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ABSTRACT

User Generated Content (UGC) refers to media generated by
users for end-consumers that represent most of the media ex-
change on social media. UGC is subject to acquisition and
transmission limitations that disable access to the pristine,
i.e., perfect source content. Evaluating their quality, espe-
cially with current pre- and post-processing algorithms or fil-
ters, is a major issue for most off-the-shelf full-reference qual-
ity metrics. We propose to conduct a benchmark on exist-
ing full-reference, non-reference, and aesthetic quality met-
rics for UGC with special effects. We aim to identify the
challenges posed by both UGC and filtering. We then pro-
pose a new combination of metrics tailored to enhanced and
filtered UGC, which reaches a trade-off between complexity
and accuracy.

Index Terms— Video Quality Metric, Fine-Tuning, User
Generated Content, Enhancement filters, Crowdsourcing

1. INTRODUCTION

With the rapid development of social media and video sharing
platforms, UGC has a significant and rising share of internet
traffic. As existing encoding-quality assessment systems are
designed for pristine originals, these systems commonly fail
when forced to consider original content containing distor-
tions - a common characteristic of UGC. To design, improve,
or select efficient compression recipes, robust quality metrics
tailored to UGC are inevitable.

It is even more problematic with the addition of special
effects (e.g., graphics addons, beautification, cartoonisation)
introducing non-natural features in natural content or pre-
processing algorithms (contrast enhancement, sharpening,
and noise-reduction) correcting most current artifacts in UGC
videos.

Most existing full-reference quality metrics assume that
the original content uploaded by users is the best quality and
they have been tailored and tuned to quantify the perceptual

quality of natural content. However, they do not perform well
on UGC due to the lack of pristine reference. In reaction,
several no-reference metrics were developed for UGC [l]].
Also, aesthetic metrics are potentially suitable for “beauty”
enhancements.

To the best of our knowledge, current large-scale UGC
datasets, such as Youtube UGC [2]], KoN-ViD-1k [3], The
ICME 2021 Grand challenge UGC dataset [4] and LIVE-
VQC [5], do not embed filtered or enhanced content. New
subjective quality experiments dedicated to UGC with spe-
cial effects need to be conducted. With the help of this new
ground truth, the most promising quality metrics could be
fine-tuned or new quality metrics could be developed.

Accordingly, there are three main contributions of this
work: (1) the designed content selection that precedes a pi-
lot subjective quality experiment, (2) a benchmark on exist-
ing quality metrics for UGC with special effects, and (3) the
fusion of existing quality metrics tailored to UGC videos with
special effects. The development will follow the same struc-
ture and will come to an end with a conclusion on findings.

2. SUBJECTIVE EXPERIMENT

We have access to 93 UGC 10-second video sequences com-
ing from the social media Douyin (Chinese version of Tik-
Tok). Media were processed with in-house algorithms, in-
cluding Artifact Removal (AR), Noise Reduction (MCTD)
and Sharpening with four resolutions and 16 Constant Rate
Factor (CRF) conditions for h264 and h265 with and without
Region Of Interest (ROI) encoding. Table |l| summarizes the
information relative to the content set.

Content Selection: We conducted a multi-codec, multi-
quality-metric, multi-scale, multi-pre-processing content se-
lection through rate-distortion (B-D) clustering [6]]. We first
selected content through an 8-clustering taking into account
B-D rate behaviors of 720p content encoded with h265. Two
sequences were extracted from each category, with prior-
ity given to 5 aesthetically filtered videos. On the 16 se-



Table 1. Information summary about the collected content set.

Provided content

Selected content

PVS - 309 (3-10 per SRC)
CRF 16: {16, 18, 20, 22, 24, 25, 26, 27, 28, 29, 30, 32, 34, 36, 38, 40} 3
SRC 93 16

Encoding resolutions

720p (720x1280), 540p (576x1024),
480p (480x854), 360p (360x640)

720p, vertical, except 9 PVS
(3 SRC x 3 remaining Resolutions)

Pre-processing

6: {mctd-ar-sharp-low, mctd-ar-sharp-med, mctd-ar-sharp-high, mctd-sharp-low, ar-sharp-low, ar-mctd-sharp-low }

