
HAL Id: hal-03592337
https://hal.science/hal-03592337v1

Submitted on 8 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Lightweight convolutional neural network for real-time
3D object detection in road and railway environments
A. Mauri, Redouane Khemmar, B. Decoux, M. Haddad, Rémi Boutteau

To cite this version:
A. Mauri, Redouane Khemmar, B. Decoux, M. Haddad, Rémi Boutteau. Lightweight convolutional
neural network for real-time 3D object detection in road and railway environments. Journal of Real-
Time Image Processing, 2022, �10.1007/s11554-022-01202-6�. �hal-03592337�

https://hal.science/hal-03592337v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2022) 19:499–516 
https://doi.org/10.1007/s11554-022-01202-6

ORIGINAL RESEARCH PAPER

Lightweight convolutional neural network for real‑time 3D object 
detection in road and railway environments

A. Mauri1 · R. Khemmar1   · B. Decoux1 · M. Haddad2 · R. Boutteau3

Received: 29 July 2021 / Accepted: 10 January 2022 / Published online: 11 February 2022 
© The Author(s) 2022

Abstract
For smart mobility, and autonomous vehicles (AV), it is necessary to have a very precise perception of the environment to 
guarantee reliable decision-making, and to be able to extend the results obtained for the road sector to other areas such as 
rail. To this end, we introduce a new single-stage monocular real-time 3D object detection convolutional neural network 
(CNN) based on YOLOv5, dedicated to smart mobility applications for both road and rail environments. To perform the 3D 
parameter regression, we replace YOLOv5’s anchor boxes with our hybrid anchor boxes. Our method is available in different 
model sizes such as YOLOv5: small, medium, and large. The new model that we propose is optimized for real-time embed-
ded constraints (lightweight, speed, and accuracy) that takes advantage of the improvement brought by split attention (SA) 
convolutions called small split attention model (Small-SA). To validate our CNN model, we also introduce a new virtual 
dataset for both road and rail environments by leveraging the video game Grand Theft Auto V (GTAV). We provide extensive 
results of our different models on both KITTI and our own GTAV datasets. Through our results, we show that our method is 
the fastest available 3D object detection with accuracy results close to state-of-the-art methods on the KITTI road dataset. 
We further demonstrate that the pre-training process on our GTAV virtual dataset improves the accuracy on real datasets 
such as KITTI, thus allowing our method to obtain an even greater accuracy than state-of-the-art approaches with 16.16% 
3D average precision on hard car detection with inference time of 11.1 ms/image on an RTX 3080 GPU.
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Abbreviations
ADAS	� Advanced driver assistance system
GTAV	� Grand theft auto V
CNN	� Convolutional neural network

YOLOv5 	� You only look once
KITTI 	� Karlsruhe Institute of Technology and 

Toyota technological institute
LiDAR	� Light detection and ranging 
L-CNN 	� Lightweight-CNN
 CARLA 	� CAR learning to act
ROAD	�  ROad event awareness dataset
 SYNTHIA 	� SYNTHetic collection of Imagery and 

Annotations
 R-CNN 	� Region-based CNN
LSTM 	� Long short term memory
GAM3D 	� Ground-aware monocular 3D object
KFPN 	� Keypoint feature pyramid network
M3D-RPN 	� Monocular 3D region proposal network
SA 	� Split attention
API 	� Application programming interface
IOU 	� Intersection over union
AP 	� Average precision
ToF 	� Time-of-flight
 DS 	� Dimension score
CS 	� Center score
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OS 	� Orientation score
GT 	� Ground truth
 RoIs 	� Region of interests
SRE 	� Squared relative error
RMSE 	� Root mean square error
MTL 	� Multi task learning

1  Introduction

Multiple object detection consists of detecting and iden-
tifying objects in scenes. In smart mobility applications, 
vehicles must have a better perception of their environment. 
This perception must guarantee not only a good detection of 
the objects, but also a good interpretation of the scenes. In 
multimodal road and railway smart mobility, the objects of 
interest to be detected are vehicles, pedestrians, bus, cyclists, 
trees, etc. If the road sector is widely covered in the scientific 
literature, this is less the case for the railway smart mobility. 
This is in part due to the lack of specific railway datasets 
with ground truth data dedicated to 3D object detection. This 
poses a real challenge in that it requires the 3D object detec-
tion algorithm to train under dataset with ground truth data.

In the past few decades, specifically since 2012, Deep 
Learning has become a very powerful tool because of its 
ability to handle large amounts of data. The interest using 
more and more hidden and intermediate fully connected 
layers has surpassed traditional techniques in image pro-
cessing and computer vision, especially in pattern recogni-
tion, object detection, and classification [1, 2]. One of the 
most popular deep neural networks is CNN. With the rise 
of Deep Learning approaches for computer vision tasks and 
the emergence of CNNs, it has become possible for cameras 
to be used for object detection, depth estimation, tracking, 
instance, and semantic segmentation, etc. These kinds of 
methods have many applications, especially for smart mobil-
ity to enhance safety and increase vehicle autonomy. This 
need for environmental perception has led to the develop-
ment of 3D detection methods, using either a LiDAR-type 
depth sensor or images from cameras, to improve safety. 
Although 3D object detection is a much sought-after field, 
few methods focus on the real-time aspect that is essential 
for a real-world application. Of course, in road and railway 
multimodal smart mobility, it is desired that 3D multi-object 
detection is performed in real time. This represents another 
challenge. In this paper, we propose to fill these gaps, lack 
of railway dataset with ground truth data and real-time 3D 
object detection, by proposing a new virtual dataset (GTAV) 
dedicated to both road and railway environments for 3D 
object detection, which includes images taken from the point 
of view of both cars and trains. With this dataset, we pro-
pose a new method dedicated to real-time 3D object detec-
tion based on the well-known 2D object detector YOLOv5 

[3]. With this new method, we introduce 3D anchor boxes 
which makes our method the fastest method available for 3D 
object detection with accuracy comparable to state-of-the-art 
methods. Using a pre-trained model on our GTAV dataset, 
our approach outperforms state-of-the-art methods. Through 
our experiments, we also demonstrated the validity of our 
method for real-time embedded applications for autonomous 
vehicles (cars and trains). The main contributions put for-
ward in this paper are the following: 

1.	 A new Lightweight CNN (L-CNN) method for real-time 
3D object detection based on the YOLOv5 2D object 
detector. Our L-CNN allows the following object predic-
tions:

–	 2D detection
–	 Distance from the camera
–	 3D centers projected on the image plane
–	 3D dimensions and orientation

2.	 A new virtual dataset (GTAV) dedicated to both road 
and railway environments for 3D object detection. The 
GTAV dataset includes images taken from the point of 
view of both cars and trains.

