N

N

SUIDT: A task model based GUI-Builder
Mickaél Baron, Patrick Girard

» To cite this version:

Mickaél Baron, Patrick Girard. SUIDT: A task model based GUI-Builder. TAMODIA, Jul 2002,
Bucharest, Romania. hal-03592530

HAL Id: hal-03592530
https://hal.science/hal-03592530
Submitted on 9 Mar 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03592530
https://hal.archives-ouvertes.fr

SUIDT: A task model based GUI-Builder

Mickaél Baron, Patrick Girard
Laboratoire d’Informatique Scientifique et Industrielle, ENSMA,

1 rue Clément Ader, 86961 Futuroscope Chasseneuil

http://www.lisi.ensma.fr/ihm

{baron, girard} @ensma.fr

ABSTRACT

User interface design tools use different approaches.
Interface builders are easy to use. They elect “presentation”
aspects but are not interested in user task analysis. Model
Based Systems describe models for building applications
but they are often difficult to use.

The approach presented in this contribution is the
collaboration of these two points of view for interface
construction. It co-ordinates the “easy-to-do” interface
builders for interface graphics and “hard to use” model
based systems for task-based interface design.

We present a development tool for end-users called SUIDT
(Safe User Interface Design Tool). It uses visual
programming techniques (as interface builders use) to build
every application model and allows building the final
application with respect to all models (as model-based
systems). In addition, it enforces the respect of rules, and
allows switching from design to test and vice versa, all
along the development process.

KEYWORDS

Model-Based Systems, Visual Interface Design, Visual
Programming, Task Model, B language, CTT, Formal
Methods.

INTRODUCTION

Tools that help developers in realizing quality applications
are today numerous. Two approaches can be opposed.

Interface builders (usually commercial products) enforce
the “presentation” aspect, and allow realizing the functional
core according to the interface design. A major drawback
of these tools is the lack of task model between the
functional core and the interface. Guaranteeing that the
interface respects the rules given by the functional core
guarantees in no way the purposes of users can be reached.

On the contrary, Model Based Systems (MBS) enforce the
specification aspects of models (functional core, task
model, interface model) to build and often generate
interactive applications. The main obstacle to these
approaches generalization is the difficulty for using them.
Indeed, MBS use is not adapted to end-users and, generally,

the necessity to learn specific languages makes the
development process hard. The main characteristic of “end-
users” in this context is that they do not have extensive
programming skills.

Our approach consists in getting together the two ways. On
the one hand, we lean on linked models whose semantics
can be clearly defined. On the other hand, we provide the
user with highly interactive tools that allow for model
manipulation with respect to their semantics. Moreover, all
along the design process, we permit the user to switch
between design phase and test phase, with no loosing of
testing context.

A first research led us to the GenBuild system [1] and [2],
see Figure 1.

Il Builder Interface

Il view window

Figure 1. GenBuild System

This tool generates automatically an interactive application
from a functional core. This interactive environment is
made up of a set of buttons able to call each functional core
primitive, using an automatically generated dialogue box to
enter each action parameter (part 1 in Figure 1).

The originality of the approach lies in the fact that the
automatically generated application is interfaced with an
interface generator, which permits building a true
interactive application and allows keeping the connection
with the functional core at the same time (part 2).

The designer of the application can go alternatively from
one creation step (part 3) of interface to a test step (part 4),
and vice versa, without loosing his/her context of testing.
We started from a functional core definition in C++ to
which we added expressions such as intervals of values.
They check in the final application the correctness of
functional core function calling.

Nevertheless there are two major limitations on GenBuild.
On the one hand, the system lacks user viewpoint: no task
model is taken into account. On the opposite, it leans on
semantically poor descriptions of functional core (an ad-
hoc formalism). To avoid this problem, we might have
designed new formalisms. On the other hand we decided to
use well defined formalisms and to put them together
through different models that represent the different aspects
of interactive applications.

The summary of this paper is the following. In section 2,
we discuss the interest of a formal functional core with a
concrete example: franc/euro exchange application. Section
3 discusses the first task model called abstract task model,
by describing the formalism. The concrete task model and
the interface are described in section 4. In section 5 we
describe the SUIDT environment tool. Then, section 6
briefly compares our work to some products from research
laboratories. Finally, we give some perspectives of our
work.

