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THE FREENESS AND TRACE CONJECTURES

FOR PARABOLIC HECKE SUBALGEBRAS

EIRINI CHAVLI AND MARIA CHLOUVERAKI

Abstract. The two most fundamental conjectures on the structure of the generic Hecke algebra H(W )

associated with a complex reflection group W state that H(W ) is a free module of rank |W | over its ring of
definition, and that H(W ) admits a canonical symmetrising trace. The first conjecture has recently become

a theorem, while the second conjecture, known to hold for real reflection groups, has only been proved for

some exceptional non-real complex reflection groups (all of rank 2 but one). The two most fundamental
conjectures on the structure of the parabolic Hecke subalgebra H(W ′) associated with a parabolic subgroup

W ′ of W state that H(W ) is a free left and right H(W ′)-module of rank |W |/|W ′|, and that the canonical

symmetrising trace of H(W ′) is the restriction of the canonical symmetrising trace of H(W ) to H(W ′).
Until now, these two conjectures have only be known to be true for real reflection groups. We prove them

for all complex reflection groups of rank 2 for which the BMM symmetrising trace conjecture is known to
hold.

1. Introduction

Real reflection groups are finite groups of real matrices generated by reflections. They include the Weyl
groups, which are fundamental in the classification and study of other algebraic structures, such as finite
reductive groups and complex Lie algebras. A finite group W is a real reflection group if and only if it is a
finite Coxeter group, that is, it has a presentation of the form

W = 〈s ∈ S | (st)mst = 1 for all s, t ∈ S〉
where mst ∈ Z≥2 for s 6= t and mss = 1. The subgroups of W generated by subsets of S are called (standard)
parabolic subgroups. These are very special subgroups, which share many defining properties of the parent
group W . They are real reflection groups on their own right, and their cosets can be represented by canonical
elements of W . They also allow us to study the parent group W using induction arguments, including for
the determination of its conjugacy classes and the calculation of its character table (see [GePf, Chapters 2,
3 and 6]). Finally, Lusztig’s families of characters [Lus], which play a key role in the representation theory
of finite reductive groups, are defined through a truncated induction from parabolic subgroups (Lusztig’s
definition uses generic degrees and the theory of Iwahori–Hecke algebras; for a different approach see also
[GePf, Chapter 6]).

Complex reflection groups are finite groups of complex matrices generated by pseudo-reflections, that is,
non-trivial elements that fix a hyperplane pointwise; they thus include and generalise real reflection groups.
A complex reflection group is isomorphic to a product of irreducible complex reflection groups, which are
classified as follows: they either belong to the infintie series G(de, e, n), where d, e, n ∈ N∗, or they are
one of the 34 exceptional groups G4, G5, . . . , G37. If W ⊂ GL(V ) is a complex reflection group, where
V is a finite-dimensional complex vector space, then the parabolic subgroups of W are defined to be the
pointwise stabilisers of the subspaces of V — in the real case, with this definition, the parabolic subgroups
are all conjugates of standard parabolic subgroups. All parabolic subgroups of W are also complex reflection
groups. In particular, if V is of dimension 2 (the dimension of V is also called the rank of W , if W is
irreducible), then all non-trivial proper parabolic subgroups of W are cyclic groups.

Iwahori–Hecke algebras associated with Weyl groups appear as endomorphism algebras of induced repre-
sentations in the study of finite reductive groups. They can also be defined independently as deformations
of the group algebras of the associated Weyl groups, and this definition can be applied to all real reflection
groups. Equivalently, they can be seen as quotients of the group algebras of the corresponding braid groups.
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The ring of definition of a generic Iwahori–Hecke algebra is a Laurent polynomial ring. Specialising the
parameters of this ring accordingly, one can view the generic Hecke algebras of parabolic subgroups as sub-
algebras of the Iwahori–Hecke algebra of the parent group (this is not the case for any reflection subgroup).
Similarly to the finite group case, we can use induction arguments to determine the representations of the
latter from the representations of these parabolic Hecke subalgebras.

Inspired by the idea that some complex reflection groups could play the role of Weyl groups of objects
generalising finite reductive groups, the so-called “Spetses” (see [BMM]), Broué, Malle and Rouquier gener-
alised the notion of braid groups and Hecke algebras to the case of complex reflection groups in [BMR]. Since
then, the study of these objects has grown to a subject on its own right, and Hecke algebras associated with
complex reflection groups have turned out to be connected to many other mathematical structures, from
other algebras, such as Cherednik algebras and quantum groups, to other theories, such as knot theory and
mathematical physics. However, for everything to make sense and work as in the real case, two fundamental
conjectures, which were standard facts in the real case, had to be stated. We will also state them here, using
the notation H(W ) for the generic Hecke algebra associated with a complex reflection group W and R(W )
for the Laurent polynomial ring over which H(W ) is defined.

The BMR freeness conjecture [BMR] The algebra H(W ) is a free R(W )-module of rank |W |.

This conjecture has been a theorem for the past couple of years. It has been tackled with a case-by-case
analysis, using combinatorial methods for the groups of the infinite series, and computational methods for
the exceptional groups. For most of the exceptional groups of rank 2, the conjecture has been proved by the
first author in [Cha1, Cha2].

The BMM symmetrising trace conjecture [BMM] The algebra H(W ) admits a canonical symmetrising
trace.

The canonicity of the symmetrising trace consists of the satisfaction of three conditions, which are given
later in this article (see Conjecture 3.3) and we do not repeat here. Its existence gives rise to the definition of
the Schur elements for H(W ), which are certain Laurent polynomials that control the modular representation
theory of H(W ). They are also ubiquitous in the study of the families of characters for complex reflection
groups, because they correspond to the inverses of the generic degrees, but also because the families of
characters in the complex case have been defined as blocks of the Hecke algebra, following [Rou] (see [Chl]
for the approach to this topic with the use of Schur elements). Contrary to the BMR freeness conjecture, the
BMM symmetrising trace conjecture remains unsolved. Our contributions towards its proof are the articles
[BCCK] and [BCC], where we prove the conjecture for the rank 2 exceptional groups G4, G5, G6, G7, G8 and
G13 respectively (G4 was already known by [MalMi] and by [MarWa]), using a combination of computer
algorithms.

Now, in order for everything to make sense and work as in the real case when it comes to induction from
parabolic Hecke subalgebras, two fundamental conjectures, which were also standard facts in the real case,
had to be stated. They are the parabolic counterparts of the first two conjectures:

The parabolic freeness conjecture [MalRo] Let W ′ be a parabolic subgroup of W . The algebra H(W ) is
free as a left and right H(W ′)-module of rank |W |/|W ′|.

One can notice that the BMR freeness conjecture is a particular case of the parabolic freeness conjecture,
if W ′ is taken to be the trivial group. Moreover, having a basis for H(W ′) as an R(W ′)-module and a
basis for H(W ) as an H(W ′)-module allows the determination of a basis for H(W ) as an R(W )-module.
This approach has been used sometimes by people who have tackled the BMR freeness conjecture for the
exceptional irreducible complex reflection groups, in order to simplify the calculations.

The parabolic trace conjecture [BMM] Let W ′ be a parabolic subgroup of W . Let τ be the canonical
symmetrising trace on H(W ). The restriction τ |H(W ′) is the canonical symmetrising trace on H(W ′).
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The second conjecture is in fact the last part of [BMM, 2.1, Assumption 2], whose first part is the classical
BMM symmetrising trace conjecture. Both conjectures appeared later in [MalRo], where Malle and Rouquier
assumed their validity in order to study families of characters for complex reflection groups using Rouquier’s
definition and truncated induction from parabolic subgroups. Another application of the parabolic trace
conjecture is that it allows the determination of the Schur elements of H(W ′) from those of H(W ), or the
other way round (see, for example, [Chl, Lemma 2.3.5]).

Until now, the validity of both conjectures has been an open problem for any non-real complex reflection
group. In this paper we prove them for all complex reflection groups of rank 2 for which the BMM sym-
metrising trace conjecture is known to hold (we prove the parabolic freeness conjecture for a couple extra).
The idea is the following: in [BCCK] and [BCC], our method for proving the BMM symmetrising trace
conjecture for Gn, where n ∈ {4, 5, 6, 7, 8, 13}, relied on the choice of a “good” basis B(W ) for H(Gn) as an
R(Gn)-module, so that

(i) 1 ∈ B(W );

(ii) B(W ) specialises to W when H(W ) specialises to the group algebra of W ;

(iii) τ(b) = δ1b for all b ∈ B(W ).

We then created a C++ program that expressed every product of a generator of H(W ) belonging to B(W )
with an element of B(W ) as a linear combination of elements of B(W ). This led us to the creation of an
algorithm that expresses any element ofH(W ) as a linear combination of elements of B(W ), which we present
here in Section 3.3. We used the programming language GAP3 for the implementation of the algorithm, and
the program that we created can be found on the project’s webpage [Web]. Now, using this program, we
can take a set of |W | elements of H(W ) and check whether it is a basis by calculating the supposed change
of basis matrix: if the determinant of this matrix is a unit in R(W ), then the matrix is indeed a change of
basis matrix and the set in question is a basis of H(W ) as an R(W )-module.

Having this program in our hands, we decided to solve the parabolic freeness conjecture for the groups
Gn above. One of the perks when working with rank 2 groups is that all parabolic subgroups are cyclic
groups. As we will see later in this paper, it is enough to prove the conjecture for the subgroups generated
by the generators of W . Therefore, if s is a generator of H(W ) and W ′ is the corresponding cyclic parabolic
subgroup of W , we need to find a subset Bl

s(W ) containing |W |/|W ′| elements of H(W ) so that the set
Pl
s(W ) := {sjb | j = 0, . . . , |W ′| − 1, b ∈ Bl

s(W )} is a basis of H(W ) as an R(W )-module. Then Bl
s(W )

is a basis of H(W ) as a left H(W ′)-module. We call the set Pl
s(W ) a left parabolic basis of H(W ) with

respect to the generator s. We can similarly define Br
s(W ) and Pr

s(W ) when considering H(W ) as a right
H(W ′)-module.

In Section 4.3, we explain how we came up with parabolic bases for G4, G7, G8 and G13, using the Etingof–
Rains surjection, as the first author did in [Cha2] in order to find bases for the generic Hecke algebras of
the groups G4, . . . , G16. The idea is to choose a good expression for every element of Gn and consider the
corresponding element inside H(Gn). Not all choices we tried were good, but this is why having the GAP3
program was extremely useful. We could proceed through trial and error, especially in the case G13, where
we had sometimes many options for the same element. For G5 and G6, we show that the parabolic bases can
be deduced from the ones for G7. Finally, for some other rank 2 groups, we explain why the bases existing
already in literature prove the validity of the parabolic freeness conjecture. We conclude the following:

Theorem 1.1. The parabolic freeness conjecture holds for the exceptional irreducible complex reflection
groups G4, G5, G6, G7, G8, G12, G13, G14, G16 and G22.

We also point out here that all the parabolic bases that we give in this paper are good in the sense described
above (that is, they satisfy conditions (i), (ii) and (iii)). Now, in Section 4.1, we give a uniform proof of the
parabolic trace conjecture for the groups above for which the BMM symmetrising trace conjecture is known
to hold. In that regard, we also show that the BMM symmetrising trace conjecture holds for cyclic groups.
We thus have the following:

Theorem 1.2. The parabolic trace conjecture holds for the exceptional irreducible complex reflection groups
G4, G5, G6, G7, G8, G12, G13 and G22.
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To conclude, we would like to thank the following people, who have worked with reflection groups and
their parabolic subgroups and gave us a lot of useful information on the topic: Meinolf Geck, Thomas Gobet,
Ivan Marin, Jean Michel, Christoph Schönnenbeck and Don Taylor.

2. Hecke algebras and parabolic Hecke subalgebras

In this section we will define and discuss some properties of the algebraic objects that we study.