The remainder of this paper is organized as follows. Sec-
tion 1 introduces the paper. In Sect. 2, we review the related 
work for autonomous navigation datasets, 3D object detec-
tion approaches in which we will present methods based 
on depth sensors as well as methods based on monocular 
images. In Sect. 3, we describe in more details our multi-
modal road/railway GTAV dataset. Our new L-CNN model 
about the 3D multi-class object detection is presented in 
Sect. 4. Analysis and experimental results are described in 
Sect. 5. Finally, the conclusion and future directions are out-
lined in Sect. 6.

2 � Related work

2.1 � Autonomous driving datasets

Any approach based on Deep Learning requires annotations 
(also called “ground-truth”) to perform a training. One of the 
main factors in the performance of any of these approaches 
in terms of precision is the quality and quantity of the data 
in the dataset. Among the datasets dedicated to autonomous 
vehicles, the vast majority are intended to autonomous driv-
ing in road environments and focus on object detection and 
scene segmentation. Some of them are mono-modal (in 
general, with images as a single modality), and others are 
multi-modal.
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Even though the building of mono-modal datasets is 
less time-consuming and expensive than multimodal data-
sets. The latter represent a crucial advantage in the use of 
supervised artificial intelligence approaches because they 
offer a wider variety of ground truths from different sen-
sors. Although these data are expensive because they require 
the use of expensive sensors such as LiDAR or radar, they 
are indispensable for environmental perception applications 
such as object detection/localization, distance estimation, 
tracking. We can also find many other road datasets for 
similar tasks such as CityScape [4], PascalVOC [5], etc. 
The best-known road dataset is KITTI [6] (Karlsruhe Insti-
tute of Technology and Toyota Technological Institute), 
which includes a rich ground truth from both distance sen-
sors (LiDAR), a GPS/IMU unit, and stereoscopic cameras 
(color or grayscale). It comprises different information cap-
tured and synchronized at 10Hz. The vehicle is equipped 
with different sensors: cameras, 3D Velodyne LiDAR (100k 
points per frame), 3D GPS/IMU data (location, speed, accel-
eration). The camera is calibrated and synchronized with 
Velodyne LiDAR and with a GPS/IMU sensor [6]. KITTI 
includes 3D object track labels for different object classes 
(cars, trucks, trams, pedestrians, cyclists). It is a reference 
base for both training and evaluation of methods for stereo, 
optical flow, visual odometry, 2D object detection, 3D object 
detection, depth estimation, 2D tracking, etc. Among the 
road datasets, we can also find the NuScenes [7] dataset 
which is a public large-scale dataset for autonomous driv-
ing. NuScenes is more recent than the KITTI dataset which 
inspired it. It includes 1000 driving scenes (of 20 s in length 
each) in Boston and Singapore, cities known for their dense 
traffic. It includes 23 object classes annotated with accurate 
3D bounding boxes at 2 Hz which is a good annotation for 
common autonomous driving tasks such as object detec-
tion, distance estimation, and tracking. NuScenes includes 
approximately 1.4 M camera images, 390 k LIDAR sweeps, 
1.4 M RADAR sweeps, and 1.4 M object bounding boxes. 
As with KITTI, this dataset incorporates one LiDAR sen-
sor, 5 radar sensors, 6 cameras to provide 360◦ coverage 
around the vehicle, and one GPS/IMU unit [7]. This dataset 
contains  100x more images than KITTI and allows training 
methods for 2D and 3D object tracking, 2D and 3D object 
detection, depth estimation.

ROad [8] event Awareness Dataset for Autonomous Driv-
ing (ROAD), includes 22 videos with 122 K annotated video 
frames, and 560 K detection bounding boxes with 1.7 M 
individual labels. ROAD is a dataset that was designed to 
test a robot-car’s situation awareness capabilities. The anno-
tation process follows a multi-label approach in which road 
agents (vehicles, pedestrians, etc.), their locations as well as 
the action they [8].

We can find many other road datasets for similar tasks 
which are also multimodal large-scale autonomous vehicles 

datasets. Argoverse [9] dataset images are captured under 
different weather conditions. It includes annotations for 
RGB images, LiDAR/radar, and 3D boxes. It includes more 
sensors than both KITTI [6] and NuScenes [7] datasets. 
Argoverse includes 3D bounding boxes with tracking infor-
mation for 15 objects of interest [9]. Another multimodal 
dataset, Lyft [10] uses cameras and LiDAR to provide 2D 
annotation and 3D bounding boxes for 4 object classes. All 
these datasets provide contextual knowledge through human-
annotation which is very important for scene understanding 
applications. Waymo open dataset [11] is a new large-scale, 
high-quality LiDAR and camera data that includes 1150 
scenes (each with the 20s). Sensors produce annotated data 
with 2D (camera image) and 3D (LiDAR) bounding boxes, 
with consistent identifiers across frames.

To our knowledge, there are only a few image datasets 
dedicated to the railway [12, 13]. However, these datasets are 
not dedicated to 3D detection and do not have ground truth 
information on depth estimation. Therefore, these datasets 
cannot be used for the training or evaluation of 3D object 
detection approaches.

