ; φ + π)
1 + 2 ch(2ω̄) + 2α

1+α
(2u ch ω̄ + u2 + v2 cos φ)

−
(` + 1/2)ω̄

π2 sh ω̄
√

2 ch ω̄

∫
R

dx′
∫ 1

−1
dudu′

∫ 2π

0

dφdφ′

(2π)2

(
λ′2+1/2/

√
2 ch x′

)
[D3,1(ω̄, u)D3,1(x′, u′)]−1T (`,ε)(θ; φ + φ′ + π)

[1+λ2
ω̄+λ′2+ 2α

1+α
(uλω̄+u′λ′+λω̄λ′(uu′+vv′ cos φ))][(λω̄, φ)→ (λ−1

ω̄ , φ
′)]

+
(` + 1/2)ω̄
2π2 sh ω̄

∫
R

dX
∫ 1

−1
dudu′

∫ 2π

0

dφdφ′

(2π)2

[
2
√

ch X+ ch X−D3,1(X+, u)D3,1(X−, u′)
]−1
T (`,ε)(θ, θ′; φ, φ′)

[1+λ2
++λ2

−+ 2α
1+α

(λ+u+λ−u′+λ+λ−(uu′+vv′ cos φ))][(λ±, φ)→ (λ−1
± , φ

′)]
(A.3)

with the notations X± = X ± ω̄/2, λω̄ = exp(ω̄), λ± = exp(X±) (these last two modeled on λ = exp(x)) completing
those of equation (17) and the angular functions 21

T (`,ε)(θ; φ) ≡ Trεmz

(
e−iθLz/~eiφLx/~

)
and T (`,ε)(θ, θ′; φ, φ′) ≡ Trεmz

(
e−iθLz/~eiφLx/~eiθ′Lz/~eiφ′Lx/~

)
(A.4)

The sums over parity ε of the quantities defined in (A.4) have simple expressions in terms of angles ξ ∈ [0, π], see
reference [37], 22

T (`)(θ; φ) =
sin[(` + 1/2)ξ]

sin(ξ/2)
with 1 + 2 cos ξ = u(1 + cos φ) + cos φ (A.5)

T (`)(θ; φ) =
sin[(` + 1/2)ξ]

sin(ξ/2)
with 1+2 cos ξ = uu′(1+cos φ cos φ′)−(u+u′) sin φ sin φ′+vv′(cos φ+cos φ′)+cos φ cos φ′

(A.6)
which also shows how to return to fixed parity, for example

T (`,ε)(θ; φ) =
1
2

1∑
n=0

εnT (`)(θ + nπ; φ) (A.7)

However, we prefer to reserve equations (A.5,A.6,A.7) to analytical studies; for numerical computation, we evaluate
the traces of (A.4) in the eigenbasis of Lz (under the constraint (−1)mz = ε) after insertion of closure relations in the
eigenbasis of Lx (obtained by numerical diagonalization of its tridiagonal matrix in the |`,mz〉 basis) at the location of
the φ- or φ′-angle rotation operators, then we use the value of the integral 23

∫ 2π

0

dφ
2π

einφ

b0 + b1 cos φ
=

1√
b2

0 − b2
1

 −b1

b0 +

√
b2

0 − b2
1


|n|

∀n ∈ Z, ∀b0 > 0, ∀b1 ∈] − b0, b0[ (A.8)

Its sum on ` and ε. The sum of J(`,ε)
3,1 (ω̄) on the parity ε is straightforwardly done, see equations (A.5,A.6). The sum

on ` ∈ N gives rise, in the sense of distributions, to the Fourier series of a Dirac comb 24 and is calculated thanks to
the identity:

+∞∑
`=0

(2` + 1)
sin[(` + 1/2)ξ]

sin(ξ/2)
=

πδ(ξ)
sin2(ξ/2)

(A.9)

21. An attentive reader will object that the definition of T (`,ε)(θ, θ′; φ, φ′) should in principle include an orthogonal projector on the subspace of
parity (−1)Lz/~ = ε next to the operator eiθ′Lz/~. The parity in φ and φ′ of the denominator in the third contribution to (A.3), however, allows us to
do without it. For example, only the even part of eiφLx/~ contributes after integration over φ; it indeed preserves the parity of Lz/~.

22. Turning to the half-angles, we note that we have more simply cos(ξ/2) = cos(θ/2)| cos(φ/2)| in equation (A.5).
23. For optimization, we can (i) replace exp[i(−mzθ+m′zθ

′)] by its real part cos(mzθ) cos(m′zθ
′)+sin(mzθ) sin(m′zθ

′) and tabulate the corresponding
sines and cosines, (ii) reduce to a single index loop mx = m′x and use the symmetry mx ↔ −mx, (iii) use the symmetry (mz,m′z)↔ (−mz,−m′z) (we
restrict ourselves to (−1)m′z = ε, see footnote 21), (iv) tabulate the powers of degree |mx | appearing in (A.8).

24. One simply writes sin[(` + 1/2)ξ] = {cos(`ξ) − cos[(` + 1)ξ]}/[2 sin(ξ/2)] to introduce the partially telescopic sum
∑
`∈N(` + 1/2){cos(`ξ) −

cos[(` + 1)ξ]} = (−1/2) +
∑
`∈N cos(`ξ).
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It thus remains to find the cases of cancellation of the angle ξ, knowing that the polar angles θ, θ′ (from now on
taken as integration variables in preference to u,u′) span [0, π] and that the azimuthal angles φ, φ′ can be conveniently
taken in [−π, π]. In equation (A.5), we find as the only nodal point (θ, φ) = (0, 0); in the neighborhood of this point,
ξ2 ' θ2 + φ2 so that the action of δ(ξ) is easily evaluated in polar coordinates (ρ, γ) in the plane (θ, φ), for any regular
function f :∫ π

0
dθ sin θ

∫ π

−π

dφ
2π

f (θ, φ)
πδ(ξ)

sin2(ξ/2)
= f (0, 0)

∫ +∞

0
dρ ρ

∫ π/2

−π/2
dγ ρ cos γ

δ(ρ)
2(ρ/2)2 = 2 f (0, 0) (A.10)

