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As chemists, we are still fascinated by the magic of nature. Indeed, natural metal-
loenzymes can achieve a high number of chemical transformations without the action of
humans [1]. From the chemist’s point of view, the nature of coordination species and the en-
vironment around metals determine their activity [2]. Metalloenzymes are active in several
reactions [3], particularly in oxidation processes with the assistance of molybdenum- [4],
vanadium- [5], and tungsten-based compounds [6]. The activity of those species is quite
large and the advantage lies in the stability of such complexes in aqueous media or under
air [7]. According to the reported academic research known for decades, other metallic
species are investigated to be active and are mainly composed of an inorganic part, such
as as polyoxometalates (POMs) [8–13]. Among the several applications of POMs within
several domains [8,9] and focusing on catalytic applications [10,11], POMs are considered
as molecular models of metal oxides by mimicking the surface of metal oxides [12] present
in nature (as rocks) and acting within some catalytic processes (mainly heterogeneous
ones) [11].

Since our research domain is the catalytic applications of oxo-molybdenum and oxo-
vanadium coordination complexes [14–18] and POMs [19–21], such as molecular [19,20] or
supported catalysts [21], with emphasis on biomass-based substrate valorisation [22–24], we
proposed to edit this Special Issue with the aim of collecting research of other international
groups within the domain to show the diversity of possible catalyzed reactions using
metal complexes. High catalytic activity with relatively low metal loading is an asset,
from relatively low cost to more sustainable processes. Catalytic processes containing
those elements are of a growing interest, notably heterogeneous ones, in terms of reuse
and recycling.

The Special Issue highlights some recent advances in the development of Mo-, V-,
and W-containing catalysts, including polyoxoanions and bulk materials (e.g., mesoporous
materials, surfaces, etc.), with the involvement of those elements in catalytic materials. The
emphasis is on recent trends, including materials processing (preparation and characteriza-
tion) with their catalytic applications from simple reactions with model substrates to more
complex and challenging ones.

The four original research papers collected in this thematic issue cover different as-
pects, dealing with processes using POMs non-supported and silica-supported (porous
and non-porous) materials, managing different catalytic reactions, and exhibiting differ-
ent approaches.

The article named “Vanadium-Substituted Phosphomolybdic Acids for the Aerobic
Cleavage of Lignin Models—Mechanistic Aspect and Extension to Lignin” is a research arti-
cle from Paris (France) [25]. Al-Hussaini, Launay, and Galvez developed a very interesting
study based on lignin cleavage. Lignin is a polymer with several types of linkages between
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phenolic species. The authors used the ability of the heterometallic polyacid of general
formula H6[PMo9V3O40]. This compound was synthesized using a variant of a known
method under hydrothermal conditions. This POM was tested for the aerobic cleavage
of two lignin models bearing a β-O-4 bond in lignin. The article points out the effect of
several parameters for the reactions and application to a real case, using an organosolv
wheat straw lignin. From the obtained results, a mechanism of cleavage was proposed.

Wang, Wang, Shang, Ren, Yue, and He from Fudan (China) presented, in the article
titled “H3PMo12O40 Immobilized on Amine Functionalized SBA-15 as a Catalyst for Aldose
Epimerization” [26], the use of a heterogeneous catalytic system based on mesoporous silica
(SBA-15) purposely functionalized with APTES for the immobilization of H3PMo12O40.
Several POMs loadings were investigated, and catalytic objects were used to epimerize
glucose in water, aiming to valorize cheap sugar into high value ones. The aim was
to transform glucose into mannose, and the results showed good selectivity with better
activation energy (a gain of 16 kJ mol−1) with immobilized catalyst vs. the molecular
version. Other aldoses (among them mannose, arabinose, and xylose) were tested.

Another type of supported catalysts was presented in “Organic Solvent-Free Olefins
and Alcohols (ep)oxidation Using Recoverable Catalysts Based on [PM12O40]3− (M = Mo or
W) Ionically Grafted on Amino Functionalized Silica Nanobeads” [27]. Wang, Gayet, Guillo,
and Agustin from LCC-CNRS Toulouse and Castres (France) showed how H3PMo12O40 and
H3PW12O40 could be immobilized on non-porous silica nanoparticles functionalized with
APTES. The species were fully characterized by using different methods more specifically to
quantify APTES and POM loading on the surface. The objects were tested for epoxidation
of classical cyclic olefins, one terpene (limonene), and the oxidation of cyclohexanol. The
catalysts could be recycled several times.

The last article of this Special Issue is a collaboration between Erlangen (Germany)
and DTU at Lyngby (Denmark). “Ru-Doped Wells–Dawson Polyoxometalate as Efficient
Catalyst for Glycerol Hydrogenolysis to Propanediols” written by Modvig, Kumpidet,
Riisager, and Albert exhibits the valorization of glycerol in aqueous media using a Ru-
doped Wells–Dawson polyoxometalate of general formula α2-KxP2MW17O61 (M = Ru,
Pd, Pt). [28] Those species have been used to perform hydrogenolysis of glycerol into
propanediols. The POM containing Ru was more active than Pd and Pt. In addition to
catalysts loading, other parameters that influenced reactivity included H2 pressure, stirring
rate, etc.

In conclusion, the four articles published in this Special Issue show the richness of
polyoxometalates as (supported/unsupported) catalysts for different reactions working
in aqueous media or without organic solvent. The results presented exhibit important
application, from the biomass valorization, downstream byproducts of industrial processes
towards new materials, or cleaner processes. This is of crucial importance for a sustainable
future in today’s societies. We hope that this thematic issue can stimulate further research
in the field.
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