Finally, there are databases of virtual images created 
with simulators such as CARLA [14] or SYNTHIA [15]. 
The advantage of these databases is that they are simpler to 
acquire, the ground truth data are acquired automatically by 
the API simulator, which allows the acquisition of mass data. 
It also allows acquiring a database adapted to specific needs 
such as the understanding of scenes in the railway environ-
ment. However, one of the disadvantages of this kind of 
dataset is that they have dated graphics, which makes it dif-
ficult to use trained dataset in real conditions. To overcome 
this problem, recent work has been done on the acquisition 
of a database via a video game [16]. Indeed, video games 
make graphic quality their priority, which makes using of 
video games particularly interesting. The video game GTAV 
is used to acquire road databases similar to KITTI or City-
Scape. Although there are many virtual road datasets, to 
our knowledge, there is no similar state-of-the-art work for 
the railway.

2.2 � 3D object detection from monocular images

In the very recent years, many methods based on deep learn-
ing have been proposed for the detection of 3D objects from 
monocular images. Most of them use single RGB images, 
and a few use image sequences. Many of these methods are 
extension of proven 2D detectors, thus leveraging their very 
good performances. 3D parameters processing is then added 
to the models. Some other methods infer 3D parameters 
directly through end-to-end learning.

In [17], the problem is tackled in two steps. First can-
didate 3D boxes are generated and scored by exploiting 
several features, namely class semantic, instance semantic, 
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contour, object shape, context, and location prior. Then the 
candidates with the best scores are applied to a Fast R-CNN 
[18] to predict class labels, bounding-box offsets and object 
orientation.

In [19], 2D detection is done by the multi-scale region-
proposal MS-CNN [20], extended to regress the orientation 
and the dimensions of the 3D bounding boxes. Estimation 
of orientation uses a MultiBin principle, in which angle 
is turned to a hybrid classification and regression task, in 
which values are separated into bins representing the classes.

DeepMANTA [21] is a coarse-to-fine model for simulta-
neous vehicle detection, localization, visibility characteri-
zation, and 3D dimension estimation. It is based on a two-
step process, the first one of which outputs bounding boxes 
associated with vehicle information, and the second one uses 
these outputs and a 3D vehicle virtual dataset to recover 3D 
orientations and locations. In [22], a depth map obtained 
by means of a fully-convolutional network (FCN) is fused 
with the input RGB image before feeding a region-proposal 
network (RPN). It is also combined at different level in the 
flow stream to finally get estimation of class labels, 2D box 
position, and 3D box orientation, dimensions and location. 
For the orientation, the same MultiBin principle as in [20] 
is used.

In [23], a CNN model for joint 3D object detection and 
tracking is proposed. It is based on a faster RCNN to predict 
the 2D bounding boxes, which are then associated to 3D 
information including position, orientation, dimensions, and 
projected 3D box centers of each object. The tracking across 
sequences of frames is obtained by two LSTM (Long Short-
Term Memory) layers, allowing a further refinement of the 
3D bounding box positions.

In SMOKE [24], a CNN is trained end-to-end in a single 
stage by means of a unified loss function. The parameters 
of 3D bounding boxes are regressed directly without using 
2D detection, thanks to a network made of two branches: a 
classification branch where an object is encoded by its 3D 
center (projected on the image plane), and a 3D parameter 
regression branch to construct 3D bounding box around each 
center. In MonoGRNet [25], 3D object detection is decom-
posed into four sub-tasks: 2D object detection, object center 
depth estimation, projected 3D center estimation and local 
corner regression. Those four pieces of information are 
obtained in parallel through a single-pass process, and then 
combined.

Anchor-based methods have also been proposed in M3D-
RPN [26] and GAM3D [27]. M3D-RPN leverages depth-
aware convolution for locating the specific features and 
improve the 3D scene understanding. The approach con-
sists only of a single-stage using anchor boxes for predicting 
both 2D and 3D object positions. GAM3D also uses 3D/2D 
anchor boxes to predict the objects’ 3D bounding box and 
introduces ground-aware convolution module to provide 

additional 3D cues to the network, thus improving the accu-
racy of the network.

In [28], 3D detection is reformulated as a keypoint detec-
tion problem. A keypoint feature pyramid network (KFPN) 
is defined, providing the center and the perspective points of 
the 3D bounding-boxes. The fact that the network backbone 
is based on a lightweight architecture (such as ResNet-18 
[29] or DLA-34 [30]) and the anchor-free nature of the 
detector, allow real-time processing on 1080Ti GPU.

Most of these models are dedicated to improve perfor-
mance of 3D object detection in terms of accuracy. A few 
other focus more on processing time, aiming for real-time on 
powerful GPUs. In our case, we want to focus on lightweight 
CNN architectures making it possible to achieve real-time 
on low-power GPUs like the Jetson-TX2. We believe that 
it is important to go further on this point to facilitate the 
large-scale development of deep-learning solutions for the 
safety of autonomous vehicle. Another important aspect of 
our needs is to be able to perform well in road environment 
as well as railway environment. The lack of existing rail-
way dataset has led us to develop our own dataset, made of 
virtual images from GTA-V game. We will use this custom 
dataset in complement to KITTI. In addition to our virtual 
railway dataset, we are developing a real railway dataset with 
ground truth allowing us to go further in the development of 
railway e-Advanced Driver Assistance Systems (e-ADAS).

3 � Multimodal road/rail dataset

3.1 � GTAV virtual multi‑modal dataset presentation

To compensate for lack of real dataset in the railway environ-
ment, we turn to a virtual dataset. The main advantage of 
a virtual dataset is the simplification of its acquisition and 
annotation. However, this is done at the cost of the fidelity 
to reality. Indeed, most of these datasets (such as CARLA) 
do not have sufficient graphical fidelity to allow the methods 
trained on them to offer good performances once applied in 
real world conditions. To overcome this problem, we turn 
to video games to acquire a railway database for 3D object 
detection. Indeed, where simulators lack graphical fidelity, 
video games try to offer the best graphical fidelity to offer 
users a feeling of authenticity. This is why several works 
have already been carried out in this field to extract data-
bases. One of the most interesting games is the video game 
Grand Theft Auto V, which allows the user to drive road 
vehicles and presents realistic road scenes with, for example, 
level crossings, crosswalks, heavy traffic, etc. A lot of work 
has been done in this direction to build databases for the 
road environment [16, 23]. Our railway database has been 
acquired with a data acquisition pipeline based on the work 
of [31]. To do this we used a modified version of the game 
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[32] code to allow the user to drive a subway or a train, 
allowing us to build a hybrid database with both road and 
rail scenes that can then be used for training and evaluation 
of our 3D detection approach.