In equation (A.6), we find three nodal lines 25

l1 : θ = θ′ = 0, φ + φ′ = 0 ; l2 : θ = θ′ = π, φ − φ′ = 0; l3 : θ = θ′, φ = φ′ = 0 (A.11)

In the integral we are dealing with, which involves a regular function g of the four angles,

J =

∫ π

0
dθ sin θ

∫ π

0
dθ′ sin θ′

∫ π

−π

dφ
2π

∫ π

−π

dφ′

2π
g(θ, θ′, φ, φ′)

πδ(ξ)
sin2(ξ/2)

(A.12)

the lines l1 and l2 have a zero contribution because of the Jacobians sin θ and sin θ′. In the vicinity of line l3, we
quadratize the quantity ξ into the variables φ, φ′ and θ′ − θ; the integral at fixed θ∫ +∞

−∞

dφ
∫ +∞

−∞

dφ′
∫ +∞

−∞

d(θ′ − θ)
δ(

√
φ2 + φ′2 + 2φφ′ cos θ + (θ′ − θ)2)

φ2 + φ′2 + 2φφ′ cos θ + (θ′ − θ)2 =
2π

sin θ
(A.13)

is well computed in the eigenbasis of the quadratic form appearing in the denominator and under the square root (it
has eigenvalues 1 and 1 ± cos θ). It remains simply

J = 2
∫ π

0
dθ sin θ g(θ, θ, 0, 0) (A.14)

from which the expression of the desired sum (respecting the order of the contributions in equation (A.3)): 26

∑
`∈N

∑
ε

J(`,ε)
3,1 (ω̄) =

ω̄

π sh ω̄
√

2 ch ω̄

[D3,1(ω̄, u = 1)]−1

1 + 2 ch(2ω̄) + 2α
1+α

(1 + 2 ch ω̄)

−
ω̄

2π2 sh ω̄
√

ch ω̄

∫
R

dx′
∫ 1

−1
du′

λ′2+1/2

√
ch x′

[D3,1(ω̄, u = 1)D3,1(x′, u′)]−1

[1 + λ2
ω̄ + λ′2 + 2α

1+α
(λω̄ + u′λ′ + λω̄λ′u′)][λω̄ → λ−1

ω̄ ]

+
ω̄

4π2 sh ω̄

∫
R

dX
∫ 1

−1
du

[
√

ch X+ ch X−D3,1(X+, u)D3,1(X−, u)]−1

[1 + λ2
+ + λ2

− + 2α
1+α

((λ+ + λ−)u + λ+λ−)][λ± → λ−1
± ]

(A.15)

In practice, the most important case corresponds to ω̄ = 0+, because it gives access to the cluster coefficient b3,1 of
the homogeneous gas. We give the corresponding explicit expression of (A.15), always respecting the order of the

25. If ξ = 0, T (1)(θ, θ′; φ, φ′) = 3; however, this is the trace of a rotation matrix in R3 which must therefore reduce to the identity: we have
Rz(θ)Rx(−φ)Rz(−θ′)Rx(−φ′) = l1 where Rx(θ) is the rotation of angle θ of axis Ox, etc. By taking the zx matrix element of this relation, we get the
condition sin θ′ sin φ = 0. Similarly, by changing the order of the operators by circular permutation under the trace, we end up with sin θ′ sin φ′ = 0.
The nodal lines l1 and l2 in (A.11) correspond to sin θ = sin θ′ = 0 that is θ = θ′ = 0[π], the cases θ = 0, θ′ = π and θ = π, θ′ = 0 being trivially not
suitable. The line l3 corresponds to sin φ = sin φ′ = 0 i.e. φ = φ′ = 0[π], which in practice reduces to φ = φ′ = 0; indeed, the cases φ = 0, φ′ = π
and φ = π, φ′ = 0 are obviously not suitable, and the case φ = φ′ = π imposes cos(θ+ θ′) = 1 so θ = θ′ = 0 or π, which corresponds to nodal points,
of zero contribution to the integral on θ, θ′, φ, φ′. The remaining cases sin θ = sin φ = 0 or sin θ′ = sin φ′ = 0 lead only to nodal points and do not
contribute either.

26. Where φ + π appears in the argument of T (`), we perform the change of variable φ→ φ − π.
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contributions, in terms of trigonometric functions and the dilogarithm or Bose function g2(z) =
∑

n>0 zn/n2:

∑
`∈N

∑
ε

J(`,ε)
3,1 (ω̄ = 0+) =

1

3π
√

2

(1 + α)2

(1 + 3α)3/2 −
(1 + α)5

√
2π2α(1 + 2α)(1 + 3α)3/2

arctan
α

√
1 + 2α

−
α argth

√
1+3α

√
2(1+2α)

(α + 1)
√

2(1 + 3α)


+

(1 + α)4

2π2α(1 + 3α)2

{
π arcsin

α

1 + 2α
+ 2 Re

[
g2

(
−1
ζ

)
− g2

(
1
ζ

)]
− Re

[
g2

(
2ζ

1 + ζ

)
− g2

(
−2ζ
1 − ζ

)
+ g2

(
2

1 − ζ

)
− g2

(
2

1 + ζ

)]}
(A.16)

where ζ = (2α + i
√

2(1 + 3α))/(1 + α).

Its dominant behavior. To obtain an asymptotic equivalent of J(`,ε)
3,1 (ω̄) or, what amounts to the same thing, of I(`,ε)

3,1 (ω̄)
for large angular momentum, it suffices to restrict ourselves to the first contribution to the second side of equation
(A.3), which comes from the first order term in the kernel K (`)

3,1 in expansion (19). We then write it as an integral over
the angle ξ by inserting a Dirac delta δ(ξ− ξ(u, φ)) linking ξ to u and φ as in equation (A.5), then explicitly calculating
the integral over φ and then over u. 27 To simplify, we restrict ourselves to ω̄ = 0+ and find:

I(`,ε)
3,1 (0+) ∼

`→+∞

∫ π

0
dξ

sin[(` + 1/2)ξ]
2 sin(ξ/2)

[ρ0(ξ) + ερ1(ξ)] where ρn(ξ) = (2` + 1)An
sin2(ξ/2)
wn(cos ξ)

