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Abstract 

This study addresses the problem of batch plant scheduling. In addition, 
uncertainty on product demands is considered through probabilistic-based 
methods. In the resulting two-stage stochastic programming problem, the 
objective is to maximize an Expected Profit Value (EPV) while respecting a 
constraint forcing the makespan to be lower than a time horizon. A Genetic 
Algorithm (GA) is proposed for the solution of a multiproduct example. The 
variable encoding requires special attention. Computational tests are first carried 
out with a deterministic model to validate the GA efficiency. Then, different 
runs with different scenario sets highlight the existence of various solution 
classes, characterized by specific numbers of batches manufactured for each 
product. Further analysis finally enables to discuss if each schedule is really the 
best-fitted to the scenario set for which it has been determined. 

Keywords batch plant scheduling, stochastic programming, genetic algorithms 

1. Introduction 

The problem of batch plant scheduling under demand uncertainty is addressed 
in this work. In nowadays highly dynamic environments, uncertainty and 
variability have also become inherent characteristics of process systems, which 
are essential to be considered for modelling purposes. When uncertain 



  

phenomena are taken into account in the preliminary study phases of 
design/scheduling, a better flexibility is assigned to the system, in order to cope 
with changes occurring in both technical and economical environments. 
Uncertainty in industrial systems can be modelled by either fuzzy logic 
concepts or through probabilistic-based approaches, deriving in stochastic 
programming problems [1]. The latter relies on scenario sets design and derives 
in mixed-integer linear models solved by Mathematical Programming 
techniques. However, metaheuristics may be well-fitted to stochastic integer 
programming [5] and would allow tackling non-linear models. 
In this study, a Genetic Algorithm is proposed to solve the scheduling problem 
under uncertain market demands. The model and the solution methods are 
presented in sections 2 and 3. Computational results and analysis are proposed 
in section 4 and some conclusions are provided in section 5. 

2. Model implementation 

The adopted formalism describes a typical multiproduct batch plant, following a 
Zero-Wait policy. The formulation states that some amounts of P products have 
to be manufactured in J operating stages. Furthermore, uncertainty on product 
demand is introduced in order to formulate a two-stage stochastic model: in the 
first stage, the “here-and-now” decision variables are set to determine a 
particular schedule; this latter is evaluated in the second stage in which 
uncertainty is implemented and uncertain parameters are known. In the initial 
formulation [2], the decision variables were: 
• the number of batches of each product to be manufactured, in order to satisfy 

the market demand: NBatchi, i = {1,…,P}; 
• the product sequence of the schedule: IndBatchk, k = {1,…,K}; 
• the corresponding starting and finishing times of all operations J and for all 

batches K: Tinjk, j = {1,…,J}, k = {1,…,K}. 
In the resulting Mixed Integer Linear Programming (MILP) problem, the 
objective function is the Expected Profit Value (EPV), accounting for sales, 
expenses (production/inventory/unsatisfied demand costs) and some additional 
terms (penalizing both product changeovers in a sequence and high starting 
times). The EPV is computed according to s scenarios (defined with normal 
distribution laws) and their associated probability (ωs = 1/ NScen). The exact 
objective function, variables and model equations are defined in [2]. The 
schedule makespan is constrained to be lower than a horizon time H=168 h. 
The complete model was adapted in a simple scheduling simulator for 
multiproduct batch plants. With a Zero-Wait policy, starting or finishing times 
of every batches in every processing stage are not necessary to describe 
completely a solution. So, these dates are not considered as optimisation 
variables any more and the problem size is reduced. 



