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Abstract
This paper deals with a complete analysis of a density-dependent model in a chemostat describing
the competition of two species for a single nutrient with a mutual-inhibitory relationship. In the
presence of species mortality and under general growth functions, we give a quite comprehensive
analysis of the existence and local stability of all steady states of the three-dimensional system.
The nullcline method permits us to show that if a positive steady state exists, then it is unique
and unstable. In this case, the system exhibits a bi-stability where the behavior of the process
depends on the initial condition. Our mathematical analysis proves that at most one species can
survive which confirms the competitive exclusion principle. Comparing with the study of the inter
and intraspecific model, we conclude that adding only intraspecific competition in the classical
chemostat model is not sufficient to show the coexistence of two species even considering mortal-
ity in the dynamics of two species.

Keywords
Chemostat; Coexistence; Competitive Exclusion Principle; Mortality; Mutual-inhibitory relation-
ship

I INTRODUCTION

The Competitive Exclusion Principle (CEP) states that, in continuous culture and under specific
assumptions, when two or more microbial species compete for the same limiting nutrient, only
the species with the lowest "break-even concentration" survives while all other species are ex-
tinct, see for instance [2, 8]. Although this prediction has been corroborated by the experiences
of Hansen and Hubbell [1], the biodiversity that is observed in microbial ecosystems as well as
in wastewater treatment processes and bioreactors seems to contradict the CEP. Thus, the clas-
sical chemostat model is unable to reproduce reality and new assumptions should be considered
in order to reconcile the theory and the experimental results.
In this vein, several mechanisms of coexistence in the chemostat were considered in the exist-
ing literature, such as the density-dependence of the growth functions [6, 8], the predator-prey
relationship between species [9, 12, 13, 15], the obligate mutualistic relationship [10]. Addi-
tionally, the intra and interspecific interference (see for instance [7]) can explain the coexistence
of species in the chemostat. In [7], it was considered a model of two species in competition for
a single nutrient with a mutual-inhibitory relationship, that is, each species inhibits the growth
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of the other. The authors show, without or with death rates, that there can be one or more pos-
itive locally exponentially stable steady states. In the case of more than one, bi-stability can
occur, for certain values of the operating parameters. A particular case of the model proposed
in [7] was studied by Lobry et al. [4] where only the intraspecific interferences are taking into
account. It was proved how the intraspecifc interferences are a mechanism of coexistence for
competing species in the chemostat.
We give a particular attention on the special case where only the interspecific interferences are
present. In this case, in [5, 10] it was proved that a system with the same removal rates pre-
dicts the CEP and when a coexistence steady state exists (always unstable) the system exhibits
a bi-stability. Recently, the study of Alsahafi et al. [14] provides an extension of the results in
[5, 10] to the case where a virus associated on the first species is present. They predict that the
CEP is still fulfilled and the coexistence of species is impossible.
In our knowledge, in the existing literature it has not yet been studied the effect of mortality
(that is, one has distinct removal rates for each species) on the behavior of the model proposed
in [5, 9], which is the matter of the present paper. In particular, with distinct removal rates, we
give a quite comprehensive analysis of the model. Using the nullcline method [7, 12, 13, 15],
we present a geometric characterization that describes all steady states of the model and their
stability. We show that the system can have at most four types of steady states: the washout of
species, two boundary steady states and a positive steady state. These steady states are studied
analytically by providing their necessary and sufficient conditions of existence and local stabil-
ity, and showing their uniqueness for each type of steady state. Mathematical analysis shows
that a positive steady state is unstable if it exists, that is, the coexistence of two species is impos-
sible. This result was obtained in [5, 9] where the mortality of species are neglected and it was
shown that at least one species goes extinct. Thus, even if we add the species mortality terms in
interspecific density-dependent model of two species with a mutual inhibitory relationship, the
CEP is still fulfilled.
The rest of this paper is organized in the following way. In the next Section II, we develop our
model and we present general assumptions on the growth rates. Section III is devoted to the
analysis of the model which describes the existence and stability conditions of steady states.
Section IV deals with numerical simulations. The final Section V contains a brief conclusion
of our results. Most of the proofs are reported in Appendix A. Finally, all the parameter values
used in simulations are provided in Appendix B.