3.2 � GTAV virtual multi‑modal dataset architecture

The ground truth is generated automatically by the game’s 
API and includes among other things the 3D and 2D bound-
ing boxes, the object class, the depth map and the semantic 
map. All these annotations are taken from the point of view 
of a stereoscopic camera with an acquisition frequency of 10 
Hz. Some statistics for our dataset can be found in Figure 1.

During the acquisition of the dataset, several classes of 
objects were annotated. However, to combine our virtual 
dataset with the 3D detection KITTI dataset, we selected 
only the classes that are also present on KITTI (Car, Person, 
Cyclist) dataset. Our dataset is composed of  140 K samples 
from the stereoscopic camera. Each of these samples has a 

depth map and a ground truth for 3D detection (position in 
the camera coordinates, dimensions, orientation, etc.). Image 
samples from our dataset can be found in Fig. 2. Our dataset 
also offers various situations and environmental conditions 
resulting in a challenging dataset for computer vision tasks. 
The dataset includes night, day, rainy and clear weather 
scenes, offering a wide variety of visibility conditions.

4 � 3D multi‑class object detection

Our method is a single-stage 3D object detector based 
on the YOLOv5 2D detector neural network. Indeed, it 
is a light convolutional network that offers good accu-
racy, allowing real-time use even on embedded systems 
such as Nvidia Jetson TX2. YOLOv5 offers a signifi-
cant performance gain compared to YOLOv5 thanks to 
an improved network architecture as well as innovations 
on data augmentation during training. The single-stage 

Fig. 1   Statistic details for our new dataset: Top Left is the image daytime distribution, Top Right is the weather condition distribution, Bottom 
Left is the Road/Railway distribution, Bottom Right is the class distribution
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design of our network allows for better computational 
times compared to multiple stage methods [19, 21, 23] 
and it can be trained end-to-end. Another problem posed 
by multiple-stage methods was the degradation in accu-
racy for the 3D parameters regression when the predicted 
RoIs used for feature alignment vary from the ones used 
in the training [33]. Our single-stage method uses hybrid 

anchor boxes to directly regress the 2D bounding box as 
well as the 3D parameters. We thus avoid the problem 
related to the fluctuation of the accuracy when the ROIs 
are not fixed. This new approach is the fastest method 
for 3D prediction from images without sacrificing accu-
racy. Figure 3 shows an overview of our 3D multi-object 
detection method.

Fig. 2   Images with 3D bound-
ing box ground truths. Our 
dataset presents a variety of 
environments and conditions. 
From top left to bottom right: 
road with clear weather, Road at 
night, Road with rainy weather 
and Rail with clear weather. The 
ground truths shown are for the 
same classes as KITTI: Car, 
Person and Cycle

Fig. 3   Overview of our method for 3D multi-object detection. A 
single RGB image is used as input. We leverage our Hybrid anchor 
boxes to predict both the 2D and the 3D bounding boxes. Non-Max-
imum-Suppression is used to filter the predictions. Among the 3D 

parameters that we predict, we have the projected 3D center on the 
image plane, the distance of the object, its dimensions, and finally its 
orientation
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4.1 � 3D bounding box estimation

The 3D bounding box of an object can be described by its 
center position from the camera � = [x y z]⊤ , its dimen-
sions � = [w, h, l] (with �,�, � respectively width, height 
and length) and its orientation �(�, �,�) (with � , � , � 
respectively the elevation, azimuth, and roll angles). 
Given � the matrix of intrinsic parameters of the camera 
and �� = [xo yo zo 1]

⊤ a 3D point in the object coordinate 
system, the re-projection of this point into the image plane 
��� = [u v 1]⊤ is given by:

where [RT] represents the extrinsic matrix with R ( 3 × 3 
matrix) the rotation and T ( 3 × 1 ) the translation. It is an 
extrinsic matrix integrating Translation (T) and Rota-
tion (R). By considering that the center of the 3D bound-
ing box is the origin of the object coordinates, the coor-
dinates of the 3D bounding box are: �� =

[
w∕2 h∕2 l∕2

]
 , 

�� =
[
w∕2 −h∕2 l∕2

]
 , ..., �� =

[
−w∕2 −h∕2 −l∕2

]
 . The 

3D bounding box coordinates in the image can then be 
obtained using Equation (1).

4.2 � Parameters to regress

To better compare the performances of multi-stage 
approaches with single ones for 3D object detection, we 
predict similar parameters as it was presented in our previ-
ous multi-stage approach [33].

4.2.1 � 2D object detection

In our work, we use YOLOv5 to perform 2D object detec-
tion. YOLOv5 performs the object class classification cls as 
well as the bounding box position regression b. The bound-
ing box b is then used as prior information for predicting the 
object center and the object class cls is used in the object 
dimension prediction.

4.2.2 � Object center prediction

In this work, we assume that the 3D center of the object is 
the center of the 3D bounding box. Predicting the center 
of the 3D bounding boxes of the objects is, therefore, 
equivalent to predicting their position �� = [xo yo zo 1]

⊤ . 
But instead of directly predicting the coordinates of the 3D 
object center on the image plane, we use cues from the 2D 
bounding box estimation. We predict the offset position in 
pixels of the projected object center from the 2D bounding 
box center �̃ =

[
c̃x c̃y

]
 . The variance of the prediction is thus 

reduced, making it easier to be learned by the algorithm. The 

(1)��� = �.
[
� �

]
.��,

object center �� is then computed using the object distance 
estimation on the Z-axis and the inverted calibration matrix 
�−�.

4.2.3 � Object distance estimation

To obtain the center of the 3D bounding box, it is neces-
sary to get its position on the Z-axis of the camera coordi-
nates. For each ROIs from the object detector, we predict the 
object’s center distance z̃ in meters.

