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We investigate the migration of bubbles in several flow patterns occurring within the gap between 
a rotating inner cylinder and a concentric fixed outer cylinder. The time-dependent evolution of the 
two-phase flow is predicted through three-dimensional Euler-Lagrange simulations. Lagrangian 
tracking of spherical bubbles is coupled with direct numerical simulation of the Navier-Stokes 
equations. We assume that bubbles do not influence the background flow �one-way coupling 
simulations�. The force balance on each bubble takes into account buoyancy, added-mass, viscous 
drag, and shear-induced lift forces. For increasing velocities of the rotating inner cylinder, the flow 
in the fluid gap evolves from the purely azimuthal steady Couette flow to Taylor toroidal vortices 
and eventually a wavy vortex flow. The migration of bubbles is highly dependent on the balance 
between buoyancy and centripetal forces �mostly due to the centripetal pressure gradient� directed 
toward the inner cylinder and the vortex cores. Depending on the rotation rate of the inner cylinder, 
bubbles tend to accumulate alternatively along the inner wall, inside the core of Taylor vortices or 
at particular locations within the wavy vortices. A stability analysis of the fixed points associated 
with bubble trajectories provides a clear understanding of their migration and preferential 
accumulation. The location of the accumulation points is parameterized by two dimensionless 
parameters expressing the balance of buoyancy, centripetal attraction toward the inner rotating 
cylinder, and entrapment in Taylor vortices. A complete phase diagram summarizing the various 
regimes of bubble migration is built. Several experimental conditions considered by Djéridi, 
Gabillet, and Billard �Phys. Fluids 16, 128 �2004�� are reproduced; the numerical results reveal a 
very good agreement with the experiments. When the rotation rate is increased further, the 
numerical results indicate the formation of oscillating bubble strings, as observed experimentally by 
Djéridi et al. �Exp. Fluids 26, 233 �1999��. After a transient state, bubbles collect at the crests or 
troughs of the wavy vortices. An analysis of the flow characteristics clearly indicates that bubbles 
accumulate in the low-pressure regions of the flow field. © 2007 American Institute of Physics. 
�DOI: 10.1063/1.2752839�

I. INTRODUCTION

Understanding and predicting the behavior of bubbles in
complex flow patterns is of major interest for many practical
applications. Industrial facilities are often designed to
achieve separation or mixing of two-phase fluid flows.
Chemical engineering, the oil industry, and transformation of
thermal energy are all areas in which two-phase flow mod-
eling is of great concern. Centrifugal separators are widely
employed in manufacturing processes. Hydrocyclones are
commonly used to separate the phases in bubbly flows. Mi-
gration of a dispersed phase �bubbles, drops, or particles� is
basically controlled by the spatial structure of the carrying
fluid flow. It is important to achieve the prediction of prefer-
ential accumulation of bubbles, as it may dramatically
modify transfer phenomena occurring in the two-phase mix-
ture. More generally, the presence of bubbles dispersed in a

turbulent flow modifies the dynamics of vortical structures
through mutual interactions. For instance, when bubbles are
collecting along a heated wall, thermal convection is signifi-
cantly enhanced by fluid agitation. In contrast, if the bubbles
are attached to the wall, the global heat exchange coefficient
is significantly reduced.

In the present paper, we focus on a simple geometry,
namely the flow between two vertical concentric cylinders.
The gap between the cylinders is filled with a Newtonian
fluid seeded with small bubbles. Bubbles migrate under the
influence of gravity and hydrodynamic forces responding to
different flow characteristics. This simple geometry has sev-
eral advantages. It provides an adequate configuration to pre-
cisely compare numerical simulations with experiments.1,2

When the inner cylinder rotation gradually increases, the
fluid flow within the gap undergoes successive bifurcations,
which finally lead to turbulence. This sequential transition to
fully developed turbulence emphasizes the role of coherent
structures in bubble dispersion. Even in a fully turbulent

a�Author to whom correspondence should be addressed. Electronic mail:
Eric.Climent@ensiacet.fr

http://dx.doi.org/10.1063/1.2752839
http://dx.doi.org/10.1063/1.2752839


flow, well-defined vortices that appear in early stages of
Couette-Taylor flows persist. Indeed, for high rotation rates
of the inner cylinder, migration of bubbles is still related to
large-scale flow patterns.3 This academic geometry is also
close to practical applications such as centrifugal separators
�cyclones� or mixing devices. Chaotic mixing of inertial par-
ticles has been investigated with simplified models of the
flow4,5 in such configurations.

When the inner cylinder rotates, the selection of the flow
pattern is controlled by a centrifugal instability of the purely
azimuthal Couette flow, and toroidal steady vortices �Taylor
vortex flow� occur beyond a first threshold. While the Taylor
number �see Sec. II for definition� increases above the
threshold of the second instability, the flow becomes time-
dependent as vortices undergo wavy oscillations �wavy vor-
tex flow�. Increasing further the Taylor number �related to
the nondimensional centrifugal forcing� induces a modula-
tion of the wavy shape of the vortices; eventually turbulence
sets in gradually. Bubbles injected in these various flow pat-
terns have intricate responses. Early observations by Shiomi
et al.6 showed that bubble accumulation forms geometrical
arrangements like rings and spirals. In these experiments, the
axial volumetric fluxes of air and water were varied for dif-
ferent rotation rates of the inner cylinder. The authors were
able to summarize the numerous two-phase flow patterns in a
configuration map, but the underlying physics remained un-
clear. Later, Atkhen et al.3 studied a highly turbulent
Couette-Taylor flow with axial fluid flux. The flow was
seeded with small air bubbles to make visualization of spiral
vortices easy. The authors observed that bubbles collect at
particular locations along the inner wall. More precisely,
bubbles were attracted in outflow regions where the fluid
flows radially from the inner cylinder toward the outer wall.
Those locations correspond to low-pressure areas. The au-
thors used bubbles as tracers of the traveling Taylor vortices.
A precise understanding of the mutual interactions between
the continuous fluid phase and the dispersed bubbles started
with the experimental study of Djeridi et al.2 These authors
carried out a series of experiments based on the observation
of bubble migration within Taylor vortices. A more compre-
hensive inspection of arrangements of the dispersed phase
together with flow structure modulations induced by bubbles
was also presented by Djeridi et al.1 Bubbles were condens-
able �generated by cavitation� or noncondensable �originat-
ing from free surface agitation�. Results were compared to
simplified models providing a prediction of the average dis-
tance between consecutive rings of bubbles. Modifications of
the flow structure and instability thresholds were also
reported.