2.1. Reflection groups. Let V be a finite dimensional R-vector space. A real reflection group is a finite
subgroup of GL(V ) generated by reflections, that is, elements of GL(V ) of order 2 whose fixed points in
V form a hyperplane. Coxeter [Cox1] proved that every real reflection group W admits a presentation as
follows:

W = 〈s ∈ S | (st)mst = 1 for all s, t ∈ S〉
where mst ∈ Z≥2 for s 6= t and mss = 1. On the other hand, as Coxeter also proved [Cox2], every finite
group with such a presentation, that is, every finite Coxeter group, is a real reflection group. The tuple
(W,S) is called a finite Coxeter system and the elements of S are known as simple reflections.

A real reflection group W is called irreducible if it acts irreducibly on V , i.e., V does not admit any
proper W -invariant subspace. Since every real reflection group is a direct product of irreducible ones, one
can restrict the study of real reflection groups to the study of the irreducible ones. If W is an irreducible real
reflection group, then the rank of W is the dimension of V . Coxeter [Cox2] classified (up to isomorphism) all
irreducible finite Coxeter groups: they consist of three one-parameter families of increasing rank (also known
as classical types), denoted by An, Bn, Dn (with An ∼= Sn+1, Bn ∼= (Z/2Z)n oSn, Dn

∼= (Z/2Z)n−1 oSn),
an one-parameter family of rank two groups denoted by I2(m) (these are the dihedral groups, with I2(3) = A2

and I2(4) = B2) and six exceptional groups, denoted by E6, E7, E8, F4, H3, H4. The groups of type An, Bn,
Dn, E6, E7, E8, F4 and I2(6) are known as Weyl groups, and they are exactly the ones for which we have
mst ∈ {2, 3, 4, 6} in the Coxeter presentation.

All finite Coxeter groups are particular cases of complex reflection groups. Let V be a finite dimensional
C-vector space. A complex reflection group is a finite subgroup of GL(V ) generated by pseudo-reflections,
that is, non-trivial elements of GL(V ) whose fixed points in V form a hyperplane, called the reflecting
hyperplane of the given pseudo-reflection. As in the real case, a complex reflection group W is irreducible
if it acts irreducibly on V and, if that is the case, the rank of W is the dimension of V . The classification
of irreducible complex reflection groups is due to Shephard and Todd [ShTo] and given by the following
theorem.

Theorem 2.1. Let W ⊂ GL(V ) be an irreducible complex reflection group. Then one of the following
assertions is true:

• There exist d, e, n ∈ N∗ with (de, e, n) 6= (2, 2, 2) such that (W,V ) ∼= (G(de, e, n),Cn−δde,1), where
G(de, e, n) is the group of all n × n monomial matrices whose non-zero entries are de-th roots of
unity, while the product of all non-zero entries is a d-th root of unity.

• (W,V ) is isomorphic to one of the 34 exceptional groups Gn, with n = 4, . . . , 37 (ordered with respect
to increasing rank).

Among the irreducible complex reflection groups we encounter the irreducible finite Coxeter groups. More
precisely, G(1, 1, n) ∼= An−1, G(2, 1, n) ∼= Bn, G(2, 2, n) ∼= Dn, G(m,m, 2) ∼= I2(m), G23

∼= H3, G28
∼= F4,

G30
∼= H4, G35

∼= E6, G36
∼= E7, G37

∼= E8.
We know by [Bes2, Theorem 0.1] that every complex reflection group admits a Coxeter-like presentation.

The generators of this presentation are pseudo-reflections and the relations are of two types: there are the
relations that give the order of the pseudo-reflections, and there are also some homogeneous relations between
positive words in the generating elements (that is, equalities between words of the same length). We call the
latter braid relations.

Let W ⊂ GL(V ) be a complex reflection group. We call the field of definition of W , and denote by K(W ),
the field generated by the traces on V of all the elements of W . Benard [Ben] and Bessis [Bes1] have proved
that K(W ) is a splitting field for W . If K(W ) ⊆ R, then W is a finite Coxeter group, and if K(W ) = Q,
then W is a Weyl group.
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2.2. Parabolic subgroups. First let us consider the case where W ⊂ GL(V ) is a real reflection group.
Let (W,S) be a finite Coxeter system, let J ⊂ S and let WJ be the subgroup of W generated by J . We
call WJ a standard parabolic subgroup of W . A subgroup W ′ of W is a parabolic subgroup if it is conjugate
to a standard parabolic subgroup WJ . Given that every reflection in W is conjugate to an element of S,
parabolic subgroups are examples of reflection subgroups, that is, subgroups of W that are generated by
reflections. Note, however, that not all reflection subgroups of W are parabolic subgroups. For example, Dn

is a reflection subgroup of Bn, but not a parabolic one.
Obviously, all reflection subgroups of W are Coxeter groups as well. A canonical way of identifying a

Coxeter presentation for any reflection subgroup of W is given in [Deo, Dy1, Dy2]. In the simpler case of
standard parabolic subgroups, we have that (WJ , J) is a finite Coxeter system (see [Dy2] and [GePf, §1.29]).
This implies that (wWJw

−1, wJw−1) is also a finite Coxeter system for all w ∈ W , whence we obtain a
Coxeter presentation for any parabolic subgroup of W .

The following result, which is a corollary of [Bou, 6, Proposition 1], yields a characterisation of parabolic
subgroups of finite Coxeter groups as pointwise stabilisers of subspaces of V .

Proposition 2.2. Let W ⊂ GL(V ) be a real reflection group and let X be a subspace of V . Then the group

Fix(X) := {w ∈W | w(x) = x for all x ∈ X}

is a parabolic subgroup of W , generated by the simple reflections whose reflecting hyperplane contains X.
Conversely, if W ′ is a a parabolic subgroup of W , then there exists a subspace X ⊂ V such that W ′ = Fix(X).

The alternative definition for parabolic subgroups given by the proposition above can be also applied to
the complex case. More precisely, let W ⊂ GL(V ) be a complex reflection group. Let X be a subspace of V
and set WX := Fix(X). We call WX a parabolic subgroup of W .

Remark 2.3. Often in bibliography X is simply taken to be a subset of V . This does not affect the definition
of parabolic subgroups, since Fix(X) = Fix(Span(X)), where Span(X) denotes the linear span of X.

As in the real case, we have that WX is a complex reflection group, thanks to the following result by
Steinberg [St, Theorem 1.5] (see also [Leh] for a shorter proof):

Theorem 2.4. Let W ⊂ GL(V ) be a complex reflection group and let X be a subspace of V . The parabolic
subgroup WX of W is generated by the pseudo-reflections of W whose reflecting hyperplane contains X.

Example 2.5. We have WV = {1} and W{0} = W .

Example 2.6. If H is a reflecting hyperplane of W , then the parabolic subgroup WH is isomorphic to a
finite subgroup of C×, whence WH is cyclic. Thus, WH is a minimal non-trivial parabolic subgroup of W ,
whose non-trivial elements are pseudo-reflections.

The following result is a straightforward corollary of Theorem 2.4 and it allows us to restrict to the case
where X is an intersection of reflecting hyperplanes.

Corollary 2.7. Let W ⊂ GL(V ) be a complex reflection group and let X be a subspace of V . Let I denote
the intersection of all reflecting hyperplanes of W that contain X. Then WX = WI .

By [KrTa, Theorem 2.1], in order to find the parabolic subgroups of a complex reflection group, it is
enough to determine the parabolic subgroups of irreducible complex reflection groups. Following [Tay1,
Lemma 3.3 and Theorem 3.11] (see also [KrTa, Theorem 3.6]), W ′ is a parabolic subgroup of G(de, e, n) if
and only if W ′ is isomorphic to a direct product of the form

G(de, e, n0)×Sn1
×Sn2

× · · · ×Snk

with n0, n1, . . . , nk ∈ N and
∑k
j=0 nj = n (if nj = 0, then the corresponding factor is omitted). As far as

the exceptional groups are concerned, a list of all parabolic subgroups (up to conjugation) for each group
Gn, n = 4, . . . , 37 is given in [OrTe, Appendix C] and in [Tay2]. In the latter, Taylor uses MAGMA to
construct all reflection subgroups for each Gn and then checks which of them are the pointwise stabilisers of
their space of fixed points.
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2.3. Braid groups. Let W ⊂ GL(V ) be a complex reflection group. Let R denote the set of pseudo-
reflections of W , and let A denote the set of reflecting hyperplanes of W . Set M := V \ ∪H∈AH. As
shown in [BMR, §2B], we can always restrict to the case where W is essential, meaning that ∩H∈AH = {0}.
Steinberg [St, Corollary 1.6] proved that the action ofM on X is free. Therefore, it defines a Galois covering
M→M/W , which gives rise to the following exact sequence for every x ∈M:

1 π1(M, x) π1(M/W, x) W 1,

where x denotes the image of x under the canonical surjection M→M/W .
Let now x be some fixed basepoint of M. In [BMR, §2], Broué, Malle and Rouquier defined the pure

braid group P (W ) and the braid group B(W ) of W as P (W ) := π1(M, x) and B(W ) := π1(M/W, x)
respectively. Moreover, they associated to every element of R homotopy classes in B(W ) that we call braided
reflections. By [Bes2, Theorem 0.1], the braid group B(W ) admits a presentation with the generators being
braided reflections and the relations being homogeneous relations between positive words in the generating
elements, that is, braid relations. In fact, the Coxeter-like presentation of W is derived from this (Artin-like)
presentation of B(W ), thanks to the following short exact sequence:

1 P (W ) B(W ) W 1.

From now on, we will denote by Z(G) the centre of any group G. If W is an irreducible complex reflection
group, then Z(W ) is in bijection with a finite subgroup of C×, and it is thus a cyclic group. We denote
by π and β the homotopy classes of the loops t 7→ x exp(2πit) and t 7→ x exp(2πit/|Z(W )|) respectively.
Broué, Malle and Rouquier [BMR, Lemma 2.22 (2)] proved that π ∈ Z(P (W )) and β ∈ Z(B(W )), and they
conjectured that each of the two elements generates the centre it belongs to as a cyclic group. The fact that
Z(P (W )) = 〈π〉 was proved by Digne, Marin and Michel [DMM, Theorem 1.2], while it was Bessis [Bes3,
Theorem 12.8] who proved that Z(B(W )) = 〈β〉.

2.4. Hecke algebras. Let H ∈ A. We have seen in Remark 2.6 that the minimal parabolic subgroup
WH is cyclic. The generator of WH whose only nontrivial eigenvalue is equal to exp(2πi/|WH |) is called a
distinguished pseudo-reflection. We have the following result [BCM, Corollary 2.38]:

Proposition 2.8. If S is a generating set of distinguished pseudo-reflections for W , then any distinguished
pseudo-reflection of W is conjugate to an element of S.

It is easy to see that if two pseudo-reflections are conjugate in W , then their reflecting hyperplanes belong
to the same orbit under the action of W on A. On the other hand, if H ′ = wH for some w ∈ W , then
WH′ = wWHw

−1. For every orbit C ∈ A/W , let eC denote the common order of the minimal parabolic
subgroups WH , where H is any element of C. Let R(W ) := Z[u,u−1] denote the Laurent polynomial ring in
a set of indeterminates u = (uC,j)(C∈A/W )(1≤j≤eC). The generic Hecke algebra H(W ) of W is the quotient
of the group algebra R(W )[B(W )] by the ideal generated by the elements of the form

(2.1) (s− uC,1)(s− uC,2) · · · (s− uC,eC ),
where C runs over the set A/W and s runs over the set of braided reflections whose images in W have
reflecting hyperplanes in C. We have

(s− uC,1)(s− uC,2) · · · (s− uC,eC ) = 0⇔ seC − aC,eC−1
seC−1 − aC,eC−2

seC−2 − · · · − aC,0 = 0,

where aC,eC−j := (−1)j−1fj(uC,1, . . . , uC,eC ) with fj denoting the j-th elementary symmetric polynomial,
for j = 1, . . . , eC . Therefore, in the presentation of H(W ), we have the images of the braided reflections of
B(W ) as generators, and two kinds of relations: the braid relations, coming from the Artin-like presentation
of B(W ), and the positive Hecke relations:

(2.2) seC = aC,eC−1
seC−1 + aC,eC−2

seC−2 + · · ·+ aC,0.