II MODEL DESCRIPTION AND ASSUMPTIONS

The system we focus on consists of two microbial species (x1 and x2), which are competitors
for a single nutrient S. Additionally, each species inhibits the growth of the other species. This
system can be modeled by the following set of differential equations

Ṡ = D(Sin − S)− f1(S, x2)x1 − f2(S, x1)x2, (1)
ẋ1 = (f1(S, x2)−D1)x1, (2)
ẋ2 = (f2(S, x1)−D2)x2, (3)

where D and Sin are, respectively, the dilution rate and the input substrate concentration in
the chemostat. At time t, let S(t) denote the substrate concentration and xi(t), i = 1, 2, the
concentrations of species xi. For i = 1, 2, fi is the density-dependent growth rate of species xi.
It is assumed to be increasing in S and decreasing in xj , j ̸= i. For i = 1, 2, Di is the removal
rate of species xi and can be modeled as in [11, 15] by

Di = αiD + ai, (4)
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where the coefficient αi belongs to [0, 1] and represents the fraction of species leaving the re-
actor to model a biomass reactor attached to the support or to decouple the residence time of
solids and the hydraulic residence time (1/D); ai is the nonnegative death rate of the species xi.

We assume the following general assumptions on the given growth functions fi, for i = 1, 2,
j = 1, 2, i ̸= j.

(H0) fi belong to C1(R+,R+):
The functions must be sufficiently smooth so that existence, uniqueness and continuity of the
solution for all nonnegative time and nonnegative initial condition are satisfied.

(H1) fi(0, xj) = 0 for all xj ≥ 0:
Growth rate of species xi is take place if and only if the substrate S is present.

(H2) ∂fi
∂S

(S, xj) > 0 for all S ≥ 0 and xj > 0:
Growth rate of species xi is favored by the substrate S.

(H3) ∂fi
∂xj

(S, xj) < 0 for all S > 0 and xj ≥ 0:
Each species inhibits the growth of the other species, namely, by decreasing the growth of each
by the other.

It is straightforward to show that all solutions of (1)-(3) are nonnegative and bounded. In fact,
similar to [15], one can prove the following proposition. Let Dmin = min(D,D1, D2) and Ω ={
(S, x1, x2) ∈ R3

+ : S + x1 + x2 ≤ DSin/Dmin

}
. Then, for any non-negative initial condition,

1. the solution of system (1)-(3) exists for all t ≥ 0, remains nonnegative and is bounded.
2. Ω is positively invariant and is a global attractor for the dynamics (1)-(3).

III STEADY STATES: EXISTENCE AND LOCAL STABILITY

In this section, we discuss the existence and local stability conditions of all steady states of
system (1)-(3). For convenience, we use the abbreviation LES for Locally Exponentially Stable
steady state. In all figures, the straight line δ is defined by the equation D1x1/D +D2x2/D =
Sin and the curves γ1 and γ2 are in blue and red, respectively. In what follows, we need to define
the set

M :=
{
(x1, x2) ∈ R2

+ : D1x1/D +D2x2/D ≤ Sin

}
(5)

and the following notations:

E = ∂f1
∂S

, F = ∂f2
∂S

, G = − ∂f1
∂x2

, H = − ∂f2
∂x1

. (6)

We have used the opposite sign of the partial derivatives G = − ∂f1
∂x2

and H = − ∂f2
∂x1

, such that
all constants involved in the computation become positive.

3.1 Existence of steady states

First, under assumptions (H1) to (H3), we determine the steady states of (1)-(3) which are given
by the solutions of the following equations with nonnegative components:

D(Sin − S)− f1(S, x2)x1 − f2(S, x1)x2 = 0 (7)
(f1(S, x2)−D1)x1 = 0 (8)
(f2(S, x1)−D2)x2 = 0. (9)

System (1)-(3) predicts four steady states labeled as below:
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• E0 (x1 = x2 = 0): the washout of two species.
• E1 (x1 > 0, x2 = 0): species x1 survives while species x2 is extinct.
• E2 (x1 = 0, x2 > 0): species x1 is extinct while species x2 survives.
• E∗ (x1 > 0, x2 > 0): the coexistence of two species.

