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Two- and three-dimensional modes developing on a steady spanwise-homogeneous laminar
separated flow over a NACA 4412 airfoil have been numerically investigated using global linear
stability theory. Considering variations of both the Reynolds number and the angle of attack,
the two-dimensional von Kármán mode results to be always the leading mode since for all
conditions examined it is more unstable than the three-dimensional von Kármán modes and
the three-dimensional stationary modes, associated with the formation on the airfoil surface of
large-scale separation patterns akin to stall cells. Sensitivity of the global modes is investigated
numerically through adjoint-based methods in order to predict regions of the flow which
are most sensitive to a modification of the base flow and the application of a steady force.
Interestingly, the instability’s growth rate sensitivity function displays an extended region
upstream of the separation bubble wherein a streamwise oriented force has a net stabilizing
effect. Aerodynamic performances can thus be possibly improved by leveraging the boat-tailing
effect induced by tangential jet actuators localized in this particular region of the flow.

Nomenclature

2 = chord of the airfoil
*∞ = free-stream velocity
q = (u, ?) = state vector
f = body force
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Re = Reynolds number
a = kinematic viscosity of the fluid
U = angle of attack
St = Strouhal number
W = ([, %) = base flow
q′ = (u′, ?′) = direct mode
c.c. = complex conjugate
f = _ + il = eigenvalue
_ = growth rate
l = angular frequency
Ω = control volume
q† = (u†, ?†) = adjoint mode
W† = ([†, %†) = adjoint base flow
V = spanwise wavenumber

I. Introduction

Take off and landing are critical phases of flight during which close to 60% of fatal accidents happen. During these
maneuvers, characterized by relatively large angles of attack, the use of complex wing geometries optimized for

cruise flight can lead to the formation of a massively separated flow region on the suction side of the wing. This reversed
flow region causes a large increase of the drag exerted on the wing and can possibly induce stall, a major limiting
cause for rapid take off and climbing to cruise altitude. Designing efficient control strategies to mitigate these issues
is thus critical. In this context, the H2020 Clean-Sky project PERSEUS, involving several French academic research
laboratories along with Airbus, thus aims at designing active flow-control strategies based on Pulsed Jet Actuators
(PJAs) and testing these on a wind-tunnel model at large Reynolds numbers. In particular, we aim at designing pulsed
jet actuators that can easily be embedded in the leading edge of the wing model and at determining a control strategy
suppressing separation while simultaneously minimizing the net mass-flow rate used for this control.

To this end, the aim of the present contribution is to develop state-of-the-art sensitivity analyses to guide the
placement of these actuators. For that purpose, adjoint-based sensitivity methods [1] are implemented in the massively
parallel spectral element code Nek5000 [2]. As proof of concept, these techniques are here applied to a wing modeled
using a NACA4412 airfoil at low Reynolds numbers and angles of attack for which separation occurs. This analysis at
low-Reynolds-number condition could help understand more complex mechanisms at higher Reynolds numbers, since
the vortex shedding phenomenon governing the low Reynolds number dynamics persists at higher Reynolds numbers in
the fully developed turbulent regime [3]. Such an approach can help at identifying regions of the flow most sensitive to
an external force modeling the influence of the actuators. The resulting sensitivity maps thus provide guidelines for
quasi-optimal actuator placement in order to quench the instability modes. In a similar context, previous studies on
the canonical two-dimensional cylinder flow provided experimental [4] and numerical [1] evidences of the complete
suppression of the vortex shedding phenomenon in the presence of a localized force such as the one induced by a small
control cylinder.

The present paper is organized as follows. The mathematical framework is presented in Section II. Starting from the
nonlinear incompressible Navier-Stokes equations, the linearized equations governing the dynamics of infinitesimal
perturbations are first derived. These equations form the basis for the global linear stability analysis to be conducted in
order to extract the instability modes driving the flow dynamics. In a second step, the adjoint-based framework used to
investigate the sensitivity of this instability with respect to an external steady force is presented. We then focus on the
flow around a NACA 4412 wing which is described in Section III, together with results from the stability and sensitivity
analyses. Conclusions and perspectives are finally addressed and discussed in Section IV.
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Fig. 1 Sketch of the geometry and the flow computational domain for the numerical simulations.