4.2.4 � Object dimensions

Instead of directly predicting the object’s dimensions, we 
exploit the fact that those dimensions have a very low vari-
ance within the same class (car, truck, etc). Therefore, we 
choose to use the average dimensions of each object class as 
a strong prior for the estimation of the dimensions.

4.2.5 � Object orientation

In our work, we assume that only the azimuth (noted � ) mat-
ters for application on the road environment, and thus we do 
not predict the orientation characterized by the elevation and 
roll and we set � = 0 and � = 0 . Since the same azimuth can 
lead to multiple observed orientations from the camera point 
of view (see Fig. 4), we cannot directly predict the angle � . 
Instead, we predict the observed angle � and retrieve the 
global orientation � using Eq. (2):

Following the work described in [19], instead of considering 
the angle prediction as a regression task, we formulate is as 
a hybrid classification/regression problem in which the pos-
sible angles are separated into two bins of which the values 
are centered on 90 for the first one and −90 for the second 
one. We then perform a classification to predict in which bin 
the object angle is located. The parameter which is regressed 
is the difference between the bin center and �.

4.3 � Hybrid anchor boxes for 3D detection

To take advantage of the innovations brought by single-stage 
approaches, we have modified the YOLOv5 anchor boxes to 
create hybrid anchor boxes to perform the regression of the 
2D bounding boxes and the 3D parameters. We predict three 
grids of features at different sizes. In each grid, three anchor 
boxes are predicted. These boxes contain the predictions of 
the classes of the objects, the relative position of the bound-
ing box from the center of the grid, the probability that an 
object is present, and finally the 3D bounding box param-
eters (projected center, distance, dimensions, orientation). 

(2)� = � + arctan(
x

z
).
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The output of our hybrid anchor boxes for our 3D object 
detector is detailed in Eq. 3. Let y be the output value of one 
of our new anchor boxes:

With ���� =
[
x y w h

]
 the 2D bounding box offset predic-

tion, obj is the object prediction, ��� =
[
cls1 ... clsN

]
 the 

score for the N classes, ���� =
[
xc yc

]
 the prediction of the 

offset between the projected 3D center and the center of the 
bounding box in pixels, Z is the position on the Z-axis of the 
3 D  c e n t e r  o f  t h e  o b j e c t  i n  m e t e r s , 
� =

[
W1 H1 L1 ... WN HN LN

]
 is the predicted dimensions 

offset in meters for each N class. The predicted offset is 
between the object’s dimension and its class mean dimen-
sions. Finally we have the orientation prediction 
� =

[
bin1 bin1 sin1 cos1 bin2 bin2 sin2 cos2

]
 , where bin1 

and bin2 represent the predicted probability that 
� ∈

[
−195 15

]
 and � ∈

[
−15 105

]
 , respectively with � the 

observed orientation of the object. And sini∈{1,2} cosi∈{1,2} 

(3)� =
[
���� obj ��� ���� Z � �.

]

are the sinus and cosine of the observed angle offset regard-
ing the center of the ith bin. Our bin centers are 90◦ and 
−90◦ , respectively. By adding the prediction of the 3D 
parameters inside the anchor boxes, our method learns to 
predict the distance of the objects, the position of their cen-
troid, their dimensions, and their azimuth. With these param-
eters, we are then able to draw the 3D bounding boxes of the 
objects. All the anchor boxes of the different grids are then 
merged and re-projected onto the image and a Non-Maxi-
mum-Suppression function is used to filter the anchor boxes. 
This new approach taking advantage of anchor boxes allows 
our method to do 3D bounding box prediction in a single 
stage, thus reducing the size of our network without sacrific-
ing accuracy. Another notable advantage over other multiple 
stage 3D detection methods is that it avoids the problem of 
deteriorating accuracy of 3D detection when the predicted 
ROIs for objects vary, especially when aligning features for 
3D regression.

4.4 � Losses

In this subsection, we present the loss calculation of our 
method. The loss is specified in Eq. (4):

where ����� is the loss for 2D detection and class predic-
tion, and ������� , ��������� , ���� and ������� are the losses 
for the 3D object center, distance, dimensions and orienta-
tion, respectively. ki∈[1,...,4] are the weights of the different 
losses. For ����� loss, we use the same as YOLOv5. With 
�� =

[
cxk cyk

]
 the projection on image plane of 3D object k 

ground-truth center in pixels, ��� =
[
Rcxk Rcyk

]
 the center 

of the corresponding ROI, N the number of objects and �̃� 
the prediction from our network, the center loss is defined 
by Equation (5):

Assuming zk the ground-truth distance of an object k, N the 
total number of objects and z̃k the distance prediction from 
our method, the distance loss is then calculated using the L1 
loss and is detailed in Eq. (6):

With �� =
[
dx dy dz

]
 the ground-truth dimensions of an 

object k in meters, ddk the mean dimension for the class of 
object k, N the number of objects and d̃k the prediction from 
our method, the distance loss is detailed in Eq. (7):

(4)L = Lyolo + k1.Lcenter + k2.Ldistance + k3.Ldim + k4.Lorient,

(5)Lcenter = Mean(
1

N

N∑

k=1

||�� − ��� − �̃�
||).

(6)Ldistance =
1

N

N∑

k=1

||zk − z̃k
||.

Fig. 4   Illustration of the object azimuth � and its observed orientation 
� . The local orientation is retrieved by computing the angle between 
the normal to the ray between the camera and the object center and 
the X-axis of the camera. Given that we use left-hand coordinates, the 
rotation is clockwise. Our method estimates the observed orientation 
and � can be obtained using Eq. (2)
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Finally, assuming �k the ground-truth observed angle of 
object k, N the total number of objects and 𝛼̃k the prediction, 
we use the smooth L1 loss as the orientation loss. The loss 
is written in Eq. (8) with � = 1:

where

5 � Experimental results

5.1 � Training details

5.1.1 � Model size

Our method can be presented in different versions with a dif-
ferent size for each, such as in YOLOv5. The depth and width 
of the network vary with the versions which result in several 
different learnable parameters. Thus our model L-CNN comes 
in 3 versions: Large, Medium, and Small. To analyze the per-
formance in terms of 3D detection accuracy and computation 
time of each version, we have trained and evaluated each of 
them on the KITTI and GTA datasets.