In the present study, we investigate numerically the mi-
gration of spherical bubbles in three different regimes of the
flow between two concentric cylinders �namely Couette flow,
Taylor vortex flow �TVF�, and wavy vortex flow �WVF��.
Using Lagrangian tracking of bubbles coupled with a direct
numerical simulation of the full Navier-Stokes equations al-
lows us to address the following open issues. What are the
respective roles of the forces experienced by the bubbles
during their entrapment in Taylor vortices? What are the di-
mensionless parameters determining the number of bubble

rings over one wavelength of the TVF? Where are the accu-
mulation regions in the WVF regime?

Since there has been significant progress over the past
two decades in obtaining knowledge on the forces acting on
bubbles,21 Lagrangian tracking has become a relevant tool to
investigate bubble dispersion in complex flows. Analytical
expressions of the forces with extended validity are now
available and provide a sound background for predicting
preferential accumulation. The major role played by coherent
structures in a fully turbulent flow was emphasized by Sene
et al.7 and Poorte and Biesheuvel.8 Understanding the accu-
mulation process is a key step toward predicting bubble-
induced modifications of the carrying fluid flow. Indeed, a
small amount of dispersed phase located in the core of vor-
tices can induce dramatic changes in the vortex structure.9,10

This paper is organized as follows. The next section is
devoted to the description of the governing equations of the
two-phase flow �some details on the numerical methods and
validation of the flow are also included�. The third section
gathers results on bubble dispersion in Couette-Taylor flows
in the first three flow regimes previously discussed. Frequent
comparisons with the experimental observations of Djéridi et
al.1,2 are provided. The concluding section includes a com-
prehensive scenario of the entrapment phenomena.

II. TWO-PHASE FLOW SIMULATIONS

A. Direct numerical simulations of the carrying flow

The fluid between the two vertical cylinders �see Fig. 1
for a sketch of the configuration� is considered Newtonian
and incompressible with constant physical properties �� f is

FIG. 1. Sketch of the geometrical configuration used in the computations
�e=R2−R1: gap width; �=R1/ /R2=0.889; L=2e; periodic boundary condi-
tions are applied in the axial direction�.



the fluid density and � is the dynamic viscosity�. The un-
steady three-dimensional Navier-Stokes equations governing
the flow read

� · u = 0, �1a�

� f� �u

�t
+ u · �u� = − �P + � · ����u + �Tu�� . �1b�

These equations are directly solved using a conservative
finite-volume method. Primitive variables �the velocity u and
pressure P� are discretized on a staggered nonuniform grid.
Spatial derivatives are computed with second-order accuracy.
Temporal integration is achieved through a third-order
Runge-Kutta scheme and a semi-implicit Crank-Nicolson
scheme for the viscous terms. The corresponding code has
been widely used and validated in laminar and turbulent flow
regimes �see, e.g., Refs. 11 and 12 and references therein�.
The fluid is confined between two concentric vertical cylin-
ders �with radii R1 and R2�. The radii ratio �=R1 /R2 charac-
terizes the geometry and is set to 8/9. Cylinders of infinite
axial extension are modeled using periodic boundary condi-
tions in the axial direction. We assume that the flow distor-
tion produced by the actual boundary conditions at both ends
of the experimental device �i.e., top and bottom walls of the
cylinders� has a negligible influence on bubble dispersion far
from these walls. Using periodic boundary conditions for the
direct numerical simulation of confined cellular flows has
proven to be an efficient and reliable model �see, for in-
stance, Ref. 13 in the context of Couette-Taylor flows�. The
height of the numerical domain is L=2�R2−R1�, i.e., twice
the gap. It allows the simulation of one wavelength of the
Taylor vortex flow. Grid cells are uniform in the axial and
azimuthal directions. We use stretched grids in the radial
direction to better describe the vicinity of the cylinder walls.
Two-dimensional simulations are performed using 60�60
grid cells in the er−ez directions, while the azimuthal direc-
tion �e�� is discretized using 32 or 64 uniform cells, depend-
ing on the wavelength of the azimuthal oscillations in the
wavy vortex regime. The outer cylinder is kept fixed while
the inner cylinder rotates with a constant angular rotation
rate �. In what follows, all quantities related to the flow will
be scaled using the gap e=R2−R1 and the reference velocity
�R1. We define the Taylor number as Ta=�2R1�R2

−R1�3 /�2, where �=� /� f is the kinematic viscosity of the
fluid. The behavior of the flow can be characterized either by
the Taylor number or by the Reynolds number Re=�R1�R2

−R1� /�.
For Ta�Tao �Tao being the critical Taylor number cor-

responding to the first instability�, the flow is purely azi-
muthal, so we have

u��r� = Ar +
B

r
with A = −

�1

�R2 	 R1�2
− 1

and

B =
�1R2

2

�R2 	 R1�2
− 1

, ur = uz = 0. �2�

The corresponding torque G0 experienced by the inner cyl-
inder is then

G0 =
4
�R1

2�1

1 − �R1 	 R2�2 . �3�

We checked that both the velocity field and the torque ex-
erted on the cylinder are predicted within 10−6 relative error
in our numerical simulations.

The next regime �TVF� occurs when Ta exceeds the
critical value Tao. In this case, the fluid flow forms counter-
rotating cells in the �er−ez� plane that are invariant in the
azimuthal direction �toroidal vortices, see Fig. 2�.

