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Abstract 

Phospholipids are essential components of biological membranes and are involved in cell signalization, 
in several enzymatic reactions, and in energy metabolism. In addition, phospholipids represent an 
evolutionary and non-negligible step in life emergence. Progress in the past decades has led to a deeper 
understanding of these unique hydrophobic molecules and their most pertinent functions in cell biology. 
Today, a growing interest in "prebiotic lipidomics" calls for a new assessment of these relevant 
biomolecules.  
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1. Introduction. 

Here, we present a complete update of the prebiotic synthesis of phospholipids, and for the first time, we compared 

biochemistry pathways with bench chemistry and synthetic routes. First, we introduce prebiotic system chemistry 

(Section 1.1), phospholipids as structural components in cells (Section 1.2), before the phospholipid world (Section 1.3), 

structure of a phospholipid, sn-glycerol, and the Cahn/ Ingold/Prelog nomenclatures (Section 1.4), and geochemical 

scenario and energy sources (Section 1.5). The synthesis is divided into three parts corresponding to the three main 

structural components of phospholipids: synthesis of fatty acids under abiotic conditions (Section 2), synthesis of 

glycerol and glycerol precursors under abiotic conditions (Section 3), and prebiotic synthesis of complete and 

incomplete phospholipid esters (Section 4). Each chapter reports on synthesis under abiotic conditions, biosynthesis, 

and comparisons between synthetic routes and biochemical pathways. Finally, we discuss the philogeny of Archaea, 

Bacteria, and Eukarya from the last ancestor and Commonote commonote (Section 5). 

1.1. Prebiotic systems chemistry 

Prebiotic systems chemistry (Ashkenasy et al., 2017; RuizMirazo et al., 2017; Fiore, 2019), an emerging branch of 

chemistry,offersanewperspectivetoanalyzetheimpactofthe prebiotic synthesis of such molecules, including 

amphiphiles, for the emergence of life, a topic that has now been explored for more than 50 years (Oro, 1995; Lane and 

Martin, 2012). Two complete reviews on the chemical synthesis of natural phospholipids were written in the last 50 

years (Eibl, 1984; Paltauf and Hermetter, 1994). From this period, significant progresses have been made, especially in 

the field of prebiotic synthesis of phospholipids and total synthesis of phospholipids. However, no mention on their 

prebiotic synthesis was present, with some exceptions (Fiore and Strazewski, 2016). 

The main purpose of synthetic chemistry is the preparation of pure samples of specific compounds by using welldefined 

reactions combined in multistep synthetic pathways. It involves the use of orthogonal protecting groups, of yield 

optimization, and of minimization of reaction steps. The paradigm of the pure compound has hindered the development 

of complex chemical systems and the investigation of networks of chemical reaction. From such systems, new, 

unexpected, and unpredicted, emergent properties could arise while never observed in none of the components alone. 

Systems chemistry and, for the present review, prebiotic systems chemistry are therefore an advanced way to do - and 

to think and rethink - chemistry. 

Current science uses a top-down approach to establish the causes of a phenomenon, or in case of synthetic chemistry, 

the preparation of a compound, by following well-defined retrosynthetic pathways. Concerning the protocellular 

systems, the top-down approach consists in simplifying the machinery of contemporary cells to obtain a simple and 

efficient system that would resemble the primitive cells and could explain how they contributed to life emergence 

(Lancet et al., 2018; Lopez and Fiore, 2019). Systems chemistry instead emphasizes bottom-up approaches to create 

complex systems where properties can emerge coming from the combination of simple elements. The bottom-up 

approach allows describing the properties of living systems as due to the cooperation between simple molecules 

present in a chemical mixture. Such mixture was likely available in a prebiotic environment, alimented for a part with 

the meteorite components. 

Primitive meteorites contain a variety of organic molecules, delivered to the Earth via a late accretion, thereby providing 

organic compounds important for the emergence of life or that served as a feedstock for further chemical evolution 



 

 

(Llorca, 2004). Formamide is a classical key example and among the simple molecules found in interstellar space, and is 

emblematic as a monocarbon source of several biotic molecules such as nucleosides, sugars, and aminoacids (Saladino 

et al., 2015, 2018). Ethanolamine delivered to the Earth could have contributed to the assembling and early evolution 

of primitive membranes (Rivilla et al., 2021). 