II. Formulation of the problem

A. Navier-Stokes simulations
The flow dynamics of an incompressible Newtonian fluid are governed by the following Navier-Stokes equations

mCu + u · ∇u = −∇? +
1
Re

�u + f (1a)

∇ · u = 0 (1b)

with u(x, C) = (D, E, F)) the velocity field and ?(x, C) the pressure field, respectively, and f (x, C) represents an external
force. The Reynolds number is defined as

Re =
*∞2

a

where *∞ is the free-stream velocity, 2 the chord of the airfoil and a the kinematic viscosity of the fluid. The origin
of our Cartesian reference frame (G, H, I) is set at the leading edge of the airfoil, with G denoting the streamwise
direction, H the cross-stream direction and I the spanwise direction, respectively. A sketch of the geometry and the
computational domain is shown in Fig. 1. The Navier-Stokes equations are completed with the following boundary
conditions: u = (*∞, 0, 0) at the inlet Σ8 , a stress-free boundary condition ?n − Re−1∇u · n = 0 at the outlet Σ>,
symmetry conditions on the lower and upper boundaries Σ; and ΣD , periodic conditions on the lateral boundaries Σ?
and no-slip conditions u = 0 on the solid walls ΣF (see Fig. 1b).

The Navier-Stokes equations are then solved numerically using the spectral element solver Nek5000 [2]. Spatial
discretization relies on a C-grid mesh made of approximately 50 000 spectral elements with polynomial order % = 6
while a third-order accurate temporal scheme is used to integrate forward in time the equations. The streamwise and
cross-stream extents are set to !G = 50 and !H = 30 respectively, while the spanwise one ranges from !I = 8 to
!I = 4c. The same computational domain and numerical schemes are also used to compute the base flows as well as for
conducting the linear stability and sensitivity analyses.

The dynamics of the flow are parametrized by the Reynolds number Re and the angle of attack U. Hereafter, the
Reynolds number at which a specific steady equilibrium solution bifurcates to another equilibrium state for a fixed angle
of attack will be referred to as the critical Reynolds number Recr. Similarly, the angle of attack at which this transition
occurs for a fixed Reynolds number will be referred to as the critical angle of attack Ucr.

B. Base flow
Base flows are defined as being fixed points of the unsteady and nonlinear Navier-Stokes equations (1a) and (1b) and

correspond to steady equilibrium solutions. Computing these particular solutions is thus a prerequisite for the stability
and sensitivity analyses to be conducted in this study. However, because of the sheer size of the system of equations
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involved, their computation remains an intensive task for realistic geometries whose complexity is further augmented by
the use of general-purpose time-stepper CFD codes.

Over the years, various approaches have been proposed to tackle the computation of these (possibly unstable) steady
solutions while requiring minimal modifications to an existing time-stepper code. One can cite for instance the selective
frequency damping (SFD) proposed by Åkervik et al. [5] in 2006 wherein a steady state solution is obtained by damping
the unstable frequency via the addition of a dissipative relaxation term proportional to the high-frequency content of the
velocity oscillations [see Refs. 5, 6, for a comprehensive review]. Denoting by mCq = f (q) the original Navier-Stokes
equations, the corresponding system of equations solved for SFD is given by

mCq = f (q) − j (q − q̄)
mC q̄ = l2 (q − q̄)

where q̄ is the temporally-filtered solution and j and l2 are the gain and cut-off frequency of the applied first-order
filter. As this system of equations is integrated forward in time, q and q̄ converge toward the same solution. At
convergence, we thus have q = q̄ and this system of equations reduces to the stationary Navier-Stokes equations. Hence,
q converges toward the fixed point of the original equations. Alternatively, one can also use a time-stepper formulation
of the Newton-GMRES algorithm as described in Dĳkstra et al. [7] and Loiseau et al. [8]. In the present work, both
approaches have been considered and lead to virtually identical base flows. Hereafter, these base flows will be denoted
as W = ([, %)) .

C. Direct and adjoint linear stability analyses
The dynamics of an infinitesimal perturbation q′(x, C) = (u′, ?′)) evolving on top of the base flow solution

W(x) = ([, %)) are dictated by the linearized Navier-Stokes equations

mCu
′ + u′ · ∇[ +[ · ∇u′ = −∇?′ + 1

Re
�u′ (2a)

∇ · u′ = 0. (2b)

In the frame of modal stability analysis, the disturbances are sought under the following form