3. Development of a specific Genetic Algorithm 

The used optimisation tool is a classical Genetic Algorithm, implemented in 
previous works [4]. The method basic principles will not be recalled here. The 
technique used for selection is the classical roulette wheel, and the fitness is 
simply the objective function since a maximization case is assumed. The EPV is 
computed according to s scenarios that must be generated at the beginning of 
the run and kept unchanged during the whole search. Constraints are handled 
through elimination of the infeasible individuals. 
However, the application to the scheduling problem under uncertainty involved 
some adaptations for variable encoding, and thus for genetic operators 
(crossover and mutation). Since starting and finishing times are no more 
considered as decision variables, the chromosome is divided into two zones: the 
first one encodes the manufactured batch number for each product, while the 
second one encodes the schedule sequence. The main issue is that the size of the 
second part depends on the first part values. So, the commonly used 
permutation-based encoding of a schedule sequence needs further adaptation. 
Firstly, concerning the chromosome part representing the number of batches for 
each product (NBatchi, i={1,…,NProducts}), a classical binary coding was 
chosen. The bit number allocated to each product will subsequently define an 
upper bound for the number of manufactured batches. This upper bound 
corresponds to the size of the chromosome second part. For this latter part, an 
integer-gene representation was adopted. Each gene is associated to a possibly 
existing batch, and its position in the chromosome corresponds to that of the 
batch position in the sequence. The gene value is equivalent to a product 
identifier; if equal to zero, then the batch does not exist. This second zone could 
finally be transformed by shifting all the “zero-genes” towards the end of the 
chromosome. Figure 1 gives an illustration of the encoding technique. 
 
 
 
 
 
 
 
 
 
 

Figure 1. Encoding technique for a two-product, three operating steps schedule 

However, this representation mode means that the random generation of an 
initial individual or the creation of individuals by crossover or mutation may 
derive in meaningless chromosomes: for instance, the values of the first part are 
likely to represent a batch number which is not consistent with the second zone 
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content. Consequently, a repairing method is essential to correct the infeasible 
chromosomes and make them consistent with respect to the used coding. The 
implemented method will not be developed here. A random generation of the 
initial population can thus be carried out. In the same way, since any crossover 
and mutation method can be performed, very generic strategies were adopted. A 
classical two-point crossover method was implemented. Concerning mutation: 
• for the binary (batch number) zone, inversion of the bit value; 
• for the integer (sequence) part, another gene of the same zone is randomly 

selected and both gene values are exchanged if they are different. If the genes 
are equal, another gene is selected until an effective change is noted. 

4. Computational results 

The solution method is applied to a didactic example having 5 products 
synthesized in 3 operating steps. All the corresponding data are available in [2]. 
In a first step, the deterministic model (i.e. having the demand for all products 
set to a nominal value) is solved; then, classical stochastic computations were 
carried out, simulating 100 scenarios to evaluate the objective function. 
It is to note that, since GAs are a stochastic method, 20 runs were carried out for 
each scenario set. The repeatability of the results will help to prove the 
statistical quality of the method. The GA’s parameters, set on the basis of 
sensitivity analysis, are the following ones: population size = 200; generation 
number = 200; survival rate = 60; mutation rate = 40. 

4.1. Deterministic operating mode 

This first computation enables to validate the good performances of the GA. 
The found solution is identical to that proposed in [2] with the CPLEX solver 
(from GAMS modelling environment [3]): 4508 monetary units. The makespan 
(152 h.) is quite lower than the time horizon. Furthermore, in both cases, the 
associated EPV, computed with 100 scenarios decreases to 1686 (CPLEX) or 
1755 (GA): this proves the low ability of the deterministic schedule to adapt to 
any kind of demand. The slight difference (=4.09%) between the two EPV 
values is due to the difference between the involved scenario sets. Under these 
nominal conditions, the found solution is characterized by a number of batches 
by product equal to NBatchi={P1,…,P5} = {3, 2, 3, 2, 3}. 
With regard to repeatability, eleven of the twenty GA runs succeeded in finding 
the optimum located by CPLEX. Concerning the nine remaining runs, they all 
lie very close to the optimal solution (the gap is always lower than 0.5%). 