We notice now that aC,0 = (−1)eC−1uC,0uC,1 . . . uC,eC−1
∈ R(W )×. Hence, s is invertible in H(W ) with

(2.3) s−1 = a−1C,0 s
eC−1 − a−1C,0 aC,eC−1s

eC−2 − a−1C,0 aC,eC−2s
eC−3 − · · · − a−1C,0 aC,1.

We call relations (2.3) the inverse Hecke relations.
Finally, we define a word in the generators of H(W ) to be any product of the generators of H(W ) or their

inverses. If a word does not include inverses of the generators, we call it a positive word.
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2.5. Parabolic Hecke subalgebras. Let I be an intersection of reflecting hyperplanes of W . We set
AI := {H ∈ A | I ⊂ H} and MI := V \ ∪H∈AI

H. We fix as before an element x ∈ M and we set
PI(W ) := π1(MI , x) and BI(W ) := π1(MI/W, x). We can then define a morphism of short exact sequences
(see [BMR, §2.D])

1 PI(W ) BI(W ) WI 1

1 P (W ) B(W ) W 1

where all vertical arrows are injective and the embedding BI(W ) ↪→ B(W ) is well-defined up to P (W )-
conjugation. Moreover, this embedding sends braided reflections to braided reflections.

Let WI be the corresponding parabolic subgroup of W and let v = (vC,j)(C∈AI/WI)(1≤j≤eC) be a set of

indeterminates. We denote by RI(W ) the Laurent polynomial ring Z[v,v−1]. Let α : AI/WI → A/W be
the map that sends a WI -orbit of hyperplanes onto the corresponding W -orbit. We can then define a ring
morphism ϕ : RI(W )→ R(W ) given by ϕ(vC,j) = uα(C),j for j = 1, . . . , eC .

Now, the embedding BI(W ) ↪→ B(W ) induces an inclusion (up to conjugation)

(2.4) H(WI)⊗ϕ R(W ) ↪→ H(W )

whose image is called the parabolic Hecke subalgebra of H(W ) associated with I. We denote this algebra by
HI(W ). To put it simply, the parabolic Hecke subalgebra HI(W ) is the Hecke algebra H(WI) of WI defined
over the ring R(W ).

3. The freeness and trace conjectures for Hecke algebras

In this section, we will first discuss the two fundamental conjectures on the structure of Hecke algebras
associated with complex reflection groups: the “freeness conjecture”, stated by Broué, Malle and Rouquier
[BMR], and the “(symmetrising) trace conjecture”, stated by Broué, Malle and Michel [BMM]. The first
one is now a theorem, the second one is still open for most complex reflection groups. In [BCCK] and
[BCC], using computational methods, we proved the trace conjecture for several exceptional groups of rank
2. Our methods rely on finding a “good” basis for the Hecke algebra associated with each group. At the
end of this section, we present a GAP3 program that expresses any element of the Hecke algebra as a linear
combination of the elements of our good basis. This in turn helps us to find more bases for the Hecke algebra
by computing the change of basis matrix.

From now on, let W ⊂ GL(V ) be a complex reflection group and let H(W ) be the generic Hecke algebra
of W .

3.1. Bases for Hecke algebras. If W is a real reflection group, then H(W ) admits a standard basis
(Tw)w∈W indexed by the elements of W [Bou, IV, §2]. Broué, Malle and Rouquier conjectured that a similar
result holds for non-real complex reflection groups. More specifically, they stated the following [BMR, §4]:

Conjecture 3.1 (The BMR freeness conjecture). The algebra H(W ) is a free R(W )-module of rank |W |.

Note that, thanks to the following result, which can be found in [BMR, Proof of Theorem 4.24] (for another
detailed proof, one may also see [Mar2, Proposition 2.4]), in order to prove the BMR freeness conjecture, it
is enough to find a spanning set of H(W ) as an R(W )-module consisting of |W | elements.

Theorem 3.2. If H(W ) is generated as R(W )-module by |W | elements, then it is a free R(W )-module of
rank |W |.

As mentioned earlier, the BMR freeness conjecture is now a theorem. It was proved for:

• the complex reflection groups of the infinite series G(de, e, n) by [ArKo, BroMa, Ar];

• the group G4 by [BroMa, Fun, Mar1, Cha1] (4 independent proofs);

• the group G12 by [MarPf];

• the groups G5, . . . , G16 by [Cha2, Cha1];

• the groups G17, G18, G19 by [Tsu] (with a computer method applicable to all rank 2 groups);

• the groups G20, G21 by [Mar3];
7



• the groups G22, . . . , G37 by [Mar1, Mar2, MarPf].

3.2. Good bases for Hecke algebras. A symmetrising trace on an algebra is a trace map that induces a
non-degenerate bilinear form. There exists a canonical symmetrising trace on the group algebra of W given
by τ(w) = δ1w. If W is a real reflection group, then there exists a canonical symmetrising on H(W ) given
by τ(Tw) = δ1w [Bou, IV, §2]. Broué, Malle and Michel conjectured that all generic Hecke algebras possess
a canonical symmetrising trace [BMM, 2.1, Assumption 2(1)]:

Conjecture 3.3 (The BMM symmetrising trace conjecture). There exists a linear map τ : H(W )→ R(W )
such that:

(1) τ is a symmetrising trace, that is, we have τ(h1h2) = τ(h2h1) for all h1, h2 ∈ H(W ), and the bilinear
map H(W )×H(W )→ R(W ), (h1, h2) 7→ τ(h1h2) is non-degenerate.

(2) τ becomes the canonical symmetrising trace on K(W )[W ] when uC,j specialises to exp(2πij/eC) for
every C ∈ A/W and j = 1, . . . , eC.

(3) τ satisfies

τ(Tb−1)∗ =
τ(Tbπ)

τ(Tπ)
, for all b ∈ B(W ),

where b 7→ Tb denotes the restriction of the natural surjection R(W )[B(W )]→ H(W ) to B(W ) and
x 7→ x∗ the automorphism of R(W ) given by uC,j 7→ u−1C,j.

Note that, by [BMM, 2.1], since the BMR freeness conjecture holds, there exists at most one symmetrising
trace satisfying Conditions (2) and (3) of Conjecture 3.3, meaning that τ is unique. We call τ the canonical
symmetrising trace on H(W ).

The BMM symmetrising trace conjecture has been proved for the following non-real complex reflection
groups:

• the groups G(de, e, n) by [BreMa, MalMat] (with Condition (3) deriving from [BMM, Lemma 2.7]);

• the group G4 by [MalMi, MarWa, BCCK] (3 independent proofs);

• the groups G5, G6, G7, G8 by [BCCK];

• the group G12 by [MalMi];

• the group G13 by [BCC];

• the groups G22, G24 by [MalMi].

In all the cases above, a good basis B(W ) for H(W ) was considered, so that:

(i) 1 ∈ B(W );

(ii) B(W ) specialises to W when uC,j specialises to exp(2πij/eC) for all C ∈ A/W and j = 1, . . . , eC ;

(iii) τ(b) = δ1b for all b ∈ B(W ).

This way, Condition (2) of Conjecture 3.3 is satisfied, and only Conditions (1) and (3) have to be verified.
In fact, Malle and Michel have conjectured that there is always a subset of H(W ) (not necessarily a basis)
that satisfies properties (i)–(iii) [MalMi, Conjecture 2.6]:

Conjecture 3.4 (The lifting conjecture). There exists a section W →W ⊂ B(W ), w 7→ w of W in B(W )
such that 1 ∈W , and such that for any w ∈W we have τ(Tw) = δ1w.

If the lifting conjecture 3.4 holds, then Condition (2) of Conjecture 3.3 is obviously satisfied. If further
the elements {Tw |w ∈W } form an R(W )-basis of H(W ), then, by [MalMi, Proposition 2.7], Condition (3)
of Conjecture 3.3 is equivalent to:

(3.1) τ(Tw−1π) = 0, for all w ∈W \ {1}.
8



3.3. More bases for Hecke algebras. From now on, we will write b1, b2, . . . , b|W | for the elements of
B(W ), with b1 = 1. Checking Condition (1) of the BMM symmetrising trace conjecture amounts to showing
that the Gram matrix A(W ) := (τ(bibj))1≤i,j≤|W | is symmetric and invertible over R(W ). By definition of
τ , τ(bibj) is the coefficient of 1 when bibj is expressed as a linear combination of the elements of the basis
B(W ). This is why, in [BCCK], we created a program in the language C++ which would write any product
bibj as a linear combination of the elements of B(W ). With the exception of G4, this program was very
time-consuming. Taking advantage of the fact that our basis B(W ) has an inductive nature, we came up
with an elaborate algorithm that calculates the entries of the matrix A(W ) row-by-row. For this, we only
needed to use the C++ program to express bibj as a linear combination of the elements of the basis when
bi ∈ B(W ) is a generator of H(W ). We then created a second program in SAGE [Sage], which, using as
inputs the outputs of the C++ program, produced very quickly the matrix A(W ) and its determinant. We
were thus able to prove the BMM symmetrising trace conjecture for groups G4, G5, G6, G7 and G8. In
[BCC], we adapted this method to obtain the validity of the BMM symmetrising trace conjecture for the
group G13, thus completing its proof for all exceptional 2-reflection groups of rank 2 (the others being G12

and G22).
For the purposes of the current article and for future works, we have now created a GAP3 program, which

can be found on [Web], that can be used to express any element of the generic Hecke algebra H(W ) as a
linear combination of the elements of the basis B(W ) for the groups that we studied in [BCCK] and [BCC].
More specifically, given that any element of H(W ) is a linear combination of words in H(W ), our program
uses the outputs of the C++ program to express any word as a linear combination of the elements of B(W ).

The algorithm of our GAP3 program is simple and follows the steps of the proof of the following result.

Lemma 3.5. Let S be a subset of the generators of H(W ) and assume that one can express sbj as a linear
combination of elements of B(W ) for all s ∈ S and for all bj ∈ B(W ). Let h be a word in the generators in
S, that is, a product of elements of S or their inverses. Then one can express hbj as a linear combination of
elements of B(W ) for all bj ∈ B(W ). In particular, one can express h as a linear combination of elements
of B(W ).

Proof. Let s ∈ S and bj ∈ B(W ). We will denote by λsj,k the coefficient of bk in R(W ) when sbj is written

as a linear combination of elements of B(W ), for k = 1, . . . , |W |. That is, we have

sbj =

|W |∑
k=1

λsj,kbk.

First, let h be a positive word in S, that is, a product of elements of S. We will prove the desired result
by induction on the length `(h) of h, that is, the number of factors in this product.

If `(h) = 1, then h = s for some s ∈ S, and we have hbj =
∑|W |
k=1 λ

s
j,kbk. Now assume that the statement

is true for all positive words of length n and let `(h) = n+1. Then h = sh′ for some s ∈ S and some positive
word h′ in S with `(h′) = n. By induction hypothesis, we know how to express h′bj as a linear combination

of elements of B(W ). Hence, if h′bj =
∑|W |
k=1 µj,kbk, with µj,k ∈ R(W ), then

hbj = sh′bj = s

|W |∑
k=1

µj,kbk

 =

|W |∑
k=1

µj,k(sbk) =

|W |∑
k=1

µj,k

|W |∑
l=1

λsk,lbl

 =

|W |∑
k=1

|W |∑
l=1

µj,kλ
s
k,lbl.

If now h is any word in S, then we can use the inverse Hecke relations (2.3) to write h as a linear
combination of positive words, then apply the above algorithm to each positive word to obtain hbj as a
linear combination of elements of B(W ). �

Now, let W ∈ {G4, G5, G6, G7, G8, G13}, and let S be the set of all generators of H(W ) that belong to
B(W ). Given the outputs of our C++ program, Lemma 3.5 implies that we can express any product hbj as
a linear combination of elements of B(W ), where h is a word in S and bj ∈ B(W ). For all groups except
for G7, the set S contains all generators of H(W ), and thus we are able to express any word in H(W ) as a
linear combination of elements of B(W ). However, for group G7, only two out of three generators of H(W )
belong to B(W ). Let s be the generator that does not belong to S, and let j ∈ {1, . . . , |G7|}. In [BCCK],
right before Proposition 5.7, we explain how we can write sbj as a linear combination of elements of the form
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hbk, where h is a word in S. Following the discussion above, we can thus express sbj as a linear combination
of elements of B(W ). Now, applying Lemma 3.5 to the set of all generators of H(G7) allows us to express
any word in H(G7) as a linear combination of elements of B(G7).

