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Abstract
This paper deals with a complete analysis of a density-dependent model in a chemostat describing
the competition of two species for a single nutrient with a mutual-inhibitory relationship. In the
presence of species mortality and under general growth functions, we give a quite comprehensive
analysis of the existence and local stability of all steady states of the three-dimensional system.
The nullcline method permits us to show that if a positive steady state exists, then it is unique
and unstable. In this case, the system exhibits a bi-stability where the behavior of the process
depends on the initial condition. Our mathematical analysis proves that at most one species can
survive which confirms the competitive exclusion principle. Comparing with the previous study
of the inter and intraspecific model, we conclude that adding only interspecific competition in the
classical chemostat model is not sufficient to show the coexistence of two species even considering
mortality in the dynamics of two species.

Keywords
Chemostat; Coexistence; Competitive Exclusion Principle; Mortality; Mutual-inhibitory relation-
ship

I INTRODUCTION

The Competitive Exclusion Principle (CEP) states that, in continuous culture and under spe-
cific assumptions, when two or more microbial species compete for the same limiting nutrient,
only the species with the lowest “break-even concentration” survives while all other species are
extinct, see for instance [2, 14]. Although this prediction has been corroborated by the experi-
ences of Hansen and Hubbell [1], the biodiversity that is observed in microbial ecosystems as
well as in wastewater treatment processes and bioreactors seems to contradict the CEP. Thus,
the classical chemostat model is unable to reproduce reality and new assumptions should be
considered in order to reconcile the theory and the experimental results.

In this vein, several mechanisms of coexistence of different species competing on a single lim-
iting substrate in the chemostat were considered in the existing literature, such as the intraspe-
cific competition [5, 11], the flocculation [8, 12, 17], the lethal external inhibitor [3, 18, 22], the
predator-prey relationship between species [15, 19, 20, 23], the obligate mutualistic relation-
ship [16]. Additionally, the intra and interspecific interference (see for instance [4, 6, 13]) can
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explain the coexistence of species in the chemostat.

In [13], a model of two species in competition for a single nutrient was considered including
general intra- and interspecific density-dependent growth rates with distinct removal rates for
each species. For small enough interspecific interference terms with respect to intraspecific
interference, it was shown the global convergence towards the coexistence steady state for any
positive initial condition. However, when the interspecific interference pressure is large enough
this system exhibits a bi-stability with the competitive exclusion of one species according to the
initial condition. These results were numerically established by Lobry et al. [6, 9].

In this paper, we consider the particular case where only the interspecific interferences are
present to understand if the coexistence of microbial species is due only to the intraspecific
interference effect. Could this coexistence occur with only interspecific competitions?

Note that in the particular case with the same removal rates, El Hajji et al. [10, 16] have shown
that the competition model of two species with only interspecific interference predicts the CEP
although coexistence steady state may exist but it is always unstable where the system exhibits
a bi-stability. Recently, the study of Alsahafi et al. [21] provides an extension of the model in
[10, 16] to the case where a virus associated with the first species is present. They predict that
the CEP is still fulfilled and the coexistence of species is impossible.

In our knowledge, in the existing literature it has not yet been studied the effect of mortality
on the behavior of the model proposed in [10, 15], which is the matter of the present paper.
Using the nullcline method [13, 19, 20, 23], we give a quite comprehensive analysis of the
model and we present a geometric characterization that describes all steady states of the model
and their stability. We show that the system can have at most four types of steady states: the
washout of species, two boundary steady states and a positive steady state. These steady states
are studied analytically by providing their necessary and sufficient conditions of existence and
local stability, and showing their uniqueness.

The rest of this paper is organized in the following way. In the next Section II, we develop our
model and we present general assumptions on the growth rates. Section III is devoted to the
analysis of the model which describes the existence and stability conditions of steady states.
Section IV deals with numerical simulations. The final Section V contains a brief conclusion
of our results. Most of the proofs are reported in Appendix A. Finally, all the parameter values
used in simulations are provided in Appendix B.