4.2. Stochastic computations 

Since computational times were not restrictive (7 s. per run), 20 different 
scenario sets were independently generated. Furthermore, the GA was run 20 



times for each scenario set and the best solution of these 20 runs was recorded 
as the solution of one global run. This results in 20 global runs x 20 tests = 400 
runs. Various solutions were found and the results were classified according to 
the number of batches synthesized for each product. Six classes of solutions 
were identified and presented in table 1, but one of them is found by half-part of 
the 20 global runs. However, another solution is found for 25% of the scenario 
set (Stoch2). Like in deterministic computations, the slight gap between CPLEX 
and Stoch1 EPV are due to the different scenario sets used to solve the problem, 
with the consequences on the “second-stage” part of the objective function. 
 

Table 1. Stochastic results (a Results from [2]) 

 CPLEX
a
 Stoch1 Stoch2 Stoch3 Stoch4 Stoch5 Stoch6 

EPV 2140 2165 2036 2130 1672 2059 2052 
PVnom. 3059 3058 3054 2951 3334 3487 2618 
NBatchi 4 2 4 3 3 4 2 4 3 3 4 3 4 2 3 3 3 4 3 3 4 3 3 3 3 4 2 4 2 3 4 3 4 3 3 
Mks (h) 167 166 166 167 167 167 167 
Run rate (%) 50 25 10 5 5 5 

 
Besides, a random effect is introduced by the scenario generation and another 
one by the optimisation method. In other words, it is difficult to assume that a 
good EPV is due to a profitable scenario set or to the proper GA efficiency. To 
overtake this inaccuracy, some selected schedules are evaluated according to the 
scenario sets associated to the other chosen solutions. This procedure will 
enable to check out if one of the results found by the GA is really better than the 
other ones whatever the scenario set, or only for the set it was computed with. 
Ten solutions among those previously found were arbitrarily chosen (Stoch1a to 
Stoch1d, Stoch2a, Stoch2b, Stoch3a, Stoch4a, Stoch5a, and Stoch6a) and the 
associated scenario sets were recorded (Scn1a,… Scn6). Then, each schedule 
was evaluated according to each scenario set. Computation results were 
summed up in figure 2: each box with coordinates (i,j) corresponds to the 
schedule Stochj evaluated according to the scenario set Scni. The reported value 
is the relative difference (in %) between each new EPV and the initial EPV 
computed with the solution Stochi. Thus, a negative value means that schedule j, 
if artificially applied to scenario set i, is a worse solution than the schedule 
determined thanks to the GA (Stochi). The results clearly show that, except for 
solution Stoch6a, no substantially positive value can be reported. The direct 
interpretation is that, basically (apart from some exceptions), each schedule is 
the best-fitted to the scenario set for which it was found. This point proves that: 
• the GA is really efficient and manages to find highly adapted solutions to 

each problem, defined by a particular set of scenarios; 
• a good solution for 100 scenarios is not that good for 100 other scenarios. In 

the treated problem, the five uncertain demand distributions all have a mean 
value µ such as 120 ≤ µ ≤ 300, and a standard deviation being 50% of µ. 



  

Consequently, the number of 100 scenarios may not be sufficient to provide a 
reliable basis on which a flexible production planning can be assessed.  

5. Conclusions 

This study proposed a Genetic Algorithm for the optimisation of the 
multiproduct batch plant scheduling problem under uncertainty. The adaptation 
of GA’s internal procedures mainly focused on the encoding method. The found 
results were really satisfying concerning the GA’s efficiency that solved 
accurately the deterministic problem. For the stochastic operating mode, the GA 
located performing solutions for all the tested scenario sets within reasonable 
computational times, which proved to be adapted to the associated scenarios. 
These conclusions also highlighted that 100 scenarios might not be enough to 
get a really representative sample of the uncertain parameter space. 

Figure 2. Relative reliability of the computed solutions on the simulated scenarios 
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