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Abstract
In this work, we consider a two-step anaerobic digestion model where two microorganisms mutu-
ally cooperate by producing a substrate for the other’s growth. The model is a four-dimensional
system of ordinary differential equations. Since the system is conservative by considering the same
dilution rates, we show that the fourth-order model can be reduced to a second-order model. Using
the nullcline method, we show that the system can have up to four steady states for a general class
of growth rates and we analytically determine the necessary and sufficient conditions for their ex-
istence according to the operating parameters. Using the method of the vector field, we determine
the necessary and sufficient conditions of local and global asymptotic stability of all steady states
of the reduced model. Using Thieme’s result, we show that the global asymptotic behavior of the
solutions of the reduced model is the same as that of the complete system. For specific growth
rates of Monod type, the numerical simulations illustrate our mathematical analysis.
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I INTRODUCTION

Anaerobic digestion (AD) is a complex natural process in which organic matter is broken down
into biogas and various by-products in an oxygen-free environment. Several mathematical mod-
els describe this process and are used to predict the production of biogas methane. The compre-
hensive Anaerobic Digestion Model (ADM1) is a model with a large number of state variables
and parameters. The complexity of this model makes a qualitative analysis very difficult. A
simple two-step AD model (called AM2) proposed by [2] provides satisfactory prediction of
the AD process. Many papers in the literature have studied the AM2 model (see [3–7, 10, 12]
and the reference therein).

In this work, we consider a reduced model of two-stage anaerobic digestion in a chemostat that
was validated using parameter identification theory in Giovannini et al. [11]. Using informa-
tive data sets generated by ADM1 and Maximum Likelihood Principle Component Analysis
(MLPCA), they propose the following macroscopic reaction scheme.

1. Acidogenesis, with a reaction rate r1 = µ1(·)X1, such that µ1(·) is the specific growth
rate of X1:

k1S1
r1−→ X1 + k3S2 + k7H2 + k5CH4 (1)
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2. Methanogenesis, with a reaction rate r2 = µ2(·)X2, such that µ2(·) is the specific growth
rate of X2:

k4S2 + k8H2
r2−→ X2 + k2S1 + k7CH4, (2)

where ki, i = 1, . . . , 8 represent the pseudo-stoichiometric coefficients.

The first microbial population X1 converts organic matter S1 into organic acids S2, methane
CH4 and hydrogen H2 with a reaction rate r1. The products of the first reaction would then be
used by the second population X2 to produce methane with a reaction rate r2. The substrates S1

and S2 are introduced into the reactor with feed concentrations Sin
1 and Sin

2 , respectively, and a
dilution rate D. These reactions are described by the following system of differential equations:


Ṡ1 = D (Sin

1 − S1)− k1µ1 (S1)X1 + k2µ2 (S2)X2,

Ẋ1 = (µ1(S1)−D1)X1,

Ṡ2 = D (Sin
2 − S2) + k3µ1 (S1)X1 − k4µ2 (S2)X2,

Ẋ2 = (µ2(S2)−D2)X2,

(3)

where D1 and D2 are the removal rates of the first and second populations. The specific growth
rates of µ1(·) acidogenes and µ2(·) methanogens are Monod-like.

Using a step-by-step parameter identification procedure to estimate the kinetic parameters, and
parametric sensitivity analysis, Giovannini et al. [11] have validated the reduced two-step model
(3). The most affected stoichiometric coefficient is k2 which is associated to S1 in the second
reaction. It is small enough compared to other coefficients and it is relatively large uncertainty
so that longer experiments with relatively rich excitation signals are necessary to extract the
information about this coefficient k2. By eliminating this parameter, the direct validation results
are quite satisfactory and the cross-validation results are perfectible. Indeed, the numerical
results show the predictive capability of the low-dimensional model as compared to the original
ADM1.

In the limit case when k2 = 0, the two-step model (3) with a cascade of two biological reactions
was introduced in [2]. In addition, this model was studied recently in [15],[13] by determining
the best operating conditions which maximize the biogas production in the operating diagram
according to the dilution rate and the substrate input concentrations.