Fn( fn(cos ξ)) (A.17)

with the notation β = 1/α, the prefactors and the auxiliary functions 28

A0 =

√
2(1 + α)2

π2α
√

1 + 3α
; w0(Z) = 3β + (1 + 2Z)2 ; F0(Z) =

arctan
√

Z
√

Z
; f0(Z) =

(1 − Z)(5 + 4Z)
w0(Z)

(A.18)

A1 =

√
2(1 + α)5/2

π2α2 ; w1(Z) = 8(1 + β)Z2 − (5β + 7)Z + β(3β + 1) ; F1(Z) = Z
(
π

2
− arctan Z

)
(A.19)

f1(Z) =
w1(Z)

4
√

1 + β
√

1 − Z{[ 3β+1
4 + (1 + β)Z][3β + (1 − 2Z)2]}1/2

(A.20)

To reduce to contour integrals on the unit circle C, of the form

In =

∫
C

dz
iz

(z − 1)z`
Fn

(
fn

(
z+1/z

2

))
wn

(
z+1/z

2

) (A.21)

we proceed in three steps: (i) we eliminate the factors sin(ξ/2) in the integrand of (A.17), first by simplifying the sine
in the denominator in front of the brackets with a sine in the numerator of ρn(ξ), then by making cos[(`+1)ξ]−cos(`ξ)
appear with the remaining sine, as in footnote 24; (ii) we extend the integral on ξ to [−π, π] by parity of the integrand;
(iii) we take as new integration variable z = exp(iξ), which describes the unit circle, so that cos ξ = (z + 1/z)/2, and
we can write cos[(` + 1)ξ] − cos(`ξ) = Re(z`+1 − z`) and take out the function Re of the integral since the remainder
of the integrand is real-valued on C. For the usual determinations of the logarithm and the square root in the complex
plane (branch cut on R−), we find that the integrand of I0 has as singularity in the unit disk a trident-shaped branch
cut, union of a segment OO′ and an arc AA′, see figure A.7a, and that of I1 a branch cut in the shape of a flower,

27. After having reduced to an integral on φ ∈ [0, π] by periodicity and parity of the integrand, we use the relation δ(2 cos ξ + 1 − u(1 + cos φ) −
cos φ) = δ(φ − φ0)/[(1 + u) sin φ0] with sin φ0 = 2(u − cos ξ)1/2(1 + cos ξ)1/2/(1 + u) where the root φ0 is in [0, π] if and only if 0 ≤ θ ≤ ξ given
footnote 22. We also use relation (A.7).

28. When we move to the complex plane, we mean that arctan Z = ln[(1 + iZ)/(1 − iZ)]/(2i). As a result, the branch cut of the function F0(Z)
is ] − ∞,−1] and that of F1(Z) is i] − ∞,−1] ∪ i[1,+∞[. Note that, despite appearances, F0(Z) is analytic in the unit disk, as shown by its series
expansion at Z = 0. Note also that with this definition of the arctan function, we have π/2 − arctan(ix) = −i argth(1/x) ∀x ∈ R \ [−1, 1], which
is already used in the integral (A.17) on the real axis because the quantity under the last square root in the denominator of (A.20) can become
negative; we have made here the choices ln(−1) = iπ and

√
−1 = i.
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union of three arcs OB, OB′ and BB′, see figure A.7b. 29 The point O is here the origin of the coordinates, A and A′

are the points of affixes z0 and z∗0, B and B′ are the points of affixes z1 = −z∗0 and z∗1, and z0 is the unique solution of
the equation z + z−1 + 1 + i

√
3β = 0 in the unit disk (so that w0( z0+1/z0

2 ) = 0):

z0 =
1
2

[
i
√

1 − i
√

3β
√

3 + i
√

3β − (1 + i
√

3β)
]

(A.22)

Using Cauchy’s integral theorem, we shrink the integration contour until it fits the branch cuts, without changing the
value of In. In the limit ` → +∞, because of the factor z`, the integral is then dominated by the neighborhood of
the singularity points farthest from O, namely A and A′ for I0, B and B′ for I1, this being true for any mass ratio
α. For the computation of I0 in the neighborhood of z0, let z = z0(1 + ηu), where u is a complex number and η > 0
is an infinitesimal, and approximate the horn of the trident by its right semitangent at the vertex A; we then have the
equivalents f0((z + 1/z)/2) ∼ C0/(ηu) and z` ∼ z`0 exp(`ηu), and the semitangent becomes the half line of origin O of
direction −C0 in the u space (considering footnote 28), that is the half line R− in the space of v = ηu/C0, so that

I
z0O
0 ∼

`→+∞

(z0 − 1)z`0
2
√

3β(z0 − 1/z0)

∫
Cu

du
u

e`ηuF0

(
C0

ηu

)
=

z`+1
0

2
√

3β(1 + z0)

∫
Cv

dv
v

e`C0vF0(1/v) (A.23)

where the paths Cu and Cv surround the half-tangents counterclockwise in u or v space. The expression for C0 is given
in equation (21). The integral to the last side of (A.23) is easily computed:∫

Cv

dv
v

e`C0vF0(1/v) =

∫ 0

−∞

dx
x

e`xC0

[
F0

(
1

x − i0+

)
− F0

(
1

x + i0+

)]
=

∫ 0

−1

dx
x

e`xC0 (−iπ|x|1/2) ∼
`→+∞

iπ3/2

√
`C0

(A.24)

The horn A′ of affix z∗0 gives a complex conjugate contribution of the horn A. We get the first part of equation (20).
↪→ For the calculation of I1 in the neighborhood of z1, we proceed in the same way, by setting z = z1(1 + ηu),
η → 0+. Now the local behavior f1((z + 1/z)/2) ∼ A/(Bηu)1/2 has itself a branch cut because of the square root and
is characterized by two complex amplitudesA and B, hence the structure with two branch cuts, the one coming from
f1 and the one coming from arctan f1 in F1( f1), 30 approximated by two semitangents corresponding in the space of
v = ηBu/A2 simply toA−2R− and, in light of footnote 28, to R−. One has

I
z1O
1 ∼

`→+∞

(z1 − 1)z`1A
2

iBw1( z1+1/z1
2 )