Acetonitrile (Belloche et al., 2008) and glycolonitrile (Zeng et al., 2019) from the interstellar medium could have been 

the starting materials for amino acid synthesis, while interstellar Z-cyanomethanimine (Rivilla et al., 2019), NH2OH 

(Rivilla et al., 2020), and urea (Jimenez-Serra et al., 2020) could have been a part of the natal materials for the synthesis 

of ribonucleotides. Thus, a disordered mixture of organic and inorganic molecules can form, under certain abiotic 

conditions, molecules (amphiphiles), although in limited quantities, that can assemble as an organized and 

semipermeable barrier from the outer environment (Dalai and Sahai, 2019; Gözen, 2021). This is what is hypothesized 

for protocell bilayers (Fiore et al., 2018; Lopez and Fiore, 2019; Lopez et al., 2020a, 2020b).  

More recently, Mansy et al., Monnard et al., and Fiore et al. have demonstrated that prebiotic amphiphile mixtures are 

out-of-equilibrium systems as complex membrane bilayers are in evolved cells (Bruckner et al., 2009; Mansy and 

Szostak, 2009; Piedrafita et al., 2017; Altamura et al., 2020). This way of proceeding tends to reproduce the process that 

led to the outbreak of life and biology from chemistry (Strazewski, 2019a, 2019b). Prebiotic synthesis of phospholipids 

is an excellent example of a bottom-up approach. 

1.2. Phospholipids as structural components in cells  

Modern cells are surrounded by a plasma membrane, which contains cytoplasm and creates internal compartments 

(Saier and Stiles, 1975; Graham and Higgins, 1997). Proteins and lipids are components of the cell membranes (Saier 

and Stiles, 1975). Cell membranes, composed of a complex mixture of phospholipids, membrane proteins, and many 

other amphiphiles, are three-dimensional fluid molecular layers that define the boundaries and the substructures 

(Deamer, 2017). The role of these boundaries is to spatially distinguish, separate, and colocate microenvironments while 

protecting and keeping them at defined concentrations (Fig. 1).  

Lipid boundaries enable a multitude of often competing and interfering biochemical reactions to occur simultaneously 

(Monnard and Walde, 2015; Deamer, 2017). Examples of biochemical reactions include the systemic memory (genetic 

code) and the metabolic machinery encapsulated together into a lipidic membrane (Fig. 1). In evolved cells, the genetic 

code is stocked in DNA, which is packaged by histones to form chromatin, which in turn is condensed to form 

chromosomes (Voet and Voet, 1995). The nuclei containing chromosomes are surrounded by a nuclear membrane (Voet 

and Voet, 1995). Mitochondrion, which is the site of several metabolic processes, is an organelle surrounded by two 

membranes (Voet and Voet, 1995).  

Primitive membranes were probably heterogeneous giant vesicles (Stano and Luisi, 2010; Walde et al., 2010) that 

yielded to the ancestors of cell membranes, and provided a privileged environment to early reaction networks involving 

simple molecules enabling the formation of the earliest protocells (Ma and Feng, 2015; Lopez and Fiore, 2019). Among 

the large variety of amphiphiles plausibly present on the early Earth, phospholipids are rather complex. Although fatty 

acid vesicles have been extensively studied as early membranes, such vesicles are notably fragile and do not withstand 

high salinity, especially when divalent cations such as Mg2+ are involved (Cornell et al., 2019). Oleic acid vesicles were 

shown to leak when exposed to Mg2+ concentrations as low as 5mM (Jin et al., 2018). 



 

 

Such intolerance to salts that are essential to several (bio)chemical processes and likely present in early aqueous 

environments makes pure fatty acid vesicles poorly plausible. When vesicles were prepared with increasing fractions of 

phospholipid, the salt tolerance of the vesicles increased significantly, supporting the transition from early sensitive 

lipids to more robust ones (Kindt et al., 2020). Phospholipid selection among other vesicle-forming amphiphiles must 

have been based on specific, desirable physicochemical properties, and potentially derives from the formation of several 

intermediate lipids of increasing complexity (Budin and Szostak, 2011). Fatty acids form usually micellar structures, while 

phospholipids, as bilayer structures, yield more stable vesicles than fatty acids (Lopez et al., 2020a, 2020b). 

1.3. Before the phospholipid world 

Life likely began around 3.3-3.8 billion years ago (Glansdorff et al., 2008), in a ferruginous and anoxic environment that 

was replaced progressively by hydrogen sulfide. This atmospheric condition was maintained up to around 600 million 

years ago (Olson, 2019). H2S and SO2 were released into the atmosphere from hydrothermal vents and crust fissures or 

volcanos (Kasting et al., 1989). Geochemical HS- upon ultraviolet photolysis could contribute to the oxidation of a-

hydroxy carboxylate to form a-oxo carboxylate, including oxaloactetate, pyruvate, a-ketoglurate, and glycoxylate, which 

are constituents of the Krebs cycle (Ritson, 2021). 