Our aim of this work is to study the global behavior of model (3) by considering this coefficient
k2 is positive and small enough to understand the effect of the production of organic matter S1

from S2 in the second reaction. For a general class of growth rates and the same dilution rates,
we determine theoretically the existence and local and global stability of all steady states. This
study is original and has not been studied in the literature.

This paper is organized as follows. In section 2, we present the assumptions on the general
model (4) and we show that the solutions of the ordinary differential equations remain positive
and positively bounded for any positive initial condition. In section 3, we show that the fourth-
order model can be reduced to a second-order model. In section 4, we determine the steady
states of this reduced model and study their local and global stability according to the control
parameters by giving necessary and sufficient conditions. In section 5, we illustrate the math-
ematical results demonstrated by numerical simulations. The conclusion is given in section 6.
The proofs of all the results are presented in Appendix A.
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II MATHEMATICAL MODEL AND ASSUMPTIONS

In this work, we study the model (3) where the removal rates D1 and D2 and the dilution rate
D are equal, that is, D = D1 = D2. The model (3) can be reduced to the following model (see
[14]) 

ṡ1 = D (sin1 − s1)− f1 (s1)x1 + ωf2 (s2)x2,
ẋ1 = (f1 (s1)−D)x1,
ṡ2 = D (sin2 − s2) + f1 (s1)x1 − f2 (s2)x2,
ẋ2 = (f2 (s2)−D)x2,

(4)

where

s1 = S1
k3
k1

, x1 = k3X1, s2 = S2, x2 = k4X2 sin1 = Sin
1

k3
k1

and sin2 = Sin
2 .

In what follows, we study model (4) using the following general assumption on the growth
rates. For i = 1, 2 the function fi belongs to C1(R+) and satisfies:

(H1) fi(0) = 0 and f ′
i(si) > 0 for all si > 0.

(H2) 0 < ω < 1, where ω is defined by ω = k3k2
k1k4

.

Assumption (H1) means that the substrate is necessary for the growth of the two species. In
addition, the growth rate of each species increases with the concentration of the substrate. As-
sumption (H2) is satisfied since, from the biological point of view, we can show that k1 > k3 >
0 and k4 > k2 > 0, using the two reaction schemes.

If the equation fi(si) = D has a solution, we note

λi(D) = f−1
i (D), i = 1, 2.

Otherwise, we write λi(D) = +∞. To simplify the notation, we will denote in the sequence λi

by λi(D). The following result proves that model (4) preserves the biological significance where
all solutions of the system are nonnegative and bounded for any nonnegative initial condition.

Proposition II.1:
For any nonnegative initial condition, the solution of system (4) exists for all nonnegative times,
remains nonnegative and is positively bounded. In addition, the set

Ω =
{
(s1, x1, s2, x2) ∈ R4

+ : s1 + x1 − ωx2 = sin1 and s2 + x2 − x1 = sin2
}

is positively invariant and is a global attractor for (4).

III REDUCED MODEL

In the following, we show that the fourth-order system (4) can be reduced to a second-order
system using Thieme’s results [1]. Consider (s1, x1, s2, x2) a solution of system (4). Let

z1 = s1 + x1 − ωx2 and z2 = s2 + x2 − x1.

Thus, (z1, x1, z2, x2) is a solution of the following system
ż1 = D (sin1 − z1) ,
ẋ1 = (f1 (z1 − x1 + ωx2)−D)x1,
ż2 = D (sin2 − z2) ,
ẋ2 = (f2 (z2 + x1 − x2)−D)x2.

(5)
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The solutions of the first and third equations of (5) are given by:

z1(t) = sin1 + (z1(0)− sin1 )e−Dt and z2(t) = sin2 + (z2(0)− sin2 )e−Dt.

Thus, (x1(t), x2(t)) is a solution of the following asymptotically autonomous system:{
ẋ1 =

(
f1

(
sin1 + (z1(0)− sin1 ) e−Dt − x1 + ωx2

)
−D

)
x1,

ẋ2 =
(
f2

(
sin2 + (z2(0)− sin2 ) e−Dt + x1 − x2

)
−D

)
x2.