The existence of our algorithm yields an alternative proof for the fact that B(W ) is a spanning set for
H(W ) as an R(W )-module. By Theorem 3.2, this implies that B(W ) is a basis of H(W ) over R(W ). As
we remarked in both [BCCK] and [BCC], one could argue that we have thus obtained a computerised proof
of the BMR freeness conjecture for these groupes. This is indeed the case for G4. However, many of the
calculations made by hand in [Cha2] for the proof of the BMR freeness conjecture were incorporated in the
C++ program.

Moreover, thanks to our GAP3 algorithm, we can now easily check whether any subset of H(W ) consisting
of |W | elements is a basis of H(W ) as an R(W )-module. Let {b′1, . . . , b′|W |} be such a set. Applying our

algorithm, for all j = 1, . . . , |W |, we write

b′j =

|W |∑
i=1

µijbi

with µij ∈ R(W ). We compute the determinant of the matrix M := (µij)1≤i,j≤|W | and if it is a unit in
R(W ), then M is a change of basis matrix and the set {b′1, . . . , b′|W |} is a basis of H(W ). We have used this

method to prove the results in the last section of this article.

4. The trace and freeness conjectures for parabolic Hecke subalgebras

In this section, we will present two further conjectures, which are fundamental as far as the structure
of parabolic Hecke subalgebras is concerned. They are both essential in order to be able to smoothly
use induction and restriction arguments. We will call them the “parabolic freeness conjecture” and the
“parabolic (symmetrising) trace conjecture” because they have obvious similarities with the freeness and
trace conjectures on the Hecke algebra level. Our objective in this paper was to prove both conjectures for
the exceptional groups of rank 2 that we studied in [BCCK] and [BCC]. Since we are able to provide a short
uniform proof of the parabolic trace conjecture (which also works for groups G12 and G22), while we use a
much longer case-by-case analysis for the parabolic freeness conjecture, we will present the two conjectures
in, what is in fact, their chronological order.

From now on, let W ⊂ GL(V ) be a complex reflection group and let H(W ) be the generic Hecke algebra
of W . Let I be an intersection of reflecting hyperplanes of W and let WI be the corresponding parabolic
subgroup of W . Let HI(W ) be the parabolic Hecke subalgebra of H(W ) associated with I.

4.1. The parabolic trace conjecture. Let us assume that the BMM symmetrising trace conjecture holds
for the algebras H(W ) and H(WI). Then the algebra HI(W ) admits also a canonical symmetrising trace,
which is obtained from the one of H(WI) by specialisation of scalars (via the map ϕ, as in (2.4)). The
following conjecture was stated by Broué, Malle and Michel together with the BMM symmetrising trace
conjecture [BMM, 2.1, Assumption 2(2)(c)]:

Conjecture 4.1 (The parabolic symmetrising trace conjecture). Let τ be the canonical symmetrising trace
on H(W ). The restriction τ |HI(W ) is the canonical symmetrising trace on HI(W ).

Conjecture 4.1 is obviously true for real reflection groups, because of the way the map τ is defined with
the use of the standard basis (Tw)w∈W . However, not much is known in the complex case.

Let us consider the case where I = H ∈ A. Then, as we have seen in Example 2.6, WH is cyclic and,
thus, a minimal non-trivial parabolic subgroup of W . On the other hand, any cyclic parabolic subgroup
of W must be a pointwise stabiliser of a reflecting hyperplane. Every complex reflection group has cyclic
parabolic subgroups, one for each reflecting hyperplane. In particular, if W is a complex reflection group of
rank 2, then all its non-trivial proper parabolic subgroups are of rank 1, and thus cyclic.

In order to prove Conjecture 4.1 for complex reflection groups of rank 2, we will need to explicitly
define the canonical symmetrising trace on generic Hecke algebras of cyclic groups (in the Shephard–Todd
classification, these correspond to the complex reflection groups G(d, 1, 1)). For the sake of completeness
and for the reader’s convenience, we will first show that the BMM symmetrising trace conjecture holds for
cyclic groups, verifying directly all three conditions of the conjecture.
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Proposition 4.2. The BMM symmetrising trace conjecture holds for cyclic groups.

Proof. Let W be a cyclic group of order d, and let R(W ) = Z[u±11 , u±12 , . . . , u±1d ] for some indeterminates
u1, u2, . . . , ud. The algebra H(W ) is the R(W )-algebra with presentation

H(W ) = 〈s | sd = ad−1s
d−1 + ad−2s

d−2 + · · ·+ a1s+ a0〉
where ad−j := (−1)j−1fj(u1, . . . , ud) with fj denoting the j-th elementary symmetric polynomial, for j =
1, . . . , d. In particular, a0 = (−1)d−1u1u2 . . . ud ∈ R(W )×.

Let B(W ) = {1, s, . . . , sd−1}. Obviously, B(W ) generates H(W ) as an R(W )-module, and it is thus
an R(W )-basis by Theorem 3.2. We define the linear map τ : H(W ) → R(W ) given by τ(b) = δ1b, for all
b ∈ B(W ). By definition, τ satisfies Condition (2) of Conjecture 3.3. As far as the Condition (1) is concerned,
we obviously have τ(h1h2) = τ(h2h1) for all h1, h2 ∈ H(W ), since the algebra H(W ) is commutative. For the
second part of Condition (1), we will show that the determinant of the Gram matrix A(W ) = (τ(bb′))b,b′∈B(W )

is a unit in R(W ). Since τ(sj−1) = δ1j for j = 1, . . . , d and sd = ad−1s
d−1 + ad−2s

d−2 + · · ·+ a1s+ a0, the
matrix A(W ) is a d× d matrix of the following form:

A(W ) =



1 0 · · · 0 0 0
0 0 · · · 0 0 a0
0 0 · · · 0 a0 ∗
0 0 · · · a0 ∗ ∗
...

... ...
...

...
0 a0 ∗ · · · ∗ ∗


whence det(A(W )) = (−1)

(d−1)(d−2)
2 ad−10 ∈ R(W )×.

It remains now to prove Condition (3) of Conjecture 3.3. Since the lifting conjecture (Conjecture 3.4) is
satisfied by the basis B(W ), it suffices to prove Condition (3.1) instead. Since Tπ = sd in this case, this
amounts to proving that τ(sd−j) = 0, for every j = 1, . . . , d− 1. The result follows from the definition of τ ,
since sd−j ∈ B(W ) \ {1} for j = 1, . . . , d− 1. �

Corollary 4.3. Let W be a complex reflection group and let H ∈ A. The BMM symmetrising conjecture
holds for WH . In particular, HH(W ) admits a canonical symmetrising trace.

The following corollary of Proposition 4.2 gives a criterion for the validity of Conjecture 4.1 with respect
to minimal parabolic subgroups, and thus its overall validity for complex reflection groups of rank 2.

Corollary 4.4. Let W be a complex reflection group such that H(W ) admits a canonical symmetrising trace
τ . Let H ∈ A, and let s be a generator of HH(W ). If

(4.1) τ(sj) = 0 for all j = 1, . . . , |WH | − 1,

then τ |HH(W ) is the canonical symmetrising trace on HH(W ).

If now H,H ′ ∈ A belong to the same orbit under the action of W , then the parabolic subgroups WH

and WH′ are conjugate. Since τ is a trace map, Condition (4.1) holds for HH(W ) if and only if it holds for
HH′(W ). Hence, it is enough to verify its validity for only one hyperplane per hyperplane orbit. Following
Proposition 2.8, each hyperplane orbit includes the reflecting hyperplane of a generator of W . Therefore, if
Condition (4.1) is satisfied by every generator of H(W ) (or at least one generator per conjugacy class), then
the parabolic symmetrising trace conjecture holds for all minimal parabolic subgroups; in the particular case
where W is a complex reflection group of rank 2, this yields the validity of the parabolic symmetrising trace
conjecture.

Theorem 4.5. The parabolic symmetrising trace conjecture holds for G4, G5, G6, G7, G8, G12, G13, G22.

Proof. Let W ∈ {G4, G5, G6, G8, G12, G13, G22}. Condition (4.1) is satisfied by all generators of H(W ),
because all required powers of the generators belong to the good basis B(W ) considered in [BCCK, BCC,
MalMi], for which we have τ(b) = δ1b for all b ∈ B(W ) (in the case of G8, this is true for one of the two
generators, but the two generators are conjugate). For W = G7, this is also the case for the two generators
that belong to B(G7). However, for the third generator s (as denoted in [BCCK], later in this paper we
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denote it by s1), we only need to check that τ(s) = 0. Since s is written as a linear combination of elements
of B(G7) \ {1} (see [BCCK, §4.2.4]), we obtain that τ(s) = 0, as required. �

4.2. The parabolic freeness conjecture. The following conjecture was later stated by Malle and Rouquier
in their article on families of characters for complex reflection groups [MalRo, Conjecture 2.1]:

Conjecture 4.6 (The parabolic freeness conjecture). For each parabolic subgroup WI of W , the algebra
H(W ) is free as a left and right HI(W )-module of rank |W |/|WI |.

Schönnenbeck [Sch, Lemma 1.4.3] has shown that if Conjecture 4.1 is true, then it is enough to prove
Conjecture 4.6 only “from the left”. However, as Marin pointed out to us with the following proposition,
even without the validity of Conjecture 4.1, it is enough to prove the parabolic freeness conjecture only “from
one side”.

Proposition 4.7 (Marin). For each parabolic subgroup WI of W , the algebra H(W ) is free as a left HI(W )-
module of finite rank r if and only if the algebra H(W ) is free as a right HI(W )-module of finite rank r.
Moreover, r = |W |/|WI |.

Proof. Let ∗ : R(W )→ R(W ) be the ring automorphism given by uC,j 7→ u−1C,j , which we have seen already in

Conjecture 3.3(3). The group automorphism B(W )→ B(W )op defined by b 7→ b−1 induces an R(W )-algebra

automorphism ιop : R(W )[B(W )]
∼−→ (R(W )[B(W )])op = R(W )[B(W )op].

Let now J denote the 2-sided ideal of R(W )[B(W )] generated by the elements
∏eC
j=1(s−uC,j) as in (2.1).

We have:

ιop

 eC∏
j=1

(s− uC,j)

 =

eC∏
j=1

(s−1 − uC,j) =

eC∏
j=1

uC,js
−1(u−1C,j − s) = (−s)−eCuC,1uC,2 . . . uC,eC

eC∏
j=1

(s− u−1C,j)

and so ιop(J ) is the 2-sided ideal of (R(W )[B(W )])op generated by
∏eC
j=1(s−u−1C,j). Hence, ιop(J ) = (J op)∗,

where J op denotes the 2-sided ideal of R(W )[B(W )op] generated by the elements
∏eC
j=1(s − uC,j). Since

R(W )[B(W )op]/J op = H(W )op (see [BMM, 1.30(a)]), we have:

R(W )[B(W )op] R(W )[B(W )op] R(W )[B(W )]

H(W )op R(W )[B(W )op]/(J op)∗ = R(W )[B(W )op]/ιop(J ) H(W )

∗ (ιop)−1

∼ ∼

The composition ψ : H(W )op → H(W ) is a ring automorphism which maps HI(W )op onto HI(W ).
Now assume that H(W ) is a free left HI(W )-module of rank r <∞. Then there exists a basis B of H(W )

with |B| = r such that H(W ) ∼=
⊕

b∈BHI(W )b as Z-modules. We apply now the automorphism ψ−1 and,
using the fact that H(W )op ∼= H(W ) as Z-modules, we obtain:

H(W ) ∼=
⊕
b∈B

HI(W )opψ−1(b) ∼=
⊕
b∈B

ψ−1(b)HI(W ).