The formation of large vesicles, precursors of protocells (Lopez and Fiore, 2019), occurred before the rise of fullfledged 

cells, since vesicles form spontaneously in an aqueous solution from a variety of surfactants (Walde, 2006). Closed 

membranes exert confinement and protection of an internalized chemical network, including reactions, on their 

hydrophobic region (Koga et al., 1998; Pereto et al., 2004; Douliez and Gaillard, 2014). According to the current view, 

early membranes were more likely formed from derivatives of alkanols (Fiore and Strazewski, 2016), fatty acids 

(Hargreaves and Deamer, 1978), monoalkyl and dialkyl phosphates (Fiore, 2018), monoalkyl sulfates (Hargreaves and 

Deamer, 1978), and isoprenoids (Ourisson and Nakatani, 1994). Most probably prebiotic protocell membranes were 

composed of a mixture of components (Jordan et al., 2019), including acyl glycerols that lacked phosphate headgroups 

(Fig. 2) (Fiore and Strazewski, 2016). 

The progressive transition between early amphiphiles and modern phospholipids lays on the fact that the latter 

represents rather complex synthetic targets and is unlikely to have been produced spontaneously, but rather elaborated 

over time by successive chemical processes. In this light, Fiore and Strazewski (2016) suggested to classify lipids as 

"incomplete’’ when the phosphate head group is lacking (fatty acids and alcohols, mono- and diacylglycerols, Fig. 2), 

and ‘‘complete’’ when a phosphate head group is present (cf. Fig. 2). 

1.4. Structure of a phospholipid: sn-glycerol and Cahn/Ingold/Prelog nomenclatures 

Phospholipids, comprising phosphatidyl derivatives and sphingophospholipids, possess two main domains: a lipid 

domain constituted of one or more lipidic chains and a polar head. Phosphatidyl derivatives have a glycerol backbone 

that bears two identical or two different acyl chains linked by an ester or ether bond (Fig. 3). 

The glycerol backbone of glycerophospholipids is chiral. To designate the stereoisomers, the sn-glycerol nomenclature 

is widely used in biological sciences, while Cahn/ Ingold/Prelog is the preferred nomenclature for organic chemistry. 

Solely, on phospholipid esters, the glycerol backbones possess the unique chiral center. The most common natural 

enantiomer for glycerol-based phospholipids is d in Bacteria, and in Eukarya membranes (Fischer’s convention, based 

on the handedness of glyceraldehyde), 1,2-diacyl-sn-glycerol-3-phosphoalcohol in the sn-glycerol nomenclature (IUPAC-



 

 

IUB Commission on Biochemical Nomenclature, 1968) or 2R (Kennedy, 1956; Weis and McConnell, 1984) in the 

Cahn/Ingold/Prelog formalism. The opposite configuration of l-dialkylglycerol is defined as a 2,3-dialkyl-sn-glycerol-

phosphoalcohol or (2S), which is occurring for the natural lipidic isoprenoid glycerol ethers of Archaea membranes (Fig. 

4) (Lombard et al., 2012a). 

Lysophospholipids are phosphatidyl derivatives containing one single acyl chain. In contrast to phosphatidates, 

sphingolipids are derivatives of sphingosin, (2S,3R,4E)-2amino-octadec-4-ene-1,3-diol. Ceramides contain an alkene 

linked to the 2-amino moiety of the sphingosin. A very common sphingolipid in mammalian is the sphingomyelin, 

Bacteria, and in Eukarya membranes (Fischer’s convention, where a phosphocholine is linked to the first alcohol of the 

based on the handedness of glyceraldehyde), 1,2-diacyl-sn-ceramide.  

1.5. Geochemical scenarios and energy sources 

The idea that hot, evaporative, environment concentrating reagents at the surface of clays and sands can promote the 

condensation of building blocks to produce biomolecules and polymers was applied from the beginning of prebiotic 

systems chemistry (Szostak et al., 2001; Damer and Deamer, 2015, 2020). These scenarios could take place in two kinds 

of environments: hydrothermal vents and hydrothermal fields. Hydrothermal vents, also called hydrothermal black 

smokers or submarine hot springs (Miller and Bada, 1988), are alkaline, far-from equilibrium environments. Since their 

discovery, they were proposed as sites where chemical reactions could initiate primitive metabolism involving the 

reduction of CO2 by dissolved H2 (Martin et al., 2008).  

The alternative environments are hydrothermal fields or hydrothermal pools. Recently, Damer and Deamer (2015, 

2020), pointed out that fluctuating hydrothermal pools could be considered plausible prebiotic reactors for the 

synthesis of several key molecules in the development of life, including lipids, nucleic acids, and peptides. Condensation 

of biopolymers, lipid synthesis, aggregation, and protocell formation occur into a sort of ‘‘bath tub’’ environment, thanks 

to the cold/hot and wet/dry cycles (Damer and Deamer, 2015).  