(6)

Then, system (6) converges to the next autonomous system:{
ẋ1 = (f1 (s

in
1 − x1 + ωx2)−D)x1,

ẋ2 = (f2 (s
in
2 + x1 − x2)−D)x2.

(7)

In the section 4.3, we show that Thieme’s results [1] apply and allow to deduce the asymptotic
behavior of the solution of (4) from the asymptotic behavior of the autonomous system (7). This
system is called the reduced model since it is simply the restriction of (4) to the set Ω. On the
other hand, since s1 and s2 are positive then:

0 ≤ x1 ≤ sin1 + ωx2 and 0 ≤ x2 ≤ sin2 + x1.

Thus, system (7) is defined on the set:

M =
{
(x1, x2) ∈ R2

+ : 0 ≤ x1 ≤ sin1 + ωx2 and 0 ≤ x2 ≤ sin2 + x1

}
. (8)

Fig. 1 (a) describes the domain M in the case where 0 < ω < 1 in the plane (x1, x2). In the
limiting case where ω = 1, Fig. 1 (b) shows that the two lines ∆M

1 and ∆M
2 are parallel. Note

that the equations of the lines ∆M
1 and ∆M

2 are defined by:

∆M
1 : x2 =

x1 − sin1
ω

and ∆M
2 : x2 = sin2 + x1.

(a)

sin1

sin2

sin1 + ωsin2
1− ω

sin1 + sin2
1− ω

M

x1

x2

∆M
2

∆M
1

(b)

sin1

sin2

x1

x2

M

∆M
2

∆M
1

Figure 1: The set M : (a) the case where 0 < ω < 1, (b) the case where ω = 1

IV STUDY OF THE REDUCED MODEL

In this section, we are interested in the study of the reduced system (7) in M (see Fig. 1) using
the nullcline method (voir [8, 9]).
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4.1 Existence of the steady states

In the following, we study the existence and uniqueness of the steady states of system (7)
under the assumptions (H1) and (H2). The steady states of (7) are the intersection points of the
nullclines in M .

Definition 1:
We call nullcline of x1 of system (7) and denote by ẋ1 = 0, the set of points where(

f1
(
sin1 − x1 + ωx2

)
−D

)
x1 = 0.

Similarly, the nullcline of x2 : ẋ2 = 0, is the set of points where(
f2

(
sin2 + x1 − x2

)
−D

)
x2 = 0.

Remark 1:
From the hypothesis (H1), we easily determine the nullclines of system (7):

ẋ1 = 0 ⇐⇒ x1 = 0 or sin1 − x1 + ωx2 = λ1,

ẋ2 = 0 ⇐⇒ x2 = 0 or sin2 + x1 − x2 = λ2.

Thus, the nullclines are given by the two axes and the following two lines:

∆1 : x2 =
x1 − sin1 + λ1

ω
and ∆2 : x2 = x1 + sin2 − λ2. (9)

Proposition IV.1:
Assume that hypotheses (H1) and (H2) hold. Then, the six steady states of (7) are given in
Table 1. The conditions of their existence and local stability are given in Table 2. Note that the
existence condition of E∗ is given by

sin1 + sin2 > λ1 + λ2 and sin1 + ωsin2 > λ1 + ωλ2. (10)

Table 1: Steady states of (7).

x1, x2 components
E0 x1 = 0, x2 = 0
E1 x1 = sin1 − λ1, x2 = 0
E2 x1 = 0, x2 = sin2 − λ2

E∗ x1 =
sin1 +ωsin2 −λ1−ωλ2

1−ω
, x2 =

sin1 +sin2 −λ1−λ2

1−ω

Corollary 1:
Table 3 determines the necessary conditions of local exponential stability of all steady state
according to the operating parameters, where six cases can be distinguished.
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Table 2: Necessary and sufficient conditions of existence and local stability of steady states of model (7).

Existence condition Stability condition
E0 always exists sin1 < λ1 and sin2 < λ2

E1 sin1 > λ1 sin1 + sin2 < λ1 + λ2

E2 sin2 > λ2 sin1 + ωsin2 < λ1 + ωλ2

E∗ (10) LES whenever it exists

Table 3: Existence and local stability of the steady states of system (7) according to the position of sin1
with respect to λ1 and of sin2 with respect to λ2: The absence of a letter means that steady state does not
exist.

