
HAL Id: hal-03592937
https://hal.science/hal-03592937

Submitted on 1 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Software Defined Radio Platforms for Wireless
Technologies

Dereje M. Molla, Hakim Badis, Laurent George, Marion Berbineau

To cite this version:
Dereje M. Molla, Hakim Badis, Laurent George, Marion Berbineau. Software Defined Radio Plat-
forms for Wireless Technologies. IEEE Access, 2022, pp1-27. �10.1109/ACCESS.2022.3154364�. �hal-
03592937�

https://hal.science/hal-03592937
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier xx.xxxx/ACCESS.xxxx.xxx

Software Defined Radio Platforms for
Wireless Technologies
DEREJE M. MOLLA1 , HAKIM BADIS1 , LAURENT GEORGE1 , AND MARION
BERBINEAU2
1LIGM, ESIEE Paris, Gustave Eiffel University, CNRS, F-77454 Marne-la-Vallée, France (e-mail: dereje.molla@esiee.fr, hakim.badis@univ-eiffel.fr,
laurent.george@esiee.fr)
2COSYS Department, Gustave Eiffel University, France (e-mail: marion.berbineau@univ-eiffel.fr)

Corresponding author: Dereje M. MOLLA (e-mail: dereje.molla@esiee.fr).

The authors acknowledge funding from I-Site Future in the framework of the Western project. One of the authors acknowledge partial
funding by the regional project SMARTIES in the framework of the ELSAT 2020 program co-financed by the European Union with the
European Regional development fund, the French state and Hauts de France Regional council.

ABSTRACT Wireless connectivity standards have been developed to meet the requirements of various
applications. To support a wireless standard, a wireless transceiver should be equipped with a Radio
Frequency (RF) transceiver. Traditional RF transceivers are designed and implemented on a radio chip
or an embedded module in a System-on-a-Chip (SoC), ensuring small size, high performance, low
power consumption, and cost. However, this traditional implementation design limits directly or indirectly
the programmability and flexibility of the RF transceivers. An alternative solution is to implement RF
transceivers using Software Defined Radio (SDR) platforms. In the market, SDR platform hardware exists
with different configurations, performance, cost, size, etc., making it hard to select the minimum SDR
platform necessary to satisfy the wireless standard requirements. This paper aims to provide a list of well-
known General Purpose Processor (GPP) based SDR platforms satisfying the minimum specifications of
selected wireless standards. To this end, we first review the characteristics of selected wireless technologies.
Then, we investigate existing SDR platform architecture and their maximal performance in terms of the
frequency range, bandwidth, symbol rate, bitrate, and latency support. Finally, we intersect the wireless
standard requirements with the corresponding SDR platform parameters and provide a list of GPP-based
SDR platforms for some existing wireless technology implementations. While investigations related to
frequency, bandwidth, symbol rate and bitrate are supported by theoretical results, latency is obtained from
experiments by benchmarking existing implementations.

INDEX TERMS General Purpose Processor, Software Defined Radio, Transceivers, Wireless Technolo-
gies.

I. INTRODUCTION

THE number of wireless devices used by various wire-
less application domains such as Wireless Sensor Net-

works (WSNs) [1], Internet of Things (IoT) [2], cellular
base stations [3], etc., has increased tremendously in the
past decade. Several wireless technologies are standardized
to enable the interconnection between the different wireless
devices including NFC, RFID, IEEE 802.15x, IEEE 802.11x,
LoRa, Sigfox, 3GPP 3G/4G/5G, etc., [3]–[5]. A wireless
device can incorporate one or multiple wireless transceivers
supporting distinct wireless technologies. Each transceiver
performs all the physical (PHY) and a portion of the Media
Access Control (MAC) layer operations through integrated

analog and digital circuit blocks. Indeed, most of the PHY
layer analog operations are implemented on a dedicated
and integrated analog hardware such as amplifiers, radio
frequency (RF) synthesizers, filters, etc. On the other hand,
some PHY layer digital baseband and time critical MAC
layer functions are fully implemented on a digital hardware
such as Application Specific Integrated Circuits (ASICs), a
Programmable Digital Signal Processor (PDSP), Application
Specific Instruction Set DSP (DSP ASIP) or a mixed solution
using ASIC hardware accelerators with PDSP or with DSP
ASIP [6]. This traditional implementation considerably lim-
its directly or indirectly the programmability and flexibility
of the transceivers for upgrading or handling multiple wire-

VOLUME x, xxxx 1

https://orcid.org/0000-0003-4515-679X
https://orcid.org/0000-0002-1792-6198
https://orcid.org/0000-0002-3247-787X
https://orcid.org/0000-0003-3807-9669

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

less standards. Moreover, processors of wireless transceivers
are mostly proprietary which prevent programmers and re-
searchers from access to reprogram the instruction code.

An alternative solution to allow programmers and re-
searchers to easily control the hardware and program the
software of wireless transceivers is to use an implementation
based on general-purpose processor (GPP) based Software
Defined Radio (SDR) platforms, which is a reconfigurable
and reprogrammable radio transceiver. In such platforms, the
PHY layer digital baseband and MAC layer operations are
implemented on a GPP, and the PHY layer analog RF/IF
front-end operations are controlled using an analog device
board supporting a wide range radio spectrum. This solution
have been explored by many researchers to investigate the
architecture, challenges and compare the performance of
several SDR platforms [7]–[9]. In addition, as the PHY and
MAC layers are performed in software by GPP host and
due to the reconfigurability and reprogrammability of the
radio transceiver, the SDR platform can be used to imple-
ment multiple wireless technologies. Such benefit has been
exploited in many recent research works such as [10], [11].
These benefits conjugated with the continuous advancement
in processing performance (hardware and software) and de-
creasing price of GPPs made GPP-based SDR platforms
gain much attention for implementing and testing wireless
technologies [12]–[16]. Moreover, it is also used to build
testbeds and/or perform experimentation to study different
features of communication systems and suggest performance
improvement [17]–[19].

Currently, several SDR platforms are available in the
market and research community. To implement a desired
wireless technology, an appropriate SDR platform need to
be selected. Previous research works such as [7] and [9]
have presented the challenges during SDR platform selection
process and compared the performance of SDR platforms in
the general context. However, they abstain from addressing
the specific considerations required by SDR platforms based
on the requirement of wireless technologies. This problem
is slightly addressed by other researchers and developers
in two different perspectives, by designing a custom SDR
architecture suited to a specific implementation such as [20]–
[22], and/or providing list of recommended requirements to
implement a certain wireless technology. Regarding the latter
case, the recommendations are usually provided by SDR
platform software implementations such as Software Radio
Systems (SRS) [14], OpenAirInterface Software (OAI) [23],
gr-IEEE-802.15.4 [15], gr-LoRa [24], etc. However, these
recommendations are essentially formulated after multiple
experimental tests. Nevertheless, as the experimental tests
are not exhaustive, the recommended SDR platforms may be
over-dimensioned and thus the minimal necessary configura-
tion (carrier frequency and bandwidth, clock rate, communi-
cation interface support, GPP cores, GPP processing power,
software architecture, etc.), can be exceeded.

The aim of this paper is to provide a list of possible GPP-
based SDR platforms in terms of hardware components sat-

isfying the minimum specifications of well-known wireless
technologies. This is achieved by analyzing what a wireless
technology requires at minimum in terms of frequency range,
bandwidth, symbol rate, bitrate and latency, and the per-
formance offered by GPP-based SDR platform components.
The contributions of this paper can be summarized as:

• we present a detailed study of the architecture of GPP-
based SDR platforms, and analyze their capabilities in
terms of the performance metrics;

• we drive the minimum performance requirements of
the most relevant wireless technologies. We use these
requirements to draw mapping conditions in order to de-
termine which GPP-based SDR platform is appropriate
to successfully perform a targeted wireless technology;

• we identify existing wireless technology implementa-
tions from the literature that use GPP-based SDR plat-
forms, examine their performance metrics, and suggest
a list of other possible SDR platforms to implement the
use-cases described in the literature.

Thus, the in-depth analysis of selected wireless technologies
and SDR platforms allows researchers from both academia
and industry to easily understand required parameters, soft-
ware and hardware components of SDR platforms. We be-
lieve this paper will help researchers (SDR platform users
and SDR software developers) looking for the appropriate
SDR platform to implement a given wireless technology. To
the best of our knowledge, this paper is the first to perform
mapping several wireless technologies with GPP-based SDR
platforms.

This paper is organized as follows: Section II provides
classification and characteristics of well-known wireless con-
nectivity technologies. Section III discusses the architecture
of GPP-based SDR platforms and provides general back-
ground on the hardware and software components. Sec-
tion IV provides a detailed study on the performance param-
eters of GPP-based SDR platforms and presents numerical
results using selected GPP-based SDR platforms. Section V
presents a mapping between SDR platform performance and
wireless technology requirements. Open research challenges
and future directions are given in section VI. Finally, sec-
tion VII provides conclusions to this paper.

II. WIRELESS CONNECTIVITY TECHNOLOGIES
The interconnection between different wireless devices is
enabled by a wide range of wireless technologies that can
cover from very short distance (in centimeter range) to sev-
eral kilometers. Thus, wireless connectivity technologies can
mainly be classified into three groups based on the range they
cover [25]: i) short-range wireless technologies, ii) Wireless
Local Area Networks (WLANs), and iii) Wireless Wide Area
Networks (WWANs). Within each of these categories, several
wireless technologies are standardized, as shown in Fig. 1.
The subsequent subsections present the main PHY and MAC
layer characteristics of major wireless technologies. We note
that, the frequency requirement of wireless technologies
stated in the tables is given based on their standard. However,

2 VOLUME x, xxxx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

the specific frequency band used by a wireless technology
depends on its allocation for global and regional use and also
countries regulation [26].

WBAN
- 802.15.6
 ...

WPAN
- BLE
- Zigbee
- Thread
- EnOcean
 And others

WLAN
- 802.11a/b/g/n/ac
- 802.11p
- 802.11ah
 And others

LPWAN
- Licensed
 → NB-IoT
 → EC-GSM-IoT
 → LTE-M
 And others
- Unlicensed
 → LoRa
 → Sigfox
 And others

Coverage range

< 10 cm < 10m < 100 m < 1 km < 100 km

Proximity
- NFC
 ...

WWAN

- GSM/LTE/LTE-A

FIGURE 1: Wireless technologies.

A. SHORT-RANGE WIRELESS TECHNOLOGIES
Short-range wireless technologies include proximity com-
munication, Wireless Body Area Networks (WBANs) and
Wireless Personal Area Networks (WPANs). They are mainly
characterized by their short-range coverage operating under
the unlicensed industrial, scientific and medical (ISM) fre-
quency bands. International Organization for Standardiza-
tion(ISO)/International Electrotechnical Commission (IEC)
defines the PHY and MAC layer requirements for proximity
technologies, and IEEE defines for WBAN and WPANs.
Some of the most prominent wireless technologies are Near
Field Communication (NFC), Radio Frequency Identification
(RFID), IEEE 802.15.6 (NB PHY, UWB PHY and HBC
PHY), IEEE 802.15.1, and IEEE 802.15.4. IEEE also defines
the PHY and MAC layer for Low-Rate WPAN to meet
the limited resource requirement of IoT and WSN devices.
Among these standards are IEEE 802.15.4 and Bluetooth
Low Energy (BLE), which are developed for networks with
low power consumption, low deployment cost and less com-

plexity. Table 1 gives the PHY and MAC layer characteristics
of some of the short-range wireless technologies.

B. WIRELESS LOCAL AREA NETWORK - WLAN
WLAN is mostly designed for wireless connectivity covering
less than one kilometer range. Different standards falling
under this group include IEEE 802.11b, IEEE 802.11a/g,
IEEE 802.11n, IEEE 802.11ac/ax, IEEE 802.11ah and IEEE
802.11p. The first four standards (IEEE 802.11a/b/g/n/ac)
are the most popular wireless standards used by WiFi [32],
[33]. They are high bandwidth technologies that supports
the communication of bandwidth-intensive applications like
streaming video, and enable wireless gateways with a high-
speed interface to relay traffics requiring large bandwidth and
IP connectivity [34]. Other standards promising for IoT and
WSN deployment due to their low power and long range
wireless communication support are IEEE 802.11ah (WiFi-
HaLoW) [35] and IEEE 802.11p [36]. IEEE 802.11ah defines
PHY and MAC layer specification for large scale sensor
networks and extended range hotspot. It operates in the sub-
GHz ISM bands. IEEE 802.11p is an amendment of 802.11
standard that operates in the 5.9 GHz band and offer wireless
connectivity between mobile vehicles (and/or vehicles and
roadside units) and designed to guarantee low latency [36].
Table 2 enlists their PHY and MAC layer characteristics.

C. WIRELESS WIDE AREA NETWORK - WWAN
WWANs are meant for large area coverage in the order of
kilometers. The wireless communication technologies stan-
dardized for such wide coverage have mainly two groups:
cellular networks such as 2G, 3G, 4G and 5G; and Low
Power Wide Area Networks (LP-WANs). The latter also has
two groups: licensed and unlicensed. The licensed LP-WAN
consists of Narrow-Band IoT (NB-IoT), Enhanced Coverage-
GSM IoT (EC-GSM-IoT) and Long Term Evolution for
Machine Type Communication (LTE-M). They are upgrades
of cellular communication technologies for IoT applications.

TABLE 1: Characteristics of short-range wireless technologies.
Standards PHY layer MAC layer

Frequency
Band (MHz)

Channel size
(Bandwidth (MHz))

Max. symbol
rate (MSym/s)

Modulation Max. bitrate
(kbit/s) Latency (ms) Access schemeBit-to-Sym mapper Subcarriers

ISO/IEC 18092:2013
(NFC) [27]

13.56 1 0.106, 0.424,
1.696

ASK (OOK) FSK 1 106, 212, 424 5.340 Electromagnetic
coupling

ISO/IEC 18000 (JTC1
SC31) (RFID) [28]

0.125,13.5,433,
subGHz,
2.4G, UWB

10, 14, 1.74, 7, 8 – BPSK 1 640 FDMA/TDMA

NB PHY [29] 0.4 – 2.4 0.3, 0.32, 0.4, 1 0.6 DBPSK, π/4-DQPSK,
π/8-D8PSK, GMSK

1 0.0759 – 0.9714 pSIFS*= 75 CSMA/CA,
slotted ALOHA

UWB PHY (IR-UWB,
FM-UWB) [29]

3.493 – 9.984 499.2 15.6 On-OFF modulation,
BPSK/QPSK, CP-BFSK,
WB-FM, DBPSK/DQPSK

1 15.6 pSIFS = 75 CSMA/CA,
slotted ALOHA

HBC PHY [29] 0.021 5.25 0.328 Based on NFC (OOK,
DSSS)

1 1.3125 pSIFS = 75 CSMA/CA,
slotted ALOHA

IEEE 802.15.1 [30] 2.4G 1, 2 2 FHSS based GFSK,
DQPSK

1 2000 IFS = 150 TDMA

IEEE 802.15.4 [31] sub-GHz
and 2.4G 0.4, 0.6, 2, 5 0.0625 DSSS based BPSK,

O-QPSK 1 20, 40, 100,
250

aTurnaroundTime = 192;
macAckWaitDuration = 864

Unslotted
CSMA/CA

aTurnaroundTime = 192;
aTurnaroundTime +

aUnitBackoffPeriod = 512

Slotted
CSMA/CA

macTsTxAckDelay = 1000 GTS allocation
* SIFS: Short Inter-Frame Space.

VOLUME x, xxxx 3

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

TABLE 2: Characteristics of WLAN standards.

Standards PHY layer MAC layer
Frequency
Band (GHz)

Channel size
(Bandwidth (MHz))

Symbol duration
+ GI*(µs)

Max. symbol
rate (kSym/s)

Modulation Max. bitrate
(Mbit/s) Latency (µs) Access

schemeBit-to-Symbol mapper Subcarriers
IEEE802.11b [32] 2.4 22 0.7273 1375 CCK,QPSK 1 11 SIFS = 10; ACK

timeout = 30
CSMA/CA

IEEE802.11a/g
[32]

5/2.4 20 4 250 BPSK,QPSK, (16,64)QAM 52 54 SIFS=16/10;
ACK timeout =
25/19

CSMA/CA

IEEE802.11n [32] 2.4/5 20/40 4 250 BPSK,QPSK, (16,64)QAM 56/114 72.2, 150 SIFS = 10; ACK
timeout = 19

CSMA/CA

IEEE802.11ac
[33]

5 20/40/80/160 4 250 BPSK,QPSK, (16, 64,
256)QAM

56/114/242/
484

86.7 – 6000 SIFS = 16; ACK
timeout = 25

CSMA/CA

IEEE802.11ah
[35]

subGHz (0.7
- 0.9)

1/2/4/8/16 40 25 BPSK,QPSK, (16, 64,
256)QAM

32/56/114/
242/484

0.1 – 347 SIFS = 160 CSMA/CA

IEEE802.11p [36] 5.8/5.9 10 8 125 BPSK,QPSK, (16,64)QAM 52 3 – 27 SIFS = 32 CSMA/CA
* GI is long Guard Interval (8µs for 802.11ah, 1.6µs for 802.11p and 0.8µs for others).

TABLE 3: Characteristics of WWAN standards.
Standards PHY layer MAC layer

Frequency Band
(MHz)

Channel size
(Bandwidth (MHz))

Symbol duration
+ GI (µs)

Max. symbol
rate (kSym/s)

Modulation Max. bitrate
(bit/s)

Latency
(ms) Access schemeBit-to-Sym mapper Subcarriers**

Cellular

GSM/ 800/900, 1800/1900 0.2 3.69 271 GMSK, QPSK,
8PSK, 16QAM

1 171k (GPRS),
384k(EDGE)

slot time
= 0.577

TDMA/FDMA

3GPP LTE LTE bands [40] 1.4,3,5,10,15,20 66.66 15 QPSK, 16QAM,
64QAM

73/181/301/
601/901/1201

50.42M (UL),
100.8M (DL)

4 SC-FDMA,
OFDMA

Cellular
for IoT

NB-IoT
[41]

LTE bands 0.18 66.66 15 BPSK, QPSK,
16QAM

12 250k 20 SC-FDMA/ FDMA,
OFDMA

EC-GSM-
IoT

GSM bands 0.20 3.69 271 GMSK, 8PSK 1 240k slot time
= 0.577

TDMA

LTE-M LTE bands 1.4 66.66 15 QPSK, 16QAM 73 1M end-end
= 100

SC-FDMA,
OFDMA

LP-WAN

LoRa* 433/868(EU),
915(US), 430(Asia)

0.125,0.25,0.5 1024,512,256 3.91 LoRa, FSK 1 50k 24 Proprietary CSS

Sigfox 868(EU), 902(US) 0.0001(UL),
0.0006(DL)

10,000/60,000 0.1, 0.6 DBPSK(UL),
GFSK(DL)

1 100(UL),
600(DL)

∼ 2000 Proprietary
UNB/FHSS

* Spreading factor (SF) = 7. ** Subcarriers are shown only for the downlink.

Unlicensed LP-WAN includes Long Range (LoRa), Sigfox,
etc., [37]. LP-WAN technologies are designed for Machine-
to-Machine (M2M) and IoT applications that need to forward
small payload data at low data rate and low power consump-
tion [38], [39]. The cellular technologies (2G, 3G, and 4G),
on the other hand, consume a lot of device energy which
may cause a negative impact on low-power IoT devices.
However, they are useful for IoT gateways or IoT devices
running bandwidth-intensive applications. Table 3 quantifies
the requirements of cellular and LP-WAN technologies.

III. GPP-BASED SDR PLATFORM ARCHITECTURE

The implementation design of conventional wireless
transceivers, in general, lacks reprogrammability, flexibility
and scalability. Therefore, upgrading the software, changing
the logic of the dedicated hardware or reusing the transceiver
to implement a wireless standard other than the one the
transceiver was designed for is limited or non-existent. More-
over, conventional wireless transceivers are mostly propri-
etary which prevent developers and researchers from access
to reprogram the assembly instruction set. An alternative
solution to mitigate these limitation is using SDR platforms.
In addition to the programmability feature, the SDR platform
also serve as a multi-technology gateway by performing
multiple wireless technologies using a common set of radio
transceiver [10], [11]. It also allows to reuse software across
multiple radio devices and download software over-the-air to
implement new standards and fix bugs [8]. Furthermore, it is

recently being used to mitigate cross-technology interference
problem faced by conventional technologies [42].

An SDR platform is a class of radio transceivers which
controls the analog RF/IF part using an open-source ana-
log device board, named SDR device, and implements all
the digital part using programmable host processor. The
programmable host processor can be GPP, DSP ASIP or
FPGA. The scope of our study is limited to GPP-based SDR
platforms due to its easy programmability using a high-level
language and its flexibility for reconfiguration and handling
complex algorithms [9]. The general architecture of GPP-
based SDR platform is illustrated in Fig. 2. It is mainly
sectioned into three parts as SDR device, communication
interface and GPP host. Each component of the platform has
its communication parameters that contribute to the overall
performance of the SDR platform. This section investigates
the GPP-based SDR platform.

DUC

DDC

C
on

tr
ol

le
r

C
on

tr
ol

le
r

Daughter
board

Motherboard

BB
processor

Communication Interface

USB2.0/3.0

Ethernet

PCIe

GPP HostSDR device

DAC

ADC

MAC
&

Upper layers

Antenna

FIGURE 2: GPP-based SDR platform general architecture.

4 VOLUME x, xxxx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

A. SDR DEVICE
An SDR device is a small handheld type of device which
is capable of transmitting and receiving signals at different
frequencies. It typically consists of software controllable ana-
log RF/IF and digital IF front-ends. The former is called as
daughterboard and the latter as motherboard. This subsection
describes their respective tasks and characteristics.

1) Daughterboard
The daughterboard is essentially responsible to perform ana-
log RF/IF processing functions such as filtering, amplifica-
tion, conversion of signals from RF to IF and vice-versa,
etc. It is mainly characterized by the frequency band it
covers, the analog bandwidth, RF performance, number of
channels, channel’s capability (only RX or TX/RX), mode of
operation as a half (HD) or full (FD) duplex, etc. Mainly, the
operating frequency range, width of analog bandwidth and
channel’s capability determines the scope of the daughter-
board to implement a wide range of wireless technologies
using SDR device. The daughterboard interfaces the antenna
with the motherboard. Indeed, most daughterboards integrate
multiple input/output circuits to connect multiple separated
antennas enabling simultaneous transmission and reception
capability [43], [44]. Also, daughterboards integrate analog
inputs/outputs to connect motherboard ADCs and DACs. In
the market, daughterboards are either stand-alone component
or integrated with a motherboard forming a single board.
Table 4 lists few commercially available daughterboards.