II MODEL DESCRIPTION AND ASSUMPTIONS

The system we focus on consists of two microbial species (x1 and x2), which are competitors
for a single nutrient S. Additionally, each species inhibits the growth of the other species. This
system can be modeled by the following set of differential equations

Ṡ = D(Sin − S)− f1(S, x2)x1 − f2(S, x1)x2, (1)
ẋ1 = (f1(S, x2)−D1)x1, (2)
ẋ2 = (f2(S, x1)−D2)x2, (3)

where D and Sin are, respectively, the dilution rate and the input substrate concentration in
the chemostat. At time t, let S(t) denote the substrate concentration and xi(t), i = 1, 2, the
concentrations of species xi. For i = 1, 2, fi is the density-dependent growth rate of species xi.
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It is assumed to be increasing in S and decreasing in xj , j ̸= i. For i = 1, 2, Di is the removal
rate of species xi and can be modeled as in [17, 23] by

Di = αiD + ai, (4)

where the coefficient αi belongs to [0, 1] and represents the fraction of species leaving the re-
actor to model a biomass reactor attached to the support or to decouple the residence time of
solids and the hydraulic residence time (1/D); ai is the nonnegative death rate of the species xi.

We assume the following general assumptions on the given growth functions fi, for i = 1, 2,
j = 1, 2, i ̸= j.

(H0) fi belong to C1(R+,R+):
The functions must be sufficiently smooth so that existence, uniqueness and continuity of the
solution for all nonnegative time and nonnegative initial condition are satisfied.

(H1) fi(0, xj) = 0 for all xj ≥ 0:
Growth rate of species xi is take place if and only if the substrate S is present.

(H2) ∂fi
∂S

(S, xj) > 0 for all S ≥ 0 and xj > 0:
Growth rate of species xi is favored by the substrate S.

(H3) ∂fi
∂xj

(S, xj) < 0 for all S > 0 and xj ≥ 0:
Each species inhibits the growth of the other species, namely, by decreasing the growth of each
by the other.

It is straightforward to show that all solutions of (1)-(3) are nonnegative and bounded. In fact,
similar to [23], one can prove the following proposition.

Proposition 1:
Let Dmin = min(D,D1, D2) and Ω =

{
(S, x1, x2) ∈ R3

+ : S + x1 + x2 ≤ DSin/Dmin

}
. Then,

for any non-negative initial condition,
1. the solution of system (1)-(3) exists for all t ≥ 0, remains nonnegative and is bounded.
2. Ω is positively invariant and is a global attractor for the dynamics (1)-(3).

III STEADY STATES: EXISTENCE AND LOCAL STABILITY

In this section, we discuss the existence and local stability conditions of all steady states of
system (1)-(3). For convenience, we use the abbreviation LES for Locally Exponentially Stable
steady state. In all figures, the straight line δ is defined by the equation D1x1/D +D2x2/D =
Sin and we have chosen the red color for LES steady state and the blue color for unstable steady
state. In what follows, we need to define the set

M :=
{
(x1, x2) ∈ R2

+ : D1x1/D +D2x2/D ≤ Sin

}
(5)

and the following notations:

E = ∂f1
∂S

, F = ∂f2
∂S

, G = − ∂f1
∂x2

, H = − ∂f2
∂x1

. (6)

We have used the opposite sign of the partial derivatives G = − ∂f1
∂x2

and H = − ∂f2
∂x1

, such that
all constants involved in the computation become positive.
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3.1 Existence of steady states

First, under assumptions (H1) to (H3), we determine the steady states of (1)-(3) which are given
by the solutions of the following equations with nonnegative components:

D(Sin − S)− f1(S, x2)x1 − f2(S, x1)x2 = 0 (7)
(f1(S, x2)−D1)x1 = 0 (8)
(f2(S, x1)−D2)x2 = 0. (9)

System (1)-(3) predicts four steady states labeled as below:
• E0 (x1 = x2 = 0): the washout of two species.
• E1 (x1 > 0, x2 = 0): species x1 survives while species x2 is extinct.
• E2 (x1 = 0, x2 > 0): species x1 is extinct while species x2 survives.
• E∗ (x1 > 0, x2 > 0): the coexistence of two species.

If x1 = x2 = 0, from (7) one has S = Sin, then the washout E0 = (Sin, 0, 0) always exists.
From assumption (H2), for i = 1, 2, the function S 7−→ fi(S, 0) is increasing, then the equation
fi(S, 0) = αiD + ai has a unique solution for all 0 < D < (fi(+∞, 0)− ai)/αi. This solution
is called the break-even concentration and noted by

S = λi(D). (10)

If D > (fi(+∞, 0) − ai)/αi, we put λi(D) = +∞. The following result gives the necessary
and sufficient conditions for the existence of the boundary steady states E1 = (S̃1, x̃1, 0) and
E2 = (S̃2, 0, x̃2) of system (1)-(3) according to the operating parameters D ans Sin.