Case Condition 1 Condition 2 E0 E1 E2 E∗

1 sin1 < λ1 sin2 < λ2 (10) is not verified LES
2 sin1 > λ1 sin2 < λ2 sin1 + sin2 < λ1 + λ2 I LES
3 sin1 < λ1 sin2 > λ2 sin1 + ωsin2 < λ1 + ωλ2 I LES
4 sin1 > λ1 sin2 > λ2 I I I LES
5 sin1 > λ1 sin2 < λ2 (10) is verified I I LES
6 sin1 < λ1 sin2 > λ2 I I LES

(a)

E0

sin1

sin2

λ1

λ2

x1

x2

∆1 ∆2

∆M
2

∆M
1

(b)

E0 E1

sin1

sin2

λ1

λ2

x1

x2

∆1

∆2

∆M
2

∆M
1

(c)

E0

E2

sin1

sin2

λ1

λ2

x1

x2

∆1

∆2

∆M
2

∆M
1

Figure 2: Nullclines ∆1 and ∆2: (a) case 1 (b) case 2 (c) case 3 of Table 3.
(a)

E∗

E0 E1

E2

sin1

sin2

λ1

λ2

x1

x2

∆1

∆2

∆M
2

∆M
1

(b)

E∗
E0

E1 sin1

sin2

λ1

λ2

x1

x2

∆1

∆2

∆M
2

∆M
1

(c)

E∗

E0

E2

sin1

sin2

λ1

λ2

x1

x2

∆1

∆2∆M
2

∆M
1

Figure 3: Nullclines ∆1 and ∆2: (a) case 4 (b) case 5 (c) case 6 of Table 3.

4.2 Global stability of the reduced model

In this section, we study the global stability of the steady states by the nullcline and vector field
methods used in [9]. In the following, we use the abbreviation GAS for Globally Asymptotically
Stable. Note that in the following figures, we choose the red color for stable steady state and
the blue color for unstable steady state.

Proposition IV.2:

6



Under the assumptions (H1) and (H2), the conditions of existence and global stability of the
steady state of system (7) are given in Table 4.

Table 4: Existence and global asymptotic stability of the steady states of system (7) according to the
operating parameters D, sin1 et sin2 .

Existence condition Global stability condition
E0 always exists sin1 ≤ λ1 and sin2 ≤ λ2

E1 sin1 > λ1 sin1 + sin2 ≤ λ1 + λ2

E2 sin2 > λ2 sin1 + ωsin2 ≤ λ1 + ωλ2

E∗ (10) LES whenever it exists

From Corollary 1 and Table 4, we summarize the existence and global stability in Table 5
according to the position of sin1 with respect to λ1 and sin2 with respect to λ2.

Table 5: Existence and global stability of the steady states of system (7) according to the six cases of the
Table 3: The absence of a letter means that the steady state does not exist.

Case Condition 1 Condition 2 E0 E1 E2 E∗

1 sin1 ≤ λ1 sin2 ≤ λ2 GAS
2 sin1 > λ1 sin2 ≤ λ2 (10) is not verified I GAS
3 sin1 ≤ λ1 sin2 > λ2 I GAS
4 sin1 > λ1 sin2 > λ2 I I I GAS
5 sin1 > λ1 sin2 ≤ λ2 (10) is verified I I GAS
6 sin1 ≤ λ1 sin2 > λ2 I I GAS

(a)

E0 E1
sin1

sin2

λ1

λ2

x1

x2

∆1

∆2

∆M
2

∆M
1

I

II

III
↖

(b)

E0E2 •
•

sin1

sin2

λ1

λ2

x1

x2

∆1

∆2

∆M
2

∆M
1

III

II

(c)

E∗

E0 E1

E2

sin1

sin2

λ1

λ2

x1

x2

∆1
∆2

∆M
2

∆M
1

P

IV

I

II

III

Figure 4: Global stability of the steady states of (7): (a) case 2 of table 5, where E0 is GAS, (b) case 3 of
table 5, where E1 is GAS, (c) case 4 of table 5, where E∗ is GAS.