TABLE 4: List of selected daughterboards.

Daughterboard Frequency
Band (MHz)

Bandwidth
(MHz) TX/Rx/Mode Type SDR family

UBX 10 – 6000 40/160 Tx/Rx/FD

Stand-alone

USRP [43]

CBX 1200 – 6000 40/120 Tx/Rx/FD
SBX 400 – 4400 40/120 Tx/Rx/FD
WBX 50 – 2200 40/120 Tx/Rx/FD
B210 70 – 6000 56 Tx/Rx/FD Integrated
HackRF FE [45] 1 – 6000 20 TX/RX/HD Integrated HackRF
WARP Radio RF [46] 2400-2500,

4900-5875
40 TX/RX/FD Stand-alone Used by Sora

LMS7002M FPRF [47] 0.1 – 3800 60 Tx/Rx/FD Integrated LimeSDR
AD-FMCOMMS2-EBZ [44] 70 – 6000 56 Tx/Rx/FD Integrated Analog Devices

2) Motherboard
Motherboard is mainly responsible to perform digitization,
channelization and sample rate conversion (digital up/down
conversion [DUC/DDC]). To achieve these operations, moth-
erboards integrate ADCs/DACs and a DSP processor that can
be implemented using ASIC, DSP ASIP or FPGA. It also
integrates one or more communication interfaces to connect
with GPP host. It is mainly characterized by the maximum
ADC and DAC sample rates, ADC and DAC resolution, DSP
processor design and the supported communication interface.
Table 5 provides characteristics of motherboards of selected
SDR devices.

The motherboard, in SDR devices, interfaces daughter-
board with a GPP host. It exchanges baseband samples with
GPP host and IF analog signals with daughterboards. Actu-
ally, a received IF analog signal from a daughterboard is first
digitized by ADC to get IF digital samples and then down-
sampled through DDC to obtain baseband digital samples.

TABLE 5: Characteristics of motherboards of SDR devices.

SDR family DSP processor Sample rate (MS/s) Resolution (bits) Comm. Interface TypeADC DAC ADC DAC
HackRF One [45] NXP LPC43XX ARM

Cortex-M4 MCU
20 20 8 8 USB 2.0 Integrated

USRP B210 series [43] Xilinx Spartan-6 FPGA 61.44 61.44 12 12 USB 3.0 Integrated
USRP X310 series [43] Xilinx Kintex-7-410T

FPGA
200 800 14 16 Ethernet Separate

Microsoft Sora [48] Virtex-5 FPGA 44 40 12 12 PCIe Separate
LimeSDR [47] Altera Cyclone IV

EP4CE40F23 FPGA
160 640 12 12 USB 3.0, PCIe Integrated

Finally, the baseband samples are transmitted to the GPP
host through an integrated communication interface. On the
reverse direction, received baseband samples are first up-
sampled through DUC to get IF digital samples and then
converted to IF analog signal by DAC. Finally, the IF analog
signal is forwarded to the daughterboard [49]. In the market,
motherboards are either separate boards containing slots to
plug daughterboards or a board integrating daughterboards.

B. COMMUNICATION INTERFACE
Data is transferred from GPP Host to SDR device and vice-
versa using wired communication interfaces. These are based
on commonly used data transfer communication interfaces
like Universal Serial Bus (USB 2.0, USB 3.0, etc.), Ether-
net (standard, fast, gigabit, etc.) and Peripheral Component
Interconnect Express (PCIe 1.x, PCIe 2.x, etc). They consist
of controllers such as Network Interface Controller (NIC), in-
stalled in both GPP host and SDR motherboard, to implement
the communication interface standard. The communication
interface technology implemented by the controller has spe-
cific characteristics defined by standards such as the maximal
supported rate, maximal payload size, maximal cable length,
etc., [50]–[52]. To allow more flexibility in data transfer
speeds, some SDR devices include multiple communication
interfaces (see Table 5). The controllers of both SDR device
and GPP host should implement the same interface standard
but not necessarily the same version. Indeed, different ver-
sions of the same standard may create connection between
the two ends but they need to be synchronized for efficient
data exchange. In such cases, the communication standard
with the lowest rate will be agreed by auto-negotiation (as
for Ethernet [51]) or backward compatibility (for example
between USB 2.0 and USB 3.0) or manually [53].

C. GPP HOST
A GPP host is a programmable device that can perform
computational tasks based on instructions given by software
programs using either high or lower level programming
languages. As such a GPP host combines hardware and
software, and is responsible to handle their interaction. The
subsequent sections review these components highlighting
the parts that impact the processing speed of a GPP host.

1) Hardware
The GPP host components are, mostly, assembled in a single-
board. This board contains SoC internal components such
as GPP, internal memories, co-processors (GPU, DSP ASIP,
etc.), and possible controllers for communication interfaces

VOLUME x, xxxx 5

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

(see section III-B) and SoC external components such as
external memories, expansion slots, etc.

A GPP, which can be either microprocessor or micro-
controller, is responsible for performing the digital PHY,
MAC, and upper layer operations. Unlike the conventional
transceivers, it has the advantage of either high or low level
programmability without modifying the hardware. Although
it offers high user flexibility, the high-level programmability
usually results in performance degradation of the processor
to satisfy the requirements of intensive computation signal
processing tasks [54]. Indeed, the performance (processing
speed) of GPP is largely determined by a clock, where
lower clock speed implies a slow processor and less energy
consumption [55].

The GPP may be of single core or multi-core proces-
sor. However, most GPPs currently are based on multi-core
(Dual-core, Quad-core, etc.,) processors on a single physical
Central Processing Unit (CPU) [7]. Each core, in a multi-core
single CPU system, represents a single processor or execu-
tion unit capable of executing processes concurrently with
other processors. This increases the number of instructions
to be processed per clock cycle. In addition to clock speed
and number of cores, system bus architecture (bus width, its
clock frequency, the number of data it can transfer per clock
cycle, etc.,) significantly affects the speed of processing [55].
The size and level of cache a CPU has also affects the speed
of its processing. Other parameters that could affect overall
processing speed of GPP are number of threads, memory
size, number of ALUs, hyper-threading support, size of Sin-
gle Instruction Multiple Data (SIMD) units, etc. The SIMD
units allow a processor to perform simultaneously the same
instruction (operation) on multiple data units [56]. Recent
GPPs support SIMD architecture to improve performance
capabilities [57]. Table 6 provides few examples of GPP host
hardware. To achieve more computing performance, GPPs
are usually complemented with co-processors like GPU,
FPGA and DSP ASIP as accelerators [56], [58], [59].

TABLE 6: List of well-known GPP Host hardware.
GPP Characteristics Desktop computer Laptop Smartphones Embedded

computer boards
Processor Intel x86, AMD,

ARM, MIPS
Intel x86, AMD,
ARM, MIPS

ARM, Intel, MIPS ARM, 8051 cores,
microMIPS

SIMD support Yes Yes Yes Yes
Comm.Interface
controller

USB,Ethernet,PCIe USB, Ethernet, PCIe USB USB, Ethernet

Computing power Low to High Low to High Low to Medium Low to Medium
Size/Weight Large Medium Small Small
Example Dell, Apple, HP,

Lenovo, Acer, etc.
Dell, Apple, HP,
Lenovo, Acer, etc.

iPhone, Samsung,
Huawei, etc.

Raspberry Pi, Ar-
duino, NXP, etc.

2) Software
The software part of GPP host controls the operation of the
processor, input/output traffic of communication controllers
and the SDR device. It is generally layered into three on top
of the hardware processor as instructions set, kernel space
and user space. The instruction set is defined as a group of
instructions a processor can execute. Thereby, an instruction
code (object code) generated by a compiler or an assembler

can only contain instructions from this set. The instruc-
tion set is one of two types of instruction set architecture
(ISA) designs: Reduced Instruction Set Computers (RISC)
or Complex Instruction Set Computers (CISC) [60]. The ISA
of GPPs can be based on CISC or RISC. To exploit the
advantages of both instruction sets, modern GPPs are more
based on hybrid ISA (using CISC instructions externally,
but RISC techniques internally) [61]. Moreover, the use of
RISC architecture can also be enhanced by adding Very Long
Instruction Word (VLIW) extensions, a technique that offer
instruction level parallelism [62].

The middle layer of the software system architecture is the
kernel. It is the heart of an operating system (OS), linking the
user space with the hardware processor [63]. To interact with
the hardware, the kernel includes hardware drivers such as
processor driver, hard disk driver, network controller driver,
etc. To interact with user space, the kernel includes Applica-
tion Program Interface (API) allowing programs in user space
to access system resources (e.g., file systems, GPP time,
virtual memory, etc.,) and services (e.g., scheduling, swap-
ping, interrupt request (IRQ) handling, context switching,
etc). It is precisely these services that impact the kernel space
performances in terms of latency and overhead. To reduce the
latency, additional functions such as the IRQ handler, process
scheduling, reducing number of context switches, etc., are
required. On the other hand, kernel overhead is the time due
to managing resources such as GPP time, memory, disk, etc.
The increased overhead often results in reducing the GPP
time occupation and consequently the GPP throughput. As
reducing the kernel latency requires additional functions, the
kernel overhead will increase. It is obvious that a trade-off
between kernel latency and GPP throughput exists, and a
balance should carefully be designed as per user need.

At the top of software system architecture is the user space
that consists of a portion of memory in which user applica-
tions are executed. Hereby, the user applications are PHY
and MAC functions of the wireless technologies. The user
applications are mostly written using high-level program-
ming languages like C, C++, Java, Python, Matlab, etc. It is
also possible to generate the user applications code via data
flow textual/graphical programming languages like G pro-
gramming, Python, C++, etc. These programming languages
(high-level and data-flow) are generally included in software
development toolkits such as GNU Radio [64], LabVIEW
[65], Matlab [66], etc. The toolkits provide DSP libraries
for DSP functions, libraries for runtime and compilation,
graphical tools for creating signal flow graphs and generating
flow-graph source code, etc.

The user application compiler is an element of most impor-
tance in assisting the processor to achieve high performance
in speed and execution time. It is responsible for generating
the instruction code using the ISA of the target processor.
When a large variety of target processors are supported, the
compiler is said to be general (like the GNU Compiler Col-
lection (GCC) [67]). The general compilers also implement
optimizations to improve the GPP performance by increasing

6 VOLUME x, xxxx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

the parallelism levels through three mechanisms: instruction-
level parallelism (ILP) which allows multiple instructions
to be executed at the same time, thread-level parallelism
(TLP) which allows multiple threads to run simultaneously
or pseudo-simultaneously on single/multiple cores, and data-
level parallelism (DLP) which enables performing multi-
ple data-elements simultaneously. This entails an optimal
source code generation in size and execution time, accord-
ing to the target processor. Examples of optimizations are
automatic vectorization [68], automatic parallelization [68],
[69], inter-procedural optimization [70], and SIMD intrinsics
(assembly-coded functions [71]). Table 7 lists well-known
software implementation toolkits.

TABLE 7: Software development toolkits.
Implementation
tools

Data-flow
programming language

High Level
programming
language

Scheduler Optimization type License

Textual Graphical
GNU Radio C++/python GRC C++/python yes SIMD (VOLK) [72] open-source
Labview [73] C/MathScript G/DFIR C yes Auto (DFIR/LLVM) Commercial
Matlab/
Simulink

Matlab(.m
code)

Simulink C yes Manual or Auto [69] Commercial

C/C++ X/X X/X C/C++ Hard code Manual or compiler open-source

IV. SDR PLATFORM PERFORMANCE ANALYSIS
To implement a wireless technology on SDR platforms or
use existing implementations, it is necessary that the selected
SDR platform (SDR device, communication interface and
GPP Host) performance should meet at least the requirements
of the target wireless technology. These requirements are
mainly given in terms of operating frequency band, band-
width, symbol rate, bitrate, latency, etc. In this section, a thor-
ough theoretical analysis of these performance parameters
in GPP-based SDR platform architecture is presented along
with the minimal/maximal values offered by the components.

A. FREQUENCY BAND
The frequency band of SDR platforms is the operating
frequency range covered by the SDR device. This is de-
termined at the daughterboards from the local oscillator
(LO) signals generated by the frequency synthesizer, such
as Phase-Locked Loop (PLL) synthesizer. Large frequency
band needs large LO frequency range, and consequently
wideband frequency synthesizers. Daughterboard’s datasheet
usually lists the operating frequency band of SDR devices
(see Table 4 for well-known daughterboards). To cover the
range of frequency bands supported by daughterboards, SDR
device’s need to use appropriate type of antenna [74].

B. BANDWIDTH
Any analog or digital signal has a bandwidth defined as the
occupied range of frequencies carrying most of its energy.
This range varies at each stage of the signal chain. Hence,
it can be expressed differently (but related) according to the
signal processing stage. Indeed, at the RF front end stage, it is
expressed as the analog bandwidth or RF channel width. At
the ADC/DAC stage, it is expressed as the DAC/ADC sample
rates. When the signal is processed at the digital front end

(DFE) stage, its bandwidth is expressed as the DFE sample
rate. On the communication link between the DFE and GPP,
the bandwidth is limited by the communication interface
speed. At the GPP host, the bandwidth is expressed as the
symbol rate. Fig. 3 illustrates the main points in the signal
chain where the bandwidth of SDR platform is characterized.
In this section, we examine the analog bandwidth, ADC/DAC
and DFE sample rates. Sections IV-C, IV-D and IV-E will
address the interface speed, symbol rate and bitrate.

DAC

ADC
RF Front End Digital Front End

Antenna Analog bandwidth DFE sample rate Communication
interface speed

Symbol rate

GPP host

Clock rate Bitrate

FIGURE 3: Bandwidth at each block of SDR-GPP signal
chain.

1) Analog bandwidth
This bandwidth, measured in Hz, is determined by the RF
front end (daughterboard) of the SDR device. It is configured
mainly by the analog baseband low pass filter (LPF) to vary
from 0 Hz to the specified cut-off frequency, fcut. Thus, in a
direct-conversion (Zero IF) I/Q modulator [75] both at the
transmitter and receiver side, the analog bandwidth at RF
front end is determined by the LPF and its fcut. It is equal
to twice fcut for Ideal LPFs that completely eliminate (atten-
uate) all frequencies above the fcut. The excess bandwidth,
defined as the transition band in LPF datasheets [76], of an
Ideal LPF is null, and hence its Roll-off factor (ratio between
passband and transition band) is null. In real-world, practical
LPFs are not perfect and have a transition region where some
high frequencies above the fcut can pass. Consequently, the
real analog bandwidth is greater than twice fcut and can be
formulated as follows:

Real Analog bandwidth = (2× fcut)× (1 + Roll-off factor) (1)

where the Roll-off factor is in the range [0,1]. Equation (1)
assumes signals spectra that would occur after theoretical
cut-off point. Thus, the Roll-off factor shifts the bandwidth
towards the transition band so that we can minimize loss of
information.

Most of the LPFs are programmable and can take different
fcut values where each fcut is assigned a roll-off factor. The
maximal real analog bandwidth is achieved by the highest
fcut scaled by [1 + Roll-off factor]. Table 8 summarizes the
analog bandwidth as theoretically computed from (1) and the
maximal ideal analog bandwidth (twice fcut) as indicated on
the daughterboard’s datasheet.

2) ADC/DAC sample rate
The DAC sample rate, given on Samples per Second (S/s),
allows to determine the time interval between two samples
applied to the input of a DAC. The ADC sample rate deter-
mines the time interval between two samples at the output of
an ADC. Both sample rates are related to the input signal
spectrum by the Nyquist-Shannon sampling theorem [77].

VOLUME x, xxxx 7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

TABLE 8: Maximal analog bandwidths of SDR devices.
SDR Max.cutoff

frequency
Max. Ideal Analog
bandwidth (MHz)

Roll-off
factor

Max. real Analog
bandwidth (MHz)

HackRF [45] 10 20 0 20
UBX-40, SBX-40,
CBX-40, WBX-40 [43]

20 40 1.5 100

SBX-120, CBX-120,
WBX-120 [43]

60 120 0.667 200

UBX-160 [43] 80 160 0.25 200
USRP-B2x0 [43] 28 56 0.097 61.44
Microsoft Sora [46] 10 20 1 40
LimeSDR [47] 80 160 0 160

Theoretically, for a given ADC/DAC sample rate, the max-
imum frequency that can be reproduced is half the sample
rate (Nyquist frequency) to avoid aliasing effect. As the
maximum frequency of an equivalent complex baseband (a
complex valued representation of the real baseband) is [real
analog bandwidth / 2], the sample rate needs to be greater
than the real analog bandwidth (see (1)). The more sample
rate is greater than the real analog bandwidth, the more the
band gap increases between the real analog bandwidth copies
repeated at multiples of sample rate resulting on zero-loss on
bandwidth. This band gap has an amount of [ADC sample
rate – real analog bandwidth] Hz.

In motherboard of SDR devices, the integrated ADC/DAC
can support one or multiple sample rates where one at a time
can be selected. The highest sample rate value determines
the largest analog bandwidth. Table 9 shows the supported
sample rates by well-known SDR devices. This table also
shows whether the SDR device has fixed or selective sample
rates. Using selective sample rate is preferable than fixed
rate to adapt the real analog bandwidth to the necessary
bandwidth asked by applications’ rate requirement and ex-
pressed by the DFE sample rate (see section IV-B3). When
the nearest sample rate is greater than the DFE sample rate,
an adjustment through interpolation and decimation process
is necessary [49].

TABLE 9: Analog bandwidth and ADC/DAC sample rates.
SDR device Ideal Analog

bandwidth
(MHz)

Clock rate
(MHz)

Supported ADC
sample rates (MS/s)

Supported
DAC sample
rates (MS/s)

Selective/
Fixed

HackRF [45] 20 20 20 20 Fixed
USRP-X3x0
(UBX-160) [43]

160 200,
184.32

195.31K – 200M;
180.0K – 184.32M

800 Selective

USRP-B2x0 [43] 56 5 – 61.44 61.44 61.44 Selective
Microsoft Sora
[48]

20 40, 44 40, 44 40 Selective

LimeSDR [47] 160 640 20 – 160 80 – 640 Selective

3) Digital Front End (DFE) sample rate
This rate, given on Samples per second (S/s), defines the
constant speed by which I/Q samples are exchanged be-
tween the DUC/DDC (interpolation/decimation) stages and
the interface controller. It can be specified either explicitly
by the user or implicitly from the real analog bandwidth
of the channel. The sample size (in bits) is determined by
the DAC/ADC resolution. At the transmitter side of an SDR
device, arriving I and Q data samples from the GPP host
(in a format configured by the user, e.g., 32-bit float) join
their corresponding queue waiting for service by the DFE.
The arrival rate at the queue is constant over time and is

determined by the bitrate of GPP host. The interpolation
stage of the DFE retrieves samples from the queue at DFE
sample rate, which is the service rate of the queue system.
As the DFE sample rate can take very high values, it is
extremely important that the arrival and service rates should
be equal after normalization to avoid waiting for the queues
to become non-empty (underflow). Then, the interpolation
stage increases the DFE sample rate of input samples to
higher output rate equal to the DAC sample rate (see Fig. 4).
The applied interpolation factor is equivalent to the ratio of
the DAC sample rate to the DFE sample rate.

DUC
I

DFE sample rate

DUC

DAC

DAC
Q

DFE sample rate * Interpolation DAC sample rate SDR buffer

DDC
I

DDC

ADC

ADC
Q

DFE sample rate = ADC sample rate
/ Decimation

ADC sample rate SDR buffer

FIGURE 4: DFE sample rate (Digital Up Converter).

At the receiver side of an SDR device, as shown in Fig. 5,
the DFE receives samples at a speed of ADC sample rate. It
performs decimation to decrease the input ADC sample rate
to a lower rate equal to the DFE sample rate. The applied
decimation factor is equivalent to the ratio of ADC clock rate
to the DFE clock rate. The output samples are, then, inserted
into the I/Q queues waiting to be transmitted to the GPP
host. A queue overflow occurs when the GPP host cannot
retrieve samples as fast enough. As in the transmitter side, it
is extremely important that the DFE sample rate be close to
the bitrate of GPP host.

DUC
I

DFE sample rate

DUC

DAC

DAC
Q

DFE sample rate * Interpolation DAC sample rate SDR buffer

DDC
I

DDC

ADC

ADC
Q

DFE sample rate = ADC sample rate
/ Decimation

ADC sample rate SDR buffer

FIGURE 5: DFE sample rate (Digital Down Converter).

From the above discussion, as the DFE sample rate should
be close to the bitrate of GPP host, it can be used to define
the necessary channel bandwidth required by user application
in the GPP host. Since the necessary channel bandwidth is
included in the real analog bandwidth (see section IV-B1),
the DFE sample rate should be smaller than the real analog
bandwidth. Also, the DFE sample rate should be increased or
reduced to fulfill the DAC and ADC clock rates. Some SDR
devices require a strictly-integer interpolation and decimation
factors, and it is strongly desirable for that factors to be even
and it’s much better if the factors are in power of two [78].
Thus, specifying appropriate DFE sample rate is another
requirement to be considered by the user.

8 VOLUME x, xxxx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

4) The maximal GPP-based SDR platform bandwidth
Since GPP-based SDR platform’s bandwidth is concave, it
takes the lowest value between analog bandwidth, ADC/DAC
sample rate and DFE sample rate. The maximal DFE sample
rate is achieved when its value reaches to ADC sample rate
and DAC sample rate at unity decimation and interpolation
factor, respectively. However, as stated above, DFE sample
rate cannot be greater than real analog bandwidth. Conse-
quently, the maximal GPP-based SDR platform bandwidth
(in Hz) is the minimum from maximal DFE sample rate and
analog bandwidth.

C. COMMUNICATION INTERFACE SPEED
This speed, given in bit per second (bit/s), refers to the PHY
layer net bitrate of the wired interface between GPP host and
SDR device. The PHY layer net bitrate defines the amount of
transferred bits, excluding the PHY layer protocol overhead,
per second over a communication link. Obviously, its value
(specified by the standard) is less than the real transmission
rate defined at the PHY layer gross bitrate that includes the
PHY layer overhead (channel coding, modulation, physical
framing, guard interval, etc). For example, the PHY layer
net bitrate of the Gigabit Ethernet is 1 Gbit/s and the real
transmission rate is 1.25 Gbit/s due to the 8B/10B encoding
[79]. Since I/Q samples, exchanged between GPP host and
SDR device, are encapsulated in frames of the used interface,
their rate is limited by the communication interface speed. In
the upcoming discussion, the I/Q sample rate is the equivalent
of DFE sample rate defined in bit/s and related by [DFE
sample rate × I/Q symbol format].