(D′, E′, F′, ?′) (x, C) = (D̂, Ê, F̂, ?̂) (x) exp (fC) + c.c., (3)

where c.c. stands for the complex conjugate and f = _ + il is the complex eigenvalue with _ the growth rate and
l the angular frequency, i.e. the frequency 5 = l/2c. Substituting the normal mode ansatz (3) into the linearized
Navier-Stokes equations Eq. (2a) and Eq. (2b), the above linear initial-value problem can be recast as the following
generalized eigenvalue problem:

fû = −∇û ·[ − ∇[ · û − ∇ ?̂ + Re−1�û, (4a)
0 = ∇ · û. (4b)

The asymptotic temporal features of the perturbation are thus obtained from the least damped/most unstable eigenvalue.
For instance, the imaginary part of the leading eigenvalue determines whether the fixed point leads to pitchfork or
transcritic (l = 0) or a Hopf-type (l ≠ 0) bifurcation. Moreover, if this leading eigenvalue has a positive real part, i.e.
_ > 0, the amplitude of the associated eigenmode will grow exponentially fast in time and, consequently, the base flow
is asymptotically unstable. On the other hand, if the real parts of all eigenvalues are negative, i.e. _: < 0 ∀: , the base
flow is asymptotically stable and all eigenmodes will be damped over time.

From a linear algebra point of view, the generalized eigenvalue problem can be written as

fHq̂ = Rq̂

where H is a singular mass matrix enforcing that the velocity is an actual degree of freedom of the problem while the
perturbation pressure field can be understood as a Lagrange multiplier to enforce the divergence constraint. The operator
R then corresponds to the Jacobian of the Navier-Stokes equations. Introducing a spatial inner product between two
arbitrary state vectors q1 and q2

〈q1 |q2〉 =
∫
Ω

q∗1Hq2 dΩ
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where Ω is the flow domain and the superscript ∗ stands for the complex conjugate, one can introduce a so-called adjoint
Navier-Stokes operator [9] satisfying

〈q1 |Rq2〉 = 〈R†q1 |q2〉.

The corresponding adjoint eigenproblem then reads

f∗u† = ∇u† ·[ − (∇[)) · u† − ∇?† + Re−1�u†, (5a)
0 = ∇ · u† (5b)

where q† = (u†, ?†)) is the adjoint state vector. For a discussion about the boundary conditions for the adjoint operator,
interested readers are referred to Barkley et al. [10]. Whilst this concept of adjoint has originated from the optimization
theory, it has since been used quite extensively in the hydrodynamic community to study linear and nonlinear transient
growth of perturbations [10, 11] or to identify the most receptive path to turbulence. Following Marquet et al. [1], the
present use of the adjoint enables us to select the most stabilizing or destabilizing base flow modification or to map the
sensitivity of the leading unstable mode with respect to the application of an external force modeling our actuators, a
crucial point in our study.

D. Sensitivity analysis
The sensitivity analysis consists of assessing how a variable is modified by the variation of a physical quantity. In

particular, this study focuses on the sensitivity of the leading global modes. In this regard, a first instrument of the
sensitivity analysis is the determination of the wavemaker region, i.e. the so-called structural sensitivity first introduced
by Giannetti and Luchini [12] in the framework of the global stability. The wavemaker is defined by the following
relation:

Z (x) = ‖û‖‖u
†‖

〈u† |û〉
(6)

where ‖ · ‖ should be understood as the pointwise norm of the mode. It allows for identifying regions of the flow
where generic structural modifications of the linearized Navier-Stokes operator lead to the strongest drift of the leading
eigenvalue.

The sensitivity of a given eigenvalue to an arbitrary base-flow modification or to a force can be considered. The
concept of sensitivity to a base flow modification has been originally introduced by Bottaro et al. [13] in a local
framework and then extended in the global framework also to a body force by Marquet et al. [1]. The variations Xf of
the complex eigenvalue with respect to an arbitrary small-amplitude base flow modification %[ can be formally related
through the inner product definition:

Xf = 〈∇[f |%[〉. (7)

The specific form of the sensitivity ∇[f is derived by a Lagrangian-based approach [see App. A in Ref. 1, for a
complete derivation] and reads

∇[f = −(∇û)� · u† + ∇u† · û∗, (8)

where the superscript � denotes the transconjugate. Note that ∇[f is a complex vector field and variations of the
growth rate X_ and frequency Xl are linked to Xf via ∇[_ = Re(∇[f) and ∇[l = −Im(∇[f). It should be stressed
that the base-flow modification %[ is generic since [ + %[ is not assumed to be a steady solution of the equations
governing the base flow.