	

2. Synthesis of Fatty Acids Under Abiotic Conditions  

Simple long-chain substrates, including fatty acids, aldehydes, alcohols, and similar compounds, were likely formed in 

relatively harsh but potentially wet conditions by thermal Fischer/Tropsch-type processes from simple gaseous 

precursors (Fig. 5) (Klein and Pilpel, 1973; Deamer, 1985; Deamer and Pashley, 1989; Mccollom et al., 1999; Dworkin et 

al., 2001; Rushdi and Simoneit, 2001; Simoneit, 2004; Meierhenrich et al., 2010).  

Alkanes can be transformed into amphiphilic oxygenated material by photo-oxygenation from fatty alcohols (Klein and 

Pilpel, 1973). In this context, investigation on the nature of carbon containing compounds of carbonaceous meteorites 

revealed the presence of small but relevant quantities of lipophilic and amphiphilic materials. Those molecules, once 

delivered to the early Earth upon meteorite falls (Deamer, 1985; Deamer and Pashley, 1989), have probably played a 

pivotal role in the formation of very prebiotic membranes. Similarly, cometary ices furnished materials able to 

encapsulate structures upon hydration (Dworkin et al., 2001). Fluorescent hydrophilic probes were used as model 

compounds to prove those theories (Lopez et al., 2020a).  

2.1. Analogies between prebiotic synthesis and biotic synthesis of fatty acids  



 

 

The fatty acid synthesis is well described in most biochemistry textbooks (Voet and Voet, 1995). The formation of 

hydrocarbon chains does not require any thermal process, but an overall endoergonic reduction, with CO2 and H+ as 

minimum ingredients. A key evolutionary step toward evolved biosystems is the appearance of photosynthesis in living 

cells as exemplified by the phototrophy evolved phosphorylation in Halobacteria, and photosynthesis in Heliobacteria 

toward oxygenic photosynthesis in Cyanobacteria (Lake and Sinsheimer, 2013). Autotrophic organisms sustain all 

ecosystems through the process of fixing CO2 into organic matter (Shih, 2015). In the case of saturated hydrocarbon 

chain, the minimal requirements may be written in Equation 1 as follows:  

	 (n+2)CO2	+	(6n+8)H+	+	(6n+8)e-	->	CH3(CH2)nCOOH	+	(2n+2)H2O		 	 	 	 (Eq:	1)		

Equation 1. Fixation of carbon dioxide into saturated hydrocarbon chains by autotrophic organisms. In this equation n 

= 1, 2,3,..  

The number of protons (H+) and electrons (e-) required is reduced by two for each insaturation. The overall reaction 

scheme indicates that during evolution, three key points were solved to yield the in vivo biosynthesis of lipids. It is still 

unclear which point occurred first during the evolution. Therefore, the key points correspond to a list of problems to be 

solved. The first point is that CO2 was replaced by acetyl coenzyme A (CH3-CO-S-CoA) (Table 1) and malonyl co-enzyme 

A (CH3-CH2-CO-S-CoA) as starting materials to produce fatty acids. CH3-CH2-CO-S-CoA is obtained from a carboxylation 

of CH3-CO-S-Co (Equation 2): 

 CH3-CO-S-CoA + ATP4- + HCO3-  ->  CH3-CH2-CO-S-CoA + ADP3-  + Pi2-  + H+		 (Eq.	2) 

Equation 2. Carboxylation of CH3-CO-S-CoA yields CH3-CH2-CO-S-CoA. Pi stands for HPO4
2-  

The condensation of one CH3-CO-S-CoA (a two-carbon derivative of H-S-CoA) and one CH3-CH2-CO-S-CoA (a three-

carbon derivative of HS-CoA) yields one CH3-(CH2)2CO-S-CoA (a four-carbon derivative of H-S-CoA), one H-S-CoA, and 

one CO2. This is somewhat the chemical equivalent of the thermal Fischer/Tropsch reaction. However, in contrast to 

the Fischer/Tropsch reaction, the condensation is performed from activated alcane derivatives containing CoA at room 

temperature and is catalyzed by enzymes (Table 1).  

Due to the two-carbon derivative acetyl-S-CoA, the acyl length can be incremented only by two carbons at each 

synthetic cycle, yielding, in most cases, a fatty acid with even number of carbons (Voet and Voet, 1995). In rare cases, 

fatty acids with an uneven number of carbons are synthesized from a three-carbon propionyl moiety instead of a two-

carbon acetyl moiety, which is catalyzed by a distinct enzyme (Voet and Voet, 1995). In Archaea, the elongation process 

occurs by incrementation of five-carbon length isoprenyls (Table 1) activated as pyrophosphates. Isoprenoids derive 

from a five-carbon long isopentyl pyrophosphate (IPP) or from dimethylallyl pyrophosphate (DMAPP) (Fig. 6) (Wang and 

Ohnuma, 1999; Vandermoten et al., 2009; Jain, 2014).  