The communication interface speed, despite it excludes
the PHY layer protocol overhead, it includes upper layer
protocols head such as link layer head, network layer head,
etc. Based on this remark, the peak (maximum achievable)
rate of encapsulated I/Q samples (useful data rate) is limited
by the communication interface speed weighted by a factor
of [payload size / data link frame size], known as the link
efficiency. Higher the link efficiency, closer the peak I/Q
sample rate to the communication interface speed. The peak
I/Q sample rate is an instantaneous rate that doesn’t consider
link occupancy. Consequently, its value will be very large
to be taken as an acceptable upper bound, otherwise the
real I/Q sample rate will be under-constrained. Thus, it is
necessary to include the link occupancy on the upper bound
to get the maximal acceptable I/Q sample rate (or maximal
acceptable DFE sample rate). To do so, the peak I/Q sample
rate weighted by the link occupancy, expressed as [peak I/Q
sample rate × link occupancy], will give us the maximal
acceptable I/Q sample rate. Henceforth, we limit the I/Q
sample rate or DFE sample rate by the maximal acceptable
I/Q sample rate.

The maximal acceptable I/Q sample rate is affected by
three factors: the communication interface mode, GPP host
application mode and SDR device capability. The commu-
nication interface between the GPP host and SDR device
motherboard can work in either half or full duplex modes.

With full-duplex interface mode, the communication link
can simultaneously be fully occupied in both directions
(Host→SDR and SDR→Host) allowing to benefit from full-
speed on each direction. In this case, the transmit and receive
links have independent occupancy of up to 100% each at any
time. With half-duplex interface mode, the communication
link is used to either exclusively transmit or receive. In this
case, the link occupancy is shared so that transmitting and
receiving occupancies are 100%’s complement. One could
think that full-duplex interfaces always achieve highest per-
formance but in reality it depends on the GPP host appli-
cation and SDR motherboard capability (half or full-duplex
transceiver). Indeed, half and full duplex interfaces can have
similar performance when:

• The GPP host application is one-way communication.
So, using either half or full duplex is the same, as the
communication needed is only to transmit or receive.
This implies the link occupancy of the used direction
can attain 100%, allowing a maximal acceptable TX or
RX I/Q sample rate equal to the peak rate (on the used
direction) and always null on the other direction. Thus,
using only half-duplex interface is sufficient when the
GPP host application is one-way communication;

• The GPP host application is non-overlapped two-way
communication. Both directions between SDR device
and GPP host cannot be used simultaneously since
transmission and reception are separated in time. So,
the occupied time for transmission doesn’t consume
the time of reception and vice versa. Consequently, the
sum of TX and RX link occupancies can go to 100%
allowing a maximal acceptable TX rate of [peak rate ×
TX link occupancy] and maximal acceptable RX rate
of [peak rate × (1 − TX link occupancy)]. Thus, using
only half-duplex interface is sufficient when GPP host
user application is non-overlapped two-way;

• The SDR device is half-duplex. As SDR device can
either receive or transmit, only single direction on the
link between SDR device and GPP host is solicited.
Such SDR device capability is suitable for GPP host
user applications using one-way communication or two-
way communication without temporal overlap between
transmission and reception. Since only single direction
is being used, its link occupancy can go to 100% al-
lowing a maximal acceptable rate equal to the peak
rate (null for the unused direction). Hence, using only
half duplex interface is sufficient for one-way and non-
overlapped two-way communications when SDR device
is half duplex.

Full-duplex interfaces become necessary when the GPP
host user application is temporally overlapped two-way com-
munication. In addition, SDR devices should also be full-
duplex. In this scenario, TX and RX link occupancies are
independent and can simultaneously go to 100%. Now, the
maximal acceptable TX and RX rate can attain the peak
I/Q sample rate. Table 10 shows the maximal supported I/Q

VOLUME x, xxxx 9

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

TABLE 10: Maximal I/Q sample rates of selected communication interfaces between GPP host and SDR transceivers.

Interface Host – SDR Speed (Mbit/s) Interface mode Link efficiency Host application Max TX. rate (Mbit/s) Max. RX rate (Mbit/s)
Half Dup.SDR Full Dup.SDR Half Dup.SDR Full Dup.SDR

USB2.0 [50] 480 Half dup. 0.9970

TX 1-way Comm. 478.59 0
RX 1-way Comm. 0 478.59

Non-overlap 2-way Comm. 478.59× TX link Occup. 478.59× (1− TX link Occup.)
Overlap 2-way Comm. not supported not supported not supported not supported

USB3.0 [50] 5120 Full dup. 0.9808

TX 1-way Comm. 5021.91 0
RX 1-way Comm. 0 5021.91

Non-overlap 2-way Comm. 5021.91× TX link Occup. 5021.91× (1− TX link Occup.)
Overlap 2-way Comm. not supported 5021.91 not supported 5021.91

Gig.Eth [51] 1000 Full dup. 0.9881

TX 1-way Comm. 988.1 0
RX 1-way Comm. 0 988.1

Non-overlap 2-way Comm. 988.1× TX link Occup. 988.1× (1− TX link Occup.)
Overlap 2-way Comm. not supported 988.1 not supported 988.1

10Gig.Eth [51] 10000 Full dup. 0.9881

TX 1-way Comm. 9881.0 0
RX 1-way Comm. 0 9881.0

Non-overlap 2-way Comm. 9881.0× TX link Occup. 9881.0× (1− TX link Occup.)
Overlap 2-way Comm. not supported 9881.0 not supported 9881.0

PCIe 4.X (x4 link)
[52] 63015.38 Full dup. 0.99369

TX 1-way Comm. 62617.75 0
RX 1-way Comm. 0 62617.75

Non-overlap 2-way Comm. 62617.75× TX link Occup. 62617.75× (1− TX link Occup.)
Overlap 2-way Comm. not supported 62617.75 not supported 62617.75

sample rates of Host-SDR interface solutions for both full
and half-duplex SDR transceivers.

D. SYMBOL RATE
This rate, given in Symbol per second (Sym/s), refers to the
constant rate at which symbols occur. One symbol can carry
one or more bits according to the digital modulation format.
For example, in a BPSK system, each symbol represents one
bit; in a 64-QAM system, each symbol represents 6 bits.
Symbol rate is determined from the symbol duration as [1
/ symbol duration], where symbol duration is the sum of
the useful symbol duration and the potential guard interval
expressed as [useful symbol duration + guard interval]. The
guard interval is used between two successive symbols to
reduce inter-symbol interference that results from multi-path
fading or band-limited channels [80]. It is given by the wire-
less technology specification. The useful symbol duration is
the time used to carry the useful data and is related to the
number of samples per symbol and the sampling interval
time. It can be formulated as [number of samples per symbol
× sampling interval]. The sampling interval parameter is the
inverse of the DFE sample rate, [1 / DFE sample rate]. As the
DFE sample rate for quadrature sampling systems is equal
to the occupied baseband bandwidth, the sampling interval
will be the inverse of the occupied baseband bandwidth. The
number of samples per symbol parameter can be computed
from the frequency domain based on the total number of
spectral lines [80].

The number of samples per symbol is equal to the number
of spectral lines in quadrature sampling systems and twice
in direct-sampling systems. The number of spectral lines is
related to the number of carrier/sub-carrier frequencies. Con-
sidering quadrature sampling system, when a conventional
single-carrier modulation is applied (like in IEEE 802.15.4,
...), the number of spectral lines is equal to one and hence
the number of samples per symbol will be one. When multi-
ple sub-carrier modulation technique is used (like in IEEE
802.11ac, ...), the number of spectral lines is equal to the
total number of used and unused sub-carriers. In general, the
total number of sub-carriers is specified by the used FFT size
[80]. To summarize, the useful symbol duration is expressed

as [number of spectral lines / occupied baseband bandwidth].
In some wireless systems spread spectrum techniques

such as Frequency-Hopping Spread Spectrum (FHSS), Direct
Sequence Spread Spectrum (DSSS), Time-Hopping Spread
Spectrum (THSS) and Chirp Spread Spectrum (CSS) are
used to prevent interference by transmitting symbols at low
power density over a wide band. This band is named as
spread occupied baseband bandwidth. The spreading process
is achieved by multiplying the symbols with a spreading
code, known as chip sequence, having a faster rate than the
input symbol rate (symbol rate before spreading). Thus, the
spread occupied baseband bandwidth is larger than the orig-
inal baseband bandwidth by a factor of chip sequence size,
[original occupied baseband bandwidth × chip sequence
size]. The spread occupied baseband bandwidth is always
given as the channel size of wireless systems using spread
spectrum techniques. The spreading process has no effect on
the useful symbol duration. However, as the given channel
size is the spread baseband bandwidth and not the original
occupied baseband bandwidth, the useful symbol duration
needs to be relied on the spread baseband bandwidth and
the chip sequence size. Based on the fact that the symbol
duration before spreading is [number of spectral lines / origi-
nal occupied baseband bandwidth] and the original occupied
bandwidth is [spread baseband bandwidth / chip sequence
size], the output symbol duration can be written as [number
of spectral lines × chip sequence size / spread occupied
baseband bandwidth]. It is obvious that the input and output
useful symbol duration are the same.

In general, the useful time duration with/without spreading
process can be formulated as [number of spectral lines × chip
sequence size / channel size]. Fig. 6 depicts an example of
possible single/multiple carrier and spreading/non-spreading
cases of digital baseband transmitter. Table 11 provides
equations of the symbol rate for each path-end. By applying
these equations, users can generate the symbol rate for their
desired wireless technology and can also be verified from the
corresponding specifications [31], [33], [35], [39]–[41].

The software programmer at user space should consider
both symbol rate and symbol format. The symbol rate can
be either explicitly set or implicitly driven from the DFE

10 VOLUME x, xxxx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

Bit-to-symbol
mapperBit stream

Channel
coding,
interleaving,

IFFT P/SS/P

Spreading sequence
generator

1

2

3

Without IFFT

FSK, MFSK, MSK,
GMSK, ...

Digital Modulator

FIGURE 6: Digital baseband transmitter paths.

TABLE 11: Symbol rate of transmitter paths in Fig. 6.

Path-end Spreading Symbol rate

1
No 1

1
occupied baseband bandwidth+guard interval

Yes 1
chip sequence size

spread occupied baseband bandwidth+guard interval

2
No 1

number of spectral lines
occupied baseband bandwidth+guard interval

Yes 1
number of spectral lines × chip sequence size

spread occupied baseband bandwidth +guard interval

3
No 1

1
occupied baseband bandwidth+guard interval

Yes 1
chip sequence size

spread occupied baseband bandwidth+guard interval

sample rate and the number of used subcarriers. The symbol
format, on the other hand, should be explicitly specified (e.g.,
complex int16, complex int32, etc). When using a complex
int16, the I and Q samples of each symbol are coded each
by 16 bits, and so 32 bits per I/Q sample are transmitted
to the communication interface. This transmission has a
rate of [symbol rate × symbol format]. The communication
interface considers the received data as a data payload and
performs its operation related to its technology.

1) Maximal symbol rate at SDR devices
From the equations depicted in Table 11, the theoretical
maximal symbol rate at SDR device can be attained when
the channel width (bandwidth) is at its maximal value, and
the number of spectral line, guard interval and chip sequence
size are at their lowest values. The highest channel width can
be set to the maximal bandwidth of SDR device; the lowest
number of spectral lines can be set to one; the lowest guard
interval can be set to zero (without guard interval) and the
lowest chip sequence size can be set to one (i.e., without
spreading). Consequently, the maximal symbol rate takes the
maximal bandwidth of the SDR device. On the other hand,
as symbols should traverse the communication interface be-
tween the GPP host and the SDR device and vice versa, the
maximal symbol rate at the SDR device is bounded by the
communication interface speed (after normalization). This
latter value is given by [(interface speed × link efficiency
× link occupancy) / symbol format] in Sym/s. Since, we
have two theoretical upper bounds, the maximal symbol rate
will take the minimum value between them, i.e., minimum
(maximal bandwidth of SDR device, [(interface speed × link

efficiency × link occupancy) / symbol format]). See Table 13
in subsecion IV-D3 for the maximal theoretical upper bound
of the symbol rate at SDR devices.

2) Maximal symbol rate at GPP host
In GPP-based SDR platforms, all symbols are either gen-
erated or consumed by GPP host. Therefore, GPP host can
impact the maximal symbol rate supported by the platforms.
To determine the maximal speed at which symbols are gener-
ated or consumed at a GPP host, a continuous data transmis-
sion/reception without MAC operations, physical framing,
channel coding and spreading is considered. Consequently,
the executed physical layer in software should incorporate
only bit generator and digital modulator blocks at the trans-
mission side (baseband TX path); or bit sink and digital
demodulator blocks at the receiving side (baseband RX path).
Hence, only Bit stream and Digital Modulator blocks in
Fig. 6 are used to determine the upper bound of symbol rates
supported at GPP hosts.

Each symbol generation/consumption requires a time du-
ration in the baseband TX/RX path, when inverted gives the
symbol rate. This duration represents the makespan (exe-
cution time) of an executable file, created after compiling
the TX/RX path blocks, from generating a stream of bits to
delivering the corresponding output symbol or from taking a
symbol as input and delivering its corresponding bits. Several
hardware and software parameters of the GPP host impact
the makespan. The hardware parameters include: number of
cores, speed of cores, ISA design, pipeline stages, caches,
accelerators, hyperthreading support, SIMD support, etc. The
software parameters include: user program quality, com-
piler optimization to enhance the degree of ILP/TLP/DLP,
user threads and their degree of TLP, kernel type (non-
preemptive and preemptive) and its operations (scheduling,
context switching, etc). Multiple parameters can be merged
into some big factors such as the minimum number of cycles
per instruction (CPI), the number of executed instructions
and overheads (due to kernel and memory access operations).
The minimum execution time supported by GPP hosts to gen-
erate/consume one symbol is achieved when the number of
input/output symbols reaches a threshold value (K) to fully
benefit from the high degree of parallelism (ILP/TLP/DLP).
Above this threshold value, the execution time will increase
due to the high CPU load and overhead. Thereby, the minimal
makespan can be formulated as in (2):

makespan =

[
I

K
× Inf CPI × T ×

1

of cores × 2HT

+ Overhead
]

(2)

where I is number of executed instructions to gener-
ate/consume K symbols, Inf CPI represents the lowest CPI,
T is clock cycle duration given by 1

GPP clock speed , and 2HT = 2
if hyperthreading or 1 otherwise.

Using (2), numerical results are conducted and illustrated
in Table 12. Some parameters such as the threshold number
of symbols K and the number of executed instructions are

VOLUME x, xxxx 11

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

obtained from experimental data by benchmarking specific
functions. To this end, a baseband TX/RX python program
is written using GNU Radio software. This program in-
cludes source/sink and digital modulator/demodulator. To
cover the various types of baseband processing in multi-
ple wireless technologies, different modulation formats are
considered such as GFSK, GMSK, BPSK, QPSK, 8-PSK,
16QAM, BPSK OFDM-64 (BPSK with 64-point IFFT),
QPSK OFDM-64, and 16QAM OFDM-64. By running the
baseband TX/RX python program on different GPP hosts
based on Intel core processor, the maximum number of sup-
ported symbols (K) that achieves the lowest makespan per
symbol is examined. An average maximum value equivalent
to fifty six million symbols is obtained. At this threshold
value, other parameters such as the total number of instruc-
tions, Inf CPI and overhead were also recorded via perf
stat tool [81].

TABLE 12: Maximal symbol rate at GPP host.
TX path blocks Total number

of executed
instructions

Overhead
(%)

CPI GPP cores and speed
Hyperthreading Enabled Hyperthreading Disabled

Source Modulator Makespan (ns) Sym. rate
(MSym/s)

Makespan (ns) Sym. rate
(MSym/s)

Random GFSK 39,442,851,301 0.98 0.44

2 core, 2.0 GHz 38.3500 26.0756 76.7000 13.0378
4 core, 1.5 GHz 25.5726 39.1044 51.1452 19.5522
4 core, 4.2 GHz 9.1500 109.2896 18.3000 54.6448
8 core, 3.6 GHz 5.3276 187.7018 10.6552 93.8509

Random GMSK 38,349,575,894 0.79 0.44

2 core, 2.0 GHz 37.3672 26.7614 74.7344 13.3807
4 core, 1.5 GHz 24.9114 40.1422 49.8229 20.0711
4 core, 4.2 GHz 8.8969 112.3987 17.7939 56.1990
8 core, 3.6 GHz 5.1899 192.6819 10.3798 96.3409

Random
BPSK
without
FFT

67,051,370,617 1.26 0.44

2 core, 2.0 GHz 65.0243 15.3788 130.0485 7.6894
4 core, 1.5 GHz 43.3495 23.0683 86.6990 11.5341
4 core, 4.2 GHz 15.4819 64.5915 30.9639 32.2956
8 core, 3.6 GHz 9.0311 110.7285 18.0622 55.3642

Random
BPSK
OFDM-
64

69,664,173,615 1.81 0.44

2 core, 2.0 GHz 67.1817 14.8850 134.3635 7.4425
4 core, 1.5 GHz 44.7878 22.3275 89.5757 11.1637
4 core, 4.2 GHz 15.9956 62.5172 31.9913 31.2585
8 core, 3.6 GHz 9.3308 107.1719 18.6616 53.5859

Random
QPSK
without
FFT

74,936,632,019 0.82 0.44

2 core, 2.0 GHz 72.9949 13.6996 145.9899 6.8498
4 core, 1.5 GHz 48.6633 20.5494 97.3266 10.2747
4 core, 4.2 GHz 17.3797 57.5384 34.7595 28.7691
8 core, 3.6 GHz 10.1381 98.6378 20.2763 49.3186

Random
QPSK
OFDM-
64

77,443,318,169 0.43 0.44

2 core, 2.0 GHz 75.7333 13.2042 151.4666 6.6021
4 core, 1.5 GHz 50.4888 19.8064 100.9777 9.9032
4 core, 4.2 GHz 18.0317 55.4578 36.0635 27.7288
8 core, 3.6 GHz 10.5185 95.0706 21.0370 47.5353

Random 8-PSK 82,830,339,448 0.51 0.44

2 core, 2.0 GHz 39.8621 25.0864 79.7242 12.5432
4 core, 1.5 GHz 26.5747 37.6297 53.1494 18.8148
4 core, 4.2 GHz 9.4909 105.3640 18.9818 52.6820
8 core, 3.6 GHz 5.5364 180.6228 11.0728 90.3114

Random
16QAM
without
FFT

90,791,074,521 1.90 0.44

2 core, 2.0 GHz 87.4756 11.4317 174.9512 5.7159
4 core, 1.5 GHz 58.3171 17.1476 116.6341 8.5738
4 core, 4.2 GHz 20.8275 48.0134 41.6550 24.0067
8 core, 3.6 GHz 12.1494 82.3086 24.2988 41.1543

Random
16QAM
OFDM-
64

93,191,248,403 0.61 0.44

2 core, 2.0 GHz 90.9688 10.9928 181.9376 5.4964
4 core, 1.5 GHz 60.6458 16.4892 121.2917 8.2446
4 core, 4.2 GHz 21.6592 46.1697 43.3184 23.0848
8 core, 3.6 GHz 12.6346 79.1477 25.2691 39.5740

The results depicted in Table 12, show the minimal
makespans and maximal data symbol rates supported by dif-
ferent GPP hosts according to the applied digital modulator.
As the consecutive transmit or receive symbols are indepen-
dent of each other, a high degree of parallelism ILP/TLP/DLP
is expected. Thus, GPP hosts having more cores with faster
clock speeds and hyperthreading support achieve higher sym-
bol rates by fully exploiting the parallelism. It is important to
note that hyperthreading can enhance performance when TLP
is very high, otherwise, it might create negative impacts.

3) Maximal symbol rate supported by GPP-based SDR
platforms
The maximal symbol rate supported by a given GPP-based
SDR platform corresponds to the smallest value between the
maximal symbol rate at the used SDR device and at the GPP
host. Table 13 gives the maximal symbol rates supported by
selected GPP-based SDR platforms according to the type of

digital modulation. As the table depicts, for small modulators
such as GFSK and GMSK, the maximal symbol rate of the
SDR platform is generally limited by the symbol rate of
SDR devices, except when X310 is used as SDR device
and hyperthreading is enabled for high core and faster clock
speed hosts. As the modulator goes higher, the symbol rate
starts to be limited by the rate of the GPP host. This is true
specially for lower GPP core and slower clock speed. On the
other hand, when hyperthreading is disabled, the symbol rate
of the SDR platform is mostly limited by the rate of the GPP
host for lower core and slower clock speeds. At higher GPP
core and clock speed, specially for 8 core and 3.6 GHz host,
the SDR platform symbol rate is limited by the symbol rate
of the SDR device except for X310 and Lime.

E. BITRATE
This rate, given by bits per second (bit/s), refers to the
net bitrate at which data is transferred between the MAC
sublayer and the PHY layer of the wireless technology, both
implemented in software. It includes the user data and all
headers from the application layer to the MAC sublayer.
This rate can be expressed based on the wireless PHY layer
gross bitrate by excluding from the physical layer frames
the error-correction codes and physical layer header. Since
the rate of error-correction codes is [code rate] and the rate
of physical layer headers is [physical framing], the bitrate
can be written as [wireless physical layer gross bitrate ×
code rate × physical framing]. The wireless physical layer
gross bitrate is related to the symbol rate, the number of
bits per symbol (resulted from bit-to-symbol mapper) and
to the number of data subcarriers (if OFDM system is used)
to carry data in parallel. It can be expressed by the formula
[symbol rate × # bits per symbol × # data subcarriers]. All
the parameters (code rate, physical framing, symbol rate,
number of bits per symbol and number of data subcarriers)
are stated in the wireless standard technical specifications.
Thus, bitrates and maximal bitrates of wireless technologies
can simply be obtained from the bitrate formula. Please refer
to section II for the maximal bitrate of selected wireless
technologies.

1) Theoretical maximal supported bitrate by GPP-based
SDR platforms
The theoretical maximal bitrate that can be achieved by a
GPP-based SDR platform depends on the highest values of
the wireless physical layer gross bitrate, code rate and phys-
ical framing supported by the platform. It can be formulated
as

[
maximal wireless physical layer gross bitrate × maximal

code rate × maximal physical framing
]
, where the maximal

wireless physical layer gross bitrate is computed according
to the used digital modulator by

[
maximal symbol rate × in-

volved # of bits per symbol × involved # of data subcarriers
]
.