∫
Cv

dv e`A
2v/B A
√

vA2

(
π

2
− arctan

A
√

vA2

)
(A.25)

where the path Cv surrounds (in the third quadrant) the half lineA−2R− counterclockwise and then vertically joins the
half line R− from below to surround it also counterclockwise. The calculation leads to 31

∫
Cv

dv e`A
2v/BF1

(
A
√

vA2

)
=

∫ 0

−∞

dx
A2 e`x/B

[
F1

(
A

√
x − i0+

)
− F1

(
A

√
x + i0+

)]
+

∫ 0

−∞

dx e`A
2 x/B

F1

 A√
(x − i0+)A2


−F1

 A√
(x + i0+)A2

 ∼
`→+∞

∫ 0

−∞

dx
A

e`x/B iπ
√
−x

+

∫ 0

−∞

dx e`A
2 x/B (−iπ)
√
−x

=
iπ3/2

√
`

 √B
A
−

1√
A2/B

 =
2iπ3/2B

A
√
`B

(A.26)

which gives the second part of equation (20), the coefficient B being called C1 and given by equation (21).

29. In this second case, we expect to have three branch cuts, the one L1 coming from the function F1(Z), the ones L3 and L2 coming from√
1 − Z and the other square root in the denominator of the function f1(Z). In reality, L3 is included in L1. Moreover, the intersections L1 ∩ L2 and

L1 ∩ L3 are not branch cuts of the integrand, for the reason that z 7→ z1/2(π/2 − arctan z1/2) has only [−1, 0] as a branch cut (for z ∈] − ∞,−1], the
change of sign of π/2 − arctan compensates for that of the square root). The arcs OB and OB′ are made up of the points lying only on L2, the arc
BB′ collects the points belonging only to L1.

30. In the previous case n = 0, this does not occur: In the function F0(z), on either side of the branch cut R− of the square root,
√

z can of
course take two opposite values but arctan is an odd function. As a consequence, the branch cut of F0(z) is imposed by the function arctan and is
] −∞,−1], in agreement with footnote 28.

31. One indeed has
√
A2/B = −A/

√
B for any mass ratio α.
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Figure A.7: Branch cuts of the integrand of
equation (A.21) in the unit disk (thick red
line) in the case (a) n = 0 and (b) n = 1,
obtained numerically for a mass ratio α = 1
taken as example.

Appendix B. Asymptotic approximant of I(`,ε)
2,2

(0+), its sum over ` and ε

The asymptotic approximant. The aim here is to write as explicitly as possible an approximation J(`,ε)
2,2 (0+) at large `

of the contribution I(`,ε)
2,2 (0+) of angular momentum ` and parity ε to the quantity I2,2(0+) of equation (4). We take as

a starting point expansions (38,42) according to the value of ε. Their insertion into the integrand of (4) leads, after
integration on S , to the structure

J(`,ε)
2,2 (0+) = J

(`,ε)
K1,K2

+ δε,(−1)`
[
J

(`)
K1,K3

+J
(`)
K2,K3

]
(B.1)

where the subscript indicates that it is a cross contribution of the integral kernels Ki and K j. The case (i, j) = (1, 2)
was treated in reference [37] for ε = (−1)`−1, using forms (36) of the kernels; here we simply extend it to the case
ε = (−1)`, which is just a rewriting, and copy the result:

J
(`,ε)
K1,K2

=

∫
R

dx
∫ 1

−1
dudu′

∫ 2π

0

dφdφ′

(2π)2

[(2` + 1)/(4π)2][ch xD2,2(x, u)D2,2(x, u′)]−1T (`,ε)(θ, θ′; φ, φ′){
1+ 1

1+α
[
(u+e−x)(u′+e−x)+vv′ cos φ

]} {
1+ α

1+α
[
(u+ex)(u′+ex)+vv′ cos φ′

]}
(B.2)

with notations (17) and (A.4). The case (i, j) = (1, 3) is much simpler to handle (especially numerically) by using
forms (C.10) of the kernels, marked by a Czech accent. Only one factor depends on the scaling exponent iS , on which
we have to integrate in (4). In the notations of (C.10) it comes after an integration by parts:∫

R

dS
2π

(|z′1|/|z1|)iS = 2δ(ln |z′1|
2− ln |z1|

2) = 2|z1| |z′1| δ(|z1|
2 − |z′1|

2) = 2|z1| |z′1| δ(e
2x− e2x′ −

√
2αexu +

√
2αex′u′) (B.3)

We decide to integrate the Dirac distribution on u′ at u, x, x′ fixed, which links the value of u′ to these other variables:

u′ = ex−x′u +
e2x′ − e2x

√
2αex′

(B.4)

As u′ must be between −1 and 1, the integration interval on u is constrained and reduces to [umin, umax] with

umin = max
(
−1,

e2x − e2x′

√
2αex

− ex′−x
)

; umax = min
(
1,

e2x − e2x′

√
2αex

+ ex′−x
)

; umin < umax ⇔ |ex′ − ex| <
√

2α

(B.5)
To compute the resummed kernel (41), we recognize in the external part of Ǩ3 (last contribution of (C.10)) a form
factorized into an operator on x-space and an orthogonal projector of rank one on u-space, which reduces the problem
to the inversion of an operator on x-space only: 32

Ǩext
3 = k̂ ⊗ |χ〉〈χ| and 〈χ|χ〉 = 1 =⇒ Ǩext

3 = [ l1 − ( l1 + k̂)−1] ⊗ |χ〉〈χ| (B.6)

32. There is no gauge transform of type (39) to be made here because Ǩ3 is directly independent of the scale exponent.We also notice on equation
(C.9) that Ď22 ≡ 1.
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with

〈u|χ〉 =
1
√

2
and 〈x|k̂|x′〉 =

(−1)l+1

π

2ex+x′

e2x + e2x′ + 1
1

(1 + e−2x)1/4(1 + e−2x′ )1/4 (B.7)

We finally obtain

J
(`)
K1,K3

=
(1 + α)3

8πα2

∫ +∞

−∞

dx
∫ +∞

−∞

dx′
R(x, x′)〈x′| l1 − ( l1 + k̂)−1|x〉
(1 + e−2x)1/4(1 + e−2x′ )1/4 (B.8)

where we have introduced the symmetric function of x and x′ taking into account (B.5) by a Heaviside function Y:

R(x, x′) ≡ Y(
√

2α − |ex′ − ex|)
∫ umax

umin

du
ex

|z1|

∫ 2π

0

dφ
2π

(2` + 1)〈l,mx = 0|eiτ1Lz/~eiφLx/~e−iτ′1Lz/~|l,mx = 0〉
|z2|

2 + |z′2|
2 + (1 + α−1)(cos τ1 cos τ′1 + sin τ1 sin τ′1 cos φ)

(B.9)
The complex numbers zi and z′i and their arguments τi and τ′i are defined below equation (C.8) as functions of the
angles θ and θ′ in the interval [0, π] such that u = cos θ and u′ = cos θ′, the angle θ′ being related to θ by equation (B.4);
the writing of the denominator of the integrand in (B.9) takes into account the equality of the moduli |z′1| = |z1|. 33

Finally, the last contribution in (B.1) is deduced from the second contribution by changing everywhere α into its
inverse 1/α:

J
(`)
K2,K3

(α) = J
(`)
K1,K3

(1/α) (B.10)

Its sum on ` and ε. It remains to compute the sum on all channels (`, ε) of the asymptotic approximant (B.1). The
contribution of type K1K2 is treated exactly as in Appendix A:

∑
`∈N

∑
ε

J
(`,ε)
K1,K2

=

∫
R

dx
∫ 1

−1
du

[8π2 ch xD2
2,2(x, u)]−1

[1 + 1
1+α

(1 + e−2x + 2ue−x)][1 + α
1+α

(1 + e2x + 2uex)]

=
(1 + α)2

8π2α

2π arcsin
(

α

(1 + 2α)(α + 2)

)1/2

− Re
[
g2

(
2z

1 + z

)
− g2

(
−2z
1 − z

)
+ g2

(
2

1 − z

)
− g2

(
2

1 + z

)
+2g2

(
1
z

)
− 2g2

(
−1
z

)]
− Re

[
g2

(
2z′

1 + z′

)
− g2

(
−2z′

1 − z′

)
+ g2

(
2

1 − z′

)
− g2

(
2

1 + z′

)
+ 2g2

(
1
z′

)
− 2g2

(
−1
z′

)]}
(B.11)

with z =
√
α+ i
√

1 + α, z′ =
√
α−1 + i

√
1 + α−1 and g2 the dilogarithm function. In the K1K3 type contribution, let

us first sum over the angular momentum ` of fixed parity (−1)` = η, so that the operator k̂ in (B.8) takes the fixed value
k̂η. Let us transform the quantum average in state |`,mx = 0〉 in the numerator of the integrand of (B.9) by inserting a
closure relation on the eigenstates of Lx and using the expression of the corresponding matrix elements deduced from
equations (7.2–9) on page 101, (7.3–15) on page 105 and (7.4–7) on page 109 of reference [51]:

〈`,mx = 0|eiτLz/~|`,mx〉eiψmx =

(
4π

2` + 1

)1/2

Ymx
`

(τ, ψ) ∀τ ∈ [0, π],∀ψ ∈ R (B.12)

33. In practice, the angular integral in (B.9) is done numerically on the angle θ (rather than on u) with the 41-point Gauss-Legendre method; if
x is close enough to but different from the singularity point xsing = ln

√
α/2 where the first denominator |z1 | can vanish, i.e. 0 < |x− xsing | < θc with

θc = 0.15 for example, a narrow structure in θ appears and the integration on [θmin, θc] is performed with the change of variable θ = |x − xsing | sh t,
with the midpoint rule on the variable t discretized in 100 equidistant points. On the other hand, the second denominator in (B.9) always remains
greater than 1 + min(α, α−1) on the integration domain and cannot vanish. The integration on x and x′ is done with the midpoint method on a
truncation interval [xmin, xmax], by arranging that xsing is the edge of one of the subintervals of width dx; we make the fixed choice xmin = −5
since R(x, x′) = O(min(exp(x), exp(x′)) when x, x′ → −∞, but we extrapolate to xmax = +∞ cubically in 1/xmax from the four values x(0)

max = 7,
x(1)

max = 30, x(2)
max = 52 and x(3)

max = 75. To take advantage of the fact that R(x, x′) = O(exp(−2x)) on an increasingly narrow support x − x′ =

O(exp(−x)) when x → +∞, we separate the matrix A, discretized version of the operator l1 + k̂, in blocks Ai j between the intervals number one
[xmin, x

(0)
max] and number two [x(0)

max, x
(n)
max], neglecting the blocks 12, 21 and 22 of its inverse A−1 and compute its block 11 by the expression

(A−1)11 = [A11 − A12(A22)−1A21]−1 which includes the effect of the non-diagonal coupling in the form of a second-order effective Hamiltonian (it
would be incorrect to neglect it completely because 〈x|k̂|x′〉 does not tend to zero when x, x′ → +∞ at x − x′ fixed). As the function R(x, x′) shows
near x = x′ = xsing on the left more and more rapid oscillations when ` increases, we cannot take a fixed value of the step dx but we have to use an
iterative method of Romberg type: From the initial choice dx = 1/20, we reduce the step dx by a factor of 2 and extrapolate at zero step linearly in
(dx)2 until the extrapolated value is stable at the percent level (or dx falls below the very small value 2 × 10−3). The matrix element in |`,mx = 0〉
is computed as above equation (A.8) with the same symmetry tricks as in footnote 23 and the integral over φ is deduced from equation (A.8).
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where Ym
` are the usual spherical harmonics, which leads to 34 35

(2` + 1)〈l,mx = 0|eiτ1Lz/~eiφLx/~e−iτ′1Lz/~|l,mx = 0〉 = 4π
∑̀

mx=−`

Ymx
`

(τ1, φ)[Ymx
`

(τ′1, 0)]∗ (B.13)

It remains to invoke the closure relation (8.6–10) on page 146 of reference [51] on spherical harmonics and the spatial
parity property Ym

` (π − θ, φ + π) = (−1)`Ym
` (θ, φ) to obtain the closure relation with fixed ` parity: 36