To check the stability of the Couette flow with increasing
rotation rate, we introduced a weak perturbation and exam-
ined its growth rate �. We evaluated the critical Taylor num-
ber Tao to 1958, which corresponds to a critical Reynolds
number Reo=125. The evolution of � as a function of the
reduced Taylor number �Ta= �Ta−Tao� /Tao or the reduced
Reynolds number �Re= �Re−Reo� /Reo is nearly linear and
allows a precise determination of Tao. The estimate of Tao

provided by the direct numerical simulation is in very good
agreement with available theoretical studies:
Chandrasekhar14 found Tao=1801 while Di Prima and
Swinney15 obtained Tao=1956 from linear stability analysis.
As the Reynolds number is further increased beyond the
threshold, the intensity of the toroidal vortices gradually
grows up. In Fig. 3, the maximum velocity of the Taylor
vortices is plotted for increasing �. The evolution follows a
square root law characteristic of a supercritical bifurcation.

When the angular velocity of the inner cylinder is in-
creased further, a new bifurcation occurs at a second critical
Taylor number Ta1.16 Toroidal cells oscillate in the azimuthal
direction as a wavy modulation propagates. This flow state is
known as the wavy vortex flow �WVF�. Again, to track the
transition from the TVF to the WVF regime, we added a
weak perturbation with an imposed azimuthal wave number
k� to the TVF. By recording the value of the growth rate �,
we obtained the value of the second critical Taylor number as
Ta1=2689, which corresponds to Re1=147. These values are
in good agreement with those reported in the literature. For
instance, Coles17 proposed an empirical relation between Tao

and Ta1, namely

1.86�R1

e
�1 −

Tao

Ta1
��1/2

= 2.9. �4�

Given the value we found for Tao, �4� indicates Ta1=2813,
which is in the range of our simulations. Fenstermacher et
al.18 investigated experimentally a Couette-Taylor system
and obtained Re1/Reo=1.2, which is close to our numerical
result 1.17. Finally, we plotted the evolution of the torque
versus � and compared it with some theoretical predictions
and experimental results. From Fig. 4, we conclude that our
simulations are able to reproduce accurately the basic fea-
tures of Couette-Taylor flow patterns, both in two-
dimensional and in fully three-dimensional regimes.

B. Lagrangian tracking of bubbles

The dispersed phase is made of small bubbles �the typi-
cal bubble diameter is 100 �m� experiencing the combined
effects of the carrying fluid flow and the buoyancy force.



Bubble trajectories are distinct from fluid element paths and
an accurate balance of the forces acting on the bubbles is
required to achieve a relevant prediction of the dispersion.
Obtaining an analytical expression for all hydrodynamic
forces is still an open issue in most flow regimes. Therefore,
simplifying assumptions have to be adopted to make the
problem tractable and obtain a reasonable force balance. In
experiments,1,2 the bubbles are typically 50 times smaller
than the gap width. Therefore, we aim at simulating the dis-
persion of small bubbles when the flow is only composed of

large-scale patterns, as is the case in the first three regimes
encountered by increasing the Taylor number from rest. Con-
sidering that all the relevant spatial length scales of the car-
rying flow are much larger than the typical size of the
bubbles, we assume that the so-called Fàxen corrections19,20

induced by the local curvature of the flow velocity field are
negligible in the expression of all hydrodynamic forces.
Also, in the range of bubble diameters considered in the

FIG. 2. Toroidal flow pattern in the
Taylor vortex flow regime. a, velocity
field; b, pressure contours �low pres-
sure on the inner wall, r=8�.

FIG. 3. Velocity scale of the secondary flow vs the distance to the threshold
��Re= �Re−Reo� /Reo: squares; �Ta= �Ta−Tao� /Tao: circles�.

FIG. 4. Evolution of the torque on the inner cylinder with �Re ��Re=0
transition to TVF; �Re=0.176 transition to WVF�. *: Experiment from Don-
nelly and Simon �Ref. 35�; – – –·: theoretical prediction �Davey �Ref. 36��;
�: present computations.



present paper, the effects of surface tension are strong
enough to keep the bubbles spherical. Indeed, small bubbles
�with diameter ranging from 100 �m to 1 mm� rising in wa-
ter or glycerol/water solutions have a Reynolds number
based on the slip velocity that varies from O�1� to O�102�,
whereas their Weber number �characterizing the relative
strength of inertia and surface tension� is in the range
O�10−3�–O�10−1�. Therefore, their deformation is negligibly
small, making it reasonable to consider them spherical. Fi-
nally, we assume that the bubble surface is free of surfactant,
so that the liquid slips along the liquid-air interface. In addi-
tion to the above assumptions, we assume that direct inter-
actions between bubbles are negligible, which restricts our
investigation to configurations with low bubble volume frac-
tions. We write the force balance on each bubble as a sum of
distinct contributions. Hence, we track the bubble trajectories
and predict the position x�t� of their center of mass and their
velocity v�t� in a fluid flow whose velocity, Lagrangian ac-
celeration, and vorticity at x�t� are u, Du /Dt, and �=�
�u, respectively, by solving

dx

dt
= v, �pV

dv

dt
= F �5�

with

F = ��p − � f�Vg + � fV
Du

Dt
− � f

3V

8R
CD	v − u	�v − u�

+ � fVCM�Du

Dt
−

dv

dt
� − � fVCL�v − u� � � , �6�

where �p �� f� denotes the bubble �liquid� density, V �R� is the
bubble volume �radius�, and CD, CM, and CL are the drag,
added mass, and lift coefficients, respectively. The various
forces taken into account in Eq. �6� are the buoyancy force,
the so-called pressure gradient force due to the Lagrangian
acceleration of fluid elements, the drag force, the added-mass
force, and the shear-induced lift force. Owing to the shear-
free boundary condition experienced by the bubble surface,
the history force is negligible for moderate bubble accelera-
tions, as was shown in Refs. 21 and 22. For spherical
bubbles, the added-mass coefficient CM is known to be con-
stant and equal to 1