A FORMAL FUNCTIONAL CORE

The lack of a true formal description prevents any
reasoning on the functional core. The aim of our method is
to be able to lean on a really safe part, which can be
developed independently from any interactive perspective,
and on which full reasoning may be conducted. Software
engineering methods, and more precisely formal language
studies, explore these problems. We decided to find a good
candidate for our purpose among existing languages. One
of our major prerequisite was that the formal language had
to be instrumented by professional tools. As we wrote
above, we started our present work from the GenBuild
system, with a pseudo formalism, which corresponds in fact
to pre/post-conditions; this led us to choose as formalism a
model-based method, whose semantics can be mostly
represented with invariants and pre/post-conditions.

Among the increasing number of formal methods, VDM, Z
and B are most employed. They consist in defining a model
by the variable attributes which characterize the described
system, the invariants that must be satisfied and the
different operations that alter these variables. Z [3] method
uses set theory notations. Like VDM [4] it is based on
preconditions and postconditions. Moreover, VDM allows
the generation of a set of proof obligations which simplify
the use of the method regarding to Z. B [5], based on the
weakest precondition calculus, allow the description, in
high abstraction level language, of the different
components of a given system.

The better choice seems to be the B language, which,
associated to the “Atelier B” [6] development environment,
allows the complete design of applications, from the
specification step to the implementation one. B method
relevance is to ensure the respect of properties expressed
during the specifications all along the development
process. The technique of proof obligations that is used in
B is the demonstration of theorems, which once proved,
ensures the maintenance of the properties.

We are going to present now to illustrate our approach the
franc/euro exchange application and its functional core.

FRANC/EURO EXCHANGE APPLICATION

The target application we use all along this article is the
franc/euro exchange. It is a small tool that makes
conversions from francs to euros and vice versa. The user
enters the value he/she wants to convert he/she chooses the
direction of conversion and makes the conversion, and last,
he/she can read the result. There are many kinds of
interfaces for this application (that is the reason we chose
it) see Figure 2. We can find calculator-type interfaces or
very simple ones.

_ ol x|
Valeur a comvertir FEEIS Yaleur convertie
| — | |
_ ol x|
m F==E (E=»=F
Valeur a corvertir Valeur convertie
| | | Convertir | | |

Figure 2. Interface of exchange application (a) & (b)

FRANC/EURO EXCHANGE FUNCTIONAL CORE

The functional core of franc/euro exchange is very simple.
Two primitives of modification (franc_euro_exchange and
euro_franc_exchange) set the direction of conversion. Two
other ones realize the conversion (input value and
convert value). The last two primitives allow the
conversion: franc_euro_output value and
euro_franc_output value. There are many other ways to
conceive the functional core. This is not important for our
purpose. It is only to notice that it is possible to conceive at
least two different interfaces with this functional core,
Figure 2 (a and b).

The developer of the functional core is a programming
specialist. He/she knows classical languages and perfectly
uses formal methods. The programming specialist provides
a functional core to a different developer. This one is called

“end-user” and knows what are the expectations of the
specification (ergonomic characteristics...) but he/she has a
little experience in classical languages. Many
characteristics of “end-users” as are described in end-user
programming works [7].

ABSTRACT TASK MODEL

At this step, we have a formal functional core.
Nevertheless, calling core functions must follow an
accurate scenario. From the specification, the designer must
develop an analysis of the activity [8]. It must be
independent from any idea of interface to develop and it
must not be composed of insinuations on interaction device
to implement.

Then the end-user defines the user’s needs in terms of task
with help of formalism. It is an abstract task model that can
put together potential scenarios to use the functional core.
This is why we base our abstract task model on a formalism
yet employed which is called CTT (ConcurTaskTrees) [9].
Moreover CTT is supported by CTTE (ConcurTaskTree
Environment) tool [9]. The next part is going to give a short
CTT definition.

CTT FORMALISM

CTT [10] is defined by its authors as a notation for task
model specifications to overcome limitations of notations
previously used to design interactive applications. Its main
purpose is to be an easy-to-use notation, which can support
the design of real industrial applications. The CTT task
model is based on three major points.

this user action oriented approach, is based on
hierarchical structure of tasks represented by a tree-like
structure;

it requires identification of temporal relationships, by
Lotos, among tasks at the same level;

it allows the identification of the objects associated to
each task and of the actions which allow them to
communicate with each other.