Analogously, the sensitivity to a force can be derived. In our study, the body force L is assumed to be steady and
to solely act on the base flow. This assumption is supported by the fact that the pulsed-jets-actuators’ frequency is
one order of magnitude larger than the flow natural frequency. Variations of a particular eigenvalue Xf induced by
infinitesimal variations %L of the body force are formally described by the following relation:

Xf = 〈∇Lf |%L〉, (9)

where ∇Lf defines the sensitivity to a steady force modification. As for the base flow sensitivity, ∇Lf is a complex
vector field so that ∇L_ = Re(∇Lf) and ∇Ll = −Im(∇Lf). The Lagrangian-based approach allows to derive the
following expression for the force sensitivity

∇Lf = [†, (10)
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where W† = ([†, %†) is the adjoint (complex) base flow whose governing equations read

− ∇[† ·[ + (∇[)T ·[† − ∇%† − Re−1�[† = ∇[f, (11)

∇ ·[† = 0. (12)

Note that computing the force sensitivity ∇Lf which is the focus of the present study requires the computation of the
base flow sensitivity function beforehand.

III. Results

A. Navier-Stokes simulations
Depending on the initial condition, boundary conditions, and/or the value of the Reynolds number, the unforced

Navier-Stokes equations may or may not allow for simulating a steady solution. For instance, Fig. 2 displaying
the streamwise velocity D shows that for U = 20◦ and Re = 400 Eqs. (1a-1b) with f = 0 are unstable since the
flow experiences a Hopf bifurcation from a steady state towards a time-periodic nominally two-dimensional state in
which two-dimensional vortices having their axes parallel to the one of the wing are shed. This transition from a

Fig. 2 Streamwise velocity distribution D around a NACA 4412 airfoil with U = 20◦ and Re = 400.

steady-to-time-periodic state is triggered by a global instability which is responsible for the onset of the so-called vortex
shedding process. The Strouhal number given by the Fast-Fourier Transform on the nonlinear results is equal to (C ≈ 0.5.

B. Base flow
In order to apply the global stability approach, the base state for the same conditions presented above (U = 20◦ and

Re = 400) is computed using the SFD method (see Section II.B) and illustrated in Fig. 3. This fixed point is thus adopted
to compute the global mode responsible for the time-periodic state depicted by Fig. 2. It should be stressed that the
stability analysis is only performed on the filtered base flow and, for such a base flow, the frequency of the most unstable
mode accurately matches the natural vortex shedding frequency (i.e. the one obtainable from the nonlinear simulation)
provided that the analysis is carried out under the stability threshold or in the vicinity of the bifurcation point.

C. Global stability analysis
We shall now apply the stability framework presented in Section II.C to the NACA 4412 wing. Figure 4(a) shows the

spectrum relative to the base state of Fig. 3 for U = 20◦ and Re = 400. For these conditions, the most unstable global
mode results to be the two-dimensional von Kármán (VK) mode with a frequency of 0.34. The difference between the
flow natural frequency and the one obtained through the linear stability analysis is attributable to a strong distortion due
to the nonlinear effects [14, 15]. As advocated above, it should be noted that this analysis is carried out far beyond the
bifurcation threshold since the growth rate value is _ = 0.412 as shown in Fig. 4. In the unstable part of the spectrum
below the 2D VK mode, we can distinguish the oblique VK modes and the so-called stall (ST) modes [16, 17]. Given ℓ
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Fig. 3 Streamwise velocity distribution* of the base state for a NACA 4412 airfoil with U = 20◦ and Re = 400.
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Fig. 4 (a) Spectrum relative to the base state of Fig. 3 for U = 20◦ and Re = 400 and (b) the growth rate as a
function of the spanwise wavenumber. The bold letters in Fig. (a) and the green dots in Fig. (b) indicate the
corresponding direct eigenmodes illustrated in Fig. 5.

the spanwise periodicity wavelength of an eigenmode, Figure 4(b) shows for three Reynolds numbers the growth rate of
the VK and ST modes as a function of their spanwise wavenumber defined as V = 2c/ℓ. Note that for Re = 326.5 the
leading ST mode becomes marginally stable. The unstable global modes depicted in Fig. 4 are illustrated in Figure 5 by
the real part of their streamwise velocity component. By varying the Reynolds number and the angle of attack U, we

(a) (b) (c)