Hence, H(W ) is a free right HI(W )-module of rank r <∞. The converse is similar.
We now specialise H(W ) ∼=

⊕
b∈BHI(W )b to Z[W ] and we obtain that Z[W ] ∼=

⊕
b∈B Z[WI ]b, whence

r = |W |/|WI |.
�

Thanks to Proposition 4.7, there is an equivalent version of Conjecture 4.6:

Conjecture 4.8 (The one-sided parabolic freeness conjecture). For each parabolic subgroup WI of W , the
algebra H(W ) is free as a left or right HI(W )-module of finite rank.

Conjecture 4.8 holds for all real reflection groups [GePf, §4.4.7, Relation (b)]. For the infinite family
G(de, e, n), it has been proved for the parabolic subgroups of type G(de, e, n− 1) [Sch, Theorem 2.4.21].

Our aim in the rest of the paper will be to prove the parabolic freeness conjecture for the exceptional
groups of rank 2 that we studied in [BCCK] and [BCC]. If W is a complex reflection group of rank 2, then
all its non-trivial proper parabolic subgroups are of the form WH for some H ∈ A. As for the parabolic
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symmetrising trace conjecture, due to Proposition 2.8, it is enough to prove the parabolic freeness conjecture
for every parabolic subgroup generated by a generator of W (or at least a generator per conjugacy class).
Let now s be a generator of H(W ) and let H be the reflecting hyperplane of the image of s in W . For H(W )
to be a free left HH(W )-module of rank r = |W |/|WH |, it is enough to find a subset Bl

s(W ) of H(W ), with
|Bl

s(W )| = r, such that the set

(4.2) Pl
s(W ) := {sjb | j = 0, . . . , |WH | − 1, b ∈ Bl

s(W )}

is a basis of H(W ) as an R(W )-module. Then Bl
s(W ) is a basis of H(W ) as a left HH(W )-module. We call

the set Pl
s(W ) a left parabolic basis of H(W ) with respect to the generator s. We can similarly define Br

s(W )
and Pr

s(W ) when considering H(W ) as a right HH(W )-module.
As we explained in the last paragraph of Section 3.3, the GAP3 program that we created allows us to

check whether any subset of the Hecke algebra H(W ) consisting of |W | elements is a basis of H(W ) as an
R(W )-module, for W ∈ {G4, G5, G6, G7, G8, G13}. So, in the next section, we will explain how we came up
with good candidates for left and right parabolic bases for these groups, thus proving directly the original
parabolic freeness conjecture.

4.3. Finding parabolic bases. From now on, for any group G, we will denote by G the quotient G/Z(G).
For every g ∈ G, we will denote by ḡ its image under the natural surjection G→ G.

Let W be an exceptional irreducible complex reflection group of rank 2. Following the Shephard–Todd
classification, this means that W is one of the groups G4, G5, . . . , G22. By [LeTa, Chapter 6], we know that
these groups divided into 3 smaller families, according to whether the group W is the tetrahedral group
(which is the alternating group A4), octahedral group (which is the symmetric group S4), or icosahedral
group (which is the alternating group A5). More precisely, we have the tetrahedral family, which includes the
groups G4, . . . , G7, the octahedral family, which includes the groups G8, . . . , G15, and the icosahedral family,
which includes the rest. In each family, there is a maximal group of order |W |2 and all the other groups are
its subgroups. These are the groups G7, G11 and G19. Moreover, the group W is isomorphic to the subgroup
of a finite Coxeter group C of rank 3 (of type A3, B3 and H3 for the tetrahedral, octahedral and icosahedral
family respectively), consisting of the elements of even Coxeter length.

We saw in Sections 2.1 and 2.3 that every complex reflection group has a Coxeter-like presentation and
that its associated braid group has an Artin-like presentation. We call this the BMR presentation, due to
Broué, Malle and Rouquier. In [ER2, §6.1], Etingof and Rains gave different presentations for the exceptional
groups of rank 2 and their associated braid groups, based on the BMR presentations of the maximal groups
G7, G11 and G19. We call these the ER presentations. In [Cha2, Appendix A], the first author gives the two
presentations for every W and B(W ), as well as the isomorphisms between the BMR and ER presentations.
Notice that for the maximal groups the ER presentations coincide with the BMR presentations. Moreover,
the number of generators in the ER presentation is always 3, while in the BMR presentation it can be either
2 (for well-generated groups, such as G8) or 3 (for not well-generated groups, such as G7 or G13).

4.3.1. Deformed Coxeter group algebras. Let W be an exceptional group of rank 2 and let (C, S) be a finite

Coxeter system of rank 3 with S = {y1, y2, y3}. We set mij := myiyj and Z̃ := Z[exp(2πi/mij)]. In [ER1,

§2], Etingof and Rains defined a Z̃-algebra A(C) associated to C, with a presentation given by:

• generators: Y1, Y2, Y3, tij,k, where i, j ∈ {1, 2, 3}, i 6= j and k ∈ Z/mijZ;

• relations: Y 2
i = 1, t−1ij,k = tji,−k,

mij∏
k=1

(YiYj − tij,k) = 0, tij,kYr = Yrtij,k, tij,kti′j′,k′ = ti′j′,k′tij,k.

Let RC := Z̃[t±1ij,k] = Z̃[tij,k]. The algebra A(C) is naturally an RC-algebra. The sub-RC-algebra A+(C)
generated by YiYj , for i 6= j, can be presented as follows:

• generators: Aij := YiYj , where i, j ∈ {1, 2, 3}, i 6= j;

• relations: A−1ij = Aji,
mij∏
k=1

(Aij − tij,k) = 0, AijAjlAli = 1, for #{i, j, l} = 3.

The following result is [Cha2, Lemma 2.6] and gives a nice presentation of the algebra A+(C).
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Lemma 4.9. Let C be a finite Coxeter group of type A3, B3 or H3. We can present the RC-algebra A+(C)
as follows: 〈 (A13 − t13,1)(A13 − t13,2) = 0

A13, A32, A21 (A32 − t32,1)(A32 − t32,2)(A32 − t32,3) = 0, A13A32A21 = 1
(A21 − t21,1)(A21 − t21,2) . . . (A21 − t21,m) = 0

〉
,

where m is 3, 4 or 5 for each type respectively.

If w is a word in letters yi, we let Tw denote the corresponding word in Yi, an element of A(C). For every
x ∈W , let us choose a reduced word wx that represents x in C. We notice that Twx

is an element in A+(C),
since wx is reduced and W contains the elements of C of even Coxeter length.

Example 4.10. Let W be one of the exceptional groups belonging to the octahedral family, meaning that
W ∼= S4. As we mentioned before, W is isomorphic to the subgroup of B3 consisting of elements of even
Coxeter length. For the reduced word wx = y1y2y1y3, we have that Twx

= A12A13 = A−121 A13.

We have the following result [ER1, Theorem 2.3(ii)]:

Theorem 4.11. The algebra A+(C) is generated as an RC-module by the elements Twx , x ∈W .

We will now see how the algebra A+(C) relates with the generic Hecke algebraH(W ). Let X be an indeter-

minate. Following the notations of [Mar2, §2.2 ], we set RZ̃(W ) := R(W )⊗Z Z̃, R+

Z̃ (W ) := RZ̃(W )[X,X−1],

and HZ̃(W ) := H(W ) ⊗R(W ) RZ̃(W ). We have that the algebra HZ̃(W ) inherits a structure of R+

Z̃ (W )-

module, with the action of X described in [Mar2, Proposition 2.10] or [Cha2, Proposition 3.1]. Moreover,

through this action, the algebra HZ̃(W ) can be seen as a quotient of the group algebra R+

Z̃ (W )[B(W )]. The

following result [Cha2, Proposition 3.2] relates the algebra A+(C) with the algebra HZ̃(W ).

Proposition 4.12. Let W be an exceptional group of rank 2, W /∈ {G13, G15}. There is a ring morphism
θ : RC � R+

Z̃ (W ) inducing a map Ψ : A+(C)⊗θ R+

Z̃ (W ) � HZ̃(W ) given by A13 7→ ᾱ, A32 7→ β̄, A21 7→ γ̄,

where α, β, γ denote the generators of B(W ) in the ER presentation.

Remark 4.13. If W ∈ {G13, G15}, there exists a similar map Ψ, but for a version of A+(C) with specialised
parameters [Cha2, Proposition 3.3].

4.3.2. Finding bases. For every exceptional group of rank 2 we call the surjection Ψ the ER surjection
associated to W . In [Cha2], the first author used the ER surjection to construct bases for the generic Hecke
algebras of the groups G4, . . . , G16, thus proving the BMR freeness conjecture. We will use here similar
techniques in order to construct parabolic bases for the generic Hecke algebras of the groups G4, G5, G6,
G7, G8 and G13, thus proving the parabolic freeness conjecture.

Combining Theorem 4.11 and Proposition 4.12, we have that the elements Ψ(Twx), x ∈ W , generate the
algebra HZ̃(W ) as an R+

Z̃ (W )-module. Motivated by this result, we construct some elements inside the braid

group B(W ) and we prove that their images inside H(W ) form a parabolic basis. We construct these braid
elements as follows:

• We represent each element x ∈W with a word w̃x (not necessarily reduced). We choose w̃x in such
a way so that it can be considered as a word in letters aij := yiyj with i 6= j (for example, we can

take w̃x = y1y2y2y3 = a12a23, but not w̃x = y2y2y1y3). This is possible, since W is the subgroup of
C that contains the elements of even Coxeter length. We take 1̃ = 1.

• Using the fact that a−1ij = aji, we write w̃x as a word in letters a13, a32, a21, and their inverses.

• Inspired by the ER-surjection, we define an element b̄w̃x
inside B(W ) by replacing a13, a32 and a21

with ᾱ, β̄ and γ̄ respectively, where α, β, γ denote the generators of B(W ) in the ER presentation.
• We can use the group isomorphism φ2 described in [Cha2, Appendix A, Table 2] to write the elements
α, β, γ in the BMR presentation. Hence, if we denote by Γ(W ) the set of generators of B(W ) in the
BMR presentation, we can also consider the element b̄w̃x

as being a product of elements ḡ, where
g ∈ Γ(W ). We denote this last element by v̄x.

• Let ḡm1
1 ḡm2

2 . . . ḡmr
r be the aforementioned factorisation of v̄x, with gi ∈ Γ(W ) and mi ∈ Z. Let f :

B(W )→ B(W ) be a set theoretic section such that f(ḡm1
1 ḡm2

2 . . . ḡmr
r ) = f(ḡ1)m1f(ḡ2)m2 . . . f(ḡr)

mr

and f(ḡ) = g, for every g ∈ Γ(W ). We set vx := f(v̄x).
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Recall now that Z(B(W )) is a cyclic group, generated by the element β. Let z denote the image of β
inside H(W ), while we keep the notation vx for the image of vx inside H(W ). The set C := ∪x∈WCvx , where

Cvx := {zkvx | k = 0, 1, . . . , |Z(W )| − 1} is a good candidate for a basis of H(W ) as an R(W )-module. By
construction, 1 ∈ C, so, in order to prove that the set C is indeed a basis, it is enough to prove that the set∑
h∈C R(W )h is an ideal of H(W ). This is the approach used in [Cha2], and it managed to produce bases

for all groups of the tetrahedral and the octahedral family. It has two main difficulties:

(1) The element w̃x has to be chosen appropriately.

(2) There are a lot of calculations involved (see [Cha2, Appendix B]), which, at least for the moment,
cannot be automated.

The choice of w̃x is a product of experimentation, combined with experience. The second difficulty, when it
comes to finding parabolic bases, can be solved for the groups that we studied in [BCCK] and [BCC] with
the use of our GAP3 program and the method that we discussed in the last paragraph of Section 3.3.