In addition CTT formalism includes four categories of tasks
depending on the allocation of their performance.

g. User tasks are performed entirely by the user,
l] they require cognitive or physical activities
i without interacting with the system.

Application tasks are completely executed by
the system.

Interaction tasks are performed by user
interactions with the system.

Abstract tasks are tasks that need to be refined
by the three previous cases

[] e

CTT formalism is adequate to describe our abstract task

model because it denotes a chain of tasks made by the user.
We specify the possible scenarios of the application from
the abstract task model. We have an abstract view of the
working of the application with no interface element. This
abstract description is sufficient but end-users must have in
mind a first idea of one interface.

In order to define our abstract task model we employ a
limited version of the CTT formalism. Nevertheless, the
semantic of CTT formalism is not altered to preserve its
formal properties. Our approach uses fully CTT formalism
for graphic part (hierarchical structure of tasks and
temporal relationships). But we limit this formalism for the
object elements and pre-condition. Objects are entities that
are manipulated to perform tasks and pre-conditions are
predicates. Thus we associate to the lower level tasks only
elements from the application domain (i.e. the functions of
the functional core). Likewise, pre-conditions evaluate
attributes from the functional core.

Now we are going to describe the hierarchical
decomposition of tasks into smaller ones in our franc / euro
exchange application to illustrate our approach.

EXCHANGE APPLICATION ABSTRACT TASK MODEL

This specification of the Figure 3 respects the scenario
defined in the functional core part.

The user begins to input the value to convert. The choice of
conversion direction is realized during the conversion. If
the user wants to convert something into francs, he/she
chooses “convert to franc”, and vice versa. Finally when
the conversion is made the result is given. The Franc/Euro
exchange task is interactive. As long as the exit task is not
selected, the iterative task is executed. The user associates
functions of the functional core with the lower level tasks
of the abstract task model: input value function with
Input Value to_Convert task, franc euro_exchange and
convert_value function with Convert in Euro task.

o

Franc/Euro Exchan lication

=

Read Output value

==

-

Inputvalue to Comvert Choice st cotwersion

£ —r

Convert in Euro

ﬁ_):f

Convert in Franc

Figure 3. Exchange Application’s abstract task model

We have defined an abstract task model which allows us to

model the functional core specification logic. Then it is
possible to have several abstract task models for one
functional core. But for each new abstract task model the
developer must represent in his mind the interface that is
not still created.

The next part will show what we call a concrete task model
associated to the interface.

CONCRETE TASK MODEL

The concrete task model is linked to the interface model,
the functional core. It describes the application actions
(feedback) and the user interaction of the interface. In this
part we explain our concrete model, the refinement notion
with the abstract task model and the formalism used.

WHAT IS AN CONCRETE TASK MODEL?

One of the main limitations of the CTT formalism does not
take into account the level of interaction i.e. the interaction
type (click on a button, move mouse cursor on a frame).
The concrete task model allows then to define this level of
interaction. It is a refinement of the abstract task model
from the point of view of the application and the interaction
tasks. This model implements the application actions and
the interaction ones.

©—r

FranciEdro [Ex ne*

At the beginning of the abstract task model development,
the end-user has a blurred vision of the interface, he/she do
not know exactly what his/her interface might look like.
He/she bases on the abstract task model that is an “abstract”
model. Then the end-user can build the application
interface.

Let’s take the franc/euro exchange application to illustrate
it. Concerning “Read Output Value” task the developer
does not precise the way the task will be realized but its
abstract purpose. For example, the conversion result can be
either displayed on the interface or printed.

The abstract task model calls a set of interaction tasks and
of application tasks. The concrete task model must
completely refine all these tasks. Let us begin our
explanation by showing Figure 4 which represents the
widget objects.