5.1.2 � Split attention model

Among the convolutional blocks composing the network, the 
bottleneck introduced in [34] is extensively used in YOLOv5. 
Improvements to these convolutional blocks have recently 
been introduced in [35] along with Split Attention convolu-
tions. These new Split Attention Bottlenecks increase the 
performance of networks at the cost of a slight increase in 
computation time. To create a model with a good compromise 
between accuracy and computation time, we have modified the 
small model by replacing the bottlenecks with Split Attention 
Bottlenecks. This new model, called Small SA (Split Atten-
tion), is dedicated to applications on systems with limited com-
putational resources, such as the Jetson TX2 embedded boards, 
without sacrificing prediction accuracy.

5.1.3 � KITTI

We trained our method on the KITTI dataset dedicated 
to 3D detection on the same training and validation split 
defined in [36]. The training split contains 3712 images and 

(7)Ldim = Mean(
1

N

N∑

k=1

||�� − �̃� − ���
||).

(8)Lorient =
1

N

N∑

k=1

ek,

ek =

{
0.5(𝛼k − 𝛼̃k)

2∕𝛽, if |𝛼k − 𝛼̃k| < 𝛽

|𝛼k − 𝛼̃k| − 0.5 × 𝛽, otherwise
.

the validation split 3769 images. To speed up the training 
process and improve accuracy, we trained our models with 
either pre-trained weights from YOLOv5 or pre-trained 
weights from our model after training for 15 epochs on our 
GTAV dataset. We demonstrate that pre-training our model 
on our dataset significantly improves the accuracy of our 
method on the KITTI dataset. Furthermore, as in [27] we 
perform the training with both the left and right images 
of the training split of KITTI thus doubling the number 
of images available for the training resulting in improved 
performances of our method during evaluation. To make 
our method compatible with embedded boards such as the 
Nvidia Jetson TX2, we have done the training with a lowered 
resolution of 672 × 224 . We also trained with a resolution 
of 1312 × 416 , closer to the original resolution, to compare 
the accuracy of our method with the state-of-the-art method 
on the KITTI dataset.

5.1.4 � GTA​

Inspired by previous work on dataset creation [16] using 
images from the video game Grand Theft Auto V, we created 
our hybrid dataset of road and rail images. This new data-
set allows us to overcome the problem of having a railway 
dataset with a ground truth rich enough to allow 3D bound-
ing box learning for cars, pedestrians, and motorcycles. The 
training of our method was conducted on a split containing 
road and railway images (107 K images). The evaluation 
was then conducted on the validation split of the dataset 
containing 11,630 images. The training on this dataset was 
performed on 50 epochs.

5.1.5 � Data augmentation

Data augmentation is very useful to improve performance of 
CNN models through the construction of new and different 
examples for training. Even though KITTI and our GTA-V 
dataset presents a variety of environments and conditions 
(in GTA-V dataset for example, we have different situations 
like road with clear weather, road at night, road with rainy 
weather, and rail with clear weather as it shown in Fig. 1), 
the risk of overfitting our models is still present. Data aug-
mentation gives multiple advantages: 1. Reduce overfitting, 
2. Increases the generalisation capabilities of the trained 
models thus yielding better results in real-world environ-
ment. This is a good way to introduce “non-linearity” into 
the dataset model making it more similar to the real world.

We use Mosaic data augmentation as defined in YOLOv4 
[37] which consists in mixing 4 training images to improve 
the understanding of the spatial context of objects for our 
method. We also applied translation and scaling transforma-
tions to the images as further augmentation.
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5.1.6 � Hyperparameters

The hyperparameters of our models determined after many 
iterations of short training sessions. We use the Adam opti-
mizer with a cyclic learning rate scheduler as described in 
[38]. The maximum learning rate was set to 9.4e − 4 with 
a final learning rate of 1.8e − 5 . Finally, we use gradient 
accumulation to perform training with an effective batch 
size of 64.

5.1.7 � Loss weights

Since our method is trained end-to-end, our loss function 
combines the loss of each task. To obtain optimal results 
it is necessary to find the weight (k1, ..., k4) of each loss. 
Through multiple trials we found k1 = 0.005 , k2 = 0.2 , 
k3 = 0.0176 , k4 = 0.01 . To avoid overfitting for 2D detec-
tion, we imposed the condition Lyolo < 0.1 which when satis-
fied Lyolo is ignored in the optimization loop.

5.2 � Evaluation

In this subsection, we present the metrics that will be used 
in the evaluation of our models.

5.2.1 � 3D average precision

For evaluation on the KITTI dataset, we used the official 
benchmark metrics such as the 3D Average Precision (AP) 
with 40 recall positions as presented by [39]. The official 
KITTI benchmark uses an IOU threshold of 0.7 for the car 
class and a 0.5 threshold for the person and cycle classes. 
We also added evaluation results for the car class with a 0.5 
threshold.

5.2.2 � 2D detection

To evaluate the performance of the 2D detection, we used 
the metrics described by the authors of YOLOv5 on each 
class of the dataset. Given that the regression of the 3D 
bounding box parameters relies on accurate RoI and classes 
for the objects, evaluating the precision of the 2D detec-
tor is a necessity. The error metrics are the Average Preci-
sion (AP), the Recall (R), and the mean Average Precision 
( mAP50).