If x1 = x2 = 0, from (7) one has S = Sin, then the washout E0 = (Sin, 0, 0) always exists.
From assumption (H2), for i = 1, 2, the function S 7−→ fi(S, 0) is increasing, then the equation
fi(S, 0) = αiD + ai has a unique solution for all 0 < D < (fi(+∞, 0)− ai)/αi. This solution
is called the break-even concentration and noted by

S = λi(D). (10)

If D > (fi(+∞, 0) − ai)/αi, we put λi(D) = +∞. The following result gives the necessary
and sufficient conditions for the existence of the boundary steady states E1 = (S̃1, x̃1, 0) and
E2 = (S̃2, 0, x̃2) of system (1)-(3) according to the operating parameters D ans Sin. Assume
that assumptions (H0)-(H3) hold. For i = 1, 2, j = 1, 2, i ̸= j, let Ei the boundary steady state
of (1)-(3) with xi > 0 and xj = 0, where

S̃i = λi(D) and x̃i =
D
Di
(Sin − λi(D)). (11)

It exists if and only if

fi(Sin, 0) > Di. (12)

If it exists, then it is unique. In the following, we will determine the existence condition of the
coexistence steady state E∗ = (S∗, x∗

1, x
∗
2) where both populations survive, that is, x1 > 0 and

x2 > 0. Therefore, its components must be the solutions of the set of equations

D(Sin − S) = D1x1 +D2x2, (13)
f1(S, x2) = D1, (14)
f2(S, x1) = D2. (15)

From (13), we obtain

S∗ = Sin −D1x
∗
1/D −D2x

∗
2/D. (16)

By replacing the expression (16) in (14-15), we allow to say that (x1 = x∗
1, x2 = x∗

2) is a
solution of{

f1(Sin −D1x1/D −D2x2/D, x2) = D1,
f2(Sin −D1x1/D −D2x2/D, x1) = D2.

(17)

From (16), one see that S∗ is positive if and only if D1x
∗
1/D +D2x

∗
2/D < Sin. Thus, (17) has

a positive solution in the interior of the set M defined by (5).

Under assumptions (H0)-(H3), we need the following lemmas in order to solve (17) in the
interior of M . (1). Assume that f1(Sin, 0) > D1. Let x̃1 be the unique solution of the
equation f1(Sin − D1x1/D, 0) = D1 and x̄2 be the unique solution of the equation f1(Sin −
D2x2/D, x2) = D1. The equation f1(Sin−D1x1/D−D2x2/D, x2) = D1 defines a decreasing
function

F1 : [0, x̃1] −→ [0, x̄2]
x1 7−→ F1(x1) = x2,
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such that F1(x̃1) = 0, F1(0) = x̄2 and

F ′
1(x1) = − D1E

D2E+DG
< 0, for all x1 ∈ [0, x̃1]. (18)

Furthermore, the graph γ1 of F1 lies in the interior of M for all x1 ∈ (0, x̃1) (see Figure 3 (a)).

(2). Assume that f2(Sin, 0) > D2. Let x̃2 be the unique solution of the equation f2(Sin −
D2x2/D, 0) = D2 and x̄1 be the unique solution of the equation f2(Sin −D1x1/D, x1) = D2.
The equation f2(Sin −D1x1/D −D2x2/D, x1) = D2 defines a decreasing function

F2 : [0, x̄1] −→ [0, x̃2]
x1 7−→ F2(x1) = x2,

such that F2(x̄1) = 0, F2(0) = x̃2 and

F ′
2(x1) = −D1F+DH

D2F
< 0, for all x1 ∈ [0, x̄1]. (19)

In addition, the graph γ2 of F2 lies in the interior of M for all x1 ∈ (0, x̄1) (see Figure 3 (b)).

Using the derivatives (18) and (19) of functions F1 and F2, respectively, a straightforward cal-
culation shows the following result. The difference between the slopes of F1 and F2 is

F ′
1(x1)− F ′

2(x1) =
D(DGH+D1FG+D2EH)

D2F (D2E+DG)
> 0, for allx1 < min(x̄1, x̃1).

Hence, if there is a positive intersection (x1, x2) of γ1 and γ2 exists, then the tangent of γ1 at
point (x1, x2) is always above the tangent of γ2 at point (x1, x2). Therefore, if F1(0) = x̄2 >
F2(0) = x̃2, there cannot be any intersection between γ1 and γ2, and γ1 intersects the horizontal
axis on the right of γ2, hence x̃1 > x̄1.

Recall that, for i = 1, 2, j = 1, 2, i ̸= j, x̃i and x̄i are respectively the solutions of

fi(Sin −Dixi/D, 0) = Di and fj(Sin −Dixi/D, xi) = Dj.

These quantities represent the coordinates of the intersections of the curves γ1 and γ2 with the
coordinates axes. The relative positions of x̃i and x̄i, i = 1, 2, play a major role in the behavior
of the system. Thus, from Lemma 3.1, there exists three cases that must be distinguished (see
Figure 1):

Case 1 : x̄1 < x̃1 and x̃2 < x̄2.

Case 2 : x̄1 < x̃1 and x̄2 < x̃2.