Proposition 2:
Assume that assumptions (H0)-(H3) hold. For i = 1, 2, j = 1, 2, i ̸= j, let Ei the boundary
steady state of (1)-(3) with xi > 0 and xj = 0, where

S̃i = λi(D) and x̃i =
D
Di
(Sin − λi(D)). (11)

It exists if and only if

Sin > λi(D). (12)

If it exists, then it is unique.

In the following, we will determine the existence condition of the coexistence steady state
E∗ = (S∗, x∗

1, x
∗
2) where both populations survive, that is, x1 > 0 and x2 > 0. Therefore,

its components must be the solutions of the set of equations

D(Sin − S) = D1x1 +D2x2, (13)
f1(S, x2) = D1, (14)
f2(S, x1) = D2. (15)

From (13), we obtain

S∗ = Sin −D1x
∗
1/D −D2x

∗
2/D. (16)
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By replacing the expression (16) in (14-15), we allow to say that (x1 = x∗
1, x2 = x∗

2) is a
solution of{

f1(Sin −D1x1/D −D2x2/D, x2) = D1,
f2(Sin −D1x1/D −D2x2/D, x1) = D2.

(17)

From (16), one see that S∗ is positive if and only if D1x
∗
1/D +D2x

∗
2/D < Sin. Thus, (17) has

a positive solution in the interior of the set M defined by (5).

Under assumptions (H0)-(H3), we need the following lemmas in order to solve (17) in the
interior of M .

Lemma 1:
(1). Assume that Sin > λ1(D) and let x̄2 be the unique solution of the equation f1(Sin −
D2x2/D, x2) = D1. The equation f1(Sin−D1x1/D−D2x2/D, x2) = D1 defines a decreasing
function

F1 : [0, x̃1] −→ [0, x̄2]
x1 7−→ F1(x1) = x2,

such that F1(x̃1) = 0, F1(0) = x̄2 and

F ′
1(x1) = − D1E

D2E+DG
< 0, for all x1 ∈ [0, x̃1]. (18)

Furthermore, the graph γ1 of F1 lies in the interior of M for all x1 ∈ (0, x̃1) (see Figure 3 (a)).

(2). Assume that Sin > λ2(D) and let x̄1 be the unique solution of the equation f2(Sin −
D1x1/D, x1) = D2. The equation f2(Sin−D1x1/D−D2x2/D, x1) = D2 defines a decreasing
function

F2 : [0, x̄1] −→ [0, x̃2]
x1 7−→ F2(x1) = x2,

such that F2(x̄1) = 0, F1(0) = x̃2 and

F ′
2(x1) = −D1F+DH

D2F
< 0, for all x1 ∈ [0, x̄1]. (19)

In addition, the graph γ2 of F2 lies in the interior of M for all x1 ∈ (0, x̄1) (see Figure 3 (b)).

Using the derivatives (18) and (19) of functions F1 and F2, respectively, we can state the fol-
lowing result.

Lemma 2:
If a positive intersection point (x1, x2) of γ1 and γ2 exists, then the tangent of γ1 at point (x1, x2)
is always above the tangent of γ2 at point (x1, x2). In addition,

F ′
1(x1)− F ′

2(x1) =
D(DGH+D1FG+D2EH)

D2F (D2E+DG)
> 0.

Recall that, for i = 1, 2, j = 1, 2, i ̸= j, x̃i and x̄i are respectively the solutions of

fi(Sin −Dixi/D, 0) = Di and fj(Sin −Dixi/D, xi) = Dj.

These quantities represent the coordinates of the intersections of the curves γ1 and γ2 with the
coordinates axes. The relative positions of x̃i and x̄i, i = 1, 2, play a major role in the behavior

5



of the system. Thus, from Lemma 2, there exists three cases that must be distinguished (see
Figure 1):

Case 1 : x̄1 < x̃1 and x̃2 < x̄2.

Case 2 : x̄1 < x̃1 and x̄2 < x̃2.

Case 3 : x̃1 < x̄1 and x̄2 < x̃2.

(20)

All these previous results lead us to the following proposition which gives the necessary and
sufficient condition for the existence and uniqueness of positive steady state E∗.

Proposition 3:
Assume that assumptions (H0)-(H3) and condition (12) hold for i = 1, 2. A positive steady
state E∗ exists if and only if the curves γ1 and γ2 have a positive intersection in the interior of
M . More precisely, (x1 = x∗

1, x2 = x∗
2) is a positive solution of equation

x2 = F1(x1) and x2 = F2(x1). (21)

and S∗ is given by (16). Furthermore, E∗ exists if and only if Case 2 of (20) holds. If it exists,
then it is unique.