Figure 4. Interaction and Application tasks

e Exchm{\

e == -

L x"‘[=
Exit Exit Sys

b

LN -

alue Left Clic m Functions

Vo] - 2
InputWalug to Convert Choice of cord

X
EnterTenyertin Uro

i I

Shortcut " Ctri+E"

D

Left Click Shortcut " Ctrl+F"

FeedBack

Left Click

Figure 5. Exchange Application’s concrete task model

The designations 1,2,3,4 and 5 of the Figure 4 represent the
interaction and application tasks implementation of the
abstract task model. The interaction task n°l corresponds to
a text edit. The exchange application user enters a value
which is sent to a primitive of the functional core
enter_amount. The interaction tasks n°2 and n°3 make the
conversion by calling up either the franc_euro_exchange or
euro_franc_exchange primitives. Finally convert value
primitive is to be called. The application task n°5 displays
the result by calling one of both primitives
(franc_euro_output value, euro_franc_output value).
Finally application task n°4 allows to leave the application.

Our concrete task model is close to UAN (User Action
Notation) [11] formalism. UAN represents the user
interface by a hierarchy of asynchronous tasks. But the
problem of this formalism is that it decomposes an
interaction task in the lowest level of detail records: user
actions, corresponding interface feedback and state change.
Finally it is a textual notation.

The choice of the concrete task model formalism was
guided by the type of users : the end-users. For them it is
more practical to use a graphical notation and a superior
level of description.

In the next part we will present the concrete model
formalism.

CONCRETE TASK MODEL FORMALISM

The formalism we use is also based on the CTT formalism.
The CTT formalism allows us to describe the refinement of
the interaction and application tasks from abstract task
model.

CTT formalism is employed but we do not use the same
categories. The task categories of CTT formalism do not
allow to describe the decomposition of interaction and
application tasks. So we propose new categories which
depend either to interaction task, or to application task. We
add to the interaction tasks several categories which
describe the interactions on the widgets used to implement
a graphic user interface. For instance, in our application,
there is an interaction “click with left button of mouse” on
“Convert in Franc” button. This interaction and the widget
is a new category of the concrete task model. Figure 5 tag
n°l shows the Convert in Franc task refinement and tag
n°2 describes one solution to refine interaction task. Next it
is necessary to link the new categories (from interaction
categories) with the objects of functional core. These
objects of functional core are the functions available from
the refined abstract task. So we have described the user
interaction on interface (with call of objects of functional
core) but it is missing the modification of interface
(feedback).

It can be the same reasoning for the application tasks where
only two other tasks are added: system tasks and feedback
tasks. System tasks call objets from an operating system (
printing for example). Feedback tasks are used to modify

elements of graphic user interface after an interaction. For
example tag n°3 shows the display of the new computing
value of conversion.

These enhancements do not modify the semantics of CTT
formalism but just give the possibility to create a single
task from abstract task (tag n°3).

Now, we are going to present the development tool which
uses the functional core to create the abstract, concrete task
model and the user interface. Also, we will show the way to
link each models between them.

“SUIDT” DEVELOPMENT TOOL

We built an interactive end-user programming environment
called SUIDT (Safe User Interface Design Tool) which
regroups functional core, abstract, concrete task model and
user interface.

We obtain a structure of our development environment that
shows the links between models, see Figure 6. The
programming specialist programs the functional core and
the end-user designs abstract , concrete task model and
application interface by using visual programming.

When the development is finished, we can generate a final
application that guarantees the purpose of users can be
reached.

=10jx]
Appllcatlon Valeur a comvertir ﬂ Valeur convertie
[\ [enr | [\
E=*F

.

Interface

-
Concrete
Task Model
71
-
Abstract Task .
Functional
Model
\L Core

Figure 6. Development Structure

AN INTERFACE GENERATOR AND FUNCTIONAL CORE
ANIMATOR

The GenBuild method can fit over directly to a functional
core expressed with B method. The specification analysis
with a sufficient level of details permits generating
automatically an interface manipulation for model
manipulation. The interface displays the formal functional
core and allows to check whether it works or not. It also
ensures visually that invariants are established.

In order to generate this development interface, we must
recover all signatures of operations, made up operation
name, and in/out parameters. They respect pre- and post-
conditions. These conditions permit to know the type of

parameters and their conditions. The development interface
will display the functional core by associating the
functions to graphical objects. Some text zones associated
to buttons put up the information connected with
operations, notably pre- and post- conditions. It is a way to
help the future designer in his/her development by
displaying the information of the functional core.