2 whatever the Reynolds number.21–23 The
drag coefficient CD depends on the instantaneous bubble
Reynolds number Rep=2	v−u	R /�. As we are mostly con-
cerned with bubble Reynolds numbers in the range 0.1–10,
we select a CD correlation based on results obtained in direct
numerical simulations with Rep�50, namely23

CD�Rep� = 16�1 + 0.15Rep
1/2�/Rep. �7�

For high-Rep bubbles �say Rep
50�, the mechanisms that
control lift effects are essentially of inviscid nature, so that
the inviscid result CL= 1

2 is appropriate.24 At lower Rep, it
was shown24 that CL is a function of both the Reynolds num-
ber and the shear rate, but both dependencies are weak down
to Rep=10. In contrast, for bubble Reynolds numbers typi-
cally less than unity, the situation becomes much more com-
plex. Velocity gradients in the base flow contribute to induce
O�ReP

1/2� lift forces through a combined effect of viscosity

and inertia, so that the inertial scaling becomes irrelevant.
Moreover, in contrast to the high-Reynolds-number situation,
strain and rotation combine in a nonlinear way in the gen-
eration of lift effects. This is why no general expression of
the lift force applicable to an arbitrary linear flow field is
available to date in this regime, even though some attempts
have been made toward this direction.26 Note that these com-
plex physics may even in certain cases reverse the sign of the
lift force as compared to the inviscid prediction.25,27

As we expect our bubbles to have Reynolds numbers
down to O�10−1�, the above discussion suggests that the ex-
pression of the lift force to be selected has to be carefully
justified. For this purpose, we examined the eigenvalues of
the velocity gradient tensor D=�u in the Taylor vortex flow
configuration �Fig. 2�, which is the main focus of our study.
Four distinct regions emerged from this analysis. Not sur-
prisingly, the core of the vortices �r /e=8.5, z /e=0.5, and
z /e=1.5 in Fig. 2� corresponds to a solid body rotation flow.
In the outflow region �r /e=8 and z /e=1�, the flow is domi-
nated by strain effects. However, it will be shown in the next
section that bubble migration is mostly controlled by the
phenomena taking place in the other two regions of the flow
corresponding to negative vertical motion of the fluid aside
from the vortex cores �r /e=8.25 and z /e=1.5; r /e=8.75 and
z /e=0.5�. The analysis of the eigenvalues of D revealed that
the velocity field is close to a pure linear shear flow in these
regions. Consequently, as a first attempt, we may consider
that the lift force acting on the bubbles is dominated by shear
effects at least during the stages where this force plays a
crucial role in the lateral migration process. For this reason,
we found it reasonable to focus on results available for the
lift force in pure shear flows and selected the empirical ex-
pression of the shear-induced lift coefficient CL proposed by
Magnaudet and Legendre,26 namely

CL = �� 6


2

2.2555

�1 + 0.2�	v − u	2 	 G���3/2� �

GR2�1/2�2

+ �1

2

1 + �16 	 ReP�
1 + �29 	 Rep�

�2�1/2

, �8�

where G stands for the local shear rate. Expression �8�
matches the two asymptotic behaviors of CL in a simple
shear. The first term on the right-hand side is the low-ReP

expression of CL while the second term fits the moderate-to-
high ReP behavior and tends toward the asymptotic value
CL= 1

2 at large ReP. Therefore, at low-to-moderate Reynolds
number, the lift coefficient �8� combines the effects corre-
sponding to both the low-but-finite-ReP Saffman mechanism
and the inertial Lighthill-Auton mechanism. Expression �8�
depends on both the relative Reynolds number ReP and the
shear intensity G through Saffman’s length scale �� /G�1/2.
Figure 5 displays the CL values provided by expression �8� in
the TVF regime with bubble characteristics corresponding to
the experiments of Djeridi et al.1 �Rep=0.9�. The gray scale
corresponds to values of CL ranging from 0.37 �white� to 2.5
�black�. In the TVF regime, most bubbles are likely to stay in
the vicinity of regions where CL is in the range 1.0–1.8.
Based on the analysis of the eigenvalues of the velocity gra-



dient tensor, the dashed line gives an idea of the regions
where the flow is close to a pure shear flow �strictly speak-
ing, the dashed line corresponds to 
�i	− 	�r
 /max�
�i	
− 	�r
�=0.3, where �r and �i stand for the real and imaginary
parts of the eigenvalues of D, respectively�. In these regions,
the shear strength 2GR / 	v−u	 may be large, leading to high
values of CL for such low Rep. Within the closed regions
bounded by the dashed line, the flow is close to a solid-body
rotation �r=8.5; z=0.6 or 1.4� or to a pure straining motion
�z=1; r=8.2 or 8.8�.

Expression �8� will be used in all simulations concerned
with the TVF regime. When the flow depends on the azi-
muthal direction �WVF� we simply impose a constant lift
coefficient CL=0.5, as situations in which the flow exhibits
multiple directions of inhomogeneity are still too complex to
obtain either a theoretical or a numerical estimate of the
variations of the lift coefficient with ReP and �GR2 /��1/2.
Nevertheless, based on a test performed in the TVF regime
�see below�, we do not expect this simplification to have a
significant impact on the position of the stable fixed points.