∑
`≥0 | (−1)`=η

∑̀
mx=−`

Ymx
`

(τ1, φ)[Ymx
`

(τ′1, 0)]∗ =
1
2

[
δ(cos τ1 − cos τ′1)δ(φ) + η δ(cos τ1 + cos τ′1)δ(φ − π)

]
=
|z1|

4

[√
2α e−2xδ(x − x′) δ(φ) + η e−xδ(u − u0) δ(φ − π)

]
where u0 ≡

2α + e2x − e2x′

2
√

2αex
(B.14)

and where we have replaced in the third side cos τ′1 by its value, remembering that |z1| = |z′1| and using (B.4). The
integration on φ is straightforward in view of footnote 36. To integrate over u, we need to know if the root u0 is in
the interval [umin, umax]. For this purpose, we divide the support of the Heaviside function in (B.9) into four distinct
areas: (i) exp(x) < exp(x′) < exp(x) +

√
2α and exp(x) + exp(x′) >

√
2α, (ii) exp(x′) < exp(x) < exp(x′) +

√
2α

and exp(x) + exp(x′) >
√

2α, (iii) exp(x) < exp(x′) <
√

2α − exp(x), (iv) exp(x′) < exp(x) <
√

2α − exp(x′). By
calling uexp

min and uexp
max the expressions depending on x in the definitions (B.5), we find that we systematically have

umin = −1 < u0 < umax = uexp
max in zone (i), umin = uexp

min < u0 < umax = 1 in zone (ii), umin = −1 < umax = 1 < u0 in
zone (iii), umin = uexp

min < umax = uexp
max < u0 in zone (iv). In other words, the integral of δ(u − u0) over u is always equal

to one in the first two areas and to zero in the last two. We deduce the sum of the quantity R(x, x′) on all ` of fixed
parity:

S η(x, x′) =
1
2

1
2
α e−2x ln

e2x +
√

2/α ex + α−1 + 1/2
e2x −

√
2/α ex + α−1 + 1/2

δ(x − x′) + η
Y(
√

2α − |ex − ex′ |)Y(ex + ex′ −
√

2α)
e2x + e2x′ + 1

 (B.15)

It remains to sum on η = ±1 to arrive at the desired result:

+∞∑
`=0

J
(`)
K1,K3

=
(1 + α)3

8πα2

∑
η=±

∫
R2

dx dx′
S η(x, x′)〈x′| l1 − ( l1 + k̂η)−1|x〉

(1 + e−2x)1/4(1 + e−2x′ )1/4 (B.16)

Let us repeat, the operator k̂η is deduced from equation (B.7) by replacing in the second side (−1)`+1 by (−η); the
numerical inversion of the operators l1 + k̂η and the integration over x and x′ are done with the same techniques and
tricks as in footnote 33 (on the other hand, there is no more integration to do on u). Finally, as shown in equation
(B.10),

∑
`∈NJ

(`)
K2,K3

is deduced from expression (B.16) by changing everywhere α to 1/α (including in S η(x, x′)).

Appendix C. The operator M(`,ε)
2,2

(iS) in the formulation of reference [50]

To obtain the operator M(`,ε)
2,2 (iS ) at the basis of conjecture (4,5) on the cluster coefficient B2,2(ω̄) of the trapped

system, we first write a Faddeev ansatz for an eigenstate of the unitary 2 + 2-body ↑↑↓↓ problem of zero energy and

34. The relation (B.12) is used twice, in its direct form with (τ, ψ) = (τ1, φ) and in its conjugated form with (τ, ψ) = (τ′1, 0). If τ1 is in [−π, 0],
the relation does not apply, but it is then sufficient to change τ1 into −τ1, which amounts to changing the integration variable φ into φ + π in (B.9)
(indeed, exp(−iτ1Lz/~) = exp(iπLx/~) exp(iτ1Lz/~) exp(iπLx/~) ) and does not modify the value of the integral. We proceed in the same way if
τ′1 ∈ [−π, 0]. In the following, we can therefore assume that τ1 and τ′1 are in the interval [0, π].

35. Using the addition theorem for spherical harmonics, see equation (8.6–3) on page 145 of reference [51], we show that the second side of
(B.13) is also written (2` + 1)P`(cos δ) where P` is a Legendre polynomial and δ is the angle between the unit vectors of polar coordinates (τ1, φ)
and (τ′1, 0) ; its cosine cos δ = cos τ1 cos τ′1 + sin τ1 sin τ′1 cos φ appears in the denominator of the integrand of (B.9).

36. In the Dirac distributions δ(φ − φ0), φ has a meaning modulo 2π; thus, one can replace the arbitrary integration interval [0, 2π] of equation
(B.9) by the interval of length 2π centered on φ0.
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zero momentum in free space. This ansatz is expressed in terms of an unknown function D of two wave vectors.
Taking into account the Wigner-Bethe-Peierls two-body ↑↓ contact conditions (as in footnote 1) leads to an integral
equation on this function. Then, we use the invariance by rotation to project the equation on the subspace of angular
momentum ` and parity ε as reference [52] explains it in detail. Finally, we use the scale invariance of the unitary
problem (in the absence of three-body Efimov effect) to choose a function D with a well-defined scale exponent s.
The integral equation is then reduced to the condition det M2,2

(`,ε)(s) = 0 where M2,2
(`,ε)(s) is a kernel operator, which

we have to extend on the pure imaginary axis s = iS to evaluate expression (4).
Expression (34,35,36) of M(`,ε)

2,2 (iS ) corresponds to the choice of unknown function D(k2,k4) where k2 and k4 are
the wave vectors of two opposite-spin fermions, as in reference [37] (the wave vectors k1 and k3 disappear in the limit
taking into account the contact condition). The starting integral equation is given by equation (13) of reference [37].
Another choice is made in reference [50], corresponding to the function change

D(k2,k4) = F(u ≡ −(k2 + k4), v ≡
m↓k2 − m↑k4

m↑ + m↓
) (C.1)

and having the advantage of providing a much simpler expression of the singular integral kernel K3, i.e. of the
third contribution in (36) (but not of the kernels K1 and K2, which justifies in the end keeping (36) in the numerical
calculation of (4)). Up to a sign, the new variables are simply the wave vector of the center of mass and the relative
motion of particles 2 and 4. In the following, we use the notation α = m↑/m↓ for abbreviation.