Figure 7 represents the tool which animates the functional
core. Tag 1 illustrates the function name. The function
parameters are displayed on tag 2 and for every parameter
the tool decomposes the display in three portions: the
parameter name, its type and its value.

v Type Mo Valuation
Propertie Mo Valuation

Hame Set : comvertir
Input
J Outpurt
e
—ﬁﬂpenie

Hame :

Input

Ourtpurt

Type UNKN
Propertie No Yaluakgn

)

HName Get: mmun

Inpourt NONE

Outpat conversion = INT{UNKNOWN
Tyne Mo Valuation

Propertie Mo Valuation

Figure 7. Interface of Functional Core

Likewise tag 3 returns the output parameter information.
Finally tags 4 and 5 allow to know the predicate of type and
properties. The tool evaluates for each parameter value the
predicates of field 4 and 5. So the function is executed only
if these two predicates are true and only when the end-user
clicks on the button 6.

Therefore, he is going to use a usable functional core and
check it to see if it really works. For that, the end-user may
interact with the graphical function of the functional core
by pushing on the buttons associated to the functional core
functions. The end-user must respect pre- and post-
conditions when he/she calls functions. A set of dialog
boxes is used to enter parameters. For example,
enter_amout function needs a real-type parameter.

The advantage of the approach is that we have a functional
core we can test and use during the application design
process. Once tested, the functional core corresponds to the
expectations of the specification. It only remains to define
an interface and especially an abstract task model that
guarantees users goal are reached.

ABSTRACT TASK MODEL BUILDER

The second module of our environment builds the abstract
task model of the application. The developer is the end-user
who just knows how the functional core works. With that
kind of tool, he/she is given a way to program rapidly and
intuitively. For this, user-friendly programming techniques
such as programming by demonstration or visual
programming are used. Then end-user designs his/her
abstract task model in a working zone called “Abstract
Task Model View”, Figure 8. The abstract task model
design is an incremental development composed of two
parts.

The first part consists in creating the graph, i.e. to make a
hierarchical decomposition of tasks. The end-user makes
her/his abstract task model by putting on the working zone
the types of tasks (user tasks, interaction tasks...) by giving
them a specific name. Then he/she defines the temporal
relationships among tasks at the same level. Finally the
end-user links up the abstract task model the functional
core. He/she associates functions of functional core with
every task.

The second part consists in testing the abstract task model
to verify if it works to the functional core specification
logic. Checking tools of abstract task models is similar to
the CTTE’s ones. But it also allows testing interactively the
model. So, the end-user examines the progress of the
abstract task model according to scenarios and he/she can
choose the parameter values. But the simulation of the task
model in CTTE only allows checking enabled tasks. On the
opposite SUIDT modifies the state of the functional core
when a task is executed because there is a connection
between these two models. When objets (functions) of
functional core are called, the end-user must give (by the
way of a dialog box) additional information (in
parameters). Thus with our approach, end-user tests both
models in the same time.

o] e]r]>e] e]y

C_}B Franc/Euro Exchange Application
o @*FrancIEum Exchange
% InputValue to Corrvert
=> Enahling TR
@ % Choice of conversion
ﬁ Interaction Task
== Enabling TR
ES interaction Task
=z Enabling TR
B Read OutputValue
[» Desactivation TR
kS it
=z Enabling TR
X Exit System

r Abstract Task Model Tool r Concrete Task Model Tot

@2 A &

Figure 8. Task Model Tool of SUIDT

We are going to build an interface that dresses this abstract

task model.

CONCRETE TASK MODEL BUILDER

This builder allows to make the concrete task model via an
abstract task model, a functional core and a graphical user
interface. This last element is built in the same time with
the concrete task model. The SUIDT environment proposes
a small GUI-Builder to make interface application.
Actually there are only three widgets in this GUI-Builder
(button, textfield and label) which are sufficient to design
the frank / euro exchange application interface but we plan
for the future development to expand this tool box.