All terms in �6� are evaluated using the characteristics of
the instantaneous flow field at the exact position x of the
bubble. Since the bubble location generally differs from the
location of the mesh grid points used in the flow simulation,
an interpolation procedure is required. A second-order inter-
polation scheme is employed to ensure accuracy and stability
of the trajectory computation. The set of ordinary differential

equations �6� is solved using a fourth-order Runge-Kutta
scheme. The trajectory equations are integrated in a cylindri-
cal system of axes whose unit vectors are �er ,e� ,ez� in the
radial, azimuthal, and axial direction, respectively. Inertial
terms due to the rotating axes system arise in the force bal-
ance, as dv /dt and Du /Dt involve centrifugal contributions.
Therefore, in the particular case of TVF �in which the veloc-
ity field is independent of the azimuthal angle ��, Eq. �6�
becomes

CM�d2v

dt
−

v�
2

r
er� = − g + �1 + CM�� �u

�t
+ �u · ��2u −

u�
2

r
er�

−
3

8R
CD	v − u	�v − u� − CL�v − u� � � ,

�9�

where the bubble density has been neglected. In Eq. �9�,
which is only solved in the r and z directions, d2v /dt
��u ·��2u� stands for the acceleration of the bubble �the ad-
vective acceleration of the fluid� calculated in a fixed �er ,ez�
plane. For the TVF regime, we assume that v� and u� are
equal, which means that bubbles are perfectly entrained by
the fluid in the azimuthal direction. This is reasonable be-
cause in this direction there is no component of the buoyancy
force, nor of the fluid acceleration, which could induce a
significant slip velocity. In the WVF regime, we checked that
the nonzero azimuthal component of the fluid acceleration
remains weak compared to the other two components. How-
ever, in this fully three-dimensional regime, all three compo-
nents of Eqs. �1� and �6� are solved without any extra sim-
plifying assumption. Using CM =1/2 and defining VL=2�g as
the mean slip velocity of the bubbles along the vertical axis
ez, we may write Eq. �9� in a simplified form suitable for
numerical integration in the TVF regime, namely

d2v

dt
=

VL

�
ez +

u − v

�
+ 3� �u

�t
+ �u · ��2u� − 2

u�
2

r
er

− 2CL�v − u� � � . �10�

The nonlinear evolution of the drag force with Rep is in-
cluded in the definition of the bubble relaxation time �. The
net centripetal term −u�

2 /r is due to the radial pressure gra-
dient induced by the fluid rotation.

III. BUBBLE DISPERSION AND ACCUMULATION

Bubble transport in vortical flows exhibits some generic
features. Local pressure gradient, added mass, and lift forces
induce an accumulation of small bubbles in low-pressure re-
gions of the flow. Such low-pressure zones frequently corre-
spond to vortex cores. However, in rotating systems they
may also correspond to regions close to the rotation axis. As
the bubble diameter increases for fixed flow conditions,
buoyancy effects become dominant and the rising speed in-
creases, eventually leading to a uniform dispersion of
bubbles throughout the flow. The first two hydrodynamic re-
gimes of the Couette-Taylor flow provide a convenient back-
ground to explore these possibilities in detail.

FIG. 5. Map of the lift coefficient �1 mm diameter bubbles with VL=2.72
�10−2 m/s in a glycerol/water solution with �=3.0�10−5 m2/s�. CL varies
from 0.37 �white� to 2.5 �dark�. The dashed line corresponds to 
�i	
− 	�r
 /max�
�i	− 	�r
�=0.3.



In the present case, the flow is purely azimuthal at low
Taylor number. Therefore, bubbles initially seeded at random
positions are attracted by the rotating inner wall, which cor-
responds to the low-pressure region of the flow. Their lateral
migration toward the inner wall is driven by the added-mass
and pressure gradient contributions −u�

2 /rer. After multiple
bounces on the wall, bubbles stay in the vicinity of the inner
cylinder �we use a purely elastic model of bouncing in which
the normal velocity of the bubble is reversed when the dis-
tance from the bubble center to the wall becomes smaller
than the bubble radius�. Along the vertical direction, the ver-
tical balance between the buoyancy and drag forces results in
a constant slip velocity of the bubbles. Hence, they uni-
formly accumulate along the inner cylinder as long as the
Couette flow is stable.

A. Accumulation of bubbles in the Taylor vortex
flow regime

While the rotation rate gradually increases, the flow bi-
furcates toward the Taylor vortex flow regime. The force
balance over each bubble is then dominated by three main
contributions. Similar to what we noticed in the Couette flow
regime, the centripetal force directed toward the inner wall
makes the bubbles move radially while buoyancy makes
them move vertically. The picture changes dramatically in
the TVF regime, owing to the cellular structure of the sec-
ondary flow. The vertical balance between buoyancy and
drag results in an upward slip velocity which, for sufficiently
small bubbles, is smaller than the maximum downward ve-
locity of the fluid. If inertia effects were absent, the combi-
nation of this slip velocity and of the secondary flow velocity
would result in closed bubble trajectories within each toroi-
dal eddy �see Marsh and Maxey28 for an example with solid
particles in cellular flows�. The addition of inertial effects
�pressure gradient, added mass, and lift forces� in the trajec-
tory equation breaks this periodicity and force the bubbles to
spiral toward particular locations in the flow. The entrapment
positions correspond to stable fixed points where the force
balance in the �er−ez� plane is satisfied with zero bubble
acceleration and velocity, namely

�11�

The order of magnitude of the various terms in �11� is readily
evaluated by introducing the magnitude u� of the radial and
vertical velocities within the Taylor vortices and that of the
primary azimuthal velocity, U�. The factor of 4 in front of the
fluid acceleration results from the fact that the secondary
flow velocity varies from u� to zero within a distance of the
order of e /2 and there are two contributions of equal mag-
nitude in the velocity gradient, one in each direction of the
�er−ez� plane. To characterize the bubbly flow configuration,
it is then convenient to define two dimensionless parameters,

C and H. Balancing the two contributions along the vertical
direction ez yields C=u� /VL. Obviously, the z projection of
�11� has a solution only if the magnitude of the downward
velocity in the Taylor vortices is of the order of the limit
rising speed of the bubbles at some point of the flow, a situ-
ation corresponding to the occurrence of closed bubble tra-
jectories when buoyancy and drag balance each other in the
vertical direction. In other words, entrapment is only pos-
sible if the global parameter C is at least of O�1�. This cri-
terion is met in all entrapment processes of bubbles in vorti-
cal structures.29 The second parameter, H=4�u� /U��2R1 /e,
compares the opposite trends of the inertial effects induced
by the added mass, pressure gradient, and lift forces. The
acceleration U�

2 /R1 based on the Couette flow pushes
bubbles toward the inner cylinder, while u ·�2u tends to cap-
ture them within the vortex cores.