Case 3 : x̃1 < x̄1 and x̄2 < x̃2.

(20)

All these previous results lead us to the following proposition which gives the necessary and
sufficient condition for the existence and uniqueness of positive steady state E∗. Assume that
assumptions (H0)-(H3) and condition (12) hold for i = 1, 2. A positive steady state E∗ exists if
and only if the curves γ1 and γ2 have a positive intersection in the interior of M . More precisely,
(x1 = x∗

1, x2 = x∗
2) is a positive solution of equation

x2 = F1(x1) and x2 = F2(x1). (21)

and S∗ is given by (16). Furthermore, E∗ exists if and only if Case 2 of (20) holds. If it exists,
then it is unique.
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(a)

x1

x2

γ1γ2

δ

x̃1x̄1

x̃2

x̄2
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E2
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(b)

x1
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γ2 δ

x̃1x̄1

x̃2

x̄2
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E∗•

(c)

x1

x2

γ1

γ2
δ

E0•
E1•

E2•

x̃1 x̄1

x̃2

x̄2

Figure 1: Steady states of (1)–(3) according to the cases of (20): (a) Case 1, (b) Case 2, (c) Case 3. We
have chosen the red color for LES steady state and the blue color for unstable steady state.

3.2 Local stability

In the following, we will investigate the local stability of all steady states of system (1)–(3). Let
computing the Jacobian matrix of (1)–(3) at (S, x1, x2) which takes the form

J =

−D − x1E − x2F −f1(S, x2) + x2H x1G− f2(S, x1)
x1E f1(S, x2)−D1 −x1G
x2F −x2H f2(S, x1)−D2


where E, F , G and H are given by (6). The following proposition determines the local stability
conditions of the boundary steady states. (1). E0 is LES if and only if fi(Sin, 0) < Di, for
i = 1, 2.
(2). For i = 1, 2, Ei is LES if and only if x̄i < x̃i. Now if a positive steady state E∗ exists, we
analytically characterize their stability by using the Routh–Hurwitz stability criterion. For E∗,
the characteristic polynomial is

P (λ) = λ3 + c1λ
2 + c2λ+ c3

where the coefficients ci, i = 1, 2, 3 are given in Table 1.

Table 1: Routh–Hurwitz coefficients for E∗ where E, F , G and H are given by (6) and evaluated at E∗.

c1 = D + Ex∗
1 + Fx∗

2

c2 = D1Ex∗
1 +D2Fx∗

2 − (GH + FG+ EH)x∗
1x

∗
2

c3 = −(DGH +D1FG+D2EH)x∗
1x

∗
2

c4 = c1c2 − c3

From Table 1, one can see that the coefficient c3 is always negative. According to the Routh–
Hurwitz criterion, E∗ is unstable. Thus, we can state the following result. If a positive steady
state E∗ exists, then it is always unstable. The necessary and sufficient conditions of existence

and local stability of all steady states of (1)–(3) are summarized in the following Table 2.

From Table 2, we can deduce the following result.
• E0 is LES if and only if E1 and E2 do not exist.
• A positive steady state E∗ exists if and only if E1 and E2 are LES.
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Table 2: Existence and stability conditions of steady states of (1)–(3).

Existence Local stability
E0 Always exists fi(Sin, 0) < Di, i = 1, 2
E1 f1(Sin, 0) > D1 x̄1 < x̃1

E2 f2(Sin, 0) > D2 x̄2 < x̃2

E∗ Case 2 of (20) holds unstable whenever it exists

IV NUMERICAL SIMULATIONS

This section is dedicated to present some numerical simulations which illustrate our findings.
To this end, we use the following growth rates satisfying assumptions (H0)-(H3):

f1(S, x2) =
m1S
K1+S

1
1+x2/L1

, f2(S, x1) =
m2S
K2+S

1
1+x1/L2

, (22)

where m1, m2 denote the maximum growth rates; K1 and K2 denote the Michaelis-Menten
constants; L1 (respectively L2) represents the inhibition factor due to x2 (respectively x1) for the
growth of the species x1 (respectively the species x2). The parameter values used for numerical
simulations are provided in Table 3.
Figure 2 illustrates the trajectories over time in three-dimensional space (S, x1, x2) for several
positive initial conditions in the three cases of (20). In Case 1 of (20), Figure 2 (a) shows
the convergence towards the steady state E1 ≃ (0.14835, 0.94627, 0) for any initial positive
condition in the interior of M . In Case 3 of (20) (see Figure 1 (c)), the solutions of model
(1)-(3) converges toward the extinction of the first species E2 ≃ (0.2, 0, 0.8) for several positive
initial conditions as shown in Figure 2 (c).
In the Case 2 of (20) (see Figure 1 (b)), from Table 2 and Proposition 3.2, system (1)–(3)
exhibits a bi-stability where at most one species wins the competition according to the initial
condition. In Figure 2 (b), we show the bi-stability with two basins of attraction, with either
convergence to E1 ≃ (0.22413, 0.59681, 0) or E2 ≃ (0.22448, 0, 0.705). These two basins are
separated by the stable manifold of saddle point E∗.