Let’s follow the previously stated steps. The starting integral equation is written in parameterization (C.1) [50]

κ

4π
F(u, v) +

∫
d3u′

(2π)3

F(u′, v14)
κ2 + σ2

14

+
F(u′, v23)
κ2 + σ2

23

−∫
d3v′

(2π)3

F(−u,−v′)
κ2 + v′2

= 0 (C.2)

with the notations taken from reference [50], 37

κ =

(
v2 +

2αu2

(1 + α)2

)1/2

; σ14 = v +
1 − α
1 + α

u + u′ ; v14 = v −
α

1 + α
u +

α

1 + α
u′ ;

σ23 = v +
1 − α
1 + α

u − u′ ; v23 = v +
u

1 + α
−

u′

1 + α
(C.3)

by correcting what seems to us to be a sign error in the coefficient of the vector k (here called u′) in the definition of
v23 (third row and first column of table III of this reference) and in the expression of Ecoll (notation not introduced
here) just above equation (141) of this reference. As in reference [37], to make future transformations simpler, we
adopt a variational formulation of equation (C.2), δE/δF∗(u, v) = 0 with the functional of F and F∗ that follows:

E≡

∫
d3ud3v

κ

4π
F∗(u, v)F(u, v) +

∫
d3ud3vd3u′d3v′

(2π)3 F∗(u, v)F(u′, v′)
δ(v′ − v14)
κ2 + σ2

14

+
δ(v′ − v23)
κ2 + σ2

23

− ε
δ(u − u′)
κ2 + v′2


(C.4)

where the parity ε = ±1 of the solution has been introduced to make the sign − disappear in front of u and v′ in
F(−u,−v′). Let us now consider rotational invariance, restricting ourselves to the subspace of total angular momentum
` ∈ N, with a zero angular momentum component along the quantization axis Oz. The solution F(u, v) is then
expressed in terms of 2` + 1 functions f (`)

mz (u, v,w) (−` ≤ mz ≤ `) of only three real variables, the moduli u and v
of the two vectors and the non-oriented angle θ = (̂u, v) ∈ [0, π] between them or, what amounts to the same thing,
its cosine w = cos θ; to fix the parity at ε is to impose (−1)mz = ε thus to decouple the problem into ` and ` + 1
unknown functions, which we indicate by an exponent ε on the sum sign below. Our ansatz for F is that of equation
(14) of reference [37]. We insert it into functional (C.4) and integrate over the variables other than the arguments of
the functions f (`)

mz in the same way as in that reference. For example, let us apply equation (45) of [37] to the last
contribution of functional E, the one with ε in factor, that gives rise to the singular kernel K3. First, a direct reference

37. Reference [50] arranges the fermions in the order ↑↓↑↓. We renumber the particles accordingly.
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trihedronT with polar axis u and anotherT ′ with polar axis u′ are chosen. The integration on v (or on v′) is performed
in the spherical coordinates associated to T (or to T ′), the cosine of the corresponding polar angle being w (or w′).
Integrating over the other variables then amounts to taking the average over the orientations of T and T ′ which can
be done by fixing the direction of the vector u along the convenient direction Ox and replacing the integration over
the direction of u′ by an integration over rotation R mapping T to T ′ in the SO(3) group with an invariant measure,
explicit dR = da(sin b)dbdc/8π2 in the Euler parameterization R = RZ(a)RY (b)RZ(c), where angles a and c describe
an interval of length 2π, angle b spans [0, π] and the direct Cartesian reference frame OXYZ is of any orientation with
respect to the reference frame Oxyz (see section 8.2 of reference [51]); it follows that∫

d3ud3vd3u′d3v′

(2π)3 F∗(u, v)F(u′, v′)
δ(u − u′)
κ2 + v′2

=
∑

mz,m′z

ε
2
∫ +∞

0
duu2dvv2du′u′2dv′v′2

∫ 1

−1
dwdw′ f (l)∗

mz
(u, v,w) f (l)

m′z
(u′, v′,w′)

×

∫
SO(3)

dR(〈`,mz|R|`,m′z〉)
∗ δ(uex − u′Rex)

v2 + v′2 + 2αu2

(1+α)2

(C.5)

where operator R represents rotation R in the Hilbert space of a quantum particle. The choice of axes OZ = Oz and
OY = Ox leads to (sin b)δ(uex − u′Rex) = (sin b)δ(uRz(−a)ex − u′Rx(b)Rz(c)ex) = δ(u cos a − u′ cos c)δ(−u sin a −
u′ sin c cos b)δ(−u′ sin c) = [δ(u − u′)/(uu′)][δ(a)δ(c) + δ(a − π)δ(c − π)] where we successively used the rotational
invariance of the three dimensional Dirac distribution and decomposed its action into Dirac distributions along Ox,
Oy and Oz. Integration in SO(3) simply reduces to the line R = Rx(b) if a = c = 0 and to the line R = Rx(−b) if
a = c = π, which is taken into account by an integration on b extended to [−π, π], which gives rise to a projector on
the state of zero angular momentum along Ox,

∫ π

−π
db
2π 〈`,mz|e−ibLx/~|`,m′z〉 = 〈`,mz|`,mx = 0〉〈`,mx = 0|`,m′z〉. We get

E =
∑
mz

ε
∫ +∞

0
duu2dvv2

∫ 1

−1
dw f (l)∗

mz
(u, v,w) f (l)

mz
(u, v,w)

1
2

(
v2 +

2αu2

(1 + α)2

)1/2

+
∑

mz,m′z

ε
∫ +∞

0
duu2dvv2du′u′2dv′v′2

×

∫ 1

−1
dwdw′ f (l)∗

mz
(u, v,w) f (l)

m′z
(u′, v′,w′)

∫ 2π

0

dφ
(2π)2

δ(|Z1| − |Z′1|)(|Z1| |Z′1|)
−1eiT1mz〈l,mz|eiφLx/~|l,m′z〉e

−iT ′1m′z

|Z2|
2 + |Z′2|

2 + 2uu′
1+α

(cos T1 cos T ′1 + sin T1 sin T ′1 cos φ)