(a)

x1

x2

γ1γ2

δ

x̃1x̄1

x̃2

x̄2

E0• E1 •

E2
•

(b)

x1

x2

γ1

γ2 δ

x̃1x̄1

x̃2

x̄2

E0• E1 •

E2•

E∗•

(c)

x1

x2

γ1

γ2
δ

E0•
E1•

E2•

x̃1 x̄1

x̃2

x̄2

Figure 1: Cases of (20): (a) Case 1, (b) Case 2, (c) Case 3.

3.2 Local stability

In the following, we will investigate the local stability of all steady states of system (1)–(3). Let
computing the Jacobian matrix of (1)–(3) at (S, x1, x2) which takes the form

J =

−D − x1E − x2F −f1(S, x2) + x2H x1G− f2(S, x1)
x1E f1(S, x2)−D1 −x1G
x2F −x2H f2(S, x1)−D2


where E, F , G and H are given by (6). The following proposition determines the local stability
conditions of the boundary steady states.

Proposition 4:
(1). E0 is LES if and only if Sin < λi(D), for i = 1, 2.
(2). For i = 1, 2, Ei is LES if and only if x̄i < x̃i.
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Now if a positive steady state E∗ exists, we analytically characterize their stability by using the
Routh–Hurwitz stability criterion. For E∗, the characteristic polynomial is

P (λ) = λ3 + c1λ
2 + c2λ+ c3

where the coefficients ci, i = 1, 2, 3 are given in Table 1.

Table 1: Routh–Hurwitz coefficients for E∗ where E, F , G and H are given by (6) and evaluated at E∗.

c1 = D + Ex∗
1 + Fx∗

2

c2 = D1Ex∗
1 +D2Fx∗

2 − (GH + FG+ EH)x∗
1x

∗
2

c3 = −(DGH +D1FG+D2EH)x∗
1x

∗
2

c4 = c1c2 − c3

From Table 1, one can see that the coefficient c3 is always negative. According to the Routh–
Hurwitz criterion, E∗ is unstable. Thus, we can state the following result.

Proposition 5:
If a positive steady state E∗ exists, then it is always unstable.

The necessary and sufficient conditions of existence and local stability of all steady states of
(1)–(3) are summarized in the following Table 2.

Table 2: Existence and stability conditions of steady states of (1)–(3).

Existence Local stability
E0 Always exists Sin < λi(D), i = 1, 2
E1 Sin > λ1(D) x̄1 < x̃1

E2 Sin > λ2(D) x̄2 < x̃2

E∗ Case 2 of (20) holds unstable whenever it exists

From Table 2, we can deduce the following result.

Proposition 6:
• E0 is LES if and only if E1 and E2 do not exist.
• A positive steady state E∗ exists if and only if E1 and E2 are LES.

IV NUMERICAL SIMULATIONS

This section is dedicated to present some numerical simulations which illustrate our findings.
To this end, we use the following growth rates satisfying assumptions (H0)-(H3):

f1(S, x2) =
m1S
K1+S

1
1+x2/L1

, f2(S, x1) =
m2S
K2+S

1
1+x1/L2

, (22)

where m1, m2 denote the maximum growth rates; K1 and K2 denote the Michaelis-Menten
constants; L1 (respectively L2) represents the inhibition factor due to x2 (respectively x1) for the
growth of the species x1 (respectively the species x2). The parameter values used for numerical
simulations are provided in Table 3.
Figure 2 illustrates the trajectories over time in three-dimensional space (S, x1, x2) for several
positive initial conditions in the three cases of (20). In Case 1 of (20), Figure 2 (a) shows
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the convergence towards the steady state E1 ≃ (0.14835, 0.94627, 0) for any initial positive
condition in the interior of M . In Case 3 of (20) (see Figure 1 (c)), the solutions of model
(1)-(3) converges toward the extinction of the first species E2 ≃ (0.2, 0, 0.8) for several positive
initial conditions as shown in Figure 2 (c).
In the Case 2 of (20) (see Figure 1 (b)), from Table 2 and Proposition 6, system (1)–(3) exhibits
a bi-stability where at most one species wins the competition according to the initial condition.
In Figure 2 (b), we show the bi-stability with two basins of attraction, with either convergence
to E1 ≃ (0.22413, 0.59681, 0) or E2 ≃ (0.22448, 0, 0.705). These two basins are separated by
the stable manifold of saddle point E∗.