(a)

x1

S

x2

E2

E1
E0

(b)

E2

E∗

E1E0

x2

x1 S

(c)

E2

E1
E0

x2

x1

S

Figure 2: The trajectories of system (1)-(3) in three-dimensional space (S, x1, x2): (a) Convergence to
E1, (b) bi-stability of E1 and E2, (c) convergence to E2.

V CONCLUSION

In this work, we have considered the mathematical model describing the competition of two
species for a single growth-limiting resource in a chemostat with a mutual inhibition relation-
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ship between species proposed by El Hajji [9]. In the absence of mortality species, it was proved
that the system predicts the CEP. For general interspecific density-dependent growth functions
and different dilution rates, our mathematical analysis proves that the outcome of competition
satisfies the CEP which predicts that only one species can exist. Using the nullcline method
[7, 13, 15], we demonstrate that a positive steady state is unique and unstable if it exists. The
positive steady state exists if and only if both boundary steady states are LES. Therefore, the
model exhibits the bi-stability.
Our study is the first attempt to highlight the effect of species mortality on the behavior of a
two-species interspecific density-dependent model in the chemostat. Our theoretical message
explains that the addition of morality could not lead to the coexistence around a stable positive
steady state.
In the existing literature [6, 7], it was proved that the simultaneous presence of the inter- and
intraspecific interference in the competition for a single substrate can explain the coexistence
of species. Furthermore, for small enough interspecific interference terms, there is a stable per-
sistence of two species which can coexist for any positive initial condition. However, if these
terms are large enough, the system exhibits bi-stability with the competitive exclusion of one
species according to the initial condition. These results are numerically shown in the paper of
Lobry et al. [3].
In the other hand, it was proved that it possible to get coexistence of species, see [4], in the
case when the authors considered only the intraspecific interference in a competition model in
the chemostat. Hence, the intraspecific interference is necessary to ensure the coexistence of
species in the competition models. Moreover, it has a significant impact to explain the coexis-
tence around a stable positive steady state.
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A PROOFS
Proof of Proposition 3.1: For = 1, 2, j = 1, 2, i ̸= j, a boundary steady state Ei is a solution of (7)–(9) with
x̃i > 0 and xj = 0. That is, the components S̃i and x̃i are the solutions of equations

D(Sin − S̃i) = Dix̃i (23)

fi(S̃i, 0) = Di. (24)

Using definition (10) of λi, from (24) we have S̃i = λi(D). Thus, by replacing the expression of S̃i in (23), we
obtain x̃i =

D
Di

(Sin − λi(D)) which is positive if and only if (12) holds. This completes the proof. □

Proof of Lemma 3.1: We will prove item 1 of Proposition and item 2 will be obtained in the same fashion. Let
l1 be a fixed line defined by x1 = b1 that intersects the line δ at point x2 = c2 = DSin/D2 − D1b1/D2 (see
Fig. 3 (a)). From assumptions (H1)-(H2), we see that the function x2 7−→ f1(Sin −D1b1/D −D2x2/D, x2) is
decreasing from f1(Sin −D1b1/D, 0) for x2 = 0 to 0 for x2 = c2. Therefore, there exists a unique b2 ∈ [0, c2)
such that f1(Sin −D1b1/D −D2b2/D, b2) = D1 if and only if

f1(Sin −D1b1/D, 0) ≥ D1,

which is equivalent to b1 ≤ x̃1. Indeed, for i = 1 from (23), one has S = Sin − D1x1/D. By replacing this
expression in (24), one can see that x̃1 is the unique solution of f1(Sin − D1x1/D, 0) = D1 since the function
x1 7−→ f1(Sin −D1x1/D, 0) is decreasing from f1(Sin, 0) for x1 = 0 to 0 for x1 = DSin/D1.
Therefore, we have shown that for all b1 ∈ [0, x̃1] there exists a unique b2 ∈ [0, c2) such that f1(Sin −D1b1/D−
D2b2/D, b2) = D1, that is, each line l1 meets the set f1(Sin − D1x1/D − D2x2/D, x2) = D1 exactly once if