Finally, there is a third difficulty that we encountered when trying to find a parabolic basis that is also
good in the sense of §3.2: sometimes the set Cvx would not work for any of the choices for w̃x. This is a
problem similar to the one that we encountered in [BCCK], when we wanted to find a good basis in order
to prove the BMM symmetrising trace conjecture. The solution in both articles turns out to be the same.
We have to break the pattern. Thus, for some x ∈ W , we choose another word w̃′x 6= w̃x that represents
x in W . Using the same procedure as before, we define an element v′x ∈ B(W ). Then, in the definition of
C, we replace Cvx by (Cvx \ {vx}) ∪ {v′x}. Having a good parabolic basis can be useful for the proof of the
parabolic trace conjecture: if H(W ) admits a good parabolic basis with respect to a generator s, then s
satisfies Condition (4.1). Therefore, if H(W ) admits a good parabolic basis with respect to every generator
(or at least one generator per conjugacy class), then the parabolic trace conjecture holds.

In the next sections, we will present the choices of w̃x and w̃′x that we made in order to produce good
parabolic bases for groups G4, G5, G6, G7, G8 and G13. In the case of G7, the choice of these words was
also made so that we can easily obtain parabolic bases for G5 and G6. On the project’s webpage [Web], we
give more parabolic bases for G7 and G8: some that have a pattern but are not good, and some where the
pattern is broken simply so that all elements of the basis are positive words in the generators.

Remark 4.14. The GAP3 program expresses every element h ∈ C as a linear combination of elements of
the good basis B(W ) that we used to prove the BMM symmetrising trace conjecture in [BCCK] and [BCC].
The coefficient of 1 in this linear combination is τ(h). Given the construction of C, it is enough to verify
that τ(h) = δ1h in order to show that C satisfies the lifting conjecture (Conjecture 3.4). This amounts to
checking that the first row of the change of basis matrix is (1, 0, 0, . . . , 0) (assuming that 1 is taken to be the
first element of C).

From now on, we will use the notation of (4.2). Namely, for any generator s ofH(W ), Bl
s(W ) (respectively

Br
s(W )) will denote a basis of H(W ) as a left (respectively right) module over the corresponding parabolic

Hecke subalgebra such that

Pl
s(W ) = {sjb | j = 0, . . . , |WH | − 1, b ∈ Bl

s(W )} and Pr
s(W ) = {bsj | j = 0, . . . , |WH | − 1, b ∈ Br

s(W )}
are respectively left and right parabolic bases of H(W ) with respect to s.

4.3.3. The tetrahedral family. We recall that the tetrahedral family consists of the groups G4, . . . , G7, with
G7 being the maximal group in this family. The generic Hecke algebra of each group in this family can be
seen as a subalgebra of H(G7) for some specialisation of the parameters. We will use this fact in order to
construct parabolic bases for G5 and G6 from those for G7. However, it is much simpler to deal with G4 on
its own to start with.

The case of G4 : The generic Hecke algebra of G4 is the R(G4)-algebra

H(G4) =

〈
s1, s2

∣∣∣∣∣ s1s2s1 = s2s1s2,
3∏
i=1

(s1 − ui) =

3∏
i=1

(s2 − ui) = 0

〉
where R(G4) = Z[u±11 , u±12 , u±13 ] (note that s1 and s2 are conjugate). If we take

Bl
s1(G4) = {1, z, s2, s22, s2s1, s22s1, s2s21, s22s21} and Br

s1(G4) = {1, z, s2, s22, s1s2, s1s22, s21s2, s21s22}
15



where z = (s1s2)3, then Pl
s1(G4) = Pr

s1(G4) = B(G4), the basis of [BCCK, §4.1.1] that we used for proving
the BMM symmetrising trace conjecture. Given the symmetric role played by the generators s1 and s2 in
the presentation of H(G4), replacing s1 with s2 and s2 with s1 inside Pl

s1(G4) and Pr
s1(G4) yields Pl

s2(G4)
and Pr

s2(G4) respectively.
Other parabolic bases for H(G4) with respect to s1 or s2 can be excerpted from [Mar1, Corollary 3.3] (for

example, one is explicitly given in [MarWa, Proposition 2.1]). Some of them satisfy the lifting conjecture,
some of them do not (the one in [MarWa, Proposition 2.1] does not). Since the generators of G4 are conju-
gate, and due to Proposition 2.8, the existence of a parabolic basis with respect to one generator implies the
validity of Conjecture 4.8, which is equivalent to the parabolic freeness conjecture.

The case of G7 : The generic Hecke algebra of G7 is the R(G7)-algebra

H(G7) =

〈
s1, s2, s3

∣∣∣∣∣∣ s1s2s3 = s2s3s1 = s3s1s2,

2∏
i=1

(s1 − us1,i) =

3∏
j=1

(s2 − us2,j) =

3∏
k=1

(s3 − us3,k) = 0

〉

where R(G7) = Z[u±1s1,1, u
±1
s1,2

, u±1s2,1, u
±1
s2,2

, u±1s2,3, u
±1
s3,1

, u±1s3,2, u
±1
s3,3

]. If we take

Br
s2(G7) =

(
{zk, zks3, zks23, zks2s−13 | k = 0, 1, . . . , 11} \ {s2s−13 }

)
∪ {s2s23},

where z = s1s2s3, then Pr
s2(G7) = B(G7), the basis of [BCCK, §4.2.4] that we used for proving the BMM

symmetrising trace conjecture. Even without replacing s2s
−1
3 by s2s

2
3, we obtain a right parabolic basis with

respect to s2, which does not satisfy though the lifting conjecture for τ (this is in fact the basis for H(G7)
constructed in [Cha2] with the procedure described in §4.3.2).

We will now use the procedure of §4.3.2 to construct the remaining parabolic bases for H(G7), and we
will explicitly describe the steps for the right parabolic bases. For G7, we recall that the ER presentation
coincides with the BMR presentation, so we have Ψ(A13) = s̄1, Ψ(A32) = s̄2, Ψ(A21) = s̄3. Moreover, G7 is
isomorphic to the subgroup of elements of even Coxeter length of the group

A3 = 〈y1, y2, y3 | y21 = y22 = y23 = (y1y3)2 = (y3y2)3 = (y2y1)3 = 1〉 ∼= S4.

The elements of G7 can be represented with the following reduced words in letters y1, y2, y3:

(4.3) 1, y1y2, y2y1, y2y3, y3y2, y1y3, y2y1y3y2, y2y3y2y1, y1y3y2y1, y1y2y1y3, y1y2y3y2, y1y2y1y3y2y1.

First, we will apply the procedure of §4.3.2 to construct a right parabolic basis with respect to s1. Thus,
for every element x ∈ G7, we will try to find a word w̃x in letters y1, y2, y3 that represents x in G7, so that

• the set P1 := {x ∈ G7 | w̃x does not end in y1y3} has 6 elements;

• the set P2 := {x ∈ G7 | w̃x = w̃x′y1y3 for some x′ ∈ P1} has 6 elements.

We start with the elements that have reduced expressions ending in y1y3. These belong to P2 and they are:

• y1y3: We take fiy1y3 = y1y3 = a13.

• y1y2y1y3: In order to avoid a−121 appearing, we take ‚�y1y2y1y3 = y2y1y2y1y1y3 = a221a13.

• y2y3y2y1: We have y2y3y2y1 = y3y2y3y1 = y3y2y1y3. We take ‚�y3y2y1y3 = y3y2y1y3 = a32a13.

• y1y2y1y3y2y1: We have y1y2y1y3y2y1 = y2y1y2y3y2y1 = y2y1y3y2y3y1 = y2y1y3y2y1y3. We takeÂ�y2y1y3y2y1y3 = y2y1y3y2y1y3 = a21a32a13.

We multiply the above elements with y3y1 from the right (using the reduced expression ending in y1y3 yields
reduced expressions) and obtain the following elements of P1:

• 1: We take 1̃ = 1.

• y1y2: We take fiy1y2 = y2y1y2y1 = a221.

• y3y2: We take fiy3y2 = y3y2 = a32.

• y2y1y3y2: We take ‚�y2y1y3y2 = y2y1y3y2 = a21a32.

It remains to deal with the last 4 elements:

• y2y1: We take fiy2y1 = y2y1 = a21.

• y2y3: We take fiy2y3 = y2y1y1y3 = a21a13.

• y1y3y2y1: We have y1y3y2y1 = y3y1y2y1 = y3y2y1y2. We take ‚�y3y2y1y2 = y3y2y1y2 = a32a
−1
21 .
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• y1y2y3y2: We have y1y2y3y2 = y1y3y2y3 = y3y1y2y3. We take ‚�y3y1y2y3 = y3y2y1y2y1y3 = a32a
−1
21 a13.

We note that in the last two elements, we cannot avoid a−121 if we want to obtain a basis.
We now construct the elements v̄x by replacing a13, a32 and a21 with s̄1, s̄2 and s̄3 respectively. We have

the following set, consisting of the elements v̄x:

{1, s̄1, s̄2, s̄2s̄1, s̄3, s̄3s̄1, s̄32, s̄32s̄1, s̄3s̄2, s̄3s̄2s̄1, s̄2s̄3−1, s̄2s̄3−1s̄1}.

The set of the elements vx is now the following:

{1, s1, s2, s2s1, s3, s3s1, s23, s23s1, s3s2, s3s2s1, s2s−13 , s2s
−1
3 s1}.

If we take

Br
s1(G7) = {zk, zks2, zks3, zks23, zks3s2, zks2s−13 | k = 0, 1, . . . , 11},

then the GAP3 program yields that the corresponding Pr
s1(G7) is a good right parabolic basis with respect

to s1.
We will now construct a right parabolic basis with respect to s3. For every element x ∈ G7, we will try

to find a word w̃x in letters y1, y2, y3 that represents x in G7, so that

• the set P1 := {x ∈ G7 | w̃x does not end in y2y1} has 4 elements;

• the set P2 := {x ∈ G7 | w̃x = w̃x′y2y1 for some x′ ∈ P1} has 4 elements;

• the set P3 := {x ∈ G7 | w̃x = w̃x′(y2y1)2 for some x′ ∈ P1} has 4 elements.

Since (y2y1)2 = y1y2, we start with the elements that have reduced expressions ending in y1y2. These belong
to P3 and they are:

• y1y2: We take fiy1y2 = y2y1y2y1 = a221.

• y1y3y2y1: We have y1y3y2y1 = y3y1y2y1 = y3y2y1y2. We take ‚�y3y2y1y2 = y3y2y2y1y2y1 = a32a
2
21.

• y2y1y3y2: We have y2y1y3y2 = y2y3y1y2. In order to avoid a−132 appearing, we take ‚�y2y3y1y2 =
y3y2y3y2y2y1y2y1 = a232a

2
21.

• y1y2y1y3y2y1: We have y1y2y1y3y2y1 = y1y2y3y1y2y1 = y1y2y3y2y1y2. We take Â�y1y2y3y2y1y2 =
y1y2y3y2y2y1y2y1 = a−121 a32a

2
21.

We multiply the above elements with y1y2 from the right and obtain the following elements of P2:

• y2y1: We take fiy2y1 = y2y1 = a21.

• y1y3: We take fiy1y3 = y3y2y2y1 = a32a21.

• y2y3y2y1: We take ‚�y2y3y2y1 = y3y2y3y2y2y1 = a232a21.

• y1y2y1y3: We take ‚�y1y2y1y3 = y1y2y3y2y2y1 = a−121 a32a21.

Finally, we multiply the first 4 elements with y1y2y1y2 = y2y1 from the right (using the reduced expression
ending in y1y2 yields reduced expressions) and obtain the following elements of P1:

• 1: We take 1̃ = 1.

• y3y2: We take fiy3y2 = y3y2 = a32.

• y2y3: We take fiy2y3 = y3y2y3y2 = a232.

• y1y2y3y2: We take ‚�y1y2y3y2 = y1y2y3y2 = a−121 a32.

We now construct the elements vx as before, by replacing a13, a32 and a21 with s1, s2 and s3 respectively
(we skip the construction of the intermediate v̄x, which is implied). We have the following set, consisting of
the elements vx:

{1, s3, s23, s2, s2s3, s2s23, s22, s22s3, s22s23, s−13 s2, s
−1
3 s2s3, s

−1
3 s2s

2
3}.