The maximal symbol rate supported by GPP-based SDR
platforms is computed in the previous section (see Table 13)
using continuous data transmission/reception without MAC
operations, physical framing (i.e., maximal physical framing

12 VOLUME x, xxxx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

TABLE 13: Maximal symbol rate of GPP-based SDR platforms.

Modulator GPP cores and speed
Hyperthreading Enabled Hyperthreading Disabled

Symbol rate
(MSym/s)

Hack X310 B210 Sora Lime Symbol rate
(MSym/s)

Hack X310 B210 Sora Lime
14.95 200.00 61.44 40.00 160.00 14.95 200.00 61.44 40.00 160.00

GFSK

2 core, 2.0 GHz 26.0756 14.95 26.07 26.07 26.07 26.07 13.0378 13.03 13.03 13.03 13.03 13.03
4 core, 1.5 GHz 39.1044 14.95 39.10 39.10 39.10 39.10 19.5522 14.95 19.55 19.55 19.55 19.55
4 core, 4.2 GHz 109.2896 14.95 109.28 61.44 40.00 109.28 54.6448 14.95 54.64 54.64 40.00 54.64
8 core, 3.6 GHz 187.7018 14.95 187.70 61.44 40.00 160.00 93.8509 14.95 93.85 61.44 40.00 93.85

GMSK

2 core, 2.0 GHz 26.7614 14.95 26.76 26.76 26.76 26.76 13.3807 13.38 13.38 13.38 13.38 13.38
4 core, 1.5 GHz 40.1422 14.95 40.14 40.14 40.00 40.14 20.0711 14.95 20.07 20.07 20.07 20.07
4 core, 4.2 GHz 112.3987 14.95 112.39 61.44 40.00 112.39 56.1990 14.95 56.19 56.19 40.00 56.19
8 core, 3.6 GHz 192.6819 14.95 192.68 61.44 40.00 160.00 96.3409 14.95 96.34 61.44 40.00 96.34

BPSK without
FFT

2 core, 2.0 GHz 15.3788 14.95 15.37 15.37 15.37 15.37 7.6894 7.68 7.68 7.68 7.68 7.68
4 core, 1.5 GHz 23.0683 14.95 23.06 23.06 23.06 23.06 11.5341 11.53 11.53 11.53 11.53 11.53
4 core, 4.2 GHz 64.5915 14.95 64.59 61.44 40.00 64.59 32.2956 14.95 32.29 32.29 32.29 32.29
8 core, 3.6 GHz 110.7285 14.95 110.72 61.44 40.00 110.72 55.3642 14.95 55.36 55.36 40.00 55.36

BPSK OFDM-64

2 core, 2.0 GHz 14.8850 14.88 14.88 14.88 14.88 14.88 7.4425 7.44 7.44 7.44 7.44 7.44
4 core, 1.5 GHz 22.3275 14.95 22.32 22.32 22.32 22.32 11.1637 11.16 11.16 11.16 11.16 11.16
4 core, 4.2 GHz 62.5172 14.95 62.51 61.44 40.00 62.51 31.2585 14.95 31.25 31.25 31.25 31.25
8 core, 3.6 GHz 107.1719 14.95 107.17 61.44 40.00 107.17 53.5859 14.95 53.58 53.58 40.00 53.58

QPSK without
FFT

2 core, 2.0 GHz 13.6996 13.69 13.69 13.69 13.69 13.69 6.8498 6.84 6.84 6.84 6.84 6.84
4 core, 1.5 GHz 20.5494 14.95 20.54 20.54 20.54 20.54 10.2747 10.27 10.27 10.27 10.27 10.27
4 core, 4.2 GHz 57.5384 14.95 57.53 57.53 40.00 57.53 28.7691 14.95 28.76 28.76 28.76 28.76
8 core, 3.6 GHz 98.6378 14.95 98.63 61.44 40.00 98.63 49.3186 14.95 49.31 49.31 40.00 49.31

QPSK OFDM-64

2 core, 2.0 GHz 13.2042 13.20 13.20 13.20 13.20 13.20 6.6021 6.60 6.60 6.60 6.60 6.60
4 core, 1.5 GHz 19.8064 14.95 19.80 19.80 19.80 19.80 9.9032 9.90 9.90 9.90 9.90 9.90
4 core, 4.2 GHz 55.4578 14.95 55.45 55.45 40.00 55.45 27.7288 14.95 27.72 27.72 27.72 27.72
8 core, 3.6 GHz 95.0706 14.95 95.07 61.44 40.00 95.07 47.5353 14.95 47.53 47.53 40.00 47.53

8-PSK

2 core, 2.0 GHz 25.0864 14.95 25.08 25.08 25.08 25.08 12.5432 12.54 12.54 12.54 12.54 12.54
4 core, 1.5 GHz 37.6297 14.95 37.62 37.62 37.62 37.62 18.8148 14.95 18.81 18.81 18.81 18.81
4 core, 4.2 GHz 105.3640 14.95 105.36 61.44 40.00 105.36 52.6820 14.95 52.68 52.68 40.00 52.68
8 core, 3.6 GHz 180.6228 14.95 180.62 61.44 40.00 160.00 90.3114 14.95 90.31 61.44 40.00 90.31

16QAM without
FFT

2 core, 2.0 GHz 11.4317 11.43 11.43 11.43 11.43 11.43 5.7159 5.71 5.71 5.71 5.71 5.71
4 core, 1.5 GHz 17.1476 14.95 17.14 17.14 17.14 17.14 8.5738 8.57 8.57 8.57 8.57 8.57
4 core, 4.2 GHz 48.0134 14.95 48.01 48.01 40.00 48.01 24.0067 14.95 24.00 24.00 24.00 24.00
8 core, 3.6 GHz 82.3086 14.95 82.30 61.44 40.00 82.30 41.1543 14.95 41.15 41.15 40.00 41.15

16QAM
OFDM-64

2 core, 2.0 GHz 10.9928 10.99 10.99 10.99 10.99 10.99 5.4964 5.49 5.49 5.49 5.49 5.49
4 core, 1.5 GHz 16.4892 14.95 16.48 16.48 16.48 16.48 8.2446 8.24 8.24 8.24 8.24 8.24
4 core, 4.2 GHz 46.1697 14.95 46.16 46.16 40.00 46.16 23.0848 14.95 23.08 23.08 23.08 23.08
8 core, 3.6 GHz 79.1477 14.95 79.14 61.44 40.00 79.14 39.5740 14.95 39.57 39.57 39.57 39.57

TABLE 14: Maximal bitrate (in Mbit/s) of GPP-based SDR platforms.

Modulator GPP cores and
speed

Hyperthreading Enabled Hyperthreading Disabled
Hack X310 B210 Sora Lime Hack X310 B210 Sora Lime

GFSK

2 core, 2.0 GHz 14.95 26.07 26.07 26.07 26.07 13.03 13.03 13.03 13.03 13.03
4 core, 1.5 GHz 14.95 39.10 39.10 39.10 39.10 14.95 19.55 19.55 19.55 19.55
4 core, 4.2 GHz 14.95 109.28 61.44 40.00 109.28 14.95 54.64 54.64 40.00 54.64
8 core, 3.6 GHz 14.95 187.70 61.44 40.00 160.00 14.95 93.85 61.44 40.00 93.85

GMSK

2 core, 2.0 GHz 14.95 26.76 26.76 26.76 26.76 13.38 13.38 13.38 13.38 13.38
4 core, 1.5 GHz 14.95 40.14 40.14 40.00 40.14 14.95 20.07 20.07 20.07 20.07
4 core, 4.2 GHz 14.95 112.39 61.44 40.00 112.39 14.95 56.19 56.19 40.00 56.19
8 core, 3.6 GHz 14.95 192.68 61.44 40.00 160.00 14.95 96.34 61.44 40.00 96.34

BPSK without
FFT

2 core, 2.0 GHz 14.95 15.37 15.37 15.37 15.37 7.68 7.68 7.68 7.68 7.68
4 core, 1.5 GHz 14.95 23.06 23.06 23.06 23.06 11.53 11.53 11.53 11.53 11.53
4 core, 4.2 GHz 14.95 64.59 61.44 40.00 64.59 14.95 32.29 32.29 32.29 32.29
8 core, 3.6 GHz 14.95 110.72 61.44 40.00 110.72 14.95 55.36 55.36 40.00 55.36

BPSK OFDM-64

2 core, 2.0 GHz 952.32 952.32 952.32 952.32 952.32 476.16 476.16 476.16 476.16 476.16
4 core, 1.5 GHz 956.80 1428.48 1428.48 1428.48 1428.48 714.24 714.24 714.24 714.24 714.24
4 core, 4.2 GHz 956.80 4000.64 3932.16 2560.00 4000.64 956.80 2000.00 2000.00 2000.00 2000.00
8 core, 3.6 GHz 956.80 6858.88 3932.16 2560.00 6858.88 956.80 3429.12 3429.12 2560.00 3429.12

QPSK without
FFT

2 core, 2.0 GHz 27.38 27.38 27.38 27.38 27.38 13.68 13.68 13.68 13.68 13.68
4 core, 1.5 GHz 29.90 41.08 41.08 41.08 41.08 20.54 20.54 20.54 20.54 20.54
4 core, 4.2 GHz 29.90 115.06 115.06 80.00 115.06 29.90 57.52 57.52 57.52 57.52
8 core, 3.6 GHz 29.90 197.26 122.88 80.00 197.26 29.90 98.62 98.62 80.00 98.62

QPSK OFDM-64

2 core, 2.0 GHz 1689.60 1689.60 1689.60 1689.60 1689.60 844.80 844.80 844.80 844.80 844.80
4 core, 1.5 GHz 1913.60 2534.40 2534.40 2534.40 2534.40 1267.20 1267.20 1267.20 1267.20 1267.20
4 core, 4.2 GHz 1913.60 7097.60 7097.60 7097.60 7097.60 1913.60 3548.16 3548.16 3548.16 3548.16
8 core, 3.6 GHz 1913.60 12,168.96 7864.32 5120.00 12,168.96 1913.60 6083.84 6083.84 5120.00 6083.84

8-PSK

2 core, 2.0 GHz 44.85 75.24 75.24 75.24 75.24 37.62 37.62 37.62 37.62 37.62
4 core, 1.5 GHz 44.85 112.86 112.86 112.86 112.86 44.85 56.43 56.43 56.43 56.43
4 core, 4.2 GHz 44.85 316.08 184.32 120.00 316.08 44.85 158.04 158.04 120.00 158.04
8 core, 3.6 GHz 44.85 541.86 184.32 120.00 480.00 44.85 270.93 184.32 120.00 270.93

16QAM without
FFT

2 core, 2.0 GHz 45.72 45.72 45.72 45.72 45.72 22.84 22.84 22.84 22.84 22.84
4 core, 1.5 GHz 59.80 68.56 68.56 68.56 68.56 34.28 34.28 34.28 34.28 34.28
4 core, 4.2 GHz 59.80 192.04 192.04 160.00 192.04 59.80 96.00 96.00 96.00 96.00
8 core, 3.6 GHz 59.80 329.20 245.76 160.00 329.20 59.80 164.60 164.60 160.00 164.60

16QAM
OFDM-64

2 core, 2.0 GHz 2813.44 2813.44 2813.44 2813.44 2813.44 1405.44 1405.44 1405.44 1405.44 1405.44
4 core, 1.5 GHz 3827.20 4218.88 4218.88 4218.88 4218.88 2109.44 2109.44 2109.44 2109.44 2109.44
4 core, 4.2 GHz 3827.20 11,816.96 11,816.96 10,240.00 11,816.96 3827.20 5908.48 5908.48 5908.48 5908.48
8 core, 3.6 GHz 3827.20 20,259.84 15,728.64 10,240.00 20,259.84 3827.20 10,129.92 10,129.92 10,129.92 10,129.92

is set to one), channel coding (i.e., maximal code rate is set
to one) and different types of digital modulation techniques.
The number of bits per symbol as well as the number of data

subcarriers are related to the digital modulation on which the
maximal symbol rate is computed. Table 14 illustrates the
maximal supported bitrates by SDR platforms.

VOLUME x, xxxx 13

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

Like the symbol rate, the maximal supported bitrate by
a given GPP-based SDR platform increases with GPP core
and clock speed, and varies with the used modulation tech-
nique and number of data subcarriers. It is also shown that
hyperthreading support offers higher maximal bitrate than
hyperthreading disabled GPP host. From the SDR device’s
perspective, those with the highest maximal symbol rate
also gives the highest maximal supported bitrate. Thus, for
a given wireless technology (i.e., if required modulation
type and number of data subcarriers are known), one can
easily determine the type of GPP host that can support
this requirement. Hence, the candidate SDR platforms with
respect to supported maximal symbol rate and bitrate can
be determined. For instance, as shown in Table 14, ex-
ecuting GMSK modulator provides a maximal bitrate of
(26.76, 40.14, 112.39 and 192.68) Mbit/s, with (2, 4/1.5GHz,
4/3.6GHz and 8) core hyperthreading enabled GPP hosts,
respectively. Depending on the SDR device employed, the
GPP-based SDR platform will have a maximal bitrate value
as illustrated in the table. Therefore, a wireless technology
supporting GMSK modulator (such as EC-GSM-IoT having
a maximal bitrate of 240 kbit/s), can be implemented using
any of the SDR platforms listed in the table with/without
hyperthreading support. These findings are used for mapping
wireless technologies with SDR platforms in section V.

F. LATENCY
In GPP-based SDR platforms, a latency refers to the time
delay spent by a MAC frame (data, control and management)
in the transceiver chain between the MAC layer at the GPP
host and the antenna connected to the SDR device. As frames
can traverse the transceiver chain while being transmitted or
received, two types of latencies can be distinguished: GPP-
based SDR platform TX latency and RX latency. Both of
these latencies contain the same components and results from
an accumulation of latencies at each stage of the correspond-
ing path. Since TX/RX path stages are shared between the
GPP host, communication interface and SDR device, the
GPP-based SDR platform TX/RX latency components can be
grouped as: SDR latency, communication interface latency
and GPP host latency, as shown in Fig. 7. These latencies
are examined below in detail, and we drive the minimal total
latency.

1) SDR device latency
This latency consists of three components: DFE latency,
ADC/DAC conversion latency and RF front end (RFFE)
latency. It may be asymmetrical, providing a varying delay

between the case when the SDR device is used for transmit-
ting or for receiving.

At the transmitter side, as shown in Fig. 8, the SDR device
latency is the sum of DFE latency, DAC output latency
and RFFE latency. The DFE latency is related to both the
queuing time of I/Q samples in the SDR buffers (one queue
for each type of samples) and the DUCs output latency. The
queuing time depends on the arrival rate (i.e., symbol rate),
the service rate (i.e., DFE sample rate) and the buffer capacity
(limited by dedicated buffer memory space located in the
motherboard). The queuing model of the sample buffers can
be identified as a D/D/1/buffer_capacity queuing system.
Thus, as the I/Q sample rate is always less than or equal to
the DFE sample rate, the expected waiting time (in seconds)
can be calculated from Little’s Law [82] and is given by
[1 / DFE sample rate]. The minimal waiting time can be
achieved when the DFE sample rate is at its maximum, i.e.,
the highest DAC sample rate. The DUC output latency is
given by [number of cycles × DUC cycle duration]. The
values of number of cycles and DUC cycle duration (i.e.,
[1 / DUC clock rate]) are stated in the motherboard device
datasheet [83]. Similarly to the DUC output latency, the DAC
conversion latency is given by [number of clock cycles ×
DAC clock duration] where number of clock cycles depends
on the used sample rate and DAC architecture, and the DAC
clock duration is [1 / DAC clock rate]. The minimal DAC
conversion latency can be formulated as [minimal number
of clock cycles / maximal DAC clock rate]. The last part of
latency related to the front-end (RFFE latency) is negligible
due to high frequency bus. The minimal SDR device latency,
therefore, is the sum of the minimum values of DFE and
DAC conversion latencies. Table 15 gives theoretical minimal
latencies of well-known SDR devices at the transmitting side.

I

Q

DFE latency

DFE Sample rate (S/s)

ADC sample rate

DAC sample rate

Symbol rate
(Sym/s)

Symbol rate
(Sym/s)

RFFE

RX

TX

DUC

DUC DAC

DAC

DAC latency RFFE latency

SDR buffer latency DUC output latency

ADC

ADC DDC

DDC

DDC output latency SDR buffer latency

I

Q

DFE latencyADC latency RFFE latency

DAC sample rate DFE Sample rate (S/s)

I Sample rate (S/s)

Q Sample rate (S/s)

RFFE

DFE Sample rate (S/s)

DFE Sample rate (S/s) ADC sample rate

I Sample rate (S/s)

Q Sample rate (S/s)

FIGURE 8: Transmitter side SDR device latency.

The SDR latency at the receiver side has the same com-
ponents as the transmitter side, namely RFFE latency, ADC
conversion latency and DFE latency, shown in Fig. 9. The
RFFE latency remains negligible for the receiver side due to
the high frequency bus. The latency part related to the ADC
conversion can be expressed similarly as for DAC conversion
latency, by [number of clock cycles × ADC clock duration].

ADC/DAC latency DFE latency

DAC

ADC
RF Front End Digital

Front End

TX/RX RFFE latency

Communication link latency Host latency

GPP Host

SDR latency

Communication link

Cont.buffer latency Cont.buffer latency

FIGURE 7: GPP-based SDR platform latency.

14 VOLUME x, xxxx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

TABLE 15: Minimal SDR latency for SDR devices.

SDR device DFE latency (ns) DAC latency
(ns)

RFFE
latency

SDR latency
(ns)Buffer latency DUC latency

T
X

si
de

HackRF 50.00 83.33 50.00 – 183.33
USRP-X3x0 1.25 5.00 1.25 – 7.50
USRP-B2x0 16.27 16.27 16.27 – 48.81
Microsoft Sora 25.00 25.00 25.00 – 75.00
LimeSDR 1.56 6.25 1.56 – 9.37

SDR device DFE latency ADC
latency (ns)

RFFE
latency

SDR latency
(ms)Buffer latency (ms) DDC latency (ns)

R
X

si
de

HackRF 6.55 83.33 50.00 – 6.55
USRP-X3x0 4.47 5.00 5.00 – 4.47
USRP-B2x0 3.28 16.27 16.27 – 3.28
Microsoft Sora 0.95 25.00 25.00 – 0.95
LimeSDR 0.04 6.25 6.25 – 0.04

The minimal value, therefore, can be formulated as [minimal
number of clock cycles / maximal ADC clock rate]. The DFE
latency is related to the DFE operations and includes: the
DDC output latency and the queuing time at the SDR buffer.
The DDC output latency is given by [number of clock cycles
× DDC cycle duration], where the number of clock cycles
and DDC cycle duration are found from device motherboard
datasheet. The waiting time, on the other hand, represents
the time spent by I/Q samples in the SDR buffers before
forwarding to the communication interface controller. The
waiting time can be given by [(buffer_capacity + 1) (in Sym) /
symbol rate (in sym/s)]. The minimal waiting time, therefore,
is achieved when the symbol rate attains its maximum, i.e.,
maximal DFE sample rate, which in turn has its maximum
value equivalent to ADC sample rate. Consequently, the min-
imal waiting time can be approximated to [(buffer_capacity
+ 1) (in Sym) / ADC sample rate (in Sym/s)]. Table 15 gives
theoretical minimal SDR device latency in the receiving side
(RX side).

I

Q

DFE latency

DFE Sample rate (S/s)

ADC sample rate

DAC sample rate

Symbol rate
(Sym/s)

Symbol rate
(Sym/s)

RFFE

RX

TX

DUC

DUC DAC

DAC

DAC latency RFFE latency

SDR buffer latency DUC output latency

ADC

ADC DDC

DDC

DDC output latency SDR buffer latency

I

Q

DFE latencyADC latency RFFE latency

DAC sample rate DFE Sample rate (S/s)

I Sample rate (S/s)

Q Sample rate (S/s)

RFFE

DFE Sample rate (S/s)

DFE Sample rate (S/s) ADC sample rate

I Sample rate (S/s)

Q Sample rate (S/s)

FIGURE 9: Receiver side SDR device latency.

2) Communication interface latency
This latency is related to data exchange between GPP host
and SDR device through communication interfaces such as
Gigabit Ethernet, USB3.0, PCIe, etc. The data packets are
used to carry symbols, where each symbol is pushed in one
packet as data payload and followed by a set of header fields.
The time spent by a data packet to travel from one communi-
cation interface controller, of GPP host or SDR device, to
another is defined as the communication interface latency.
It includes the waiting time of data packets at both com-
munication interface controllers and the propagation time.
The waiting time at each communication interface controller
combines the queuing time and the service time. Fig. 10 de-
picts the components of the communication interface latency.

The queuing system consists of two symmetric queuing
networks that can work either simultaneously in case of Full-
duplex interfaces, or only one at a time in case of Half-duplex

Communication interface latency

Normalized interface speed (packets/s)

Symbol rate
(packets/s)

Interface controller
at GPP host

Interface controller
at SDR device

Symbol rate
(packets/s)

TX Waiting time

TX buffer

RX buffer

Propagation time

RX buffer

TX buffer

Symbol rate
(packets/s)

Symbol rate
(packets/s)

RX Waiting time

Service rate = (Interface speed * TX link occupancy) /
(data packet size + data link header length)

TX link occupancy=(
t1+ t2+...+ tn

T
)

Normalized interface speed (packets/s)

FIGURE 10: Communication interface latency.

interfaces. Each queuing network comprises a TX buffer
linked to a RX buffer through the communication interface
link. From the TX buffer to RX buffer, the communication
interface controller collects I/Q samples (generated by the
user application or received from the DFE) and creates data
packets according to the used interface standard (data packet
size, header fields, etc). These data packets are queued at the
TX buffer waiting for transmission to the RX buffer. When
a packet is transmitted, it will travel over the communication
link with signal propagation speed in a medium. Finally, the
communication interface controller intercepts the received
packets, extracts the I/Q samples and puts them into the RX
buffer for delivery (to the DFE or to the user application). For
the queuing network parameters:

• The arrival rate at the TX buffer, expressed in packets/s,
takes the same value of the symbol rate as each symbol
is carried by a single data packet;

• The service rate of the TX Buffer can be derived from
the interface speed and the TX link occupancy, and
converted into packets/s using the following formula:
[(interface speed × link efficiency × TX link occu-
pancy) / payload size] (in packets/s). The resulting
speed is called normalized interface speed. For more
details about the TX link occupancy computation, see
section IV-C;

• The propagation time can be given by [length of the
medium / speed of signal propagation] where speed of
signal propagation is 3x108m/sec; or can be found from
datasheet of the used communication interface [50];

• The arrival rate at the RX buffer, expressed in Sym/s,
takes the same arrival rate of the TX buffer (i.e., symbol
rate) if this later is less than or equal to TX buffer service
rate (normalized interface speed). Otherwise, it takes the
normalized interface speed;

• The service rate of the RX buffer, expressed in Sym/s,
is symbol rate.