The concrete task model working zone is the same as the
abstract task model. But the tree-like structure of abstract
task model cannot be modified directly. Therefore the
designer must come back to abstract task model builder to
change it. He/she builds his concrete task model in the
same way as the abstract task model. The concrete task
model building consists in refining (or deepening) the tree-
like structure of abstract task model. But we refine only the
application and interaction tasks. Thus the designer selects
a task from abstract task model and puts down tasks to
concrete task model hierarchical structure.

The end-user designer creates categories for the interaction
tasks before to build the concrete task model. It is the
SUIDT GUI-builder which allows to add or suppress these
categories of interaction tasks. A new category is built in
associating widgets from current user interface with an
interaction on this interface application for example
“Convert in Franc” button with “click with left button of
mouse”.

Then the new categories of the tasks interactions and the
categories of the tasks applications (feedback task and
system task) are placed on the concrete task model by the
end-user developer who links each tasks by a temporal
relation.

Finally he/she programs the content of the task by
following the approach of GenBuild. It consists in
associating attributes from interface with attributes from
functional core and inversely. Several examples:

e A category of interaction task: a click on “Convert in
Franc” button executes euo franc _exchange and
convert value function of functional core, tag 2 of
Figure 5.

o A category of application task:
euro_franc_output_value function is called to modify
the textfield content which displays the convert value,
tag 3 of Figure 5.

No conventional programming is required, the end-user
developer uses visual programming techniques but at this
time we can only manipulate few attributes of the interface.

RELATED WORKS

In this last section, we situate our work compared to the

literature. Our approach is close model based systems.
Indeed, we develop a set of models (task model, interface
model, function model) that finally generate an interactive
application. In MBS [12] there may be modeling tools that
assist the developer in the construction of the models. Their
goal is to mask all or a part of the complexity of the
complex modeling language. Among the available tools, we
find simple editors to develop textual specifications of the
model (MASTERMIND [13]), forms for the creation of
elements of the model (Mobi-D [14]). In our case, only the
functional core is developed in a textual way.

We find also graphic specialized editors, CTTE or VTMB
[15]. These tools can only create and evaluate task models.
SUIDT looks like CTTE for usage of the CTT formalism.
But CTTE and VTMB do not allow to associate to tasks the
references from objects of models (functional core, task
model) because the task model is not connected with the
others models. Instead SUIDT allows to design fully a
final application by taking into account rules of the
functional core and purposes of the user (abstract, concrete
task model and user interface).

The simulation of the task model of CTTE and VITMB
tools controls the task model of all kinds of incoherence
(loops without end) and checks the expectations of the
specification. SUIDT checks also the errors from abstract
and concrete task model, but our tool ensures that the calls
of the functional core and the interface are coherent.

Our work is incremental by following a linear cycle
(functional core, abstract task model, concrete model and
graphic interface). We can test (on the condition of having
a minimum of information for all the models) the
application that is in progress as MASTERMIND [13] and
PetSHOP [16]. But the important point of our method is
that the end-user may alternate the stages of design and test
without losing the execution context.

In [17] Pribeanu presents design heuristics aiming to
progressively derive the presentation from task model and
application domain model. Our approach is close, in fact
the development of the application begins with the
application domain model (functional core) and the abstract
task model without introducing a view of the interface.
When these two models are built, the presentation can be
established.

CONCLUSIONS and FUTURE WORK

We presented in this paper a new Computer-Aided Design
for User Interfaces (CAD-UI) tool that leans on several
well-defined formalisms.

The main idea is to start from a purely formalized
functional core, using a strong formal language, to build an
interactive application in a highly interactive way, with
respect to the user viewpoint. It is built by a programming
specialist. A first task model is called abstract task model.
It is a task model that can put together potential scenarios to
use functional core. It defines a hierarchical structure of

application in using functions of functional core. A second
task model is called concrete task model. It refines tasks
from abstract task model. Thus concrete task model
implements the interaction and application tasks.

The end-user designs the abstract task model and the
concrete task model with our SUIDT environment. It
allows editing, testing and generating interactive
applications. The development of SUIDT is still in
progress. This environment has been implemented with
JAVA programming language and B language.

Several directions can be explored from that approach.

We have taken on limited example to experiment
SUIDT feasibility. We need to evaluate this approach
against different kinds of applications — such as process
control or database applications.