+
δ(|Z2| − |Z′2|)(|Z2| |Z′2|)

−1eiT2mz〈l,mz|eiφLx/~|l,m′z〉e
−iT ′2m′z

|Z1|
2 + |Z′1|

2 + 2αuu′
1+α

(cos T2 cos T ′2 + sin T2 sin T ′2 cos φ)
+

(−ε)δ(u − u′)
uu′

〈`,mz|`,mx = 0〉〈`,mx = 0|`,m′z〉

v2 + v′2 + 2αu2

(1+α)2

 (C.6)

where we have introduced the complex numbers Z1 ≡ αu/(1 + α) − v exp(iθ) = |Z1| exp(iT1), Z2 = u/(1 + α) +

v exp(iθ) = |Z2| exp(iT2) and their counterparts for the primed variables Z′1 ≡ αu′/(1 + α) − v′ exp(iθ′) = |Z′1| exp(iT ′1),
Z′2 = u′/(1 + α) + v′ exp(iθ′) = |Z′2| exp(iT ′2). Finally, let us take advantage of scale invariance by means of the ansatz

f (l)
mz

(u, v,w) =
(ch x)s+3/2(1 + e−2x)−s/2Φ

(l)
mz (x,w)

(u2 + v2/ς2)(s+7/2)/2 where v = ςexu and ς =

√
2α

1 + α
(C.7)

chosen cleverly so that the diagonal part of the functional (first contribution in (C.6)) becomes scalar (independent of
any variable) and so that the singular part (last contribution) does not depend on the mass ratio or even on the scaling
exponent s. The integration on u brings out as in reference [37] an infinite constant factor, here (ς4/16)

∫ +∞

0 du/u, to
give the regularized functional

Ē =
∑
mz

ε
∫ +∞

−∞

dx
∫ 1

−1
dw Φ(l)∗

mz
(x,w)Φ(l)

mz
(x,w)+

2
ς3

∑
mz,m′z

ε
∫ +∞

−∞

dxdx′
∫ 1

−1
dwdw′

ex+x′Φ
(l)∗
mz (x,w)Φ(l)

m′z
(x′,w′)

(1 + e−2x)1/4(1 + e−2x′ )1/4

∫ 2π

0

dφ
(2π)2 (|z′1|/|z1|)s(|z1| |z′1|)

−1/2eiτ1mz〈l,mz|eiφLx/~|l,m′z〉e
−iτ′1m′z

|z′1|
2|z2|

2+|z1|
2|z′2|

2+(1+β)(Re z1 Re z′1+Im z1 Im z′1 cos φ)
+

(|z′2|/|z2|)s(|z2| |z′2|)
−1/2eiτ2mz〈l,mz|eiφLx/~|l,m′z〉e

−iτ′2m′z

|z′2|
2|z1|

2+|z2|
2|z′1|

2+(1+α)(Re z2 Re z′2+Im z2 Im z′2 cos φ)

+(−ε)ς3 〈`,mz|`,mx = 0〉〈`,mx = 0|`,m′z〉
e2x + e2x′ + 1

]
(C.8)
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where we have set β = 1/α, z1 ≡ (α/2)1/2 − exp(x+iθ) = |z1| exp(iτ1), z2 ≡ (β/2)1/2 + exp(x+iθ) = |z2| exp(iτ2) and the
equivalent relations for the primed variables, z′1 ≡ (α/2)1/2−exp(x′+iθ′) = |z′1| exp(iτ′1), z′2 ≡ (β/2)1/2 +exp(x′+iθ′) =

|z′2| exp(iτ′2) and where we recall that θ = arccos w and θ′ = arccos w′. A simple functional derivation of (C.8) with
respect to Φ

(`)∗
mz (x,w), taking a pure imaginary scale exponent and returning to the notation u = cos θ of the main

article gives the new form of the operator M(`,ε)
2,2 (iS ), marked with a Czech accent to avoid confusion with (34,35,36):

〈x, u|〈`,mz|M̌
(`,ε)
2,2 (iS )| f 〉 = fmz (x, u) +

∫ +∞

−∞

dx′
∫ 1

−1
du′

∑
mz | (−1)mz =ε

Ǩ(`)
2,2(x, u,mz; x′, u′,m′z) fm′z (x′, u′) (C.9)

with an integral kernel separated into three contributions Ǩ = Ǩ1 + Ǩ2 + Ǩ3 written line by line:

Ǩ(`)
2,2(x, u,mz; x′, u′,m′z) =

2ς−3ex+x′ (|z1| |z′1|)
−1/2

(1 + e−2x)1/4(1 + e−2x′ )1/4

∫ 2π

0

dφ
(2π)2

|z1|
−iS eiτ1mz〈l,mz|eiφLx/~|l,m′z〉e

−iτ′1m′z |z′1|
iS

|z′1|
2|z2|

2+|z1|
2|z′2|

2+(1+β)(Re z1 Re z′1+Im z1 Im z′1 cos φ)

+
2ς−3ex+x′ (|z2| |z′2|)

−1/2

(1 + e−2x)1/4(1 + e−2x′ )1/4

∫ 2π

0

dφ
(2π)2

|z2|
−iS eiτ2mz〈l,mz|eiφLx/~|l,m′z〉e

−iτ′2m′z |z′2|
iS

|z′2|
2|z1|

2+|z2|
2|z′1|

2+(1+α)(Re z2 Re z′2+Im z2 Im z′2 cos φ)

+
(−1)`+1

π

ex+x′

e2x + e2x′ + 1
〈`,mz|`,mx = 0〉〈`,mx = 0|`,m′z〉

(1 + e−2x)1/4(1 + e−2x′ )1/4 (C.10)

where we remembered that 〈`,mz|`,mx = 0〉 = 0 if ε , (−1)`. To verify that equation (C.10) is written in the same
order as equation (36), i.e. that the kernel Ǩi is precisely the kernel Ki written in the formulation of reference [50], we
show numerically that

∫
R dS Tr [D−1

2,2K1(iS )D−1
2,2K3(iS )] =

∫
R dS Tr [Ǩ1(iS )Ǩ3].
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