Equilibrium positions of bubbles correspond to stable
fixed points of the linearized equations �10� recasted within
the form of a dynamical system. The corresponding stability
analysis is performed following the method described in Ref.
29. The set of ordinary differential equations is similar to that
encountered in the latter reference with the addition of the
centripetal attraction −U�

2 /rer. Solving numerically the pro-
jections of Eq. �11� in the er and ez directions results in two
curves whose intersections are the fixed points of the system.
The stability of these fixed points is then analyzed by com-
puting the eigenvalues of the Jacobian matrix of the dynami-
cal system and examining the sign of their real part. Varying
C and H independently and checking the stability of all fixed
points allows us to obtain the complete phase diagram of the
capture process.

An example of the location of the fixed points found for
H=128 and C=4.92 is shown in Fig. 6�a�. This corresponds
to bubbles of 100 �m diameter released in pure water in the
experimental device of Ref. 1, i.e., R1=4 cm, e=5 mm. Four
fixed points exist within the domain. Two of them, lying
within the vortex cores, are stable �r=8.43,z=1.41 and r
=8.55,z=0.56�. The other two, clearly located outside the
Taylor vortices, are unstable �r=8.03,z=1.61 and r=8.96,z
=0.74�. We checked the sensitivity of the location of the
fixed points to the modeling of the lift force by changing the
lift coefficient given by Eq. �8� into CL=1/2. Only tiny
modifications of the curve fr=0 were observed, the most
significant being located in the near-wall regions. This is a
reassuring indication that the location of regions of bubble
accumulation is almost insensitive to the lift force model �in
contrast, the frontiers of the basin of attraction of a given
fixed point and the bubble trajectories toward it may be more
sensitive to this model�. The trajectories of Fig. 6�b� show
how bubbles are attracted by the stable fixed points. For this
set of parameters, the flow domain is divided into two dis-
tinct basins of attraction. Bubbles released in the vicinity of
the unstable fixed points move toward the stable fixed points
of the corresponding attraction basin. As explained before,
the location of the stable fixed point corresponds to the in-
tersection of curves fr=0 and fz=0. Because fr=0 is almost
a horizontal straight line �from r=8.25 to 8.75�, the radial
location of the stable fixed point results from the solution of
the equation fz=0, i.e., from the force balance along the di-



rection of gravity. If we maintain H fixed and decrease C
independently, the stable fixed points gradually move from
the vortex cores toward a region of large downward flow
velocity where the bubble slip velocity can be balanced by
the negative vertical flow velocity. The complete phase dia-
gram obtained by varying C and H is shown in Fig. 7. For
low values of C, namely C�2 approximately, no fixed point
exists and bubbles accumulate uniformly along the inner ro-
tating cylinder, similarly to what we observed in the Couette

flow regime. For higher C and H
0.25, approximately, the
centripetal attraction toward the inner wall is counterbal-
anced by the vortex-induced pressure gradient and lift ef-
fects, so that bubbles are trapped within the Taylor vortices.
The ratio of the strength of the pressure gradient force over
that of the lift force along the radial direction is roughly
�2:1�. For large to moderate H, centripetal attraction toward
the inner cylinder is counterbalanced by the u ·�2u added-
mass force in conjunction with the lift force. This corre-
sponds to the situation depicted in Fig. 6. Decreasing H
while C is maintained fixed corresponds to an enhancement
of bubble attraction toward the inner wall while the strength
of the Taylor vortices is frozen. When H is below a value of
the order of 0.2 while C is still larger than 2, the attraction
toward the vortex core is not able to counterbalance the cen-
tripetal migration and bubbles accumulate along the inner
cylinder. However, this accumulation is nonuniform because
bubbles cannot pass through the vortices since VL remains
smaller than u�. Hence, preferential accumulation occurs in
the low-pressure zones of the inner wall. As may be seen in
Fig. 2�b�, these zones correspond to outflow regions �r=8
and z=1�. The three basic scenarios we just described were
observed in the experiments of Djéridi et al.,2 indicating that
the present dynamical system approach provides a correct
view of the various mechanisms involved in the dispersion
and accumulation of bubbles in the TVF regime. A difference
between the computations and the experiments is that it is
not possible to vary C and H independently in the latter
because the amplitude of the secondary flow characterized by

FIG. 6. Bubble evolution under flow
conditions H=128, C=4.92. �a� Loca-
tion of the fixed points �— fr=0; ---
fz=0�; �b� bubble trajectories �initial
positions are marked with open
circles�.

FIG. 7. �C ,H� phase diagram of the final state of the bubbles. Curves refer
to increasing rotation rates of the inner cylinder for a given ReL. Solid line:
ReL=4.5; dashed line: ReL=41.



u� is closely related to that of U�. However, we may use an
indirect approach to explore how a given bubble evolves as
the rotation rate is increased. For this, we start with the fact
that the supercritical nature of the bifurcation leading to the
TVF regime implies that, for rotation rates slightly beyond
the threshold, the strength of the secondary velocity grows
as30

u� = K
�

e
�Re − Reo

Reo
�1/2

, �12�

where K is a constant that may be determined from Fig. 3.
Using Re=U�e /� and �= �Re-Reo� /Reo, we can express U�

as U�=Reo��1+�� /e. Therefore C and H can be recast in
terms of Reo, �, and geometrical parameters as

C = K
�

VLe
�1/2, H =

K2

Reo
2

4R1

e

�

�1 + ��2 . �13�

Experiments with fixed bubble characteristics and variable
rotation rates of the inner cylinder in the TVF regime may
then be parameterized as

H =
K2

Reo
2

4R1

e

�ReL�C 	 K��2

�1 + �ReL�C 	 K��2�2 , �14�

where ReL=VLe /� is a bubble Reynolds number based on
the slip velocity and the gap width. Both C and H are zero
right at the threshold. The evolution of H with C is plotted in
Fig. 7 for two different values of ReL �ReL=4.5 corresponds
to one set of the experiments in Refs. 1 and 2, while ReL