The communication interface latency can, therefore, be re-
garded as the total waiting time of the queuing network. Thus,
it’s the result of the sum of the waiting time of data packets at
TX/RX buffers and the propagation time. Two cases need to
be distinguished: when the symbol rate is less than or equal,
and when it’s greater than the normalized interface speed
(i.e., the interface speed, averaged and converted). In the first
case, the expected waiting time in the TX buffer is [1 / nor-
malized interface speed] seconds, and the expected waiting
time in the RX buffer is [1 / symbol rate] seconds. Hence,

VOLUME x, xxxx 15

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

the total waiting time is given by [(1 / normalized interface
speed) + (length of the medium / speed of signal propagation)
+ (1 / symbol rate)] (seconds). The minimal waiting time
is achieved when the symbol rate attains its maximum, i.e.,
the normalized interface speed, the limit imposed by the
condition of the 1st case. Consequently, the total minimum
waiting time is [(2 / normalized interface speed) + (length
of the medium / speed of signal propagation)] (seconds).
In the second case, the expected waiting time in the TX
buffer is [(TX buffer capacity (in packets) + 1) / normalized
interface speed] seconds, and the expected waiting time in
the RX buffer is [1 / symbol rate] seconds. Hence, the total
waiting time is given by

[(
(TX buffer capacity (in packets)

+ 1) / normalized interface speed
)

+ (length of the medium /
speed of signal propagation) + (1 / symbol rate)

]
(seconds).

The minimal waiting time is achieved when the symbol rate
attains its maximum, i.e., the DFE sample rate, and it is
given by

[(
(TX buffer capacity (in packets) + 1) / normalized

interface speed
)

+ (length of the medium / speed of signal
propagation) + (1 / DFE sample rate)

]
(seconds). Table 16

gives theoretical minimal interface latency with 100% TX
link occupancy.

TABLE 16: Minimal communication interface latency.

SDR platform Comm.
interface

Propagation
time (µs)

Normalized int.
speed (kpacket/s)

Max. Sym rate
(kpacket/s)

Min.waiting time (µs) Comm.interface
latency (µs)TX buffer RX buffer

GPP host +
HackRF USB2.0 0.026 116.8432 116.843 8.5584 8.5584 17.1428

156.250 2148.18 6.4000 2154.60
GPP host +
USRP B2x0 USB3.0 0.026 613.026 613.026 1.631 1.631 3.288

240.000 1.6312 1.6312 3.2884
GPP host +
USRP X3x0 10Gig Eth 0.025 813.6528 813.6528 1.2290 1.2290 2.4830

527.0090 1.2290 1.2290 2.4830
GPP host +
Sora PCIe (x8) – 1903.6207 1903.62 0.5253 0.5253 1.0506

153.26 0.5253 0.5253 1.0506
GPP host +
LimeSDR PCIe (x4) – 951.8103 951.8103 1.0506 1.0506 2.1012

613.0268 1.0506 1.0506 2.1012

3) GPP host latency
This latency is the time a wireless MAC frame (data, manage-
ment or control) passes in GPP host between the MAC layer
and the interface controller due to TX and RX activities. It
mainly includes the processing time due to the MAC layer
operations such as access mechanism, MAC framing, gener-
ating/transmitting/receiving control and management frames,
transmitting/receiving data frames, etc., and the PHY layer
operations such as channel coding, digital modulation, PHY
framing, etc. The time to forward/retrieve symbols to/from
the interface controller should also be added. To perform all
these operations require a GPP time and additional extra-
time related to the kernel operations and external memory
read/write should be considered. Estimating the GPP host
latency is a very complex work, due to the high number of
hardware and software factors that affect the execution time
of the user program (wireless technology implementation).
Indeed, the GPP host hardware and software configurations
(see section III-C) affects the execution speed and hence
impact the response time of all tasks. Consequently, we
illustrate the minimum GPP host latency experimentally by
benchmarking existing software implementations of selected
wireless technologies.

The selected wireless technologies were run on Intel

x86_64 microprocessor with different number of cores
and speeds (2 GHz Dual-core, 1.5 GHz Quad-core and
3.6GHz Octa-core). Each core has L1/L2/L3 cache sizes of
64KB/256KB/6144KB and access time of 1.2ns/3.6ns/12ns.
All the applications listed below are tested on Ubuntu 18.04.2
LTS: NFC based on gr-nfc [84], IEEE 802.15.6 based on
a prototype proposed in [85] for NB-WBAN, IEEE 802.15.1
based on scapy-radio for Bluetooth [86], IEEE 802.15.4
based on gr-IEEE 802.15.4 [15], IEEE 802.11ac and
IEEE 802.11ah are based on GNU Radio implementation of
gr-IEEE 802.11 [16]; EC-GSM-IoT based on gr-GSM
[87]. LTE is measured using eNodeB and user equipment
(UE) PHY downlink (DL) shared channel (PDSCH) and NB-
IoT using Narrowband PDSCH (NPDSCH) PHY modules
from srsRAN [14]; and LoRa based on gr-lora [24]. The
parameters involved in the experimental latency result like
number of executed instructions and CPI are measured using
perf stat tool. The results are depicted in Table 17.

TABLE 17: GPP host latency for wireless technologies.

Wireless tech. TX/RX

Hyperthreading Enabled Hyperthreading Disabled
Total # of
executed

instructions
CPI GPP cores and

speed

latency
(ms)

Total #. of
executed

instructions
CPI GPP cores and

speed

latency
(ms)

NFC

TX 558,321,456 0.8620
2 core, 2.0 GHz 240.636

559,515,043 0.8695
2 core, 2.0 GHz 243.249

4 core, 1.5 GHz 320.848 4 core, 1.5 GHz 324.332
8 core, 3.6 GHz 133.687 8 core, 3.6 GHz 135.138

RX 972,461,581 0.8474
2 core, 2.0 GHz 103.008

926,670,202 0.8620
2 core, 2.0 GHz 199.697

4 core, 1.5 GHz 68.672 4 core, 1.5 GHz 133.132
8 core, 3.6 GHz 14.306 8 core, 3.6 GHz 27.736

IEEE802.15.6

TX 876,981,272 0.8772
2 core, 2.0 GHz 384.643

878,403,793 0.8928
2 core, 2.0 GHz 392.119

4 core, 1.5 GHz 512.858 4 core, 1.5 GHz 522.826
8 core, 3.6 GHz 213.691 8 core, 3.6 GHz 217.844

RX 796,701,770 0.8695
2 core, 2.0 GHz 346.366

796,549,347 0.9009
2 core, 2.0 GHz 358.806

4 core, 1.5 GHz 461.821 4 core, 1.5 GHz 478.408
8 core, 3.6 GHz 192.426 8 core, 3.6 GHz 199.336

IEEE802.15.1

TX 795,768,645 0.8849
2 core, 2.0 GHz 88.022

795,694,115 0.9009
2 core, 2.0 GHz 179.210

4 core, 1.5 GHz 58.681 4 core, 1.5 GHz 119.473
8 core, 3.6 GHz 12.225 8 core, 3.6 GHz 24.890

RX 797,964,859 0.8772
2 core, 2.0 GHz 349.987

799,065,806 0.9009
2 core, 2.0 GHz 359.939

4 core, 1.5 GHz 466.649 4 core, 1.5 GHz 479.919
8 core, 3.6 GHz 194.437 8 core, 3.6 GHz 199.966

IEEE802.15.4

TX 861,073,678 0.8772
2 core, 2.0 GHz 94.417

856,394,067 0.8928
2 core, 2.0 GHz 191.147

4 core, 1.5 GHz 62.944 4 core, 1.5 GHz 127.431
8 core, 3.6 GHz 13.113 8 core, 3.6 GHz 26.548

RX 858,617,170 0.8772
2 core, 2.0 GHz 94.147

855,396,059 0.8928
2 core, 2.0 GHz 190.924

4 core, 1.5 GHz 62.765 4 core, 1.5 GHz 127.283
8 core, 3.6 GHz 13.076 8 core, 3.6 GHz 26.517

IEEE802.11a

TX 1,515,777,533 0.8064
2 core, 2.0 GHz 152.790

1,543,797,133 0.8130
2 core, 2.0 GHz 313.776

4 core, 1.5 GHz 203.721 4 core, 1.5 GHz 209.184
8 core, 3.6 GHz 84.884 8 core, 3.6 GHz 87.16

RX 1,349,807,636 0.8403
2 core, 2.0 GHz 189.041

1,377,853,186 0.8547
2 core, 2.0 GHz 294.413

4 core, 1.5 GHz 252.054 4 core, 1.5 GHz 261.700
8 core, 3.6 GHz 105.023 8 core, 3.6 GHz 109.042

IEEE802.11ah

TX 1,391,308,356 0.8264
2 core, 2.0 GHz 143.722

1,421,664,038 0.8474
2 core, 2.0 GHz 301.179

4 core, 1.5 GHz 191.630 4 core, 1.5 GHz 200.786
8 core, 3.6 GHz 79.846 8 core, 3.6 GHz 83.661

RX 1,346,778,585 0.8403
2 core, 2.0 GHz 188.616

1,378,183,531 0.8547
2 core, 2.0 GHz 294.483

4 core, 1.5 GHz 251.488 4 core, 1.5 GHz 261.763
8 core, 3.6 GHz 104.787 8 core, 3.6 GHz 109.068

LTE

TX 1,767,690,400 0.4464
2 core, 2.0 GHz 131.516

1,773,284,720 0.4424
2 core, 2.0 GHz 196.125

4 core, 1.5 GHz 87.677 4 core, 1.5 GHz 174.334
8 core, 3.6 GHz 36.532 8 core, 3.6 GHz 72.639

RX 2,045,481,270 0.4098
2 core, 2.0 GHz 119.748

2,054,979,907 0.4081
2 core, 2.0 GHz 239.611

4 core, 1.5 GHz 79.832 4 core, 1.5 GHz 159.74
8 core, 3.6 GHz 33.263 8 core, 3.6 GHz 33.279

NB-IoT

TX 132,609,522 0.7194
2 core, 2.0 GHz 13.628

123,277,890 0.7936
2 core, 2.0 GHz 27.952

4 core, 1.5 GHz 9.086 4 core, 1.5 GHz 18.635
8 core, 3.6 GHz 3.786 8 core, 3.6 GHz 3.882

RX 162,404,628 0.7092
2 core, 2.0 GHz 16.454

161,738,446 0.7246
2 core, 2.0 GHz 33.484

4 core, 1.5 GHz 10.969 4 core, 1.5 GHz 22.323
8 core, 3.6 GHz 4.571 8 core, 3.6 GHz 4.651

EC-GSM-IoT

TX 893,349,079 0.8695
2 core, 2.0 GHz 97.096

893,315,010 0.8772
2 core, 2.0 GHz 195.904

4 core, 1.5 GHz 64.731 4 core, 1.5 GHz 130.603
8 core, 3.6 GHz 13.486 8 core, 3.6 GHz 27.209

RX 1,317,231,292 0.7633
2 core, 2.0 GHz 125.680

1,222,540,786 0.7874
2 core, 2.0 GHz 240.657

4 core, 1.5 GHz 83.787 4 core, 1.5 GHz 160.438
8 core, 3.6 GHz 32.858 8 core, 3.6 GHz 33.425

LoRa

TX 946,374,830 0.7692
2 core, 2.0 GHz 103.993

1,184,932,351 0.7246
2 core, 2.0 GHz 195.492

4 core, 1.5 GHz 69.329 4 core, 1.5 GHz 130.328
8 core, 3.6 GHz 28.887 8 core, 3.6 GHz 31.03

RX 572,913,761 0.8403
2 core, 2.0 GHz 240.709

571,508,495 0.8695
2 core, 2.0 GHz 248.463

4 core, 1.5 GHz 320.946 4 core, 1.5 GHz 331.284
8 core, 3.6 GHz 133.728 8 core, 3.6 GHz 138.035

From Table 17, we can see that under the same hard-
ware and kernel settings at the GPP host, wireless tech-
nologies provide different latencies according to the total
number of executed instructions and the inherent paral-
lelism in the instruction code. This parallelism defines on
one hand the level of TLP exploited by the scheduler to
split execution of threads between physical/virtual cores,
and on the other hand by the level of TLP exploited by
the processor to perform multiple instructions simultane-
ously within the same core which reduces (on average)

16 VOLUME x, xxxx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

the number of required CPI. Based on the total number of
executed instructions and parallelism, the latency increases
when the number of instructions increases and parallelism
degree decreases and vice versa. Thereby, since the to-
tal number of executed instructions of IEEE 802.15.4 is
861,073,678/858,617,170 for TX/RX and the CPI is 0.8772
for both TX and RX, the latencies under hyperthreading for
Dual/Quad/Octa-core are 94.417ms/62.944ms/13.113ms for
TX and 94.147ms/62.765ms/13.076ms for RX, respectively.
Also, we note that the latency is lower with hyperthreading
enabled than hyperthreading disabled for all tested technolo-
gies, from 0.009% upto 54.31% improvements. The major
contributor of the high percentage improvements provided by
some tested technologies is due to the large number of threads
in the program; and with high-TLP, theoretically, we might
expect to have upto 50% improvement due to hyperthreading.
However, this depends on the resource contention between
threads on hyperthreaded cores. High resource contention
often leads to latency degradation.

4) Minimal theoretical GPP-based SDR platform latency
The latency of GPP-based SDR platforms related to TX/RX
operations is the result of cumulative latencies over three
stages: SDR device, communication interface and GPP host.
The minimal latency at both SDR device and communication
interface stages is theoretically expressed by modeling the
internal architecture using queuing theory. While the minimal
latency at the SDR device varies from several nanoseconds
to few milliseconds depending on the buffer size, it varies
from microseconds to few milliseconds at the communica-
tion interface. At the GPP host stage, the minimal latency
is investigated experimentally based on multiple parame-
ters such as number and speed of cores, hyperthreading,
number of executed instructions, number of threads, degree
of ILP/TLP/DLP, kernel scheduler, I/O management (e.g.,
cache/memory/disk access), etc. Table 18 gives the total
minimal latency of GPP-based SDR platforms related to
TX/RX operations of some wireless technologies. For the
communication interface a link occupancy of 100% and
symbol rate less than or equal to the normalized interface
speed is used.

Table 18 demonstrates that large part of the total latency
is due to the GPP host. Comparing the minimal GPP-based
SDR platform latency for TX/RX paths with latencies at
the three components (SDR device, communication interface
and GPP host), we see that for some wireless technologies
the GPP host contributes upto 99% of the total (such as in
NFC, IEEE802.15.6, IEEE802.15.1, etc). It is shown that
the latency at the GPP host stage could be minimized by
using high TLP, high clock rate, hyperthreading (with lower
resource contention), etc. One can also see that, TX and RX
latencies are different. This is due to the specific operations
on each path. Moreover, there’s significant difference in TX
and RX latencies of SDR devices (see section IV-F1) that also
contributes to the total latency. The values in Table 18 indi-
cate the capability of the SDR platforms in executing wireless

technologies. For instance, to perform a TX operation of
NFC using Hack SDR device and USB2.0 communication
interface on a (2 core, 2 GHz, hyperthreading enabled) GPP
host, it takes 122.855ms (shaded cell). However, to determine
whether a given SDR platform meets the latency required
by a wireless technology, one needs to carefully map the
two (see section V for the mapping). Note that the latency
analysis illustrated in this paper can also be exploited to
investigate other SDR platforms and wireless technologies.

V. MAPPING PARAMETERS OF WIRELESS
TECHNOLOGY WITH GPP-BASED SDR PLATFORM
In the previous sections, we have carried out investigations to
determine the requirements of well-known wireless technolo-
gies and the minimum performance of GPP-SDR platform
in terms of frequency, bandwidth, symbol rate, bitrate and
latency. In this section, we intersect the wireless standard re-
quirements with the SDR platform performance to build a list
of possible GPP-based SDR platforms that can successfully
implement a given wireless technology.

A. MATCHING CONDITIONS
A successful matching between a wireless technology re-
quirements and a GPP-based SDR platform performance
can occur when matching conditions are satisfied. These
conditions are applied to perform a simple comparison be-
tween similar metrics of the two sets. Further details on the
matching conditions are discussed below.

1) Frequency band matching
Wireless technologies are defined to operate in a single or
multiple frequency bands of the radio spectrum. On the other
hand, SDR device daughterboards are defined to operate in
a wide contiguous frequency band. Given a wireless tech-
nology, frequency band matching consists of ensuring that
the SDR device daughterboard frequency range covers the
frequency bands of the wireless technology.

2) Bandwidth matching
Wireless technologies divide their operating frequency bands
to single/multiple overlapping/non-overlapping channels of
predefined widths. However, the really occupied bandwidth
can be less than the channel width depending on the type of
modulation. Given a wireless technology, bandwidth match-
ing consists of ensuring that the maximal SDR platform
bandwidth is at least equal to the real occupied bandwidth
in the channel width defined by the standard.

3) Symbol rate matching
The specifications of wireless technologies provide the sym-
bol duration, and hence the symbol rate, either explicitly or
implicitly through related PHY parameters (see equations in
Table 11). Given a wireless technology and a GPP-based
SDR platform, symbol rate matching ensures that the max-
imal supported symbol rate by the GPP-based SDR platform

VOLUME x, xxxx 17

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

TABLE 18: Theoretical minimal latency (ms) on GPP-based SDR platforms.

Wireless tech. TX/RX

GPP-based SDR platform Hyperthreading Enabled Hyperthreading Disabled
SDR device Hack X310 B210 Sora Lime Hack X310 B210 Sora Lime
Comm. int. USB2.0 10Gig. USB3.0 PCIe-x8 PCIe-x4 USB2.0 10Gig. USB3.0 PCIe-x8 PCIe-x4

NFC

TX
2 core, 2.0 GHz 122.855 122.840 122.841 122.839 122.840 123.122 123.107 123.108 123.106 123.107
4 core, 1.5 GHz 163.782 163.784 163.785 163.783 163.784 164.153 164.138 164.139 164.137 164.138
8 core, 3.6 GHz 68.264 68.264 68.250 68.248 68.249 68.414 68.399 68.400 68.398 68.399

RX
2 core, 2.0 GHz 77.903 75.808 74.619 72.287 71.378 119.882 117.787 116.598 114.266 113.357
4 core, 1.5 GHz 69.972 67.877 66.688 64.356 63.447 97.208 95.113 93.924 91.592 90.683
8 core, 3.6 GHz 19.781 17.686 16.497 14.165 13.256 31.758 29.663 28.474 26.142 25.233

IEEE802.15.6

TX
2 core, 2.0 GHz 192.961 192.946 192.947 192.945 192.946 193.277 193.262 193.263 193.261 193.262
4 core, 1.5 GHz 257.273 257.258 257.2593 257.257 257.258 257.694 257.679 257.680 257.678 257.679
8 core, 3.6 GHz 107.211 107.196 107.197 107.195 107.196 107.389 107.374 107.375 107.373 107.374

RX
2 core, 2.0 GHz 181.849 179.754 178.565 176.233 175.324 181.819 179.724 178.535 176.203 175.294
4 core, 1.5 GHz 240.274 238.179 236.990 234.658 233.749 240.233 238.138 236.949 234.617 233.708
8 core, 3.6 GHz 103.949 101.854 100.665 98.333 97.424 103.935 101.840 100.651 98.319 97.410

IEEE802.15.1

TX
2 core, 2.0 GHz 46.731 46.716 46.717 46.715 46.716 93.467 93.452 93.453 93.451 93.452
4 core, 1.5 GHz 31.155 31.140 31.141 31.139 31.140 62.302 62.287 62.288 62.286 62.287
8 core, 3.6 GHz 6.509 6.494 6.495 6.493 6.494 13.006 12.991 12.992 12.990 12.991

RX
2 core, 2.0 GHz 182.127 180.032 178.843 176.511 175.602 182.373 180.278 179.089 176.757 175.848
4 core, 1.5 GHz 240.644 238.549 237.360 235.028 234.119 240.971 238.876 237.687 235.355 234.446
8 core, 3.6 GHz 104.104 102.009 100.820 98.488 97.579 104.242 102.147 100.958 98.626 97.717

IEEE802.15.4

TX
2 core, 2.0 GHz 47.420 47.405 47.406 47.404 47.405 94.353 94.338 94.339 94.337 94.338
4 core, 1.5 GHz 31.612 31.597 31.598 31.596 31.597 62.886 62.871 62.872 62.870 62.871
8 core, 3.6 GHz 8.802 8.787 8.788 8.786 8.787 13.134 13.119 13.120 13.118 13.119

RX
2 core, 2.0 GHz 53.835 51.740 50.551 48.219 47.310 100.793 98.698 97.509 95.177 94.268
4 core, 1.5 GHz 38.072 35.977 34.788 32.456 31.547 69.363 67.268 66.079 63.747 62.838
8 core, 3.6 GHz 15.327 13.232 12.043 9.711 8.802 19.669 17.574 16.385 14.053 13.144

IEEE802.11a

TX
2 core, 2.0 GHz 83.392 83.377 83.378 83.376 83.377 169.857 169.842 169.843 169.841 169.842
4 core, 1.5 GHz 111.182 111.167 111.168 111.166 111.167 113.240 113.225 113.226 113.224 113.225
8 core, 3.6 GHz 46.340 46.325 46.326 46.324 46.325 47.200 47.185 47.186 47.184 47.185

RX
2 core, 2.0 GHz 105.561 103.466 102.277 99.945 99.036 208.675 206.580 205.391 203.059 202.150
4 core, 1.5 GHz 138.556 136.461 135.272 132.940 132.031 141.302 139.207 138.018 135.686 134.777
8 core, 3.6 GHz 61.567 59.472 58.283 55.951 55.042 62.713 60.618 59.429 57.097 56.188

IEEE802.11ah

TX
2 core, 2.0 GHz 76.547 76.532 76.533 76.531 76.532 156.423 156.408 156.409 156.407 156.408
4 core, 1.5 GHz 102.054 102.039 102.040 102.038 102.039 104.284 104.269 104.270 104.268 104.269
8 core, 3.6 GHz 42.537 42.522 42.523 42.521 42.522 43.468 43.453 43.454 43.452 43.453