4.3 Global behavior

In the following, we study the full two-stage model (4) under the assumptions (H1) and (H2).To
each steady state E = (x1, x2) of system (7) corresponds an steady state

F = (s1, x1, s2, x2)

where (x1, x2) are the components of the steady state E and (s1, s2) are defined by:

s1 = ωx2 − x1 + sin1 and s2 = sin2 + x1 − x2.

7



This construction allows us to obtain the steady state F0, F1, F2 and F∗ from the steady state
E0, E1, E2 and E∗.

Proposition IV.3:
The steady state of system (4) are given in the Table 6 :

Table 6: Steady states of (4).

s1, s2 components x1, x2 components
F0 s1 = sin1 , s2 = sin2 x1 = 0, x2 = 0
F1 s1 = λ1, s2 = sin1 + sin2 − λ1 x1 = sin1 − λ1, x2 = 0
F2 s1 = sin1 + ω(sin2 − λ2), s2 = λ2 x1 = 0, x2 = sin2 − λ2

F∗ s1 = λ1, s2 = λ2
x1 =

sin1 +ωsin2 −λ1−ωλ2

1−ω

x2 =
sin1 +sin2 −λ1−λ2

1−ω

Lemma IV.1:
Consider system (7). Let (x1(t), x2(t)) be a trajectory of positive initial condition (x1(0), x2(0)),
the limit set of this trajectory is non-empty and does not contain any periodic orbit.

Corollary 2:
The global asymptotic behavior of the complete system (4) is the same as that of the reduced
system (7).

Proposition IV.4:
Under the assumptions (H1) and (H2), the conditions of existence and global stability of the
steady state of system (4) are given in Table 7.

Table 7: Existence and global (asymptotic) stability of the steady states of system (4) according to the
operating parameters D, sin1 et sin2 .

Existence condition Global stability condition
F0 always exists sin1 ≤ λ1 and sin2 ≤ λ2

F1 sin1 > λ1 sin1 + sin2 ≤ λ1 + λ2

F2 sin2 > λ2 sin1 + ωsin2 ≤ λ1 + ωλ2

F∗ (10) LES whenever it exists

V NUMERICAL SIMULATIONS

In this section, we consider system (7). Recall that the existence and stability of the steady
states are summarized in Table 5. In order to illustrate the results of the section 4.2, we perform
the simulations for Monod type growth rates which are defined by

f1(s1) =
m1s1
s1 + k1

and f2(s2) =
m2s2
s2 + k2

, (11)

where m1, m2 denote the maximum growth rates; k1, k2 denote the Michaelis-Menten con-
stants. The parameter values are provided in Table 8. Moreover, we consider that the inflowing
concentrations of the second substrate in the chemostat sin2 is equal to 1.2.
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Table 8: Parameter values used for (7) when f1 and f2 are given by (11).

Paramètre m1 k1 m2 k2
Valeur 5.62 2.61 2.48 2.46

First, we choose (D, sin1 ) = (2.4, 0.4). Thus,

sin1 < λ1 ≈ 2.091 and sin2 < λ2 ≈ 73.80.

In this case, the figure 5 (a) illustrates the global convergence towards the unique steady state
E0 = (0, 0) which is GAS inside M . Figure 5 (b) shows the global convergence to E1 ≈
(0.770, 0) which is GAS inside M when (D, sin1 ) = (1.8, 2) means,

sin1 > λ1 ≈ 1.22 and sin2 < λ2 ≈ 6.51.

Similarly, we choose (D, sin1 ) = (0.7, 0.1) so that

sin1 < λ1 ≈ 0.371 and sin2 > λ2 ≈ 0.967.

In this case, the figure 6 (a) illustrates the global convergence to E2 ≈ (0, 0.232) which is GAS
inside M . Figure 6 (b) illustrates the global convergence to E∗ ≈ (3.446, 3.861) which is GAS
inside M when (D, sin1 ) = (0.6, 2.6) means,

sin1 > λ1 ≈ 0.311 and sin2 > λ2 ≈ 0.785.