However, the formation of isoprenoids (chains in Archaea), via the mevalonate pathway, starts with acetyl-S-CoA, which 

yields sequentially acetoacetyl-S-CoA, hydroxymethylglutaryl-S-CoA, mevalonate, mevalonavate-5-phosphate, and then 

IPP, which can be converted into DMAPP (Jain, 2014). The enzymes that participate in the mevalonate pathway and the 

isoprenyl pyrophosphate synthases are soluble enzymes, indicating that the reactions occur in the cytoplasm (Jain, 

2014).  



 

 

The second point is that electrons and protons are transferred from the so-called cofactor, NADPH (Table 1), which can 

be recycled (Equations 3 and 4):  

(Eq. 3) 

(Eq. 4) 

Equations 3 and 4. Cofactor NADPH serves to transfer H+ and e- during the synthesis of fatty acid of 2n-carbon length. 

Acetyl-S-CoA serves as a CO2 supplier. The reaction schemes are valid for an even number of carbons in fatty acids.  

The third point is the energy supply. Acetyl-S-CoA and NADPH contribute as energy fuel for the fatty acid biosynthesis 

(Table 1). Since the overall chain building reaction is endergonic, the energy is supplied by ATP produced during 

photosynthesis and by electron transfer via NADPH, mostly used for reductive biosynthesis in contrast to NADH, which 

serves primarily in the production of ATP. It seems that the evolution path favored the use of identical recycling building 

blocks to solve each point of the chemical synthesis, especially since acetyl-S-CoA, NADPH, and ATP are adenosine 

derivatives, such as FADH (Fig. 7).  

Escherichia coli and other gram-negative bacteria (GN) are enclosed by two membranes. In GN, earlier precursors of 

fatty acids and polar headgroups are synthesized in the cytoplasm (Raetz, 1986). The biosynthesis and turnover of lipids 

and their precursors are catalyzed by enzymes, which with few exceptions function on the cytoplasmic side of the inner 

membrane (Raetz, 1986). In mammals, the synthesis of phospholipids is usually restricted to the cytosolic side of the 

organelle endoplasmic reticulum (ER) (Vance, 2015). Thus, lipids are transported from the inner membrane to the outer 

membrane in bacteria or from ER to plasma membranes in mammals.  

Two breakthroughs appeared during evolution from protocells toward living cells: first, the emergence of separate 

compartments where the synthesis of lipids is performed, and second the transport mechanisms toward the outer 

membranes or plasma membranes. For example, in E. coli, fatty acids are initiated in the cytoplasm from acetyl groups 

during a condensation reaction involving two acyl carrier proteins (HS-ACP), having the same phosphopantetheine 

group containing HS as in CoA: one acetyl-S-ACP and one malonyl-S-ACP (Fig. 8) (Volpe and Vagelos, 1976).  

This is followed by one reduction, one dehydration, and one last reduction to obtain a butyryl-ACP (Fig. 9) (Voet and 

Voet, 1995).  

The butyryl-ACP can be either hydrolyzed forming butyric acid and ACP or can be used for its elongation. Condensation 

of one butyryl-ACP with one malonyl-ACP yields one hexanoyl-ACP similarly to the obtention of one butyryl-ACP. The 

elongation process can continue by incrementating two carbons at each step (Voet and Voet, 1995). Once the elongation 

step is achieved, hydrolysis of the acyl-ACP generates ACP and the fatty acid containing even number of carbons. Thus, 

in analogy with the Fischer/Tropsch processes, the biosynthesis of a fatty acid starts from natural carbon sources such 

as CO2.  

In recent years, Richert et al. achieved concomitant formation of cofactors, together with peptide and nucleoside 

elongation in the same primordial soup. However, the role of these molecules in the presence of phospholipids or their 

precursors was not investigated (Jauker et al., 2015; Griesser et al., 2017). Tricyanocuprate [Cu(CN)3]-2 and 

tetracyanocuprate [Cu(CN)4] -2 are supposed to be a source of electrons for the oxidoreduction of glyceraldehyde (cf. 

Fig. 6) in enzyme-free conditions (Table 1) (Katagiri et al., 1981; Wachtershauser, 2000; Sutherland, 2016). In this 



 

 

contest, the hydrogen cyanide-cyanocuprate photochemistry has proven to be effective for synthesis in abiotic 

conditions of glycerophoshate precursors starting from the tautomerization of glyceraldehyde into dihydroxyacetone 

at physiologic pH and then reduction to glycerol, respectively (cf. Fig. 10).  