=41 corresponds to the 100 �m bubbles of Fig. 6�. H in-
creases with C until it reaches its maximum Hmax

= �K /Reo�2R1 /e for Cmax=K /ReL. When C further increases
beyond Cmax, H decreases and tends asymptotically to zero
for large C. For low values of C and H, bubbles are uni-
formly distributed along the inner wall. While the rotation
rate, i.e., C, increases, H evolves following paths H= f�C�
such as those drawn in Fig. 7. As pointed out above, the
transition to entrapment in Taylor vortices occurs when C

2 and H
0.2, approximately. Then, bubbles move toward
the vortex cores where they accumulate around the stable
fixed points, forming two distinct azimuthal rings. At higher
values of C, i.e., faster rotation rates, the centripetal accel-
eration toward the wall overcomes the attraction by the vor-
tices. Hence the stable fixed points disappear and bubbles
collect at the inner wall in the regions of outflow. This is why
only a single ring of bubbles is observed in our computa-
tional domain under such conditions. Such a transition from
two to one single bubble ring per wavelength of the TVF has
been observed experimentally �see Fig. 8�. Note that in ex-
periments, it is not possible to cover the whole range of H as
we did here because the second bifurcation leading to the
wavy vortex flow regime occurs for some finite value of H.
Numerically, we are of course able to make H as large as we
wish by constraining the flow to remain independent of the
azimuthal position, thus preventing the transition to the
WVF.

The experiments by Djéridi et al.1 reveal a gradual evo-
lution of the axial distance between the two bubble rings
followed by a sharp transition toward the single bubble ring

pattern. It is of interest to see how the numerical predictions
compare with these observations. The evolution of the axial
distance between the stable fixed points with H for one of the
parameter sets investigated in Ref. 1 �1 mm diameter
bubbles with VL=2.72�10−2 m/s in a glycerol/water solu-
tion with �=3.0�10−5 m2/s, corresponding to ReL=4.5� is
plotted in Fig. 9. When the rotation rate �i.e., C� increases
and H is beyond a critical value �here H=0.25�, the distance
D between the two rings decreases continuously, starting
from the value D=0.4e. This decrease is small until the pa-
rameter H reaches its maximum H=0.47. Then, for larger C,
H decreases and the distance between the two rings de-
creases much more rapidly until only a single ring remains
when bubbles accumulate in the region of outflow for H
�0.28. In the experiments as well as in the computations,
the transition from the two-ring configuration to the single-
ring one sets in for a value of H that only weakly depends on
the bubble characteristics �VL or ReL�. Among other things,
this means that with a polydisperse distribution of bubbles,
the transition should be observed almost simultaneously for
all bubble diameters. When transformed back in dimensional
form, the numerical prediction indicates that the transition

FIG. 8. Experimental visualizations of the organized gaseous phase in the
gap for different reduced Reynolds numbers �from Djéridi et al. �Ref. 2��.
�a� Re/Rec1=4.5: two bubble strings per axial wavelength. �b� Re/Rec1

=11, one single bubble string per axial wavelength.

FIG. 9. Evolution of the distances between two consecutive bubble rings
�ReL=4.5�.



occurs at a critical rotation rate about 160 rad/s. This predic-
tion is in good agreement with the value of 1800 rpm �i.e.,
188.5 rad/s� determined by Djéridi et al.1 This agreement
suggests that our model approach does not only provide the
basic features of bubble dispersion in TVF but also delivers
predictions in quantitative agreement with observations.

B. Bubble dispersion in the wavy vortex
flow regime

The Couette-Taylor flow undergoes a second bifurcation
when Ta=Ta1 �or Re=Re1�. Taylor vortices tend to undulate
and an azimuthal wave grows up. When this transition occurs
for values of H higher than the critical value corresponding
to the migration toward outflow regions, bubbles remain
trapped in the vortices. As shown in Fig. 10, when the am-
plitude of the azimuthal wave grows, bubble positions follow
closely the oscillations of the vortices. The azimuthal loca-
tion of the bubbles becomes gradually nonuniform. Bubbles
preferentially accumulate at the crests and troughs of the
wavy vortex cores. In this simulation, the wavy oscillation is
characterized by a dimensionless azimuthal wave number
k�=3, where the reference length is 
�R1+R2�. k�=3 corre-
sponds to three wavelengths along the cylinder perimeter. A
similar nonuniform distribution was also observed in the
aforementioned experiments.1,2 However, bubble coales-
cence quickly occurred because of the local increase of the
bubble volume fraction in the accumulation zones: instead of
small bubbles collected at crests and troughs of wavy vorti-
ces, large bubbles were observed. This increase in the bubble
size cannot be captured in our computations since they do

not include any coalescence model. Figure 11 indicates that
preferential bubble accumulation is closely related to the lo-
cal minima of the relative pressure. The corresponding flow
pattern has a dimensionless azimuthal wave number k�=2
�Re=167=1.33Reo; �=0.336� and a dimensionless phase ve-
locity � /k��=0.44 �in agreement with Jones31�. The azi-
muthal component of the slip velocity is negligible and
bubbles move with the local fluid velocity. We checked that
the local fluid velocity at r /e=8.5 is equal to the phase ve-
locity of the wavy modulation of the vortices. Therefore,
bubbles are able to move with the local minima of pressure
while remaining trapped close to the crests and troughs of
the vortices. Examining the evolution of bubble locations
with r indicates that bubble accumulation takes place essen-
tially in the middle of the gap. If the Reynolds number based
on the inner cylinder rotation is increased further, bubbles
are no longer trapped in the vortices. This change occurs
because the coherence of the wavy vortices decreases gradu-
ally since the axial flow that connects two successive
counter-rotating vortices grows while � increases �Fig. 12�.
This feature was clearly emphasized experimentally by
Akonur and Lueptow,32 who observed these axial flows in
the WVF regime using particle image velocimetry. Such
streams turn out to be strong enough to drive bubbles outside
the vortices and to disperse them more evenly than in the
TVF regime. At higher Reynolds number, the flow becomes
chaotic and vortex cores disappear. However, coherent vor-
tices may reappear when the rotation rate is increased fur-
ther, suggesting that bubble dispersion may again be closely
related to the presence of strong coherent structures.3