While E1 ≈ (2.288, 0), E2 ≈ (0, 0.414) and E0 are unstable.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

(a)

E0
x1

x2

•

(b)

E0 E1
x1

x2

••

Figure 5: Phase portraits of system (7): (a) Global convergence to E0. (b) Global convergence to E1.

VI CONCLUSION

This work is devoted to the mathematical study of a two-stage anaerobic digestion model (4)
in a chemostat where, the first microbial population x1 transforms the organic matter s1 into
organic acids s2, methane CH4 and hydrogen H2. The products of the first reaction would then
be used by the second population x2 to produce methane. Using Thieme’s results, the asymp-
totic behavior of the solution of system (4) in dimension four is deduced from the asymptotic
behavior of the reduced two-dimensional system (7). We have proved that the system can admit
at most four steady states noted F0, F1, F2 and F∗ which represent respectively the washout,
the extinction of second species, the extinction of first species and the coexistence of two pop-
ulations. When the coexistence steady state exists in the positive half-plane, the other steady
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
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1.4

1.6

1.8
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0

1
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(a)

E0

E2
x1

x2

•

•

(b)

E0 E1

E2

E∗

x1

x2

•

• •
•

Figure 6: Phase portraits of system (7): (a) Global convergence to E2. (b) Global convergence to E∗.

states appear unstable. Then, we analyzed the local asymptotic behavior of all steady states
by determining their necessary and sufficient conditions as a function of the operating param-
eters. Using the nullcline method [9], we were able to determine the necessary and sufficient
conditions of the global asymptotic stability of each steady-state. This system does not exhibit
bistability, i.e., the asymptotic behavior of this process does not depend on the initial condition.
Finally, numerical simulations demonstrate the mathematical results and validate the theoretical
results. In this work, we have done the mathematical analysis of the model (4) in the particular
case D = D1 = D2. However, several questions remain open such as the effect of mortality or
maintenance as well as substrate inhibition on the behavior of this anaerobic digestion model.

A PROOFS
Proof of Proposition IV.1. The steady states of system (7) are given by the solutions of the following two equa-
tions: { (

f1
(
sin1 − x1 + ωx2

)
−D

)
x1 = 0(

f2
(
sin2 + x1 − x2

)
−D

)
x2 = 0.

(12)

We can easily verify the existence of the steady state E0 = (0, 0).
For E1, we have x1 > 0 and x2 = 0. From the first equation of (12), we have f1(s

in
1 − x1) = D. From the

assumption (H1), we obtain
sin1 − x1 = λ1 ⇐⇒ x1 = sin1 − λ1.

Hence, x1 is strictly positive if and only if sin1 > λ1. Similarly, for E2, we have x1 = 0 and x2 > 0. From the
second equation of (12), we have f1(s

in
2 − x2) = D. From the assumption (H1), we obtain.

sin2 − x2 = λ2 ⇐⇒ x2 = sin2 − λ2.

Hence, x2 is strictly positive if and only if sin2 > λ2. For E∗, we have x1 > 0 and x2 > 0. According to (12), we
have {

f1
(
sin1 − x1 + ωx2

)
= D,

f2
(
sin2 + x1 − x2

)
= D.

⇐⇒
{

sin1 − x1 + ωx2 = λ1,
sin2 + x1 − x2 = λ2.

(13)

Note that, the interior M◦ of M is defined by:

M◦ =
{
(x1, x2) ∈ R2

+ : 0 < x1 < sin1 + ωx2 and 0 < x2 < sin2 + x1

}
. (14)

Thus, the strictly positive steady state E∗ is given by the intersection of the lines ∆1 and ∆2 in M◦ defined by
(14). From (13), we can write the components of E∗ = (x∗

1, x
∗
2) as follows:

x∗
1 =

sin1 + ωsin2 − λ1 − ωλ2

1− ω
and x∗

2 =
sin1 + sin2 − λ1 − λ2

1− ω
,

where x∗
1 and x∗

2 are strictly positive if and only if condition (10) is verified. ■

Proof of Corollary 1.
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• For case 2 of the table 3, we have E1 is LES if and only if, sin1 > λ1 and sin1 + sin2 < λ1 + λ2. Then,
sin1 > λ1, sin2 < λ2 and sin1 + sin2 < λ1 + λ2.