_ The task models of SUIDT and CTTE are based on the
semantics of CTT. We have showed that SUIDT do not
modify the CTT semantic, and even if our approach with
two task models (abstract and concrete task model) does
not correspond exactly to that used by CTTE tool, it will
be interesting to study the possibility to exchange data
between these two tools.

The generation of dialog control will authorize the
automatic construction of final application.

Last we will be interested in the generation of
documentation from the task model.

REFERENCE

1. Baron, M. and Girard, P. Construction interactive
d'application a partir du noyau fonctionnel, in Proc.
Ergonomie et informatique avancées (Ergo-IHM'2000)
(Biarritz, France, 3-6 octobre 2000, 2000), ESTIA, pp.
85-93.

2. Baron, M. and Girard, P. Bringing Robustness to End-
User Programming, in Proc. 2001 IEEE Symposia on
Human-Centric Computing Languages and
Environments (Stresa, Italy, September 5-7 2001, 2001),
Entergraphica, pp. 142-149.

3. Spivey, .M. The Z notation: A Reference Manual.
Prentice Hall Int., 1988.

4. Bjorner, D. VDM a Formal Method at Work, in Proc.
VDM Europe Symposium'87 1987), Springer-Verlag,
pp. -

5. Abrial, J.-R. The B Book: Assigning Programs to
Meanings. Cambridge University Press, 1996, 779 p.

6. ClearSy. Atelier B - version 3.5 in 1997.

7. Lieberman, H. Your Wish is my command. Morgan
Kaufmann, 2001, 416 p.

8. Scapin, D. and Bastien, J.-M.C. Analyse des taches et
aide ergonomique a la conception : l'approche MAD*
(chapitre 3) in Analyse et conception de I'LHM. /
Interaction Homme-Machine pour les S.I. vol.1, edited
by C. Kolski. Hermes Science, 2001. Vol. 1,

9. Paternd, F. Model-Based Design and Evaluation of
Interactive Applications. Springer, 2001, 208 p.

10.Paterno, F., Mancini, C. and Meniconi, S.
ConcurTaskTrees: A Diagrammatic Notation for
Specifying Task Models, in Proc. IFIP TC13 human-
computer interaction conference (INTERACT'97)
(Sydney, Australia, 1997), pp. 362-369.

11.Hix, D. and Hartson, H.R. Developping user interfaces:
Ensuring usability through product & process. John
Wiley & Sons, inc., Newyork, USA, 1993.

12.Szekely, P. Retrospective and challenge for Model
Based Interface Development in FEurographics
Workshop on Design, Specification, and Verification of
Interactive Systems (DSV-1S'96), edited by F. Bodart
and J. Vanderdonckt. Springer-Verlag, 1996. pp. 1-27.

13.Szekely, P., Sukaviriya, P., Castells, P,
Muthukumarasamy, J. and E. Salcher. Declarative
interface models for user interface construction tools :
the MASTERMIND approach, in Proc. IFIP
TC2/WG2.7 Working Conference on Engineering for
Human-Computer Interaction (EHCI'95) (Grand
Targhee Resort (Yellowstone Park), USA, 14-18
August, 1995), Chapman & Hall, pp. 120-150.

14.Puerta, A. and Eisenstein, J. Interactively Mapping Task
Model to Interfaces in Mobi-D, in Proc. Eurographics
Workshop on Design, Specification and Validation of
Interactive Systems (DSV-1S'98) (Abingdon, UK, 3-5
June, 1998), Proceedings, pp. 261-274.

15.Biere, M., Bomsdorf, B. and Szwillus, G. The Visual
Task Model Builder, in Proc. Third Conference on
Computer-Aided Design of User Interfaces (CADUI'99)
(Louvain-la-neuve, Belgique, 21-23 October, 1999),
Kluwer Academic Publishers, pp. 245-256.

16.0Ousmane, S. Speécification comportementale de
composants CORBA. PhD Universit¢ de Toulouse 1,
Toulouse, 2001, 201 p.

17.Pribeanu, C. and Vanderdonckt, J. Exploring Design
Heuristics for User Interface Derivation From Task and
Domain Models, in Proc. Computer-Aided Design of
User Interfaces (CADUI'2002) (Valenciennes, France,
May 15-17, 2002), Kluwer Academics, pp. 103-110.