Codecs 4: h264 and h265 with and without ROI encoding
29: SSIM, PSNR and VMAF variants, internal metric: VQScore,
Metrics BRISQUE, NIQE, ILNIQE, VIIDEO, VSFA, VIDEVAL, RAPIQUE
NIMA, NIMA_mp, MLSP
Omax 2 sourcing Absolute Category Rating (ACR) experiment on the

x CRF
X Selected CR!
T : threshold

Qmin

Rmin Rmax R

Fig. 1. Rate-quality optimized strategy to select CRF.

lected SRC content, we conducted a 17-clustering to select
Hypothetical Reference Circuits (HRCs). Both clusterings
consider VM AF-video bitrate encoding behaviors.

To select pre-processing HRCs, we ordered them by
importance for the study, i.e., almost lossless content, ROI-
based encoding, and no differentiation for remaining pre-
processings. Indeed, it is necessary to include almost-pristine
content (before delivery pipeline) first, then focus on ROI en-
coding, and finally, add Processed Video Source (PVS) with
disruptive BD-rate behaviors. With respect to the prioritiza-
tion, we keep only one PVS per SRC per cluster.

We envisioned several strategies for CRF selection: (1)
constant selection (22, 26, and 32), (2) adaptive selection on
the full scale, and (3) adaptive selection on the reduced scale
22-32. By adaptive selection, we considered a new approach
to represent content behaviors towards encoding correctly. In-
deed, taking the maxima or mean of the B-D curve based on
one of quality or rate may not be fair. The mean CRF is the
value found between the means bitrate- and quality-wise. Re-
garding the maxima CRFs, we define a threshold, expressed
as the percentage of quality and bitrate ranges, defining the
area the CRF falls into. We compute the bitrate and quality
thresholds and select the CRF value that has bitrate and qual-
ity closest to the average of the defined range. This process
is illustrated in Figure 1] Ultimately we proceeded with the
full-range strategy (2) exhibiting CRFs between 24 and 32.

Subjective test design: We have conducted a crowd-

Prolific platform. We defined 20 well-balanced playlists of
5 minutes, containing between 15 to 16 PVS. There are two
balanced sets of population, one of which gathers Chinese
speakers to study a population effect towards content present-
ing Chinese characters. Ultimately, we gathered 40 scores per
PVS, i.e., 800 people participated in the test. In the following,
when talking about the ground truth, we are referring to the
collected ACR scores.

3. BENCHMARK OF QUALITY METRICS

We consider 29 off-the-shelf and most typical quality metrics
in this benchmark, considering full-reference, blind metrics,
and aesthetic models that may be specifically efficient on en-
hanced UGC videos.

Typical full-reference video quality metrics (9x2):
Video Multimethod Assessment Fusion (VMAF) [7] ef-
ficiently predicts the quality of natural videos thanks to
the fusion of fidelity, details, and motions features using
a Support Vector Regression (SVR). Peak-to-Signal Noise
Ration (PSNR) and Structural SIMilarity (SSIM) are state-
of-the-art metrics based on signal noise and similarity. They
present a trade-off between prediction accuracy and compu-
tational cost. Four versions of PSNR and SSIM are available,
such as the global and three YUV channels representations
(referred to as g-, y-, u- and v-metric). We need to tackle
the lack of pristine original content to play the role of refer-
ence in full-reference metrics. We consider two references:
the original non-pristine content, and the pre-processed and
almost losslessly compressed (CRF1). It leads to two ver-
sions of these metrics results, for instance, u_PSNR and
crflu_PSNR.

No-reference and blind metrics for Image/Video Qual-
ity Assessment (7): Instead of extracting distortion-specific,
the Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE) [8] quantifies visual losses utilizing the scene

statistics. Similarly, Natural Image Quality Evaluator (NIQE) [9]

models the spacial natural scene statistics without prior
knowledge on content distortions, and its Integrated Local
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Fig. 2. Benchmark results of the CO figure of merit on the 29
video quality metrics.

version (ILNIQE) [10] takes the prediction at a local scale
through a spatial multivariate Gaussian model. The Video
Intrinsic Integrity and Distortion Evaluation Oracle (VI-
IDEO) can transform disturbances between spatio-temporal
sub-bands into predicted quality judgments in real-time.
VSFA models content- and memorability-dependant
quality using a Convolutional Neurone Network (CNN) and
Gated Recurent Unit (GRU). VIDEVAL is designed to bet-
ter assess the quality of UGC by fusing different quality
evaluators. Recently, Tu et al. proposed the Rapid and Accu-
rate Video Quality Evaluator (RAPIQUE) to evaluate the
quality of UGC, which fuses the quality-aware scene statistics
features with semantics-aware deep convolutional features.