• For case 3 of the table 3, we have E2 is LES if and only if, sin2 > λ2 and sin1 + ωsin2 < λ1 + ωλ2 Then,
sin1 < λ1, sin2 > λ2 and sin1 + ωsin2 < λ1 + ωλ2.

■

Proof of Proposition IV.2. We consider the case sin1 + sin2 > λ1 + λ2 and sin1 + ωsin2 > λ1 + ωλ2. We place
ourselves in the generic case where sin1 > λ1 and sin2 > λ2, that is to say the case 4 of the Table 3 where the
steady states E1 and E2 exist and are unstable (see Fig. 4 (c)). Since the lines ∆1 and ∆2 intersect inside M, then
the nullclines define four regions where the signs of ẋ1 and ẋ2 are constant in each region noted by:

I : ẋ1 > 0, ẋ2 < 0, II : ẋ1 < 0, ẋ2 < 0,

III : ẋ1 < 0, ẋ2 > 0, IV : ẋ1 > 0, ẋ2 > 0.

Indeed, for any (x1, x2) ∈ IV, we have

x1 − sin1 + λ1

ω
< x2 < x1 + sin2 − λ2 ⇐⇒ ẋ1 > 0 et ẋ2 > 0.

In the same way, we will determine the signs of ẋ1 and ẋ2 in the regions I, II and III .
Let a trajectory of (7) originate from a point inside the region IV .

• It cannot exit along the interval ]E1, E∗[ since at a point in this interval the velocity vector is vertical and
directed upwards so is strictly entering in IV .

• For the same reason it cannot go out along the interval ]E2, E∗[.
• it cannot neither leave along the interval ]E0, E1[, nor through the interval ]E0, E2[ since these are trajectories.
• The trajectory cannot go out it tends to a continuous steady state in IV it can only be the steady state E∗,

because in IV , the functions x1(t) and x2(t) are strictly increasing.
Similarly, a trajectory from a point inside the region II tends to the steady state E∗. Let us now consider a
trajectory originating from a point inside the region I .

• Either, it leaves the region I and then it can only be according to ]E2, E∗[ or ]E∗, P ]. Thus, it enters the
region IV or II and then it tends towards the steady state E∗.

• Either, it remains in the region I and then it tends to an steady state located in I, it cannot be E2 because
the function x1(t) is strictly increasing in I, it is thus E∗.

In a similar way, a trajectory coming from a point inside III can tend directly to E∗ or enter the region IV or II .
■

Proof of Lemma IV.1. By making the change of variable ξi = ln(xi), i = 1, 2, so the derivatives with respect to

time are ẋi =
ẋi

xi
, i = 1, 2, system (7) becomes:

{
ξ̇1 = f1

(
sin1 − eξ1 + ωeξ2

)
−D

ξ̇2 = f2
(
sin2 + eξ1 − eξ2

)
−D.

(15)

The divergence of the vector field G(ξ1, ξ2) =

[
f1

(
sin1 − eξ1 + ωeξ2

)
−D

f2
(
sin2 + eξ1 − eξ2

)
−D

]
is:

div G =
df1
dξ1

+
df2
dξ2

= −eξ1f ′
1

(
sin1 − eξ1 + ωeξ2

)
− eξ2f ′

2

(
sin2 + eξ1 − eξ2

)
< 0,

then according to the Bendixon–Dulac criterion, we cannot have in the limit set a periodic orbit or a polycycle. ■

Proof of Corollary 2. Let (x1(t), x2(t)) be a trajectory contained in M . Hence for any positive initial condition,
the solutions of system (7) are positively bounded and consequently the limit sets are compact and non empty. Ac-
cording to the Poincaré-Bendixson theorem, these limit sets are either steady states or periodic orbits or polycycles.
Using Lemma IV.1, we obtain that the set omega limit is steady states. Then according to Thieme’s convergence
theorem [1], the asymptotic behavior of the solution of (4) is the same as that of (7). ■
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