5.2.3 � Distance estimation

For our distance estimator evaluation, we used the same 
evaluation as the ones used for image-level depth estimation 
methods. The metrics used include Absolute Relative Error 
(Abs Rel), the Squared Relative Error (SRE), the Root Mean 
Square Error (RMSE), the logarithmic RMSE (log RMSE), 

and the percentage of Bad Matching Pixels. Let zgt and zpd 
be, respectively, the ground truth and predicted distance of 
the object i, it is calculated using Eq. (9), where � = 1.25k:

5.2.4 � Dimensions

The dimension prediction evaluation is performed using 
the Dimension Score (DS) described by the authors of [23]. 
With Vpd and Vgt the predicted and ground truth volume 
of the object, the DS is computed using Eq. (10) averaged 
across all examples:

5.2.5 � Object center

The object center predictions were evaluated with the Center 
Score (CS) as described in [23]. Assuming x and y the pro-
jected center coordinates in pixels and w and h the width 
and the height of the 2D bounding box, CS is computed 
with Eq. (11):

5.2.6 � Orientation

To evaluate the orientation predictions, we use the Orienta-
tion Score (OS) averaged across all examples. OS is calcu-
lated using Equation (12):

5.2.7 � Computation time

To evaluate the computation time of our models, we com-
pute the average time necessary for a forward pass (includ-
ing Non-Max-Suppression) for one single image during 
inference. We tested all the methods presented on an Nvidia 
RTX 3080 GPU. We also included computation time on an 
embedded Nvidia Jetson TX2 board as shown in Table 4.

5.3 � Result analysis

We present the quantitative results of our models on the 
KITTI dataset using the official 3D AP metric in Table 1 
for the Car class, Table 2 for the Person class, and Table 3 

(9)𝛼k=[1..3] = max(
zgt

zpd
,
zpd

zgt
) < 𝛿k.

(10)DS = min(
Vpd

Vgt

,
Vgt

Vpd

).

(11)CS = (2 + cos(
xgt − xpd

wpd

) + cos(
ygt − ypd

hpd
))∕4.

(12)OS = (1 + cos(�gt − �pd))∕2.
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for the Cycle class. We present our results along with state-
of-the-art methods for comparison. These results show that 
our approach, although less complex than state-of-the-art 
methods, has accuracy comparable or even superior to them. 
Our model is also significantly faster than all other tested 
approaches, with a computation time of 11.2ms per image 
on our Large model when inferring on an RTX 3080 GPU. 
Our method is even able to achieve higher accuracy using 

pre-trained weights on our GTAV dataset, which shows the 
potential of video game datasets to improve 3D object detec-
tion methods on real datasets. Thanks to this, our “Large” 
model can outperform state-of-the-art methods in moderate 
and difficult scenarios. Finally, we also conducted experi-
ments on a Jetson TX2 embedded board to confirm the appli-
cability of our smallest model for real-time tasks for embed-
ded applications. We present the results in Table 4.

Table 1   Quantitative results for the Car class from our evaluation on 
the KITTI dataset. We can see that our method benefits from being 
pre-trained on our GTA dataset and manages to outperform other 

state-of-the-art methods, especially for moderate and hard targets. 
The Car class on the KITTI dataset represents ∼ 82% of all the data-
set objects

Method Pretrained
on GTA​

Image size [val] [val] Time/img (ms) Memory 
consump-
tionIOU 0.7 IOU 0.5

Easy Mod Hard Easy Mod Hard

Mono3D [17] – 2.53 2.31 2.31 25.19 18.20 15.52 – –
Multi-fusion [22] 1696x512 10.53 5.69 5.39 47.88 29.48 26.44 – –
M3D-RPN [26] 1696× 512 20.27 17.06 15.21 48.96 39.57 33.01 78.3 5 GB
GAM3D [27] 1280× 288 23.63 16.16 12.06 60.92 42.18 32.02 34.2 2.1 GB
Ours (small) 672× 224 7.29 5.48 5.34 44.35 31.80 29.91 1.5 1.6 GB

1312× 416 15.52 13.27 13.19 48.24 36.14 31.78 4.4 1.7 GB
× 1312× 416 15.59 13.50 13.14 49.71 38.02 32.70 4.4 1.7 GB

Ours (small SA) 672× 224 13.79 11.72 11.39 44.51 32.47 27.26 3.1 1.5 GB
1312× 416 10.34 10.07 9.85 23.22 20.22 19.56 6.1 1.6 GB

× 1312× 416 15.57 13.32 13.39 51.33 38.09 33.31 6.1 1.6 GB
Ours (medium) 672× 224 9.42 7.96 6.52 46.22 34.66 33.01 2.7 1.7 GB

1312× 416 17.96 14.27 13.73 51.36 38.28 37.41 8.2 1.9 GB
× 1312× 416 17.63 15.04 14.68 53.95 44.73 39.86 8.2 1.9 GB

Ours (large) 672× 224 12.52 10.52 9.75 53.27 40.58 35.34 4 2 GB
1312× 416 21.07 16.07 15.68 55.69 41.89 40.46 11.2 2.15 GB

× 1312× 416 23.26 18.46 16.16 60.93 48.45 42.72 11.2 2.15 GB

Table 2   Quantitative results for the Person class from our evaluation on the KITTI dataset. We can see that our method benefits from being pre-
trained on our GTA dataset. The Person class on the KITTI dataset represents ∼ 13% of all the dataset objects.

Method Pretrained
on GTA​

Image size [val] Time/img (ms) Memory con-
sumption

# Parameters

IOU 0.5

Easy Mod Hard

Ours (small) 672× 224 5.30 4.53 4.59 1.5 1.6 GB
1312× 416 4.66 4.23 3.95 4.4 1.7 GB 7.3 M

× 1312× 416 6.91 5.45 5.03 4.4 1.7 GB
Ours (small SA) 672× 224 9.96 9.09 9.09 3.1 1.5 GB

1312× 416 4.55 4.55 4.55 6.1 1.6 GB 9.7M
× 1312× 416 11.75 10.85 10.56 6.1 1.6 GB

Ours (medium) 672× 224 6.51 6.18 5.90 2.7 1.7 GB
1312× 416 7.94 5.93 5.44 8.2 1.9 GB 21.6M

× 1312× 416 8.66 6.19 6.01 8.2 1.9 GB
Ours (large) 672× 224 11.76 11.36 10.62 4 2 GB