Metrics for aesthetic assessment (3): The Neural IM-
age Assessment (NIMA) is commonly considered as a
baseline model. It is the first metric that predicts the aesthetic
score via predicting the distribution of the ground truth data.
A multi-patch pooled version (NIMA_mp) is also available.
As global pooling is conducive to arbitrary high-resolution
input, MLSP is based on Multi-Level Spatially Pooled
features. Even though some state-of-the-art models achieve
appealing performance, none are designed for UGC videos
with visual effects enhancements.

Additionally, we had access to the predictions of the VQS-
core (Video Quality Score) [13], an in-house proprietary met-
ric of Bytedance designed and tailored to UGC.

Benchmark design: The benchmark relies on four typi-
cal linear figures of merit Pearson Linear Correlation (PLCC),
Spearman Ranking Order Correlation (SROCC), Kendall
Rank Correlation (KRCC), and Root Mean Square Er-
ror (RMSE), and three indicators from the Krasula’s frame-
work [16] in the pairwise paradigm. When evaluating the
metric ability to discriminate and rank stimuli from a pair, it

takes into account the uncertainty of subjective scores and is
independent of the quality range of stimuli. It estimates the
Area Under the Curve (AUC) regarding the discrimination
(AUC DS) and rank (AUC BW) of paired stimuli, and the
ranking correct classification rate, CO. We report here only
results with CO, but the same conclusions exhibited from
other criteria.

We investigated the behaviors of quality metrics towards
different influence factors: the population (Chinese speaker or
not), the content type (contains Chinese references or charac-
ters), the bitrate and quality ranges, the consideration of intra
or inter pairs. Differentiating intra and inter pairs displays
the specific ability of a metrics to discriminate stimuli from
the same source or not, respectively. The intra-pair pipeline
is a comparison fairest to full-reference metrics designed to
compare same-source content.

Benchmark results: Figure 2] introduces the results per
population, intra, content type, and bitrate ranges. The colors
indicate the CO scores obtained by metrics: green and red rep-
resent 1 (perfect classification) and 0, respectively. Metrics
VQScore, NIMA, BRISQUE, NIMA _mp, RAPIQUE, MLSP,
VIIDEOQ are the most performing metrics, in this order. VQS-
core is by far the best, showing it is already well-tailored to
enhanced and filtered UGC. Note the mild accuracy of full-
reference metrics overall, together with VSFA. As expected,
full-reference metrics are far better on intra pair comparisons,
where blind and aesthetic metrics may suffer from the lack
of prior knowledge about the content. Several metrics are no-
ticeably highly performing in high bitrates (VQScore, NIMA,
VIDEVAL and to a lesser extent and NIMA _mp). Finally,
there is relatively no effect on the population.

4. COMBINATION OF METRICS

To obtain more efficient and suitable video quality metrics
for UGC with special effects, we regard each quality assess-
ment model selected in the benchmark and fine-tune a ma-
chine learning model to fusion them in a better predictor. Due
to the expensive cost of feature extraction, we want to find a
low-dimensional and lightweight group of metrics combined
in a highly performing new metric. Fine tuning such a metric
on the new dataset makes it specific to enhanced and filtered
UGC.

Fast convergence strategy: Fine-tuning machine learn-
ing techniques that fuses any combination of the 29 qual-
ity metrics is too demanding. Instead, we defined a strat-
egy converging quickly to the most satisfactory combination
of metrics. Backward Feature Elimination (BFE) is a prac-
tical greedy dimensional-reduction method that particularly
fits our use case. From the initial set of metrics, it removes
the least performing feature at every iteration. By iteration,
we mean that at step k, we compute the combination of met-
rics following a leave-one-out strategy. The discarded met-
ric/feature is the one missing from the most performing fu-
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Fig. 3. BFE convergence from the fusion of 29 metrics to 5. It
shows the average and standard deviation performance of all
combinations, and the most performing one, easily compared
to the performance of VQScore.The upper axis indicates the
metric removed at each iteration for no-complexity strategy.

sion of metrics. The stopping rule is to keep only 5 features.
We will verify empirically that this threshold is meaningful.