Recently, iron (III)/sulfur/l-glutathione complexes were used to oxidize NADPH in catalytic networks across the 

membrane of model protocells made of (R)-POPC and oleic acid (Bonfio et al., 2018). This suggests that simple but 

effective catalytic networks probably existed in protocells, before the advent of the last common ancestor (LCA).  

	

3. Synthesis of Glycerol and Glycerol Precursors Under Abiotic Conditions  

3.1. Prebiotic origin of glycerol and glycerol precusors  

Phosphate-rich lakes may have preferentially formed on the prebiotic earth because of carbonic acid weathering under 

CO2-rich atmospheres and the absence of microbial phosphate concentration (Toner and Catling, 2019). 

Glyceraldehyde, dihydroxyacetone, and glycerol, together with their phosphate derivatives, are the most plausible 

chemical precursors of glycerophospholipids such as phospholipid esters and ethers. Several studies have proposed 

formamide or formaldehyde (Fig. 10) as two of the most simple and plausible precursors of glycerol (Fig. 10) and 

phospholipids (Patel et al., 2015; Bizzarri et al., 2021).  

Glycerophosphate, a plausible phospholipid precursor, is the product of phosphorylation of glyceraldehyde, 

dihydroxyacetone, or glycerol. The prebiotic preparation of dihydroxyacetone phosphate (DHAP) from glyceraldehyde 

or glycerophosphate remains unexplored (Fiore and Buchet, 2020). Further investigations showed that glyceraldehyde, 

the first chiral product of the ‘‘formose’’ reaction (Benner et al., 2019), is also present in comets and other space bodies 

(Garcia et al., 2019). Glycerol was detected in interstellar ices (Kaiser et al., 2015). However, the question is still open 

how glycerol was generated (Myrgorodska et al., 2015). Notably glyceraldehyde can be phosphorylated in the presence 

of amidotriphosphate (cf. red box in Fig. 11), followed by pyrophosphate hydrolysis in very good yields (81%) 

(Krishnamurthy et al., 2000).  

3.2. Glycerol, glycerol phosphates, and the unsolved problem of symmetry breaking of phospholipids  

Carbonaceous chondrite meteorites may reach enantiomeric excesses of glycerol and glycerol derivatives up to 50-60%, 

suggesting that the exogenous delivery of primed prebiotic compounds to early Earth from meteorites could have 

favored the emergence of asymmetric molecules (Pizzarello, 2016; Pizzarello and Shock, 2017). Speculations about 

where and how ‘‘enantiopure’’ life emerged from a primordial soup of abiotic mixtures of racemic molecules are 

extremely well reviewed (Blackmond, 2010; Ruiz-Mirazo et al., 2014; Fiore and Buchet, 2020).  

One main conclusion was that all chiral molecules have formed in both enantiomers (racemic), suggesting that a 

symmetry imbalance between the two possible stereoisomers occurred in a second step 

(racemic/scalemic/enantiopure) (Altamura et al., 2020; Fiore and Buchet, 2020). Prebiotic symmetry breaking scenarios 

were mostly depicted by using mathematical models (Subramanian and Gatenby, 2018), and a single chemical example 

is effective to date: the well-known Soai reaction (Hawbaker and Blackmond, 2019; Soai et al., 2019). No mathematical 

or experimental models were proposed to explain the symmetry breaking in phospholipid ester synthesis (Fiore and 

Buchet, 2020). The abiotic synthesis in the prebiotic environment of phospholipid precursors from glycerol (prochiral) 

and fatty acids (achiral) for the formation of diacylglycerols does not lead to any symmetry breaking (Rushdi and 



 

 

Simoneit, 2006). The symmetry breaking could have emerged thanks to supposedly available chiral and markedly non-

racemic catalysts such as peptides (Canavelli et al., 2019), RNA (Gilbert, 1986; Tamura, 2008), or chiral crystals (Hitz and 

Luisi, 2002; Park, 2011). To date, a few experimental clues support such hypotheses: chiral recognition of l-aminoacids 

by liposomes prepared from (S)-phosphocholines (Ishigami et al., 2015) or enantioselective reactions carried out in 

liposomes driven by the presence of l-proline (Hirose et al., 2015). The role of ‘‘racemic’’ membranes versus ‘‘scalemic’’ 

or ‘‘enantiopure’’ ones was recently speculated. Fiore et al. have demonstrated that racemic (1:1 ratio of both 

enantiomers) and scalemic (2:1 ratio between R and S enantiomers) mixtures of R-POPC and S-POPC formed stable 

membranes such as those made of homochiral R-POPC (Fig. 12A, B) (Altamura et al., 2020).  