RX
2 core, 2.0 GHz 105.338 103.243 102.054 99.722 98.813 208.723 206.628 205.439 203.107 202.198
4 core, 1.5 GHz 138.260 136.165 134.976 132.644 131.735 141.334 139.239 138.050 135.718 134.809
8 core, 3.6 GHz 61.443 59.348 58.159 55.827 54.918 62.727 60.632 59.443 57.111 56.202

LTE

TX
2 core, 2.0 GHz 129.663 129.648 129.649 129.647 129.648 195.112 195.097 195.098 195.096 195.097
4 core, 1.5 GHz 86.445 86.430 86.431 86.429 86.430 173.427 173.412 173.413 173.411 173.412
8 core, 3.6 GHz 36.033 36.018 36.019 36.017 36.018 36.151 36.136 36.137 36.135 36.136

RX
2 core, 2.0 GHz 135.155 133.060 131.871 129.539 128.630 264.952 262.857 261.668 259.336 258.427
4 core, 1.5 GHz 92.290 90.195 89.006 86.674 85.765 178.816 176.721 175.532 173.200 172.291
8 core, 3.6 GHz 42.289 40.194 39.005 36.673 35.764 42.459 40.364 39.175 36.843 35.934

NB-IoT

TX
2 core, 2.0 GHz 8.367 8.352 8.353 8.351 8.352 15.559 15.544 15.545 15.543 15.544
4 core, 1.5 GHz 5.582 5.567 5.568 5.566 5.567 10.371 10.356 10.357 10.355 10.356
8 core, 3.6 GHz 2.340 2.325 2.326 2.324 2.325 2.181 2.166 2.167 2.165 2.166

RX
2 core, 2.0 GHz 16.790 14.695 13.506 11.174 10.265 26.944 24.849 23.66 21.328 20.419
4 core, 1.5 GHz 13.380 11.285 10.096 7.764 6.855 20.145 18.05 16.861 14.529 13.62
8 core, 3.6 GHz 9.410 7.315 6.126 3.794 2.885 9.403 7.308 6.119 3.787 2.878

EC-GSM-IoT

TX
2 core, 2.0 GHz 52.456 52.441 52.442 52.44 52.441 52.469 52.454 52.455 52.453 52.454
4 core, 1.5 GHz 34.972 34.957 34.958 34.956 34.957 8 34.978 34.963 34.964 34.962 34.963
8 core, 3.6 GHz 7.304 7.289 7.290 7.288 7.289 7.307 7.292 7.293 7.291 7.292

RX
2 core, 2.0 GHz 91.836 89.741 88.552 86.22 85.311 85.728 83.633 82.444 80.112 79.203
4 core, 1.5 GHz 74.775 72.68 71.491 69.159 68.25 69.885 67.79 66.601 64.269 63.36
8 core, 3.6 GHz 25.523 23.428 22.239 19.907 18.998 24.169 22.074 20.885 18.553 17.644

LoRa

TX
2 core, 2.0 GHz 59.518 59.503 59.504 59.502 59.503 122.942 122.927 122.928 122.926 122.927
4 core, 1.5 GHz 39.682 39.667 39.668 39.666 39.667 81.96 81.945 81.946 81.944 81.945
8 core, 3.6 GHz 16.549 16.534 16.535 16.533 16.534 17.095 17.08 17.081 17.079 17.08

RX
2 core, 2.0 GHz 132.616 130.521 129.332 127.000 126.091 132.31 130.215 129.026 126.694 125.785
4 core, 1.5 GHz 174.629 172.534 171.345 169.013 168.104 174.221 172.126 170.937 168.605 167.696
8 core, 3.6 GHz 76.598 74.503 73.314 70.982 70.073 76.43 74.335 73.146 70.814 69.905

is greater than or equal to that defined by the wireless
standard.

4) Bitrate matching

Based on PHY parameters (spectral lines, code rate, PHY
framing, digital modulation) and symbol rate of wireless
technologies, specifications provide a list of supported bi-
trates. On the other hand, GPP-based SDR platforms sup-
port a maximum bitrate according to the used SDR device,
communication interface and GPP host capabilities. Given a
wireless technology and a GPP-based SDR platform, full bi-

trate matching ascertains that the maximal supported bitrate
by the GPP-based SDR platforms is greater than or equal
to the highest bitrate of the wireless technology. However,
partial matching can also occur when the maximal supported
bitrate by the SDR platform is between the highest and
lowest bitrates of the wireless technology. In this case, the
SDR platform can still perform the implemented wireless
technology but in lower bitrates.

18 VOLUME x, xxxx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

5) Latency matching

Wireless devices operate in a shared wireless medium, and
hence, require a MAC protocol to organize access to a
channel. In general, MAC protocols can be classified as either
contention-based or contention-free protocols [88]. Despite
their significant differences in terms of coordination, they
define inter-frame times to handle waiting periods between
transmission of frames (data, control and management). For
example, IEEE 802.15.4 uses slotted CSMA/CA as a con-
tention based protocol and Guaranteed Time Slot (GTS)
allocation mechanism as a contention-free protocol. Both
protocols define inter-frame times to cover the period from
receiving a data frame and transmitting an explicit acknowl-
edgment frame. The smallest inter-frame time among all
inter-frame times is defined as the latency. Wireless devices
should respect the latency to ensure optimized network per-
formance. Examples of latency for the well-known wireless
technologies are given in Tables 1, 2 and 3.

As GPP-based SDR platforms will play the role of wireless
device, they should fulfill the latency constraint by complet-
ing execution of all operations within the dedicated time pe-
riod as defined by the specific MAC protocol. The concerned
operations are often related to transmission and/or reception
of frames. Thus, during the latency period, frames should tra-
verse the transceiver chain in one or both directions based on
the objective of MAC operations. Consequently, the latency
of GPP-based SDR platforms related to the implemented
wireless technology can include latency values of only in
TX or RX path, or both TX and RX paths depending on the
covered operations desired by the implemented technology.

Given a wireless technology and a GPP-based SDR plat-
form, full latency matching occurs when the minimal latency
supported by the GPP-based SDR platform is below the
latency of the wireless technology. Such matching allows the
GPP-based SDR platform to perform the TX/RX operations
efficiently and ensure normal communication with legacy
transceivers. However, when the minimal latency supported
by the GPP-based SDR platform exceeds the latency of
wireless technology and/or some other (perhaps all) inter-
frame times, frame exchange with legacy transceivers will be
affected. In other words, as TX/RX operations at the GPP-
based SDR platform are delayed, the overall network (in
presence of one or more legacy transceivers) performance
will degrade. To illustrate this, consider the following two
cases:

• Case 1: Assume that a GPP-based SDR platform has
won the channel access. A delayed frame transmission
may cause collisions at legacy receivers in the presence
of concurrent transmissions;

• Case 2: Assume that a GPP-based SDR platform is
receiving a unicast data frame from a legacy transceiver.
A delayed processing of the received frame and trans-
mitting a response (e.g., ACK) may cause the data
frame retransmission after response timeout, or starting
concurrent transmissions by other devices;

It should be noted that with or without matching, GPP-
based SDR platforms can still perform some tasks success-
fully such as: a) receiving broadcast/multicast frames as they
are not acknowledged, and b) acting as a wireless sniffer.

B. MAPPING PERFORMANCE OF GPP-BASED SDR
PLATFORMS WITH WIRELESS TECHNOLOGY
REQUIREMENTS
Based on the theoretical performance of GPP-based SDR
platforms calculated in section IV and the requirements
of wireless technologies listed in section II, the matching
conditions can be performed. For this purpose, a list of
selected wireless technologies and GPP-based SDR plat-
forms are considered. List of wireless technologies in-
clude: NFC, IEEE802.15.6, IEEE802.15.1, IEEE802.15.4,
IEEE802.11ac, IEEE802.11ah, LTE, NB-IoT, EC-GSM-IoT,
and LoRa. The list of GPP-based SDR platform contains
several SDR devices connected to different GPP hosts via
their fastest supported communication interface. The SDR
devices and their fastest supported communication interface
considered are: HackRF with USB2.0, USRP-X310 with
10Gigabit Ethernet, USRP-B210 with USB3.0, Microsoft
Sora with PCIe (x8), and LimeSDR with PCIe (x4). The GPP
hosts are: 2 GHz Dual-core processor, 1.5 GHz Quad-core
processor and 8 GHz Octa-core processor.

To match the two lists, according to the matching condi-
tions, a mapping table is created (see Table 19). In this Table,
as the maximal frequency band and maximal bandwidth
of SDR devices are determined irrespective of the wireless
technology and GPP host type, they are defined only once.
Whereas, the other three parameters (maximal symbol rate,
maximal bitrate and minimal latency), as they are determined
for each technology on the three GPP host types, their values
are indicated separately as per the technology. Moreover, the
minimal latency supported by GPP-based SDR platform for
each wireless technology is set based on TX path and RX
path latencies computed for each technology. For example,
the minimal latency supported by a GPP-based SDR platform
when performing IEEE802.15.4 based slotted CSMA/CA
protocol should take the sum of TX path and RX path laten-
cies. This is due to the fact that slotted CSMA/CA protocol
latency represents the Turn around Time (TT) which covers
the delay for a receiver device to receive a data frame on RX
path and if successfully decoded, transmit an ACK on TX
path.

From Table 19, we see that SDR platforms that have
wider range of operating frequency (HackRF, USRP-X310
and USRP-B210) satisfies the frequency requirements of all
wireless technologies except for IEEE 802.15.6, which is
only partially matched. Another exception is that of USRP-
B210, which doesn’t cover the frequency range of NFC
technology. Whereas, most of the technologies are not fully
supported by Sora and LimeSDR, although LimeSDR can
fully/partially match with more technologies than Sora. In
terms of bandwidth, while all wireless technologies are fully
matched with the SDR platforms, the exceptions are IEEE

VOLUME x, xxxx 19

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

TABLE 19: Mapping SDR platform with wireless technologies (F : Full match; P : Partial match; N : No match).

GPP-based SDR platform

wireless technology
SDR device Hack X310 B210 Sora Lime

No. of GPP cores 2 core 4 core 8 core 2 core 4 core 8 core 2 cor 4 cor 8 cor 2 cor 4 cor 8 cor 2 cor 4 cor 8 cor
Freq.range 0.001 – 6 GHz 0.01 – 6 GHz 0.07 – 6 GHz 2.4-2.5; 4.9-5.875GHz 0.1 – 3.8 GHz

Name Metrics Bandwidth 20 MHz 40/120/160 MHz 56 MHz 40 MHz 60 MHz

NFC [27]

Max.Sym. rate (MSym/s) 14.95 14.95 14.95 26.07 39.10 187.70 26.07 39.10 61.44 26.07 39.10 40.00 26.07 39.10 160.00
Max.Bitrate (Mbit/s) 14.95 14.95 14.95 26.07 39.10 187.70 26.07 39.10 61.44 26.07 39.10 40.00 26.07 39.10 160.00

Latency (ms) 200.758 233.771 88.045 198.649 231.662 85.936 197.461 230.474 84.748 195.126 228.139 82.413 194.218 227.231 81.505
Freq. range (13.56 MHz) F F N N F
Bandwidth (1 MHz) F F F F F
Max.Sym. rate (1.69MSym/s) F F F F F F F F F F F F F F F
Max.Bitrate (424 kbit/s) F F F F F F F F F F F F F F F
Latency (5.34 ms) N N N N N N N N N N N N N N N

IEEE802.15.6
[29]

Max.Sym. rate (MSym/s) 14.95 14.95 14.95 15.37 23.06 110.72 15.37 23.06 61.44 15.37 23.06 40.00 15.37 23.06 110.72
Max.Bitrate (Mbit/s) 27.38 29.90 29.90 27.38 41.08 197.26 27.38 41.08 122.88 27.38 41.08 80.00 27.08 41.08 197.26

Latency (ms) 374.810 497.547 211.160 372.701 495.438 209.051 371.513 494.250 207.863 369.178 491.915 205.528 368.270 491.007 204.620
Freq. range (0.021 - 9.98GHz) P P P P P
Bandwidth (0.3 – 499.2 MHz) P P P P P
Max.Sym. rate (15.6 MSym/s) P P P P F F P F F P F F P F F
Max.Bitrate (15.6 Mbit/s) F F F F F F F F F F F F F F F
Latency (75 µs) N N N N N N N N N N N N N N N

IEEE802.15.1
[30]

Max.Sym. rate (MSym/s) 14.95 14.95 14.95 26.07 39.10 187.70 26.07 39.10 61.44 26.07 39.10 40.00 26.07 39.10 160.00
Max.Bitrate (Mbit/s) 27.38 29.90 29.90 27.38 41.08 197.26 27.38 41.08 122.88 27.38 41.08 80.00 27.08 41.08 197.26

Latency (ms) 228.858 271.799 110.613 226.749 269.69 108.504 225.561 268.502 107.316 223.226 266.167 104.981 222.318 265.259 104.073
Freq. range (2.4 GHz) F F F P F
Bandwidth (1, 2 MHz) F F F F F
Max.Sym. rate (2 MSym/s) F F F F F F F F F F F F F F F
Max.Bitrate (2 Mbit/s) F F F F F F F F F F F F F F F
Latency (150 µs) N N N N N N N N N N N N N N N

IEEE802.15.4
[31]

Max.Sym. rate (MSym/s) 14.95 14.95 14.95 15.37 23.06 110.72 15.37 23.06 61.44 15.37 23.06 40.00 15.37 23.06 110.72
Max.Bitrate (Mbit/s) 27.38 29.90 29.90 27.38 41.08 197.26 27.38 41.08 122.88 27.38 41.08 80.00 27.08 41.08 197.26

Latency (ms) 101.255 69.684 24.129 99.146 67.575 22.020 97.958 66.387 20.832 95.623 64.052 18.497 94.715 63.144 17.589
Freq. range (subGHz,2.4GHz) F F F P F
Bandwidth (0.4 - 5MHz) F F F F F
Max.Sym. rate (62.5kSym/s) F F F F F F F F F F F F F F F
Max.Bitrate (250 kbit/s) F F F F F F F F F F F F F F F
Latency (Unslotted CSMA/CA: 192 µs) N N N N N N N N N N N N N N N

IEEE802.11ac
[33]

Max.Sym. rate (MSym/s) 14.95 14.95 14.95 18.48 27.72 133.06 18.48 27.72 61.44 18.48 27.72 62.11 18.48 27.72 133.06
Max.Bitrate (Gbit/s) 244.94 244.94 244.94 264.60 396.98 1906.1 264.60 396.98 1006.6 264.60 396.98 655.36 264.60 396.98 1906.1

Latency (ms) 188.953 249.738 107.907 186.844 247.629 105.798 185.656 246.441 104.610 183.321 244.106 102.275 182.413 243.198 101.367
Freq. range (5 GHz) F F F F N
Bandwidth (20 - 160 MHz) N F P P F
Max.Sym. rate (250 kSym/s) F F F F F F F F F F F F F F F
Max.Bitrate (upto 6 Gbit/s) P P P P P P P P P P P P P P P
Latency (16 µs) N N N N N N N N N N N N N N N

IEEE802.11ah
[35]

Max.Sym. rate (MSym/s) 14.95 14.95 14.95 18.48 27.72 133.06 18.48 27.72 61.44 18.48 27.72 40.00 18.48 27.72 133.06
Max.Bitrate (Gbit/s) 45.92 45.92 45.92 56.77 85.15 408.76 56.77 85.15 188.74 56.77 85.15 122.88 56.77 85.15 408.76

Latency (ms) 181.885 240.314 103.980 179.776 238.205 101.871 178.588 237.017 100.683 176.253 234.682 98.348 175.345 233.774 97.440
Freq. range (subGHz) F F F N F
Bandwidth (1 - 16 MHz) F F F F F
Max.Sym. rate (25 kSym/s) F F F F F F F F F F F F F F F
Max.Bitrate (upto 347 Mbit/s) P P P F F F F F F F F F F F F
Latency (160 µs) N N N N N N N N N N N N N N N

LTE [40]

Max.Sym. rate (MSym/s) 14.95 14.95 14.95 18.48 27.72 133.06 18.48 27.72 61.44 18.48 27.72 40.00 18.48 27.72 133.06
Max.Bitrate (Gbit/s) 183.7 183.7 183.7 249.4 374.1 1796.0 249.4 374.1 754.9 249.4 374.1 491.5 249.4 374.1 1796.0

Latency (ms) 264.818 178.735 78.322 262.709 176.626 76.213 261.521 175.438 75.025 259.186 173.103 72.690 258.278 172.195 71.782
Freq. range (0.41 - 5.9 GHz) F F F P P
Bandwidth (1.4 - 20 MHz) F F F F F
Max.Sym. rate (15 kSym/s) F F F F F F F F F F F F F F F
Max.Bitrate (100.8 Mbit/s) F F F F F F F F F F F F F F F F
Latency (4 ms) N N N N N N N N N N N N N N N

NB-IoT [41]

Max.Sym. rate (MSym/s) 14.88 14.95 14.95 14.88 22.32 107.17 14.88 22.32 61.44 14.88 22.32 40.00 1 14.88 22.32 107.17
Max.Bitrate (Mbit/s) 2813.44 3827.20 3827.20 2813.44 4218.88 20,259.84 2813.44 4218.88 15,728.64 2813.44 4218.88 10,240.00 2813.44 4218.88 20,259.84

Latency (ms) 25.157 18.962 11.750 23.048 16.853 9.641 21.860 15.665 8.453 19.525 13.330 6.118 18.617 12.422 5.210
Freq. range (0.41 - 5.9 GHz) F F F P P
Bandwidth (180 kHz) F F F F F
Max.Sym. rate (15 kSym/s) F F F F F F F F F F F F F F F
Max.Bitrate (250 kbit/s) F F F F F F F F F F F F F F F
Latency (20 ms) N F F N F F N F F F F F F F F

EC-GSM-IoT
[38]

Max.Sym. rate (MSym/s) 14.95 14.95 14.95 26.76 40.14 192.68 26.76 40.14 61.44 26.76 40.00 40.00 26.76 40.14 160.00
Max.Bitrate (Mbit/s) 44.85 44.85 44.85 75.24 112.86 541.86 75.24 112.86 184.32 75.24 112.86 120.00 75.24 112.86 480.00

Latency (ms) 144.292 109.747 32.827 142.182 107.637 30.717 140.994 106.449 29.529 138.66 104.115 27.195 137.752 103.207 26.287
Freq. range (0.8/0.9, 1.8/1.9GHz) F F F N F
Bandwidth (200 kHz) F F F F F
Max.Sym. rate (271 kSym/s) F F F F F F F F F F F F F F F
Max.Bitrate (240 kbit/s) F F F F F F F F F F F F F F F
Latency (577 µs) N N N N N N N N N N N N N N N

LoRa [39]

Max.Sym. rate (MSym/s) 14.95 14.95 14.95 26.07 39.10 187.70 26.07 39.10 61.44 26.07 39.10 40.00 26.07 39.10 160.00
Max.Bitrate (Mbit/s) 14.95 14.95 14.95 26.07 39.10 187.70 26.07 39.10 61.44 26.07 39.10 40.00 26.07 39.10 160.00

Latency (ms) 192.134 214.311 93.147 190.025 212.202 91.038 188.837 211.014 89.850 186.502 208.679 87.515 185.594 207.771 86.607
Freq. range (433/868 MHz) F F F N F
Bandwidth 125 - 500 kHz) F F F F F
Max.Sym. rate (3.91 kSym/s) F F F F F F F F F F F F F F F
Max.Bitrate (50 kbit/s) F F F F F F F F F F F F F F F
Latency (24 ms) N N N N N N N N N N N N N N N

802.15.6 and IEEE 802.11ac. IEEE 802.15.6 is partially
matched by all SDR platforms; and IEEE 802.11ac is fully
supported only by USRP-X310 and LimeSDR, partially by
USRP-B210 and Sora.

The maximal symbol rate requirement of the wireless
technologies, except IEEE 802.15.6, fully matches with that

offered by the GPP-based SDR platforms. The maximal sym-
bol rate of IEEE 802.15.6, however, fully matches with all
SDR devices, except HackRF, connected to Quad and Octa-
core GPP hosts and partially when connected to a Dual-core
GPP host. The mapping of bitrate has a similar behaviour to
that of symbol rate mapping. Thus, the maximal bitrates of

20 VOLUME x, xxxx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

all wireless technologies, except IEEE 802.11ah and IEEE
802.11ac, fully match with that supported by all GPP-based
SDR platforms. For the maximal bitrates of IEEE 802.11ah
and IEEE 802.11ac, while the first partially matches with
HackRF and fully with other SDR platforms, the second
partially matches with all SDR devices connected to any GPP
host type. For the latency matching, the requirement of most
of the wireless technologies is several orders of magnitude
less than what is offered by any of the SDR platforms. Thus,
except NB-IoT, all the other technologies have no match. NB-
IoT have full match with all SDR platforms interfaced with
Quad-core and Octa-core GPP hosts.

As illustrated by the mapping table and discussion given,
most GPP-based SDR platforms fully or partially satisfy
the frequency, bandwidth, symbol rate and bitrate require-
ments of most wireless technologies. However, meeting the
latency condition was a bit of a challenge, and thus, both
software and hardware improvements should be made. For
the software part, compiler and kernel should be optimized
to increase the degree of parallelism according to the used
processor capabilities. For the hardware part, increasing the
number of cores can be efficient in case of applications
having high degree of parallelism. Otherwise (with low de-
gree of parallelism), processor with a higher clock speed
or using hardware accelerators such as GPUs, DSPs and
FPGAs are necessary. Several software projects exist to en-
able hardware accelerators usage like RAPIDS cuSignal [89]
and Compute Unified Device Architecture (CUDA) [90] for
GPU, RF Network-on-Chip (RFNoC) [91] and Nutaq’s Real-
Time Data Exchange (RTDEx) [92] for FPGA, meta-sdr
OpenEmbedded layer [93] and liquidsdr [94] for DSP.