Ultimately, we will need to choose a combination of met-
rics among all the selected ones during the BFE. To select the
final fusion of metrics we calculate the ratio of performance
and complexity and keep the fusion of metrics with the high-
est ratio.

Performance and complexity criteria: We look for a
fusion of metrics that reaches the fine balance between ac-
curacy and complexity to match the constraints of broadcast-
ers (performance evaluations must not be more complex than
the encoding). First, we select the CO exhibited by the Kra-
sula framework as a performance indicator. It focuses on the
correct classification rate of metrics when discriminating pair
comparisons.

Then, we define four strategies to achieve the fine balance
between performance and complexity: (1) no-complexity: the
performance indicator CO evaluates alone the fusions of met-
rics. (2) p-value: this strategy rejects the model not included
in the most complex fusion among the range of combinations
that have similar performance (i.e., not proven significantly
different by a t-test). (3) Top 3: finds the three best perfor-
mance combinations and deletes the metric that has the high-
est complexity. (4) Top 5: similar to the above, but considers
five top performing features.

The complexities of quality models are set based on their
computation requirements (i.e., PSNR, SSIM:1; VMAF:2;
RAPIQUE, VQScore:3; BRISQUE:4; NIQE:5, VIDEVAL:6;
ILNIQUE:7; VIIDEO:8; MLSP, NIMA, NIMA_mp, and

Table 2. Performance of the selected combination of met-
rics, when compared to VMAF and VQScore. Best results
are highlighted.

‘ Metrics fusion VQScore VMAF

PLCC 0.9339 0.8632 0.3496
SRCC 0.9297 0.8597 0.3734
KRCC 0.7700 0.6672 0.2544
CO0 0.9656 0.9271 0.6719

VSFA:9).

Fusion of metrics Numerous solutions can fuse metrics
such as decision trees, random forests, AdaBoost, SVR or a
simple CNN regressor. We performed a grid search to se-
lect the algorithm (among SVM (classification), SVR (regres-
sion), Random forest, and Adaboost) and its hyper parameters
(e.g. kernel, value of kernel) on the first BFE iteration. In
the following, we train an SVR for each metrics fusion, the
best predictor based on the gird search. We adopt a 5-fold
cross-validation process with an allocation of 80% and 20%
to training and test sets, respectively, with a grid search to
tune the classifier.

Results We consider the 29 quality metrics involved in
the benchmark and use the ACR scores as ground truth. Fig-
ure[3|shows the convergence of the BFE for all four strategies.
Removed metrics for the no-complexity strategy are given on
top of the figure. We can see that the p-value strategy impacts
too drastically the efficiency of the fusions. The remaining
strategies are equivalent, with the no-complexity strategy that
presents a less drastic drop around 5-metrics combinations.
This strategy is thus selected in the following. The final com-
bination of metrics is an SVR RBF kernel with gamma at
0.001 with a regularization parameter set to 10 with seven
dimensions, i.e., BRISQUE, VQScore, v_SSIM, u_SSIM,
g SSIM, CRF1_y PSNR, and CRF1_v_PSNR. Its perfor-
mance is depicted and compared to VQScore and VMAF in
Table [2| Mixing two of the most performing low-complexity
metrics (VQScore and BRISQUE) with full-reference low-
complexity metrics (PSNR, SSIM) benefit from intra and
inter qualitative predictions.

5. CONCLUSION

The urge to specialize video quality metrics is decisive for
specific use-cases such as UGC enhanced and filtered videos.
We have designed an intelligent content selection strategy,
collected ACR scores in crowdsourcing, ran a benchmark on
current full-reference, blind and aesthetic metrics. We finally
introduced a methodology to tailor a performance-complexity
fusion of metrics. The exhibited tailored metric is in line
with the benchmark findings: VQScore is of high quality,
for all bitrate ranges and, with BRISQUE, benefits from full-
reference low-complexity metrics to improve the intra-pairs
predictions.
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