(a)

x1

S

x2

E2

E1
E0

(b)

E2

E∗

E1E0

x2

x1 S

(c)

E2

E1
E0

x2

x1

S

Figure 2: The trajectories of system (1)-(3) in three-dimensional space (S, x1, x2): (a) Convergence to
E1, (b) bi-stability of E1 and E2, (c) convergence to E2.

V CONCLUSION

In this work, we have considered the mathematical model describing the competition of two
species for a single growth-limiting resource in a chemostat with a reversible inhibition relation-
ship between species and different removal rates. For general interspecific density-dependent
growth functions and different dilution rates, our mathematical analysis proves that the outcome
of competition satisfies the CEP which predicts that only one species can exist. More precisely,
using the nullcline method [13, 20, 23], we present a geometric characterization describing all
steady states of the model and their stability. We prove that the positive steady state is unique
and unstable, if it exists. In addition, the positive steady state exists if and only if both bound-
ary steady states are LES. Therefore, the model exhibits a bi-stability where the outcome of
competition depends on the initial condition.

In the existing literature [13], it was proved that the simultaneous presence of the inter- and
intraspecific interference can explain the coexistence of species. Furthermore, for small enough
interspecific interference terms, there is a stable persistence of two species that can coexist for
any positive initial condition. However, if these terms are large enough, the system exhibits bi-
stability with the competitive exclusion of one species according to the initial condition. These
results are numerically shown in the paper of Lobry et al. [6, 9]. Considering only intraspecific
interference, the coexistence between several species was shown in [7].

In the absence of mortality of species, that is, with the same removal rates, it was proved in
[10, 15] that the system predicts the CEP. Thus, even adding the species mortality terms in the
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interspecific density-dependent model of two species with a mutual inhibitory relationship, the
CEP is still fulfilled. Hence, the intraspecific interference is necessary to ensure the coexis-
tence of species in the competition models. Moreover, it has a significant impact to explain the
coexistence around a stable positive steady state.

Our study is the first attempt to highlight the effect of species mortality on the behavior of a
two-species interspecific density-dependent model in the chemostat. Our theoretical message
explains that the addition of morality with only interspecific interference could not lead to the
coexistence around a stable positive steady state.

To make our theoretical results useful in practice, it would be interesting to analyze in future
work the operating diagram of this model in order to describe the behavior of the system ac-
cording to the control parameters D and Sin.
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A PROOFS
Proof of Proposition 2: For = 1, 2, j = 1, 2, i ̸= j, a boundary steady state Ei is a solution of (7)–(9) with x̃i > 0
and xj = 0. That is, the components S̃i and x̃i are the solutions of equations

D(Sin − S̃i) = Dix̃i (23)

fi(S̃i, 0) = Di. (24)

Using definition (10) of λi, from (24) we have S̃i = λi(D). Thus, by replacing the expression of S̃i in (23), we
obtain x̃i =

D
Di

(Sin − λi(D)) which is positive if and only if (12) holds. This completes the proof. □

Proof of Lemma 1: We will prove item 1 of Proposition and item 2 will be obtained in the same fashion. Let l1 be
a fixed line defined by x1 = b1 that intersects the line δ at point x2 = c2 = DSin/D2 −D1b1/D2 (see Fig. 3 (a)).
From assumptions (H1)-(H2), we see that the function x2 7−→ f1(Sin − D1b1/D − D2x2/D, x2) is decreasing
from f1(Sin − D1b1/D, 0) for x2 = 0 to 0 for x2 = c2. Therefore, there exists a unique b2 ∈ [0, c2) such that
f1(Sin −D1b1/D −D2b2/D, b2) = D1 if and only if

f1(Sin −D1b1/D, 0) ≥ D1,

which is equivalent to b1 ≤ x̃1. Indeed, for i = 1 from (23), one has S = Sin − D1x1/D. By replacing this
expression in (24), one can see that x̃1 is the unique solution of f1(Sin − D1x1/D, 0) = D1 since the function
x1 7−→ f1(Sin −D1x1/D, 0) is decreasing from f1(Sin, 0) for x1 = 0 to 0 for x1 = DSin/D1.
Therefore, we have shown that for all b1 ∈ [0, x̃1] there exists a unique b2 ∈ [0, c2) such that f1(Sin −D1b1/D−
D2b2/D, b2) = D1, that is, each line l1 meets the set f1(Sin − D1x1/D − D2x2/D, x2) = D1 exactly once if
0 ≤ b1 ≤ x̃1 and not at all if b1 > x̃1. Thus, we define the function F1 by b2 = F1(b1). The graph γ1 of this
function lies in M (see Fig. 3 (a)).
By the implicit function theorem, the function F1 is decreasing. Indeed, using assumptions (H2) and (H3) and
notations (6), it follows that