3.3. Prebiotic synthesis of glycerol phosphates  

Several plausibly prebiotic syntheses of glycerophosphates were explored (Fig. 13) (Gull et al., 2010; Patel et al., 2015; 

Pasek et al., 2017; Gibard et al., 2018; Bonfio et al., 2019; Xu et al., 2019).  

Glycerol-1-phosphate (G1P) and glycerol-2-phosphate (2 and 3, Fig. 13) were produced as a mixture (together with 

phosphocholine) by using deep eutectic solvents (here a 2:1 mixture of urea and choline chloride) at 65°C for more than 

1 week (Gull et al., 2014). For Sutherland et al., glycerol-1phosphate (2) and cyclic glycerol phosphate (cGP, 4) were 

obtained under prebiotic conditions (80°C, 48h) where glycerol-2-phosphate (3) resulted as a rearrangement of cGP 

under prebiotic conditions, instead (Patel et al., 2015). cGP (4) was obtained by using diamidophosphate (DAP) as 

recently reported by Krishnamurthy et al. (2000) and Gibard et al. (2018).  

3.4. Analogies between prebiotic synthesis and biotic synthesis of glycerol phosphates: analysis on enzymes forming 

sn-glycerol-1-phosphate or sn-glycerol-3phosphate  

In contrat to the prebiotic synthesis, which yielded racemic glycerol phosphate mixtures, biotic syntheses are catalyzed 

by specific enzymes, producing either sn-G1P or sn-glycerol-3-phosphate (G3P) (Table 2).  

Since all cells contain polar lipids with a glycerol backbone, comparisons of the molecular mechanisms of the synthesis 

of G1P or G3P provide a detailed view of the evolution of cellular membranes (Yokobori et al., 2016). So far, there were 

no reports of prebiotic synthesis starting from DHAP (Table 2). There are two biosynthetic pathways to obtain G3P from 

either DHAP or from glycerol, while there is only one to obtain G1P from DHAP (Fig. 14) (Koga et al., 1998).  

The energy is provided by NADH+H+ for the reaction starting with DHAP, while ATP is provided for the reaction starting 

with glycerol, in contrast to the thermal proccess in the case of prebiotic synthesis (Table 2). Bacterial and eukaryotic 

phospholipids are derived from G3P, being esterified with two fatty acids to form phosphatidates (Voet and Voet, 1995). 

Archaea phospholipids are derived from G1P containing two ether-bonds with isoprenoids, typically with a C20 chain 

length (Kate, 1993; Koga et al., 1993; Wa¨chtersha¨user, 2003; Matsumi et al., 2011). Glycerol kinase (GK) catalyzes the 

synthesis of G3P from glycerol (Fig. 14). G3P is also a metabolic intermediate of the glycolysis, while G1P is not. 

This probably suggests that there is no GK catalyzing the formation of G1P. G1P in Archaea originates solely from DHAP 

and NADH+H+, catalyzed by a G1P dehydrogenase (G1PDH), as depicted in Fig. 14 (Nishihara et al., 1999; Yokobori et 

al., 2016). G3P is also formed from DHAP and NADH+H+, catalyzed by a G3P dehydrogenase (G3PDH) (Fig. 14 and Table 

2) (Larsson et al., 1993). To determine which types of cells containing G3P-lipid membranes or G1P-lipid membranes 

appeared first, EgsA and AraM, which are genes encoding for the enzyme G1PDH, were searched for in Bacteria and 



 

 

Archaea (Yokobori et al., 2016). EgsA codes for GIPDH in Archaea, while AraM may code for GIPDH in Bacteria (Yokobori 

et al., 2016). 

Similarly, GpsA and GLpA/GlpD, which are genes encoding for the enzyme G3PDH, were searched for in Bacteria and 

Archaea (Yokobori et al., 2016). GpsA, GlpA/ GlpD, and EgsA are different, indicating that G3PDH and G1PDH evolved 

apart from each other (Koga et al., 1998). G3PDH activity has been reported from few archaeal lineages (Yokobori et 

al., 2016). Indeed, Archaea species, such as Archaeoglobus fulgidus, have GpsA gene (Yokobori et al., 2016). The 

presence of genes is not enough to ascertain the expression of G1PDH and G3PDH as well as the formation of their 

respective G1P-lipids or G3P-lipids. For example, GlpA/ GlpB coding for G3PDH has been evidenced in several eukaryotic 

cells, but this gene is regulating the glycerol shuttle and not the formation of G3P-lipids. GpsA is the most abundant 

gene expressing G3PDH, responsible for the formation of G3P-lipids in Eukarya (Yokobori et al., 2016). 