8
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0 ≤ b1 ≤ x̃1 and not at all if b1 > x̃1. Thus, we define the function F1 by b2 = F1(b1). The graph γ1 of this
function lies in M (see Fig. 3 (a)).
By the implicit function theorem, the function F1 is decreasing. Indeed, using assumptions (H2) and (H3) and
notations (6), it follows that

F ′
1(x1) = −

∂f1
∂x1

(x1, F1(x1))
∂f1
∂x2

(x1, F1 (x1))
=

D1

D
∂f1
∂S

−D2

D
∂f1
∂S + ∂f1

∂x2

= −D1E
D2E+DG < 0

Furthermore, if x2 = 0 then F1(x1) = 0 which equivalent to solve the equation f1(Sin −D1x1/D, 0) = D1, that
is, x1 = x̃1 the unique solution as it was shown above. Moreover, if x1 = 0, then

F1(0) = x2 ⇔ f1(Sin −D2x2/D, x2) = D1.

From (H3), we see that the function x2 7−→ f1(Sin −D2x2/D, x2) is decreasing from f1(Sin, 0) for x2 = 0 to 0
for x2 = DSin/D2. Consequently, the equation f1(Sin −D2x2/D, x2) = D1 has a solution x̄2 ∈ (0, Sin) if and
only if condition (12) hold for i = 1. If such an x̄2 exists then it is unique. □

(a)

x1

x2

γ1

δ

l1

b1 x̃1

x̄2

c2

b2

(b)

x1

x2

γ2

δ

x̃2

x̄1

l1

b1

c2

b2

Figure 3: The nullclines of (1)–(3): (a) Definition of F1. (b) Definition of F2.

Proof of Proposition 3.1:
By (17) and Lemma 3.1, a positive steady state exists if and only if the curves γ1 and γ2 have a positive intersection
(x∗

1, x
∗
2). If the intersection exists, then it lies in the interior of M . Consequently, the component S∗ which defined

by (16), is positive.
The necessary and sufficient condition of the intersection given by Case 2 of 20, and the uniqueness of the positive
steady state are illustrated in Figure 1 (b). □

Proof of Proposition 3.2: (1). At E0 = (Sin, 0, 0), the characteristic polynomial is

P (λ) = (−D − λ)(f1(Sin, 0)−D1 − λ)(f2(Sin, 0)−D2 − λ)

Therefore, E0 is LES if and only if fi(Sin, 0) < Di, for i = 1, 2. Using Proposition 3.1, we deduce that these
conditions hold if and only if the boundary steady states Ei, i = 1, 2 do not exist.
(2). At E1 = (λ1(D), x̃1, 0), the characteristic polynomial is

P (λ) = (f2(Sin −D1x̃1/D, x̃1)−D2 − λ)(λ2 + β1λ+ β2)

where β1 = D + x̃1E and β2 = D1x̃1E. Since β1 > 0 and β2 > 0, the real parts of the roots of the quadratic
factor are negative. Therefore, E1 is LES if and only if f2(Sin −D1x̃1/D, x̃1) < D2, that is, x̄1 < x̃1.
Similarly, at E2 = (λ2(D), 0, x̃2), the characteristic polynomial is

P (λ) = (f1(Sin −D2x̃2/D, x̃2)−D1 − λ)(λ2 + δ1λ+ δ2)

where δ1 = D+ x̃2F and δ2 = D2x̃2F . Since δ1 > 0 and δ2 > 0, the real parts of the roots of the quadratic factor
are negative. Therefore, E2 is LES if and only if f1(Sin −D2x̃2/D, x̃2) < D1, that is, x̄2 < x̃2. □
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Table 3: Parameter values used for model (1)-(3) when the growth rates f1 and f2 are given by (22).
Parameter m1 K1 L1 m2 K2 L2 D Sin α1 α2 a1 a2
Fig. 3
Figs. 1(a) and 2(a)
Figs. 1(b) and 2(b)
Figs. 1(c) and 2(c)

5 1.5 1 3 1 1 0.5

3
1
1
1

0.5
0.1
0.1
0.6

0.25
0.5
0.7
0.1

0.8
0.4
0.6
0.8

0.5
0.5
0.2
0.45

B PARAMETER VALUES USED FOR NUMERICAL SIMULATIONS
All the values of the parameters used in the numerical simulations are provided in Table 3.
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