C. WHAT OTHER GPP-BASED SDR PLATFORMS FOR
EXISTING WIRELESS SDR IMPLEMENTATIONS
Implementations of wireless technologies using SDR plat-
forms were considered by several researchers. These im-
plementations are accompanied by a limited, if not a sin-
gle, recommended GPP-based SDR platforms. Moreover,
the implementations doesn’t show/demonstrate how the SDR
platforms were selected nor there are studies to map several
wireless standards with commercial SDR platforms. Table 20
presents examples of recommended GPP-based SDR plat-
forms for selected wireless technologies. Now, based on the
mapping table given in previous section, new opportunities
appear to perform the existing implementations of wireless
technologies. Thus, new possible GPP-based SDR platforms,
listed in Table 20, become candidates and may be more con-
venient for some users in terms of cost, hardware availability,
etc. Of course the list of the proposed GPP-based SDR
platforms are not exhaustive, but it can be easily extended for
other SDR devices and GPP hosts based on the theoretical
analysis of our work. For example, a user having a GPP host
with Quad-core 3.4 GHz processor can follow our theoretical
analysis to determine its eligibility to perform a desired
wireless technology through computing the supported bitrate,
symbol rate and latency metrics. The following paragraphs

demonstrate how to determine the candidate SDR platforms
for few existing wireless SDR implementations.

IEEE 802.15.6: the proposed NB-WBAN evaluation plat-
form by [85] uses USRP-N210 and GNU Radio to test
different modulation techniques (DBPSK, DQPSK, D8PSK,
GMSK) at operating frequency of 950MHz and bandwidth of
0.4MHz. The frequency band and bandwidth help determine
the candidate SDR devices, and hence, from our matching
conditions and mapping table, HackRF, USRP-X310, USRP-
B210, Sora, and LimeSDR are possible candidates. The
maximal symbol rate and bitrate for this implementation
is 0.6MSym/s and 0.971Mbit/s, respectively, allowing us to
choose any communication interface from (USB2.0, USB3.0,
Gig.Eth, 10Gig.Eth and PCIe). The listed SDR devices also
matches with the required symbol rate. For the target modu-
lation techniques, symbol rate and bitrate, a GPP host having
2 core, 2.0 GHz processor without hyperthreading support
is sufficient (see Table 12). Hence, from the list of SDR
platforms considered in this paper, HackRF with USB2.0,
USRP-X310 with Gig.Eth or 10Gig.Eth, USRP-B210 with
USB3.0, Sora with PCIe, and LimeSDR with USB3.0 or
PCIe can be used along with Dual-core, Quad-core or Octa-
core GPP hosts.

LTE: srsRAN is one of the most popular open-source SDR
implementation of LTE that has been tested with USRP,
LimeSDR and BladeRF SDR devices; USB3.0, Gig.Eth and
10Gig.Eth as communication interface; and ARM based pro-
cessors as GPP host [14]. It operates for LTE frequency bands
and all current LTE bandwidths. As per the modulation, it
supports LTE modulation coding scheme upto QAM256 in
DL direction. The maximal bitrate achievable by the current
srsRAN release is 75Mbit/s DL and 50Mbit/s uplink in
20MHz bandwidth and single-input single-output configura-
tion. To determine other possible SDR platforms, we check
for each parameter. The operating frequency for this imple-
mentation (LTE bands) ranges from 0.41 to 5.9GHz, which is
supported partially by Sora SDR devices as discussed in the
mapping table. For the bandwidth, Sora is capable to handle
the implementation. The symbol rate and bitrate are also sup-
ported by the PCIe communication interface of Sora. As per
the GPP host, the maximal symbol rate and maximal bitrate
demanded by srsRAN are attained by Dual/Quad/Octa-core
processors in both hyperthreading enabled and disable mode
as demonstrated by our result in Table 12. Thus, from the
list of SDR platforms considered in this paper and using the
mapping table, Sora with PCIe interfaced with any of the
three GPP hosts are suggested as possible SDR platform to
test srsRAN in addition to those recommended by srsRAN.

D. EXPLOITATION OF THE MAPPING BETWEEN SDR
AND WIRELESS TECHNOLOGIES
The mapping Table 19 can be exploited either by SDR
software developers or regular users. An SDR software de-
veloper integrates two categories: who are programming the
embedded software (custom SDR functions, FPGA design,
etc.,) for SDR devices, and who are programming open-

VOLUME x, xxxx 21

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

TABLE 20: Possible GPP-based SDR platforms for existing implementations.

wireless technology Description SDR platform recommended by developers New SDR platforms suggested by our work
SDR device Comm. interface GPP host SDR device Comm. interface GPP host *

IEEE 802.15.6
A prototype for NB-WBAN transmit-receive
system with high flexibility for healthcare
applications (GNU Radio) [85]

USRP-N210 Gig.Eth –

HackRF USB2.0

D, Q, Octa
USRP USB3.0, Gig.Eth,

10Gig.Eth
Sora PCIe
LimeSDR USB3.0, PCIe

IEEE 802.15.4

Implemented 802.15.4 encoding and decoding
blocks (using GNU Radio) [95] USRP1 USB2.0 Dual Pentium IV,

2.8GHz CPU

HackRF USB2.0

D, Q, Octa
USRP USB3.0, Gig.Eth,

10Gig.Eth
Sora PCIe
LimeSDR USB3.0, PCIe

gr-IEEE-802.15.4 – transceiver testbed for
GNU Radio (using GNU Radio) [15] USRP-N210 Gig.Eth Intel i5 CPU (2.6

GHz) laptop

HackRF USB2.0

D, Q, Octa
USRP USB3.0, Gig.Eth,

10Gig.Eth
Sora PCIe
LimeSDR USB3.0, PCIe

GalioT-802.15.4 [42] RTL-SDR USB2.0 Raspberry Pi

HackRF USB2.0

D, Q, OctaUSRP USB3.0, Gig.Eth,
10Gig.Eth

D, Q, OctaLimeSDR USB3.0, PCIe

IEEE 802.15.1 • Implemented GFSK modulation [96]
Tx: PC with DAC board, Agilent E4438C generator
Rx: Wideband SDR analog front-end and PC with
ADC board

HackRF USB2.0

D, Q, Octa
USRP USB3.0, Gig.Eth,

10Gig.Eth
LimeSDR USB3.0, PCIe

IEEE 802.11a/b/g SoftWiFi: Implementation of IEEE
802.11a/b/g [48] Sora PCIe Dell XPS PCs (Intel Core 2

Quad 2.66GHz CPU)

USRP PCIe
D, Q, Octa

LimeSDR PCIe

IEEE 802.11a/g/n/ac Developed open Wi-Fi platform for IEEE
802.11a/g/n/ac [97] USRP-X310 10Gig.Eth

HP ML350 Gen9, Intel®
Xeon® E5-2620, 3.2GHz, 12
cores, 24 Threads

Sora PCIe
Octa

LimeSDR PCIe

IEEE 802.11a/g/p Developed a prototype for GNU radio based
OFDM receiver (GNU Radio) [16] USRP-N210 Gig.Eth Intel Core i7-2600 CPU

3.40GHz
Sora PCIe D, Q, OctaLimeSDR PCIe

3GPP LTE

SoftLTE: Implementation of 3GPP LTE Uplink
based on SoftWiFi [98] Sora PCIe Dell XPS small

form-factor PCs

USRP USB3.0, Gig.Eth,
10Gig.Eth Octa

LimeSDR PCIe
Implementation of LTE PHY layer based on
multi-core GPP parallel processing [99] USRP-N210 Gig.Eth Intel-core i7 series CPU, 4

core, 8 Threads
Sora PCIe OctaLimeSDR PCIe

srsRAN [14] USRP, BladeRF,
LimeSDR

USB3.0, Gig.
Eth, 10Gig.Eth ARM based processors Sora PCIe D, Q, Octa

OAI [23]
LimeSDR, BladeRF,
USRP-B210, EURECOM
EXPRESSMIMO2 RF

USB3.0, PCIe Generation 3/4/5/6 Intel Core
i5, i7 (4 core, 6 core) Sora PCIe Octa

LoRa

• Implemented modulation and encoding of
LoRa PHY (gr-lora) [24]

• GNU Radio blocks for receiving and de-
coding LoRa modulated radio messages
(gr-lora) [100]

HackRF, USRP,
RTL-SDR USB2.0, USB3.0 – LimeSDR USB3.0, PCIe D, Q, Octa

Modulation/demodulation and
encoding/decoding using LimeSDR
(LoRa-SDR) [101]

LimeSDR USB3.0 –
HackRF USB2.0

D, Q, OctaUSRP USB3.0, Gig.Eth,
10Gig.Eth

GalioT-LoRa [42] RTL-SDR USB2.0 Raspberry Pi

HackRF USB2.0

D, Q, OctaUSRP USB3.0, Gig.Eth,
10Gig.Eth

LimeSDR PCIe
* D for Dual-core, 2 GHz GPP; Q for Quad-core, 1.5 GHz GPP; Octa for Octa-core, 3.6 GHz GPP type.

source software (wireless technology libraries, digital signal
processing blocks, etc.,) on GPP hosts.

The mapping table cells with values N (no match) or P
(partial match) give important information to encourage SDR
software developer to propose solutions. As most of the table
cells with value N are mainly due to the high latency of GPP
hosts that cannot fulfill the wireless standard requirement,
both embedded software and open-source software develop-
ers can provide improvements and optimizations in their soft-
ware to reduce latency. Thus, embedded software developers
can move some intensive computation or time critical MAC
layer functions of wireless standards to be performed by the
SDR device, which is more fast to save GPP resources and
reduce latency. For example, from the mapping table, the
wireless technology IEEE 802.15.4 cannot be performed (in
terms of latency) by any SDR platforms due to the MAC
layer latency. In this case, embedded software developers
can decide to provide APIs to allow open-source software
developers to directly implement and perform the critical

MAC layer functions such as inter-frame spacing periods
manager on the SDR device. Recently, some SDR devices
have integrated this option such as all USRP devices from the
third-generation integrated RFNoC [91], an API developed
by Ettus Research to use USRP’s FPGA processing power,
with the UHD software. On their side, open-source software
developers can adapt their wireless standard source code by
integrating custom processing blocks of the critical MAC
layer functions. These blocks should be implemented based
on the APIs offered by the used SDR device. To continue
with the RFNoC example, several RFNoC blocks have been
developed and ready to use [102]. Also, on GPP hosts,
open-source software developers should make an effort to
provide software optimization (vectorization, automatic par-
allelization, inter-procedural optimization, etc.,) according
to the used GPP host characteristics (clock speed, number
of cores, memory and cache size, external hardware accel-
erators). These software optimizations, in context of SDR
platforms, remain an open research (for further details, see

22 VOLUME x, xxxx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

section VI-A). Based on the level of optimizations and our
mapping table, open-source software developers can test and
suggest more SDR platform possibilities to regular users.

Unlike SDR software developers, regular users employ
GPP-based SDR platforms as a testbed to experiment their
applications (upper layers) without relying on expert knowl-
edge on how the wireless standards (lower layers) are im-
plemented or performed. Indeed, they only need to know
how to select the appropriate SDR platform and how to run
the selected wireless technology. For a given application,
they first determine its characteristics in terms of data type
(sensory data, voice, video, etc.), traffic model (event-driven,
continuous or query-driven), number of sensors, geograph-
ical area, etc., [4], [5]. Then, they express the application
characteristics as a set of specific requirements such as range,
data rate, energy consumption, etc. After, they select a set of
candidate wireless technologies that can theoretically meet
the application’s requirement. To experiment the application
with the selected wireless technologies, regular users can use
a single SDR platform due to the reconfigurable and repro-
grammable hardware. In order to determine the suitable SDR
platform that can support the selected wireless technologies,
regular users can refer to our mapping table. They can also
refine their selection by choosing an SDR platform capable of
satisfying the requirement of most of their selected wireless
technologies.

VI. OPEN CHALLENGES AND FUTURE DIRECTIONS
Using GPP-based SDR platforms for wireless prototyping
have been extensively accepted by many researchers and
companies. Despite its continuing expansion, several existing
research challenges have not yet been addressed. This section
presents some open challenges and trends related to the
performance enhancement of GPP-based SDR platforms to
successfully perform wireless transceivers.

A. HARDWARE AND SOFTWARE OPTIMIZATIONS
To improve the performance of GPP-based SDR platforms
in dealing with the computational requirements of wireless
standards, hardware and software optimizations should be
addressed. From the hardware side, GPP-based SDR plat-
forms performance can be enhanced by different solutions
such as : a) increasing the processing speed of GPP host
by using more number of cores (as reported by our work)
with higher clock speed, memory and cache, and b) using
external hardware accelerators such as GPU, FPGA and
DSPs. In literature, these solutions were more or less studied
theoretically (using GPU [58], [59], [103], FPGA [56], [91],
[104], [105], DSPs [93], [94]) but it’s still an open challenge
to fully investigate experimentally. In addition, the latency
due to the interface between the GPP and external accelerator
should be considered.

From the software side, various optimizations can be
applied to enhance the execution time of the wireless
transceiver code at the GPP host. Few examples include
using increased number of threads (multi-threaded GPP),

vectorization, automatic parallelization, inter-procedural op-
timization, SIMD and look-up tables (LUTs). These solu-
tions are well investigated theoretically and experimentally
in a general context. With respect to the SDR platform, there
are few studies conducted by applying these solutions such
as [20], [48], however, satisfying the full requirements of
wireless transceivers still remains an open challenge. Another
important point that seeks research attention is satisfying
the real-time requirements (e.g., respecting response time) of
wireless transceivers, which has been slightly addressed by
researchers using Xenomai Real-Time OSs (RTOSs) [106].
However, the real-time performance of GPP-based SDR plat-
forms need to be investigated more based on the real-time
demands of different wireless standards using other RTOSs
such as Real-time Linux [107], Real-Time Application Inter-
face (RTAI) [108], and ChronOS [109].

B. VIRTUALIZATION IN SDR PLATFORMS
GPP-based SDR platform can use different type of SDR
devices to implement one or more wireless transceivers. Two
problems could arise: on one hand the PHY layer software
portability, and on the other hand running multiple paral-
lel wireless transceivers. For the first problem, as different
types of SDR devices are considered, transceiver software
portability can be insured by virtualization to abstract the
hardware resources. In literature, the common solution to this
problem consists of including a dedicated virtual machine
(VM), named as radio virtual machine (RVM), on each
SDR device image [11], [110], [111]. However, this solution
introduces an extra cost in terms of overhead and latency, and
limiting their effect remains an open challenge. The second
problem concerns gateways (e.g., IoT gateways in home
automation box) that require multiple transceivers to commu-
nicate with the deployed end-devices through heterogeneous
wireless technologies. To enable this role on the GPP-based
SDR platform, multiple VMs should be run in parallel at
the GPP host where each VM is dedicated to one wireless
transceiver [112]. However, in spite of the benefits gained,
the performance of each implemented wireless transceiver
maybe seriously degraded due to the competition of GPP host
and SDR device resources between the co-located wireless
transceivers and additional costs of VMs. These problems are
not yet addressed and needs to be explored.

C. MOBILITY AND ENERGY CONSUMPTION
The majority of commercially available GPP-based SDR
platforms (Desktop PC or Laptop based) consume high
energy to achieve high performance, hence rely on main
power supply. However, this is unsuitable for mobile appli-
cation where SDR platforms can be used as mobile wireless
transceivers. Indeed, many projects such as [113], [114] are
developed addressing mobile applications where sensors are
deployed on vehicles (e.g., car, drone, train) with an on-
board SDR platform powered by the vehicle’s battery like any
mobile wireless device. All these projects report the negative
impact of GPP-based SDR platforms on the life-time of

VOLUME x, xxxx 23

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

vehicle’s battery. It becomes necessary to build mobile SDR
platforms consuming less energy and at the same time offer
expected performance. One discussed solution in literature
[42], [115], [116] is to use low power embedded computer
boards such as Raspberry Pi, ARM Cortex processor, etc., as
GPP hosts. Nevertheless, prototypes based on this solution
lack offering adequate performance to support the require-
ment (specially, the frequency, bandwidth, latency) of most
wireless technologies. Thus, building energy efficient SDR
platform using embedded computer boards with performance
objective is still an open issue. Another alternative solution
discussed in literature is to remove the GPP host by migrating
its capabilities to the SDR device to form a standalone SDR
platform. Examples of such SDR platforms are USRP-E3xx
[117], BladeRF [118], µSDR [119]. They are designed to
offer high performance, be energy efficient and suitable for
mobile applications. However, they require more experimen-
tal investigations on their performance in terms of frequency,
bandwidth, symbol rate, bitrate and latency.

VII. CONCLUSIONS

Selecting SDR platform to implement and perform a wireless
technology is challenging as it comprises, on one hand, to
satisfy design requirements both at the hardware and soft-
ware level. On the other hand, previous recommendations
by researchers/developers of wireless technologies suggest to
fulfill the proposed hardware and software list to successfully
perform their open-source implementations. However, the
proposed list is often restrictive in terms of hardware (SDR
devices and GPP hosts) and doesn’t take into account the use-
case desired by users. This paper has reviewed and presented
a large list of GPP-based SDR platforms that satisfy the
minimum requirement of wireless technologies.

We believe that the study conducted in this paper will
help users to determine, for a given wireless technology,
which GPP-based SDR platform configuration is necessary
to fully or partially perform the MAC and PHY functions.
Additionally, through this study, users who already possess
a GPP-based SDR platform can identify possible applica-
tions that could be implemented. To determine the candidate
SDR platform, the paper first evaluated the performance of
selected GPP-based SDR platforms through theoretical and
experimental analysis. Then, we proposed matching condi-
tions and created a mapping table between the minimum
requirements of well-known wireless technologies and per-
formance of GPP-based SDR platforms. Thereby, a list of
candidate GPP-based SDR platforms is established for each
wireless technology. This list indicates if the matching is
complete, incomplete or negative. The two latter are mainly
due to the high latency of GPP hosts. A summary of some
of the existing implementations were discussed and using the
mapping table we suggested other possible GPP-based SDR
platforms to be used. Finally, we highlighted some of the
research challenges and future directions to be considered by
the research community.

REFERENCES
[1] Research and Markets. "Wireless Sensor Network

Markets," 2019, Accessed September 2021 [Online].
https://www.researchandmarkets.com/reports/4844854/wireless-sensor-
network-markets?w=5&utm_source=CI&utm_medium=PressRelease&
utm_code=g87tcl

[2] IoT Analytics. Accessed January 2021 [Online]. https://iot-
analytics.com/iot-2020-in-review/

[3] A. Gupta and R. K. Jha, "A Survey of 5G Network: Architecture and
Emerging Technologies," in IEEE Access, vol. 3, pp. 1206-1232, 2015,
doi: 10.1109/ACCESS.2015.2461602.

[4] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M. Ayyash,
"Internet of Things: A Survey on Enabling Technologies, Protocols, and
Applications," in IEEE Communications Surveys & Tutorials, vol. 17, no.
4, pp. 2347-2376, Fourthquarter 2015.

[5] Yaqoob, Ibrar, Ejaz Ahmed, Ibrahim Abaker Targio Hashem, Abdelmuttlib
Ibrahim Abdalla Ahmed, Abdullah Gani, Muhammad Imran, and Mohsen
Guizani. "Internet of things architecture: Recent advances, taxonomy,
requirements, and open challenges." IEEE wireless communications 24,
no. 3 (2017): 10-16.

[6] Tessier, Russell, and Wayne Burleson. "Reconfigurable computing for
digital signal processing: A survey." Journal of VLSI signal processing
systems for signal, image and video technology 28.1-2 (2001): 7-27.

[7] Ulversoy, Tore. "Software defined radio: Challenges and opportunities."
IEEE Communications Surveys & Tutorials 12, no. 4 (2010): 531-550.

[8] D. F. Macedo, D. Guedes, L. F. M. Vieira, M. A. M. Vieira and M.
Nogueira, "Programmable Networks—From Software-Defined Radio to
Software-Defined Networking," in IEEE Communications Surveys & Tu-
torials, vol. 17, no. 2, pp. 1102-1125, Secondquarter 2015.

[9] Akeela, R., & Dezfouli, B. (2018). Software-defined Radios: Architecture,
state-of-the-art, and challenges. Computer Communications, 128(July),
106–125.

[10] Gavrilă, C., Popescu, V., Alexandru, M., Murroni, M., and Sacchi, C.
"An SDR-Based Satellite Gateway for Internet of Remote Things (IoRT)
Applications." IEEE Access 8 (2020): 115423-115436.

[11] M. Kist, J. Rochol, L. A. DaSilva and C. B. Both, "SDR Virtualization in
Future Mobile Networks: Enabling Multi-Programmable Air-Interfaces,"
2018 IEEE International Conf. on Communications (ICC), 2018, pp. 1-6.

[12] M. Schadhauser, J. Robert, and A. Heuberger, "Design of autonomous
basestations for low power wide area (LPWA) communication," inProc.
SmartSysTech; Eur. Conf. Smart Objects, Syst. Technol., Jun. 2017, pp.
1–8.

[13] Wei, Xingguang, Haitao Liu, Zhiming Geng, Kan Zheng, Rongtao Xu,
Yang Liu, and Peng Chen. "Software defined radio implementation of
a non-orthogonal multiple access system towards 5G." IEEE Access 4
(2016): 9604-9613.

[14] Gomez-Miguelez, Ismael, Andres Garcia-Saavedra, Paul D. Sutton,
Pablo Serrano, Cristina Cano, and Doug J. Leith. "srsLTE: An open-
source platform for LTE evolution and experimentation." In Proceed-
ings of the Tenth ACM International Workshop on Wireless Network
Testbeds, Experimental Evaluation, and Characterization, pp. 25-32. 2016.
https://github.com/srsran/srsRAN

[15] Bastian Bloessl, Christoph Leitner, Falko Dressler and Christoph Sommer,
“A GNU Radio-based IEEE 802.15.4 Testbed,” Proceedings of 12. GI/ITG
KuVS Fachgespräch Drahtlose Sensornetze (FGSN 2013), Cottbus, Ger-
many, September 2013, pp. 37-40.

[16] Bloessl, Bastian, Michele Segata, Christoph Sommer, and Falko Dressler.
"An IEEE 802.11 a/g/p OFDM Receiver for GNU Radio." In Proceedings
of the second workshop on Software radio implementation forum, pp. 9-
16. 2013.

[17] Khan, Muhammad Bilal, Xiaodong Yang, Aifeng Ren, Mohammed Ali
Mohammed Al-Hababi, Nan Zhao, Lei Guan, Dou Fan, and Syed Aziz
Shah. "Design of software defined radios based platform for activity
recognition." IEEE Access 7 (2019): 31083-31088.

[18] Politis, Christos, Sina Maleki, Juan Merlano Duncan, Jevgenij Krivochiza,
Symeon Chatzinotas, and Björn Ottesten. "SDR implementation of a
testbed for real-time interference detection with signal cancellation." IEEE
Access 6 (2018): 20807-20821.