If we take

Br
s3(G7) = {zk, zks2, zks22, zks−13 s2 | k = 0, 1, . . . , 11},

then the GAP3 program yields that the corresponding Pr
s3(G7) is a good right parabolic basis with respect

to s3.
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Using now similar techniques, we have found good left parabolic bases Pl
si(G7) for i = 1, 2, 3. These

correspond to:

Bl
s1(G7) = {zk, zks2, zks3, zks22, zks3s2, zks−12 s3 | k = 0, . . . , 11},

Bl
s2(G7) =

(
{zk, zks3, zks23, zks−13 s2 | k = 0, . . . , 11} \ {s−13 s2}

)
∪ {s23s2},

Bl
s3(G7) = {zk, zks2, zks22, zks2s−13 | k = 0, . . . , 11}.

We now observe that the bases Pr
s1(G7) and Pl

s1(G7) are both examples of a good basis that contains
the subset

{zk, zls1, zks2, zks3 | k = 0, 1, . . . , 11, l = 0, 1, . . . , 5}.
The existence of such a basis was assumed by Malle for the determination of the Schur elements with respect
to the canonical symmetrising trace for all groups of the tetrahedral family in [Mal]. We have thus obtained
the following:

Theorem 4.15. The Schur elements with respect to the canonical symmetrising trace for groups G4, G5,
G6 and G7 are the ones computed in [Mal, §4B].

Finally, we will use the left and right parabolic bases for H(G7) described above in order to construct
left and right parabolic bases for H(G5) and H(G6). We first need to prove the following lemma about the
element z:

Lemma 4.16. For the central element z = s1s2s3 of H(G7) and for every k ∈ N we have:

(a) zk = sk1(s2s3)k = (s2s3)ksk1 .

(b) zk = sk2(s3s1)k = (s3s1)ksk2 .

(c) zk = sk3(s1s2)k = (s1s2)ksk3 .

Proof. We prove the three properties by induction to k. For k = 1, these are given by the braid relation
s1s2s3 = s2s3s1 = s3s1s2. We now assume, for (a), that zk−1 = sk−11 (s2s3)k−1. We have zk = zk−1s1s2s3 =

s1z
k−1s2s3 = s1s

k−1
1 (s2s3)k−1s2s3 = sk1(s2s3)k. Since s1 commutes with s2s3, we also have zk = (s2s3)ksk1 .

Similarly we prove (b) and (c). �

The case of G6 : Let θ : R(G7) 7→ Z[u±1s1,0, u
±1
s1,1

, u±1s3,0, u
±1
s3,1

, u±1s3,2] ∼= R(G6) be a specialisation, defined by

(us1,1, us1,2; us2,1, us2,2, us2,3; us3,1, us3,2, us3,3) 7→ (us1,1, us1,2; 1, ζ3, ζ
2
3 ; us3,1, us3,2, us3,1),

where ζ3 denotes a primitive cubic root of unity. Let A := H(G7)⊗θ R(G6), that is,

A =

〈
s1, s2, s3

∣∣∣∣∣ s1s2s3 = s2s3s1 = s3s1s2, s
3
2 = 1,

2∏
i=1

(s1 − us1,i) =

3∏
k=1

(s3 − us3,k) = 0

〉
,

and let Ā be the subalgebra of A generated by s1 and s3. Since the BMR freeness conjecture holds for
all exceptional groups of the tetrahedral family by [Cha2], we have that Ā is isomorphic to H(G6) [Mal,
Proposition 4.2 & Table 4.6] and that

(4.4) A =

2⊕
j=0

sj2Ā =

2⊕
j=0

Āsj2

(see [Mal, §4] or [Chl, Appendix A.1]).
Let us now explain how we obtain a right parabolic basis Pr

s1(G6) from Pr
s1(G7). Let A1 denote the

subalgebra of A generated by s1. The algebra A is generated as a right A1-module by the set

Br
s1(G7) = {zk, zks2, zks3, zks23, zks3s2, zks2s−13 | k = 0, 1, . . . , 11},

where z = s1s2s3. Using the fact that s32 = 1, Lemma 4.16 yields:

zk =


(s3s1)k, for k = 0, 3, 6, 9,

(s3s1)ks2, for k = 1, 4, 7, 10,

(s3s1)ks22, for k = 2, 5, 8, 11.
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Since the sum in (4.4) is direct, the subalgebra Ā of A is generated as a right A1-module by the set

B := {(s3s1)k, (s3s1)ks3, (s3s1)ks23 | k = 0, 3, 6, 9} ∪ {(s3s1)k, s3(s3s1)k, (s3s1)ks−13 | k = 2, 5, 8, 11}.
As a consequence, the set {bsi1 | i = 0, 1, b ∈ B} generates Ā as an R(G6)-module. Now, the rank of
H(G6) ∼= Ā as a free R(G6)-module is equal to |G6| = 48 = 2|B|. This implies that the set B is linearly
independent, and it is the set Br

s1(G6) that we are looking for. Moreover, since Pr
s1(G6) ⊆ Pr

s1(G7), and
the canonical symmetrising trace on H(G6) is the restriction of the canonical symmetrising trace on H(G7)
[Mal, Lemme 4.3], the right parabolic basis Pr

s1(G6) is also a good basis.
Similarly, we obtain good parabolic bases by taking:

Bl
s1(G6) = {(s3s1)k, (s3s1)ks3 | k = 0, 1, 3, 4, 6, 7, 9, 10} ∪ {(s3s1)k, s3(s3s1)k | k = 2, 5, 8, 11},

Br
s3(G6) = {(s3s1)k | k = 0, . . . , 11} ∪ {s−13 (s3s1)k | k = 2, 5, 8, 11},

Bl
s3(G6) = {(s3s1)k | k = 0, . . . , 11} ∪ {(s3s1)ks−13 | k = 2, 5, 8, 11}.

The case of G5 : Let θ : R(G7) 7→ Z[u±1s2,1, u
±1
s2,2

, u±1s2,3, u
±1
s3,1

, u±1s3,2, u
±1
s3,3

] ∼= R(G5) be a specialisation, defined
by

(us1,1, us1,2; us2,1, us2,2, us2,3; us3,1, us3,2, us3,3) 7→ (1,−1; us2,1, us2,2, us2,3; us3,1, us3,2, us3,3).

Let A := H(G7)⊗θ R(G5), that is,

A =

〈
s1, s2, s3

∣∣∣∣∣∣ s1s2s3 = s2s3s1 = s3s1s2, s
2
1 = 1,

3∏
j=1

(s2 − us2,j) =

3∏
k=1

(s3 − us3,k) = 0

〉
,

and let Ā be the subalgebra of A generated by s2 and s3. Since the BMR freeness conjecture holds for
all exceptional groups of the tetrahedral family by [Cha2], we have that Ā is isomorphic to H(G5) [Mal,
Proposition 4.2 & Table 4.6] and that

(4.5) A =

1⊕
i=0

si1Ā =

1⊕
i=0

Āsi1

(see [Mal, §4] or [Chl, Appendix A.1]).
As in the case of G6, we will construct parabolic bases for H(G5) from the ones we constructed for H(G7).

We will use the example of the right parabolic basis with respect to s2 to illustrate our method.
Let A2 denote the subalgebra of A generated by s2. The algebra A is generated as a right A2-module by

the set
Br
s2(G7) =

(
{zk, zks3, zks23, zks2s−13 | k = 0, 1, . . . , 11} \ {s2s−13 }

)
∪ {s2s23},

where z = s1s2s3. Using the fact that s21 = 1, Lemma 4.16 yields:

(4.6) zk =

{
(s2s3)k, for k = 0, 2, 4, 6, 8, 10,

s1(s2s3)k, for k = 1, 3, 5, 7, 9, 11.

Since the sum in (4.5) is direct, the subalgebra Ā of A is generated as a right A2-module by the set

B :=
(
{(s2s3)k, (s2s3)ks3, (s2s3)ks23, (s2s3)ks2s

−1
3 | k = 0, 2, 4, 6, 8, 10} \ {s2s−13 }

)
∪ {s2s23}.

As a consequence, the set {bsj2 | j = 0, 1, 2, b ∈ B} generates Ā as an R(G5)-module. Now, the rank of
H(G5) ∼= Ā as a free R(G5)-module is equal to |G5| = 72 = 3|B|. This implies that the set B is linearly
independent, and it is the set Br

s2(G5) that we are looking for. Moreover, since Pr
s2(G5) ⊆ Pr

s2(G7), and
the canonical symmetrising trace on H(G5) is the restriction of the canonical symmetrising trace on H(G7)
[Mal, Lemme 4.3], the right parabolic basis Pr

s2(G5) is also a good basis.
Similarly, we obtain good parabolic bases by taking:

Bl
s2(G5) =

(
{(s2s3)k, (s2s3)ks3, (s2s3)ks23, (s2s3)ks−13 s2 | k = 0, 2, 4, 6, 8, 10} \ {s−13 s2}

)
∪ {s23s2},

Br
s3(G5) = {(s2s3)k, (s2s3)ks2, (s2s3)ks22, (s2s3)ks−13 s2 | k = 0, 2, 4, 6, 8, 10},

Bl
s3(G5) = {(s2s3)k, (s2s3)ks2, (s2s3)ks22, (s2s3)ks2s

−1
3 | k = 0, 2, 4, 6, 8, 10}.
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4.3.4. The octahedral family. The octahedral family consists of the groups G8, . . . , G15, with the maximal
group being G11. Since we are not able yet to deal with group G11, we cannot apply here the same method
that we used for G5 and G6, so we will deal with G8 and G13 on their own. For both groups though, as
for all the groups of the octahedral family, the associated group Gn (n = 8, . . . , 15) is isomorphic to the
subgroup of elements of even Coxeter length of the group

B3 = 〈y1, y2, y3 | y21 = y22 = y23 = (y1y3)2 = (y3y2)3 = (y2y1)4 = 1〉 ∼= (Z/2Z)3 oS3.

The elements of Gn can be represented with the following reduced words in letters y1, y2, y3:

(4.7)
1, y3y2, y2y1, y2y3, y1y3, y1y2, y3y2y1y2, y2y1y2y3, y2y3y2y1, y2y1y3y2, y2y1y2y1, y1y3y2y1,
y1y2y1y3, y1y2y3y2, y2y3y2y1y2y3, y2y1y2y3y2y1, y2y1y3y2y1y2, y1y3y2y1y2y3, y1y2y1y2y3y2,

y1y2y1y3y2y1, y1y2y3y2y1y2, y2y1y2y3y2y1y2y3, y1y2y1y2y3y2y1y2, y1y2y1y3y2y1y2y3.

The case of G8 : The generic Hecke algebra of G8 is the R(G8)-algebra

H(G8) =

〈
s1, s2

∣∣∣∣∣ s1s2s1 = s2s1s2,

4∏
i=1

(s1 − ui) =

4∏
i=1

(s2 − ui) = 0

〉
.

where R(G8) = Z[u±11 , u±12 , u±13 , u±14 ] (note that s1 and s2 are conjugate). If we take

Bl
s1(G8) = {zk, zks2, zks22, zks2s1, zks2s21, zks2s31 | k = 0, 1, 2, 3},

where z = (s1s2)3, then Pl
s1(G8) = B(G8), the basis of [BCCK, §4.2.1] that we used for proving the BMM

symmetrising trace conjecture.
We will now use the procedure of §4.3.2 to construct Pr

s1(G8). For G8, the isomorphism φ2 between the
ER and BMR presentation is given by:

φ2(α) = (s1s2s1)−1, φ2(β) = s1s2, and φ2(γ) = s1.

Hence, s1 = φ2(γ) and s2 = φ2(γ−1β). We recall that Ψ(A21) = γ̄. Since we look for a right parabolic basis
with respect to s1, for every element x ∈ G8, we will try to find a word w̃x in letters y1, y2 and y3 that
represents x in G8, so that

• the set P1 := {x ∈ G8 | w̃x does not end in y2y1} has 6 elements;

• the set P2 := {x ∈ G8 | w̃x = w̃x′y2y1 for some x′ ∈ P1} has 6 elements;

• the set P3 := {x ∈ G8 | w̃x = w̃x′(y2y1)2 for some x′ ∈ P1} has 6 elements;

• the set P4 := {x ∈ G8 | w̃x = w̃x′(y2y1)3 for some x′ ∈ P1} has 6 elements.