Fig. 5 Real part of the streamwise velocity for (a) the two-dimensional VK mode (V = 0), (b) the three-
dimensional VK mode (V = c/2) and (c) the ST mode (V = 3c/4). The red (respectively, blue) isocontours
represents positive (respectively, negative) values corresponding to one tenth of the maximal absolute value,
while the opaque green isocontour represents the locus of the points where the streamwise velocity of the base
flow is zero, i.e.* = 0.
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have determined the value of Re for which the 2D VK mode and the ST mode become marginally stable. The results are
collected in Figure 6 together with the corresponding Strouhal number. We stress that the critical Reynolds number for

(a)
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Fig. 6 (a) The emergence thresholds of the two-dimensional von Kármán (VK) mode and the stall (ST) mode
in the (U − Re) plane and (b) the corresponding Strouhal number.

the two modes and the Strouhal number have a power-law behavior. In the whole parameter space considered in this
analysis, the 2D VK mode stands as the leading global mode since the critical Reynolds number of the stall mode is
always lower the one of the 2D VK one for a fixed angle of attack.

D. Sensitivity analysis
We now consider structural modifications of the stability problem arising from a steady force L. The growth rate

sensitivity to a force ∇L_ is shown in Fig. 7 for both (a) the streamwise and (b) cross-stream directions. Fig. 7(a)

(a) (b)

Fig. 7 Growth rate sensitivity ∇L_ of the 2D VK mode in (a) the streamwise and (b) cross-stream directions
for U = 20◦ and Re = 200. The black solid line corresponds to the isocontour* = 0.

shows that a steady force acting inside the recirculation bubble along the streamwise direction is stabilizing since the
sensitivity exhibits negative values. Furthermore, an extended region localized on the suction side is stabilizing as well.
It represents a region of interest for the jet actuators arrangement. Conversely, acting on the shear zones outside the
recirculation region induces a positive variation of the growth rate, i.e. X_ > 0. As concerns the cross-stream direction,
Fig. 7(b) illustrates that the highest sensitivity is concentrated around the trailing edge, while the suction side hosts weak
positive values. This suggests that adopting tangential jet actuators could be more efficient if the goal for the control is to
stabilize the flow. Note that if a local force had been adopted here to interpret the sensitivity maps, the present approach
would also be able to predict whether a distributed force or a non-local one have a stabilizing or destabilizing effect.

The frequency sensitivity is depicted in Fig. 8 in terms of (a) the streamwise and (b) cross-stream components. The
streamwise component of the frequency sensitivity function shows that a stabilizing local force is associated with an
increase of the frequency in both the separation and recirculation regions, and a slight decrease of the frequency in the
outer region. Like for the growth rate, the cross-stream component is essentially concentrated around the trailing edge
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(a) (b)

Fig. 8 Frequency sensitivity ∇L_ of the 2D VK mode in (a) the streamwise and (b) cross-stream directions for
U = 20◦ and Re = 200. The black solid line corresponds to the isocontour* = 0.

where a localized normal oscillator would yield an increase of the frequency. Analogously in the near proximity of the
leading edge a local force would slightly increase the frequency, while in the extended region along the suction side, it
would lead to a shift towards low frequencies.

Figure 9 shows the growth rate sensitivity of the stall mode (the one depicted in Fig. 5(c)) in the streamwise
direction. The result shows that the location of the local steady force along the span becomes really important in a fully

Fig. 9 Growth rate sensitivity ∇L_ of the stall mode in the streamwise directions for U = 20◦ and Re = 400.
The red (respectively, blue) isocontours represents positive (respectively, negative) values corresponding to one
tenth of the maximal absolute value. The opaque isocontours illustrate the real part of the streamwise velocity
for the corresponding direct stall mode, while the upstream slice depicts the associated streamwise vorticity.

three-dimensional dynamics. As shown by Marquet et al. [1], stabilizing the leading mode could not lead to a whole
shift-down of the spectrum. Therefore, it is good to also consider the sensitivity information from the other global
modes if the goal for the control is to stabilize all the unstable modes governing the flow dynamics.

IV. Conclusion and perspectives
With the present analysis we can numerically investigate the global mode sensitivity which is based on the evaluation

of gradients through adjoint methods. This sensitivity analysis is applied to a wing modeled using a NACA 4412 airfoil
and allows to predict the regions of the flow which are most sensitive to an external forcing modeling PJAs. In fact, the
sensitivity to a steady force can allow for identifying where and in which directions a steady force should be applied to
induce the largest stabilizing effect.

Until now, the study has been performed at low Reynolds numbers, but an extension of this approach to the turbulent
regime will be provided for the H2020 Clean-Sky project PERSEUS.
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