[19] Handagala, Suranga, and Miriam Leeser. "Real time receiver baseband
processing platform for sub 6 GHz PHY layer experiments." IEEE Access
8 (2020): 105571-105586.

[20] Chen, Y., Lu, S., Kim, H. S., Blaauw, D., Dreslinski, R. G., & Mudge,
T. (2016). A low power software-defined-radio baseband processor for

24 VOLUME x, xxxx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

the Internet of Things. Proceedings - International Symposium on High-
Performance Computer Architecture, 2016-April, 40–51.

[21] S. Wu, S. Kang, C. Chakrabarti and H. Lee, "Low power baseband
processor for IoT terminals with long range wireless communications,"
2016 IEEE Global Conference on Signal and Information Processing
(GlobalSIP), Washington, DC, 2016, pp. 728-732.

[22] Subramanian, Ramanathan, Benjamin Drozdenko, Eric Doyle, Rameez
Ahmed, Miriam Leeser, and Kaushik Roy Chowdhury. "High-level system
design of IEEE 802.11 b Standard-Compliant Link Layer for MATLAB-
Based SDR." IEEE Access 4 (2016): 1494-1509.

[23] OpenAirInterface (OAI) Project, 2021,
https://gitlab.eurecom.fr/oai/openairinterface5g/-/wikis/home.

[24] KNIGHT, Matthew; SEEBER, Balint. Decoding LoRa: Realizing a Mod-
ern LPWAN with SDR. Proceedings of the GNU Radio Conference, [S.l.],
v. 1, n. 1, sep. 2016. https://github.com/matt-knight/gr-lora.

[25] Field, N. (n.d.). Internet of Things (IoT) Smart Connected. November
2020. http://literature.cdn.keysight.com/litweb/pdf/5992-1217EN.pdf.

[26] ITU-R (RR Nos. 5.138 and 5.150). August 2021. Online:
https://www.itu.int/net/ITU-R/terrestrial/faq/#g013.

[27] International Organization for Standardization and International Elec-
trotechnical Commission. ISO/IEC 18092:2013/Cor 1:2015. [Online].
https://standards.iso.org/ittf/PubliclyAvailableStandards/index.html.

[28] Roy, B. S., Ieee, F., Jandhyala, V., Smith, J. R., Ieee, M., Wetherall, D.
J., . . . Ieee, S. M. (2010). RFID : From Supply Chains to Sensor Nets.
Proceedings of the IEEE, 98(9), 1583–1592.

[29] IEEE standard for local and metropolitan area networks: Part 15.6: Wire-
less body area networks, IEEE submission, 2012

[30] IEEE Standard for Information technology– Local and metropolitan area
networks– Specific requirements– Part 15.1a: Wireless Medium Access
Control (MAC) and Physical Layer (PHY) specifications for Wireless
Personal Area Networks (WPAN)," in IEEE Std 802.15.1-2005 (Revision
of IEEE Std 802.15.1-2002) , vol., no., pp.1-700, 14 June 2005

[31] IEEE Standard for Low-Rate Wireless Networks, in IEEE Std 802.15.4-
2015 (Revision of IEEE Std 802.15.4-2011), vol., no., pp.1-709, 22 April
2016

[32] IEEE Standard for Information technology−Telecommunications and
information exchange between systems Local and metropolitan area
networks−Specific requirements. Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications. IEEE Computer
Society, (7 December 2016), IEEE Std 802.11™-2016.

[33] IEEE Std 802.11ac™-2013 IEEE Standard for Information technology -
Telecommunications and information exchange between systems - Local
and metropolitan area networks - Specific requirements - Part 11: Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) Spec-
ifications - Amendment 4: Enhancements for Very High Throughput for
Operation in Bands below 6 GHz.

[34] S. Tozlu, M. Senel, W. Mao and A. Keshavarzian, "Wi-Fi enabled sensors
for internet of things: A practical approach," in IEEE Communications
Magazine, vol. 50, no. 6, pp. 134-143, June 2012.

[35] IEEE Standard for Information technology - Telecommunications and
information exchange between systems Local and metropolitan area net-
works - Specific requirements. Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications. Amendment
2: Sub 1 GHz License Exempt Operation. IEEE Computer Society, (7
December 2016), IEEE Std 802.11ah™-2016.

[36] IEEE Standard for Information technology– Local and metropolitan area
networks– Specific requirements– Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications Amendment 6:
Wireless Access in Vehicular Environments, in IEEE Std 802.11p-2010,
pp.1-51, 15 July 2010.

[37] Mekki, Kais, Eddy Bajic, Frederic Chaxel, and Fernand Meyer. "A com-
parative study of LPWAN technologies for large-scale IoT deployment."
ICT express 5, no. 1 (2019): 1-7.

[38] 3GPP Technical Specification Group GSM/EDGE Radio Access Network,
“Cellular system support for ultra low complexity and low throughput
internet of things,” 3GPP, Tech. Rep. 45.820 V13.1.0, Nov. 2015.

[39] N. Sornin, M. Luis, T. Eirich, T. Kramp, and O. Hersent, “Lorawan
specification,” LoRa Alliance, San Ramon, CA, USA,Tech. Rep., 2015.

[40] 3GPP TS 36.213: LTE; "Evolved Universal Terrestrial
Radio Access (E-UTRA); Physical layer procedures.
https://www.etsi.org/deliver/etsi_ts/136200_136299/136213/12.03.00_60
/ts_136213v120300p.pdf

[41] European Telecommunications Standards Institute, “LTE; Evolved Uni-
versal Terrestrial Radio Access (E-UTRA); Base Station (BS) confor-

mance testing (3GPP TS 36.141 version 13.6.0 Release 13)” European
Telecom. Standards Institute, ETSI TS 136 141, V13.6.0 (2017-01).

[42] Narayanan, Revathy, and Swarun Kumar. "Revisiting software defined
radios in the iot era." In Proceedings of the 17th ACM Workshop on Hot
Topics in Networks, pp. 43-49. 2018.

[43] USRP SDR. June 2020, https://www.ettus.com/products/
[44] AD-FMCOMMS2-EBZ, Analog module. https://www.analog.com/

en/design-center/evaluation-hardware-and-software/evaluation-boards-
kits/EVAL-AD-FMCOMMS2.html#eb-overview. June 2020.

[45] HackRF One, June 2020. https://github.com/mossmann/hackrf/wiki/
HackRF-One.

[46] WARP Radio Board, June 2020. http://warpproject.org/trac/wiki/ Hard-
wareUsers Guides/RadioBoard_v1.4.

[47] LimeSDR Lime Microsystems – Software Defined Radio. July 2020.
https://limemicro.com/products/boards/limesdr/

[48] Tan, K., Liu, H., Zhang, J., Zhang, Y., Fang, J., & Voelker, G. M. (2011).
Sora: high-performance software radio using general-purpose multi-core
processors, Communications of the ACM, 54(1), 99.

[49] T. Hentschel, M. Henker, G. Fettweis, The digital front-end of software
radio terminals, IEEE Pers. Commun. 6 (4) (1999) 40–46.

[50] USB specifications. June 2020. https://www.usb.org/documents
[51] IEEE Standard for Ethernet, in IEEE Std 802.3-2018 (Revision of

IEEE Std 802.3-2015) , vol., no., pp.1-5600, 31 Aug. 2018 doi:
10.1109/IEEESTD.2018.8457469

[52] Lawley, J. (2014). Understanding Performance of PCI Express Sys-
tems White Paper (WP350). Wp350, 350(2), 1–16. Retrieved from
www.xilinx.com

[53] eXtensible Host Controller Interface for USB (xHCI). June 2020.
https://www.intel.com/content/www/us/en/products/docs/io/universal-
serial-bus/extensible-host-controler-interface-usb-xhci.html

[54] M. Véstias and H. Neto, "Trends of CPU, GPU and FPGA for high-
performance computing," 2014 24th International Conference on Field
Programmable Logic and Applications (FPL), Munich, 2014, pp. 1-6.

[55] Noergaard, Tammy. Embedded systems architecture: a comprehensive
guide for engineers and programmers. Newnes, 2012.

[56] Cardoso, J. M. P., Coutinho, J. G. F., Diniz, P. C., Cardoso, J. M. P.,
Coutinho, J. G. F., & Diniz, P. C. (2017). High-performance embedded
computing. Embedded Computing for High Performance, 17–56.

[57] Amiri, Hossein, and Asadollah Shahbahrami. "SIMD programming using
Intel vector extensions." Journal of Parallel and Distributed Computing
135 (2020): 83-100.

[58] K. Li, M. Wu, G. Wang and J. R. Cavallaro, "A high performance GPU-
based software-defined basestation," 2014 48th Asilomar Conference on
Signals, Systems and Computers, Pacific Grove, CA, 2014, pp. 2060-2064.

[59] Bernier, Steve, François Lévesque, Martin Phisel, Dmitry Zvernik, and
David Hagood. “Using OpenCL to Increase SCA Application Portability.”
Journal of Signal Processing Systems 89, no. 1 (October 1, 2017): 107–17.

[60] Dubois, Michel, Murali Annavaram, and Per Stenström. Parallel computer
organization and design. Cambridge university press, 2012.

[61] Mishra, Sanjeeb, Neeraj Kumar Singh, and Vijayakrishnan Rousseau.
System on chip interfaces for low power design. Morgan Kaufmann, 2015.

[62] Kaeli, David R., Perhaad Mistry, Dana Schaa, and Dong Ping Zhang.
Heterogeneous computing with OpenCL 2.0. Morgan Kaufmann, 2015.

[63] Silberschatz, Abraham, Peter Baer Galvin, and Greg Gagne. Operating
system concepts essentials. John Wiley & Sons, Inc., 2014.

[64] GNU Radio. April 2020. https://www.gnuradio.org/
[65] LabVIEW - National Instruments. April 2020. https://www.ni.com/en-

us/shop/labview.html
[66] MathWorks for MATLAB and Simulink, April 2020.

https://www.mathworks.com/
[67] GCC, the GNU Compiler Collection, May 2020. https://gcc.gnu.org/
[68] Intel® C++ Compiler Classic Developer Guide and Reference. May 2020.

https://software.intel.com/content/www/us/en/develop/documentation/cpp-
compiler-developer-guide-and-reference

[69] Altman, Yair M., Accelerating MATLAB Performance: 1001 tips to speed
up MATLAB programs. Chapman and Hall/CRC Press, Inc., 2014.

[70] Lattner, C., and Vikram A., "LLVM: A compilation framework for lifelong
program analysis & transformation." In Int. Symposium on Code Genera-
tion and Optimization, 2004. CGO 2004., pp. 75-86. IEEE, 2004.

[71] Intel Intrinsics Guide, Intel intrinsic instructions. May 2020.
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#.

[72] VOLK, GNU Radio. May 2020. https://wiki.gnuradio.org/index.php/Volk

VOLUME x, xxxx 25

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

[73] NI LabVIEW Compiler. May 2020. https://www.ni.com/en-
us/support/documentation/supplemental/10/ni-labview-compiler–under-
the-hood.html

[74] U.L. Rohde, T.T.N. Bucher, Communications Receivers: Principles and
Design, 4, McGraw-Hill Education, 1988.

[75] Bensky, Alan. Short-range wireless communication. Newnes, 2019.
[76] Xie, Steven. Practical Filter Design Challenges and Considerations for

Precision ADCs, Analog Dialogue, Vol 50, 2016.
[77] H. J. Landau, "Sampling, data transmission, and the Nyquist rate," in

Proceedings of the IEEE, vol. 55, no. 10, pp. 1701-1706, Oct. 1967.
[78] Tan, L., Jiang, J., Tan, L., & Jiang, J. (2019). Multirate Digital Signal

Processing, Oversampling of Analog-to-Digital Conversion, and Under-
sampling of Bandpass Signals. Digital Signal Processing, 529–590.

[79] Widmer, Albert X. "8B/10B encoding and decoding for high speed appli-
cations." U.S. Patent 6,977,599, issued December 20, 2005.

[80] Perahia, Eldad, and Robert Stacey. Next generation wireless LANs: 802.11
n and 802.11 ac. Cambridge university press, 2013.

[81] Linux kernel profiling, perf. June 2020.
https://perf.wiki.kernel.org/index.php/Tutorial

[82] Little J.D.C., Graves S.C. (2008) Little’s Law. In: Chhajed D., Lowe T.J.
(eds) Building Intuition. International Series in Operations Research &
Management Science, vol 115. Springer, Boston, MA

[83] ADS62Px9/x8, "Dual channel ADC." March 2020.
http://www.ti.com/lit/ds/slas635b/slas635b.pdf

[84] NFC. July 2020. https://github.com/jcrona/gr-nfc.
[85] Tianchan Guan, Jun Han and Xiaoyang Zeng, "Highly flexible WBAN

transmit-receive system based on USRP," 2013 IEEE 10th International
Conference on ASIC, Shenzhen, 2013, pp. 1-4.

[86] Scapy radio with GNU Radio for Bleutooth and Sigfox. July 2020.
https://bitbucket.org/cybertools/scapy-radio/src/default/

[87] Open Source Mobile Communications, gr-GSM. July 2020.
https://osmocom.org/

[88] Dargie, Waltenegus and Christian Poellabauer. “Fundamentals of Wireless
Sensor Networks: Theory and Practice.” (2010).

[89] Adam Thompson (2019). GPU-Accelerated Signal Processing with cuSig-
nal [Online]. [Accessed: July 2020]. https://medium.com/rapids-ai/gpu-
accelerated-signal-processing-with-cusignal-689062a6af8

[90] CUDA toolkit documentation, July 2020. http://docs.nvidia.com/cuda/
[91] Braun, Martin, Jonathan Pendlum, and Matt Ettus. "RFNoC: RF network-

on-chip." In Proc. of the GNU Radio Conf., vol. 1, no. 1. 2016.
[92] Nutaq RTDEx: accelerating GNU Radio development with Xilinx FP-

GAs. [Accessed: July 2020]. https://www.nutaq.com/blog/accelerating-
gnu-radio-development-xilinx-fpgas

[93] Ma, Shenghou, Vuk Marojevic, Philip Balister, and Jeffrey H. Reed.
"Porting GNU Radio to multicore DSP+ ARM system-on-chip–a purely
open-source approach." In Karlsruhe Workshop on Soft. Radios. 2014.

[94] Joseph D. Gaeddert, liquid: open-source DSP library, July 2020.
https://liquidsdr.org/

[95] T. Schmid, “GNU Radio 802.15. 4 En-and Decoding,” Networked &
Embedded Systems Laboratory, UCLA, Technical Report TR-UCLA-
NESL-200609-06, June 2006

[96] Schiphorst, R., Hoeksema, F. W., Arkesteijn, V. J., Slump, C. H.,
Klumperink, E. A. M., & Nauta, B. (2004). A GPP-based Software-
Defined Radio Front-end for WLAN Standards. In Proceedings of the
Fourth IEEE Benelux Signal Processing Symposium (pp. 203-206). Hil-
varenbeek: IEEE Benelux Signal Processing Chapter.

[97] K. Kang, Z. Zhu, D. Liu, W. Zhang and H. Qian, "A software defined open
Wi-Fi platform," in China Communications, vol. 14, no. 7, pp. 1-15, July
2017.

[98] Li, Y., Fang, J., Tan, K., Zhang, J., Cui, Q., & Tao, X. (2009). Soft-LTE :
A Software Radio Implementation of 3GPP Long Term Evolution Based
on Sora Platform. Demo 2009 ACM International Conference on Mobile
Computing and Networking (MobiCom), (January), 1–2.

[99] Z. Chen and J. Wu, "LTE physical layer implementation based on GPP
multi-core parallel processing and USRP platform," 9th International
Conference on Communications and Networking in China, Maoming,
2014, pp. 197-201.

[100] Pieter Robyns, Peter Quax, Wim Lamotte, William Thenaers. (2017). gr-
lora: An efficient LoRa decoder for GNU Radio. Zenodo. 10.5281/zen-
odo.853201

[101] Blum, Josh. Lora-sdr. Source Code on Github, 2016.
https://github.com/myriadrf/LoRa-SDR.

[102] Ettus Knowledge Base contributors, "RFNoC," Ettus Knowledge Base,
https://kb.ettus.com/index.php?title=RFNoC&oldid=4228 (accessed Au-
gust 20, 2021).

[103] J. Kim, S. Hyeon and S. Choi, "Implementation of an SDR system using
graphics processing unit," in IEEE Communications Magazine, vol. 48,
no. 3, pp. 156-162, March 2010.

[104] Cai, Xin, Mingda Zhou, and Xinming Huang. "Model-based design for
software defined radio on an FPGA." IEEE Access 5 (2017): 8276-8283.

[105] Kumar, Nishant, Meenakshi Rawat, and Karun Rawat. "Software-Defined
Radio Transceiver Design Using FPGA-Based System-on-Chip Embedded
Platform With Adaptive Digital Predistortion." IEEE Access 8 (2020):
214882-214893.

[106] Peng Guo, Xin Qi, Limin Xiao and Shidong Zhou, "A novel GPP-based
Software-Defined Radio architecture," 7th International Conference on
Communications and Networking in China, Kunming, China, 2012, pp.
838-842.

[107] Real-Time Linux, [Online]. https://wiki.linuxfoundation.org/realtime/start
[108] RTAI, the RealTime Application Interface for Linux. [Online].

https://www.rtai.org/
[109] ChronOS Real-time Linux, [Online].

http://www.chronoslinux.org/wiki/Main_Page
[110] R. Hossain, M. Wesseling, and C. Leopold, “Application descriptioncon-

cept with system level hardware abstraction,” inSignal ProcessingSystems
Design and Implementation, 2005. IEEE Workshop on, Nov.2005, pp.
36–41.

[111] R. B. Abdallah, T. Risset, A. Fraboulet, and Y. Durand, “The radiovir-
tual machine: A solution for sdr portability and platform reconfigura-
bility,”Parallel and Distributed Processing Symposium, International,vol.
0, pp. 1–4, 2009

[112] Ahn, Heungseop, Seungwon Choi, Markus Mueck, and Vladimir Ivanov.
"Data plane framework for software-defined radio access network based
on ETSI-standard mobile device architecture." IEEE Access 7 (2019):
163421-163436.

[113] D. M. Molla, H. Badis, A. A. Desta, L. George and M. Berbineau, "SDR-
Based Reliable and Resilient Wireless Network for Disaster Rescue Opera-
tions," 2019 International Conference on Information and Communication
Technologies for Disaster Management (ICT-DM), Paris, France, 2019,
pp. 1-7.

[114] Powell, Keith, Aly Sabri Abdalla, Daniel Brennan, Vuk Marojevic, R.
Michael Barts, Ashwin Panicker, Ozgur Ozdemir, and Ismail Guvenc.
"Software Radios for Unmanned Aerial Systems." In Proceedings of the
1st International Workshop on Open Software Defined Wireless Networks,
pp. 14-20. 2020.

[115] Hessar, Mehrdad, Ali Najafi, Vikram Iyer, and Shyamnath Gollakota.
"TinySDR: Low-Power SDR Platform for Over-the-Air Programmable
IoT Testbeds." In 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), pp. 1031-1046. 2020.

[116] Utrilla, Ramiro, Roberto Rodriguez-Zurrunero, Jose Martin, Alba Rozas,
and Alvaro Araujo. "MIGOU: A low-power experimental platform with
programmable logic resources and software-defined radio capabilities."
Sensors 19, no. 22 (2019): 4983.

[117] USRP E3xx: USRP Embedded Series, December 2020.
https://www.ettus.com/product-categories/usrp-embedded-series/

[118] bladeRF 2.0 micro, December 2020. https://www.nuand.com/bladerf-2-
0-micro

[119] Kuo, Ye-Sheng, Pat Pannuto, Thomas Schmid, and Prabal Dutta. "Re-
configuring the software radio to improve power, price, and portability." In
Proceedings of the 10th ACM Conference on Embedded Network Sensor
Systems, pp. 267-280. 2012.

26 VOLUME x, xxxx

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154364, IEEE Access

D.M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

DEREJE M. MOLLA received the B.S. degree
in electrical engineering from Hawassa Univer-
sity, Hawassa, Ethiopia in 2008; and the M.S.
degree in Telematics from Politecnico di Torino,
Turin, Italy in 2013. He is currently pursuing the
Ph.D. degree in computer science at Gustave Eiffel
University, Marne la Vallée, France. From 2014
to 2018, he was a lecturer at the communication
engineering stream, Hawassa University Institute
of Technology, Hawassa, Ethiopia. His research

interest includes to study the performance of SDR platforms as a wireless
transceiver for WSNs and IoT, integration of SDR and software defined
networking for wireless networks.

HAKIM BADIS received the M.S. degree in Dis-
tributed Computing from Paris-sud University, Or-
say, France in 2002, and the Ph.D. degree in Mo-
bile Networks from LRI, Orsay, France in 2005.
He is currently associate Professor in computer
science at Gustave Eiffel University, researcher
at LIGM lab specialized in next generation wire-
less networks, multi-hop and IoT sensor networks,
smart antennas (MIMO, etc.), software defined
radio, software defined networking, discrete math-

ematics (graph theory, information theory, etc.), distributed algorithms and
complexity.

PLACE
PHOTO
HERE

LAURENT GEORGE received the PhD degree in
computer science from University of Versailles-St
Quentin, France in 1998, and the HDR (Habilita-
tion to Direct Research) on "Temporal robustness
of real-time embedded and distributed systems,"
from University of Nantes, France in 2008. He
is currently Professor and Head of the Computer
Science department at ESIEE Paris; Head of Soft-
ware, Networks and Real-Time research group;
member of LIGM lab at University of Paris-Est;

and associate researcher at INRIA Paris-Rocquencourt in the AOSTE team.
His research activities concern real time embedded systems, software de-
fined network and network functions virtualization, and IoT.

MARION BERBINEAU received the Engineering
degree in electrical engineering from Polytech’
Lille, France, in 1986, and the Ph.D. degree in
electrical engineering from the University of Lille
in 1989. She is currently a full-time Research
Director with IFSTTAR, the French institute of
science and technology for transport, development
and networks. She is also an Expert in the field
of radio wave propagation in transport environ-
ments (tunnels), electromagnetic modeling, chan-

nel characterization and modeling, MIMO, wireless systems for telecom-
munications, cognitive radio for railways, and GNSS localization-based for
ITS, particularly for the rail and public transport domains. She is also active
as an Expert for the GSM-R and future systems such as LTE-A and 5G.
She is involved in several National and European research projects. She has
authored and co-authored several publications and patents.

VOLUME x, xxxx 27