Since (y2y1)3 = y1y2, we start with some elements that have reduced expressions ending in y1y2 and belong
to P4. These are:

• y1y2: We take fiy1y2 = y2y1y2y1y2y1 = a321.

• y3y2y1y2: We take ‚�y3y2y1y2 = y3y2y2y1y2y1y2y1 = a32a
3
21.

• y1y2y3y2y1y2: We take Â�y1y2y3y2y1y2 = y1y2y3y2y2y1y2y1y2y1 = a−121 a32a
3
21.

We multiply the above elements with y1y2 from the right and obtain the following elements of P3:

• y2y1y2y1: We take ‚�y2y1y2y1 = y2y1y2y1 = a221.

• y1y3y2y1: We take ‚�y1y3y2y1 = y3y2y2y1y2y1 = a32a
2
21.

• y1y2y1y3y2y1: We take Â�y1y2y1y3y2y1 = y1y2y3y2y2y1y2y1 = a−121 a32a
2
21.

We then multiply the first 3 elements with (y1y2)2 = (y2y1)2 from the right and obtain the following elements
of P2:

• y2y1: We take fiy2y1 = y2y1 = a21.

• y1y3: We take fiy1y3 = y3y2y2y1 = a32a21.

• y1y2y1y3: We take ‚�y1y2y1y3 = y1y2y3y2y2y1 = a−121 a32a21.

Finally, we multiply the first 3 elements with (y1y2)3 = y2y1 from the right (using the reduced expression
ending in y1y2 yields reduced expressions) and obtain the following elements of P1:
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• 1: We take 1̃ = 1.

• y3y2: We take fiy3y2 = y3y2 = a32.

• y1y2y3y2: We take ‚�y1y2y3y2 = y1y2y3y2 = a−121 a32.

For the remaining elements we choose the following words w̃x:

• (y1y2y3y2)2, (y1y2y3y2)2(y2y1), (y1y2y3y2)2(y2y1)2, (y1y2y3y2)2(y2y1)3.

• (y1y2y3y2)3, (y1y2y3y2)3(y2y1), (y1y2y3y2)3(y2y1)2, (y1y2y3y2)3(y2y1)3.

• y2y1y2y3y2y1, y2y1y2y3y2y1(y2y1), y2y1y2y3y2y1(y2y1)2, y2y1y2y3y2y1(y2y1)3.

We now construct the elements vx as before, by replacing in every word w̃x the products y1y3, y3y2 and
y2y1 with (s1s2s1)−1, s1s2 and s1 respectively (using also inverses, if necessary). We have the following set,
consisting of the elements vx:{

1, s1, s
2
1, s

3
1, s2, s2s1, s2s

2
1, s2s

3
1, s

2
2, s

2
2s1, s

2
2s

2
1, s

2
2s

3
1, s

3
2, s

3
2s1, s

3
2s

2
1, s

3
2s

3
1,

s1s2, s1s2s1, s1s2s
2
1, s1s2s

3
1, s1s

−1
2 , s1s

−1
2 s1, s1s

−1
2 s21, s1s

−1
2 s31

}
If we take B̃r

s1(G8) = {zk, zks2, zks22, zks32, zks1s2, zks1s−12 | k = 0, 1, 2, 3}, then the GAP3 program yields

that the corresponding P̃r
s1(G8) is a right parabolic basis with respect to s1, which does not satisfy though

the lifting conjecture. More precisely, τ(s1s
−1
2 s31) 6= 0. Therefore, if we want our basis to also satisfy

the lifting conjecture, we need to replace the element s1s
−1
2 s31. Since we want to preserve the parabolic

structure of the basis, we need to replace the elements s1s
−1
2 , s1s

−1
2 s1 and s1s

−1
2 s21 as well. All the afore-

mentioned elements come from the elements x ∈ G8 for which we have chosen the words w̃x as follows:
y2y1y2y3y2y1(y2y1)m (and, hence, vx = s1s

−1
2 s−11 s1s

m
1 = s1s

−1
2 sm1 ), for m = 0, 1, 2, 3. We notice that

y2y1y2y3y2y1 = y3y2y1y2y3y2y1y2y3y2. Therefore, we choose the following words w̃′x: y3y2y1y2y3y2y1y2y3y2(y1y2)m.
The corresponding elements v′x are: s1s2s

−1
1 s1s2s

−1
1 s1s2s

m
1 = s1s

3
2s
m
1 , for m = 0, 1, 2, 3. If now we take

Br
s1(G8) =

(
{zk, zks2, zks22, zks32, zks1s2, zks1s−12 | k = 0, 1, 2, 3} \ {s1s−12 }

)
∪ {s1s32},

then the corresponding Pr
s1(G8) is a good right parabolic basis with respect to s1.

Using now similar techniques, we have found good parabolic bases with respect to s2. These correspond
to:

Bl
s2(G8) = {zk, zks1, zks21, zks31, zks1s2, zks1s−12 | k = 0, 1, 2, 3},

Br
s2(G8) =

(
{zk, zks1, zks21, zks31, zks2s1, zks2s−11 | k = 0, 1, 2, 3} \ {s2s−11 }

)
∪ {s2s31}.

One can notice that Br
s2(G8) can be obtained from Br

s1(G8) by replacing everywhere s1 with s2 and s2
with s1. In fact, given the symmetric role played by the generators s1 and s2 in the presentation of H(G8),
replacing s1 with s2 and s2 with s1 inside a good parabolic basis with respect to one generator yields a good
parabolic basis with respect to the other.

The case of G13 : The generic Hecke algebra of G13 is the R(G13)-algebra

H(G13) =

〈
s1, s2, s3

∣∣∣∣∣ s2s3s1s2 = s3s1s2s3, s1s2s3s1s2 = s3s1s2s3s1,∏2
i=1(s1 − us1,i) =

∏2
j=1(s2 − us2,j) =

∏2
j=1(s3 − us2,j) = 0

〉
.

where R(G13) = Z[u±1s1,1, u
±1
s1,2

, u±1s2,1, u
±1
s2,2

] (notice that here s2 and s3 are conjugate). If we take

Br
s2(G13) =

{
zk, zks3, z

ks1, z
ks2s1, z

ks1s3, z
ks3s1, z

ks2s3,
zks2s1s3, z

ks2s3s1, z
ks1s2s1, z

ks1s2s3, z
ks3s2s1

k = 0, 1, 2, 3

}
,

where z = (s1s2s3)3, then Pr
s2(G13) = B(G13), the basis of [BCC] that we used for proving the BMM

symmetrising trace conjecture.
We now wish to use the procedure of §4.3.2 to construct the rest of the parabolic bases. For G13, the

isomorphism φ2 between the ER and BMR presentation is given by:

φ2(α) = s2, φ2(β) = s3s1s2, and φ2(γ) = (s2s3s1s2)−1.
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Hence, s1 = φ2(γβ2α−1), s2 = φ2(α) and s3 = φ2(β−1γ−1). We observe that this time describing a generator
as the image of an element in the ER presentation is more complicated than in the previous cases. For this
reason, we don’t have a systematic way of choosing the words w̃x for x ∈ G13. The general idea is the same
as before. Let us say, for example, that we try to find a right parabolic basis with respect to s1. Since
Ψ(A21A21) = Ψ(A21A32A32A31) = γ̄β̄2ᾱ−1, we try to find words w̃x that represent x in G13 so that

• the set P1 := {x ∈ G13 | w̃x does not end in (y2y1)2} has 12 elements;

• the set P2 := {x ∈ G13 | w̃x = w̃x′(y2y1)2 for some x′ ∈ P1} has 12 elements.

Thanks to the GAP3 program, we were able to try several different choices of words for some elements, until
we finally found that the following sets produce good parabolic bases:

Br
s1(G13) =

{
zk, zks2, z

ks3, z
ks2s3, z

ks1s2, z
ks3s2, z

ks1s3,
zks2s1s3, z

ks1s3s2, z
ks2s3s2, z

ks2s1s2, z
ks2s1s3s2

k = 0, 1, 2, 3

}
,

Br
s3(G13) =

{
zk, zks1, z

ks2, z
ks1s2, z

ks3s1, z
ks2s1, z

ks3s2,
zks2s1s2, z

ks1s2s1, z
ks3s2s1, z

ks3s1s2, z
ks3s1s2s1

k = 0, 1, 2, 3

}
,

Bl
s1(G13) =

{
zk, zks3, z

ks2, z
ks2s1, z

ks3s1, z
ks2s3, z

ks3s2,
zks2s3s2, z

ks2s1s2, z
ks2s3s1, z

ks3s2s1, z
ks2s3s1s2

k = 0, 1, 2, 3

}
,

Bl
s2(G13) =

{
zk, zks3, z

ks1, z
ks1s2, z

ks3s1, z
ks3s2, z

ks1s3,
zks1s2s1, z

ks1s2s3, z
ks3s1s2, z

ks1s3s2, z
ks3s2s1

k = 0, 1, 2, 3

}
,

Bl
s3(G13) =

{
zk, zks1, z

ks2, z
ks2s1, z

ks1s2, z
ks1s3, z

ks2s3,
zks2s1s2, z

ks2s1s3, z
ks1s2s3, z

ks1s2s1, z
ks2s3s1

k = 0, 1, 2, 3

}
.

Remark 4.17. For both groups of the octahedral family that we studied here, G8 and G13, it is true that
two generators of the generic Hecke algebra are conjugate, so we could have used the conjugacy relation to
obtain a parabolic basis with respect to one generator from the one with respect to its conjugate (this is
also true for G4 that we studied much earlier). However, the bases that we obtain like this are much more
complicated than the ones we presented here.

Remark 4.18. If in the future we obtain parabolic bases for H(G11), we will be able to use them in order
to construct parabolic bases for the generic Hecke algebras of the groups of the octahedral family, in the
same way that we used the ones of H(G7) in order to construct parabolic bases for H(G5) and H(G6).

4.3.5. The other exceptional groups. Let W be an exceptional complex reflection group of rank 2 and let
H(W ) be the generic Hecke algebra associated with W . It is possible that a basis for H(W ) that was
constructed for proving the BMR freeness conjecture is a parabolic basis with respect to one generator – we
already saw such examples in the cases of G4, G7, G8 and G13. Moreover, in order for the parabolic freeness
conjecture to hold for W , it is enough to

(1) prove the “one-sided” parabolic freeness conjecture (Conjecture 4.8), and

(2) find a parabolic basis with respect to only one generator per conjugacy class in W (Proposition 2.8).

For example, one parabolic basis is all that is needed to prove the validity of the parabolic freeness conjecture
if all generators of W belong to the same conjugacy class. Among the groups that we studied, this is the case
for G4 and G8. So we took a look at the bases that exist in literature, and thanks to the above arguments,
we also have the validity of the parabolic freeness conjecture for the following groups:

• G12 (the bases given in [Cha2] and in [MarPf] are parabolic);

• G14 (the basis given in [Cha2] is parabolic with respect to both generators);

• G16 (the basis given in [Cha1] is parabolic);

• G22 (the basis given in [MarPf] is parabolic).

Moreover, looking again at the bases given in [Cha2], we observe that Conjecture 4.8 holds for the following
pairs (W,WI) (that is, H(W ) is free either as a left or as a right HI(W )-module of finite rank):

(G9,Z/4Z), (G10,Z/4Z), (G11,Z/3Z), (G13,Z/2Z), (G15,Z/2Z), (G15,Z/3Z).
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Finally, for the state of the art of the parabolic freeness conjecture to be complete we give a list of pairs
(W,WI) for which Conjecture 4.8 holds, where W is an exceptional group of rank greater than 2:

• (G24, B2) by [MarPf];

• (G25, G4), (G25,Z/3Z× Z/3Z) by [Mar1];

• (G26, G4) by [Mar2];

• (G27, B2), (G29, B3), (G31, A3) by [MarPf];

• (G32, G25) by [Mar1];

• (G33, A4), (G33, D4), (G34, G33) by [MarPf].
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