F ′
1(x1) = −

∂f1
∂x1

(x1, F1(x1))
∂f1
∂x2

(x1, F1 (x1))
=

D1

D
∂f1
∂S

−D2

D
∂f1
∂S + ∂f1

∂x2

= −D1E
D2E+DG < 0

Furthermore, if x2 = 0 then F1(x1) = 0 which equivalent to solve the equation f1(Sin −D1x1/D, 0) = D1, that
is, x1 = x̃1 the unique solution as it was shown above. Moreover, if x1 = 0, then

F1(0) = x2 ⇔ f1(Sin −D2x2/D, x2) = D1.

9
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(a)

x1

x2

γ1

δ

l1

b1 x̃1

x̄2

c2

b2

(b)

x1

x2

γ2

δ

x̃2

x̄1

l1

b1

c2

b2

Figure 3: (a) Definition of F1. (b) Definition of F2.

From (H3), we see that the function x2 7−→ f1(Sin −D2x2/D, x2) is decreasing from f1(Sin, 0) for x2 = 0 to 0
for x2 = DSin/D2. Consequently, the equation f1(Sin −D2x2/D, x2) = D1 has a solution x̄2 ∈ (0, Sin) if and
only if f1(Sin, 0) > D1, that is, condition (12) hold for i = 1. If such an x̄2 exists then it is unique. □

Proof of Proposition 3:
By (17) and Lemma 1, a positive steady state exists if and only if the curves γ1 and γ2 have a positive intersection
(x∗

1, x
∗
2). If the intersection exists, then it lies in the interior of M . Consequently, the component S∗ which defined

by (16), is positive.
The necessary and sufficient condition of the intersection given by Case 2 of 20, and the uniqueness of the positive
steady state are illustrated in Figure 1 (b). □

Proof of Proposition 4: (1). At E0 = (Sin, 0, 0), the characteristic polynomial is

P (λ) = (−D − λ)(f1(Sin, 0)−D1 − λ)(f2(Sin, 0)−D2 − λ)

Therefore, E0 is LES if and only if fi(Sin, 0) < Di, for i = 1, 2, that is, Sin < λi(D). Using Proposition 2, we
deduce that these conditions hold if and only if the boundary steady states Ei, i = 1, 2 do not exist.
(2). At E1 = (λ1(D), x̃1, 0), the characteristic polynomial is

P (λ) = (f2(Sin −D1x̃1/D, x̃1)−D2 − λ)(λ2 + β1λ+ β2)

where β1 = D + x̃1E and β2 = D1x̃1E. Since β1 > 0 and β2 > 0, the real parts of the roots of the quadratic
factor are negative. Therefore, E1 is LES if and only if f2(Sin −D1x̃1/D, x̃1) < D2, that is, x̄1 < x̃1.
Similarly, at E2 = (λ2(D), 0, x̃2), the characteristic polynomial is

P (λ) = (f1(Sin −D2x̃2/D, x̃2)−D1 − λ)(λ2 + δ1λ+ δ2)

where δ1 = D+ x̃2F and δ2 = D2x̃2F . Since δ1 > 0 and δ2 > 0, the real parts of the roots of the quadratic factor
are negative. Therefore, E2 is LES if and only if f1(Sin −D2x̃2/D, x̃2) < D1, that is, x̄2 < x̃2. □

B PARAMETER VALUES USED FOR NUMERICAL SIMULATIONS
All the values of the parameters used in the numerical simulations are provided in Table 3.

Table 3: Parameter values used for model (1)-(3) when the growth rates f1 and f2 are given by (22).
Parameter m1 K1 L1 m2 K2 L2 D Sin α1 α2 a1 a2
Fig. 3
Figs. 1(a) and 2(a)
Figs. 1(b) and 2(b)
Figs. 1(c) and 2(c)

5 1.5 1 3 1 1 0.5

3
1
1
1

0.5
0.1
0.1
0.6

0.25
0.5
0.7
0.1

0.8
0.4
0.6
0.8

0.5
0.5
0.2
0.45
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