IV. CONCLUSION

We numerically investigated the dispersion of bubbles
within the first three distinct flow regimes encountered in the
Couette-Taylor configuration and found that this dispersion
is dramatically affected by the successive bifurcations of the
flow. Our simulations are based on an individual Lagrangian
tracking of bubbles coupled with a direct numerical simula-
tion of the carrying fluid flow. The trajectory computation is
supplemented by a theoretical determination of accumulation
regions, which shows that bubbles tend to accumulate either
around the stable fixed points of the two-phase flow when
they exist, or in the low-pressure regions located near the
inner cylinder, which correspond to outflow regions. Numeri-
cal results reveal a very good agreement with experimental
findings.1,2

FIG. 10. Snapshots of bubble positions during the transient evolution from
TVF to WVF �to: pure TVF; t5: the wave amplitude of the WVF has satu-
rated�. The visualization plane �e� ,ez� is located midway between the two
cylinders �r=8.5�.

FIG. 11. Bubble positions �white dots�
and local pressure contours in the
middle of the gap �r=8.5�. Dark areas
correspond to low pressures.



The computational results help better understand the ex-
perimental observations. At low rotation rate, the purely azi-
muthal Couette flow induces a migration of the bubbles to-
ward the inner cylinder. A uniform distribution of rising
bubbles develops along the vertical inner cylinder. When the
first bifurcation occurs, a secondary flow made of counter-
rotating vortices sets in. The strength of these vortices in-
creases with the flow Reynolds number and bubbles are
eventually trapped within the cores of these steady coherent
vortices. In this case, the centripetal attraction toward the
vortex cores overcomes the migration toward the inner wall.
Bubbles are accumulating close to the vortex centers on the
side where the downward fluid velocity balances the
buoyancy-induced slip velocity. This accumulation results
from the occurrence of spiralling pathlines in any vertical
cross section of the gap, which themselves result from �a� the
existence of downward fluid velocities of the order of the
bubble rise velocity �a situation that would lead to closed
pathlines in the absence of inertia effects� and �b� the cen-
tripetal attraction induced by inertial effects toward the vor-
tex cores. Accumulation positions obviously correspond to
the stable fixed points of the linearized dynamical system
associated with the bubble paths. Two circular rings along
which bubbles accumulate are observed along the azimuthal
direction. Depending on the bubble characteristics, two dis-
tinct behaviors may occur when the rotation rate of the inner
cylinder is further increased. First, the attraction toward the
inner wall may increase faster than the strength of the Taylor
vortices, and stable fixed points may then disappear. In this
case, bubbles accumulate in the outflow regions located be-
tween two counter-rotating vortices on the inner wall. This
bifurcation of the bubble dispersion pattern has been ob-
served experimentally. It corresponds to a single bubble ring
per wavelength of the flow. The numerical transition crite-
rion H�0.2 compares favorably with the experiments and is

only weakly dependent on the bubble size. On the other
hand, if bubbles stay trapped in the Taylor vortices when the
second instability of the flow occurs, a nonuniform accumu-
lation of bubbles is observed in the WVF regime. The two
bubble rings gradually disappear while the wavy modulation
of the vortices develops. Bubbles accumulate at the crests
and troughs of the undulating vortices, which correspond to
local minima of the pressure field. Finally, bubbles escape
from the vortices when the axial streams connecting two suc-
cessive counter-rotating vortices reach a sufficient magni-
tude. Vortex cores rapidly disappear in the WVF regime but
reappear when the Reynolds number increases further, indi-
cating that bubble entrapment may occur in other flow
regimes.

Although our numerical model involves several assump-
tions, the present study indicates that it provides a powerful
tool to investigate and understand the basic features of
bubble dispersion in a centrifugal flow. We only performed
one-way coupling simulations in which the interphase mo-
mentum transfer induced on the fluid by the presence of
bubbles was neglected. In a dilute bubbly flow, such an as-
sumption is uniformly valid if bubbles are evenly dispersed.
However, we showed that bubbles accumulate in particular
regions of the flow. The local dynamics of the flow may then
be modified by two-way coupling effects, and direct interac-
tions between the bubbles may lead to complex phenomena
such as coalescence. Moreover, the presence of a significant
amount �i.e., some percents� of bubbles may modify the flow
structure and the thresholds of the successive flow bifurca-
tions. Some preliminary experimental results of these inter-
actions for bubbly flows were presented by Djéridi et al.1 and
Mehel et al.10 Depending on the location of bubble accumu-
lation, they observed that wall-shear stress and axial transfer
can be significantly modified. Two-way coupling simulations
may be desirable to investigate the couplings between bubble

FIG. 12. Consecutive velocity fields
along the azimuthal wavy oscillation
�from top left to bottom right� for k�

=2 and Re=167.
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dispersion and flow distortions due to the dispersed phase. In 
particular, they may help to elucidate the flow modifications 
induced by the transition in the bubble dispersion as well as 
the changes that the flow distortion induces in the bubble 
dispersion. When the flow is turbulent, bubble injection dra-
matically modifies its response and eventually provokes a 
reduction of the torque it exerts on the rotating cylinder.33 Ali 
et al.34 carried out a linear stability analysis of a cylindrical 
two-phase Couette flow of a dilute suspension of rigid 
spherical particles. They found that the critical Taylor num-
ber at which Taylor vortices first appear decreases as the 
particle concentration increases. Moreover, they noticed that 
increasing the ratio of particle-to-fluid density above 1 de-
creases the stability of the overall flow pattern, whereas the 
axial wave number is left unchanged by the two-phase nature 
of the flow. Exploring such effects of two-way coupling will 
be the purpose of the next step of our work.
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