1312x416 8.55 7.00 6.77 11.2 2.15 GB 47.5M
x 1312x416 11.58 8.59 7.99 11.2 2.15 GB
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Our new SA Small model results show that it performs 
the same, or worse when not using pre-trained weights, 
than the Small model when training at full resolution 
( 1312 × 416 ). However, when using a smaller resolution 
( 672 × 224 ) it significantly outperforms the Small model. 
It is a particularly interesting model for applications on sys-
tems where the computational capabilities are limited since 
its memory requirements are lower and it runs at 3.1ms/img 
while having greater accuracy than the Small and Medium 
models trained at the same resolution. Our tests with the 
Jetson TX2 also show that it is the fastest of our methods 
on this platform. The quantitative results of our models on 
both datasets for all classes along with the results of our 
baseline based on our previous multi-stage approach based 
on YOLOv5 are presented in Table 5 and in Fig. 5. We can 
see that we achieved significant accuracy gains by switching 
from a multi-stage approach based on YOLOv3 [40] from 
our previous approach [33] to an anchor-based approach 

using YOLOv5. We conducted the experiments using either 
the ROIs from YOLOv3 predictions or the ground truth for 
the feature alignment necessary for the regression of the 
3D bounding box parameters. This to highlight the problem 
posed by ROIs variation in the 3D parameter regression in 
multi-stage approaches. We show that our new single-stage 
approach significantly outperforms our previous method in 
both cases, especially for depth estimation and orientation.

We also showcase the various models from our current 
approach (small, SA small, medium, large) and we can 
see that the precision between the different models for 2D 
detection, Dimensions, Center, and Orientation does not sig-
nificantly benefit from the heavier models while Distance 
estimation improves when using larger models. Qualitative 
results on both KITTI and GTA datasets are presented in 
Fig. 6.

6 � Conclusion and outlook

In this paper, we presented our new anchor-based 3D object 
detection method from single-image input using a modi-
fied YOLOv5 network. Along with this method, we also 
presented our new virtual dataset based on the video game 
GTAV for both road and rail environments, filling the gap 
in railway datasets for 3D object detection and localization. 
Through our work, we showed that state-of-the-art preci-
sion on the KITTI benchmark could be reached by adopt-
ing transfer learning from models trained on our new data-
set while being the fastest method available for 3D object 
detection from images. Our approach is particularly well 
suited for embedded use, as demonstrated by our tests on 
the Nvidia Jetson TX2 embedded board. We also provided 

Table 3   Quantitative results for the Cycle class from our evaluation on the KITTI dataset. We can see that our method benefits from being pre-
trained on our GTA dataset. The Cycle class on the KITTI dataset represents ∼ 5% of all the dataset objects

Method Pretrained on 
GTA​

Image size [val] Time/img (ms) Memory con-
sumption

# Parameters

IOU 0.5

Easy Mod Hard

Ours (small) 672 ×224 3.68 3.12 2.27 1.5 1.6 GB
1312 ×416 4.66 4.23 3.95 4.4 1.7 GB 7.3M

× 1312 ×416 14.56 11.83 11.64 4.4 1.7 GB
Ours (small SA) 672 ×224 4.39 2.65 2.20 3.1 1.5 GB

1312 × 416 0.98 0.88 0.82 6.1 1.6 GB 9.7M
× 1312 × 416 9.39 6.39 6.53 6.1 1.6 GB

Ours (medium) 672 × 224 13.34 10.37 10.39 2.7 1.7 GB
1312 × 416 10.75 7.65 7.53 8.2 1.9 GB 21.6 M

× 1312 × 416 18.12 13.58 12.02 8.2 1.9 GB
Ours (large) 672 × 224 12.88 10.26 10.31 4 2 GB

1312 × 416 14.88 10.33 8.21 11.2 2.15 GB 47.5 M
× 1312 × 416 11.08 5.94 5.71 11.2 2.15 GB

Table 4   Computing time on the Nvidia Jetson TX2 embedded board. 
Our results show that our new Small SA model is the most appropri-
ate for real-time embedded applications with 60ms/img (17 fps)

Method Image size Time/img (ms) # Parameters

Ours (small) 672 × 224 70 7.3 M
1312 × 416 130

Ours (small SA) 672 × 224 60 9.7M
1312 × 416 200

Ours (medium) 672 × 224 143 21.6M
1312 × 416 359

Ours (large) 672 × 224 199 47.5M
1312 × 416 613
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Fig. 5   Depth RMSE error obtained by our different models along 
the baseline multi-stage [33] method for each class on the KITTI 
and GTA datasets. Our new method improves accuracy on the KITTI 
dataset significantly when we use weights pre-trained on our new 

GTA dataset. With these weights, our new model with Split Atten-
tion (SA) convolutions is able to reach the same performances as our 
medium-sized model
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an extensive evaluation of our approach, along with our 
previous 2 stage network on both the KITTI and our own 
GTAV road/railway virtual dataset. These results showed 
that our method is suitable for railway applications in a 
virtual environment, yet we still need to prove the appli-
cability of our light-weight network under real conditions. 
Our fastest model ( Small-SA ) has also an important gap in 
precision with our largest model (Large). To address these 

issues, we first plan to acquire our railway dataset with real-
world images (as a multimodal dataset provided by 2 cam-
eras, 1 LiDAR, 1 Radar, 1 GPS/IMU) to further validate our 
approach. To improve the precision of our smallest model 
(Small-SA) we aim to use knowledge distillation to improve 
its precision and thus reduce the gap in precision without 
augmenting the computation time. We also aim to develop 
a lightweight 3D tracking algorithm and integrate it into our 

Fig. 6   Qualitative results of our methods on both KITTI and GTA 
datasets. These images are extracted from the validation split of 
each dataset. We display the results of both our best model (large 
pre-trained on GTAV) and our new lightweight model (L-CNN) for 
embedded platforms (Small SA pre-trained on GTAV). 4 top lines: 

results obtained under GTAV dataset (left column: ground truth, 
middle column: Small SA prediction, right column: large model pre-
diction), 4 bottom lines: results obtained under KITTI dataset (left 
column: ground truth, middle column: Small SA prediction, right col-
umn: large model prediction)
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method to provide a complete method for road and rail safety 
and further improve detection accuracy using Multi-Task 
Learning (MTL).
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