The phylogenetic analysis on these genes provided an evolutionary tree (see Section 5). It was hypothesized that C. 

commonote had heterochiral membrane lipids (Kandler, 1995; Wächtershäuser, 2003). The phylogenetic analysis on 

these genes (Yokobori et al., 2016) is consistent with prebiotic synthesis yielding a racemic lipid mixture at earlier times, 

which evolved during evolution to produce enantiomeric lipids. 

 

4. Prebiotic Synthesis of Complete and Incomplete Phospholipids 

The prebiotic synthesis of phospholipids may therefore be split into two parts: the formation of incomplete lipids (ILs, 

cf. Fig. 2), the critical step being the acylation of glycerol, and the phosphorylation of such into complete lipids (CLs, cf. 

Fig. 2). The phosphorylation of long-chain alcohols into the corresponding n-alkyl phosphates has been summarized 

elsewhere (Powner and Sutherland, 2011; Albertsen et al., 2014; Fiore et al., 2017; Fiore, 2018). 

Interestingly, both acylation of glycerol and phosphorylation fall under the category of condensation reactions, which 

require the elimination of one molecule of water. Plausible condensing agents are urea, cyanamide, and related 

compounds (Fig. 11, blue title). Urea at moderate temperatures (Lohrmann and Orgel, 1971; Osterberg and Orgel, 1972; 

Powner and Sutherland, 2011) and cyanamide and derivatives thereof (Hulshof and Ponnamperuma, 1976; Fiore et al., 

2017) are, among others, the most popular dehydrating agents in the context of prebiotic chemistry. This may be 

achieved under pure thermal conditions or using a dehydrating agent that reacts with water, thus removing it from the 

medium. Some examples of phosphate-based condensing agents are reported in Fig. 11 (red title). 

Iron phosphide (Fe3P as the mineral schreibersite) may also be a source of amidophosphates upon corrosion by 

ammonia (Gibard et al., 2018), and, more generally, a source of inorganic phosphates on the Earth (Pasek, 2020). The 

elimination of a molecule of water through the condensation of phosphate with an alcohol calls for the use of either 

thermal dehydration or the capture of water by a dehydrating agent, which is involved in the reaction mechanism 

(Powner and Sutherland, 2011; Burcar et al., 2019). 

4.1. Prebiotic synthesis of IL esters 

The thermal formation of glycerol esters under simulated prebiotic conditions was demonstrated as early as 1972. 

Incubation of palmitic acid (C16:0) and glycerol under wet anaerobic conditions at 85°C in the presence of the clay kaolin 



 

 

(aluminum silicate) yielded small quantities of monoto triglycerides (Fig. 15). When phosphate was included, the authors 

were not able to clearly establish the formation of phospholipids for analytical reasons (Harvey et al., 1972). 

A few years later, Orò et al. obtained mono-, 1,2-di-, 1,3-di-, and tripalmitoyl glycerols (5-7, Fig. 15) from the 

condensation of ammonium palmitate with glycerol. Reactions were carried out at 100°C for relatively short periods of 

time (16h) yielding reasonable amounts of each compound (9% for the mixture of compounds 5 and 7, Fig. 15, second 

row) (Eichberg et al., 1977). Notably, for the first time, a condensing agent/catalyst mixture, namely, 

cyanamide/imidazole, was used. 

Deamer et al. used for the first time 14C-radiolabeled glycerol, and fatty acids, aldehydes, or alcohols, the latter being 

by far less reactive (Fig. 15, third row), to produce racemic ILs together with CLs (cf. Fig. 16) upon incubation over silicic 

acid or kaolin (8-10, Fig. 15, third row) (Hargreaves et al., 1977). The crude products were separated by preparative thin-

layer chromatography, analyzed by 14C-autoradiography, followed by the enzymatic digestion to determine the type of 

ILs produced. 

More recently, Rushdi et al. reported the thermal formation of racemic ILs bearing different n-acyl residues (11-14, Fig. 

15, last row, with n=4, 6-10). These ILs were obtained by heating mixtures of fatty acids and glycerol under "simulated 

hydrothermal conditions" - up to 250°C - in closed pressure vessels (pressure > 760mm Hg). Oxalic acid, acting as a 

source of several small molecules (H2, CO, CO2, formic acid) enhanced the production of glycerides (Rushdi and Simoneit, 

2006). Mixtures reconstituted from synthetic material formed multilamellar structures upon hydration (Simoneit et al., 

2007). 

Deamer et al. obtained low amounts (0.2% total yield) of racemic phosphatidic acids (PAs, 16, 17), phosphatidylglycerols 

(PG, 18, 19), and phosphatidyl glyceryl phosphates (PGP, 20, 21) starting from a preformed glycerol monoether and 

inorganic phosphate, using sodium dicyanamide and clays as reaction promoters (Fig. 16, first row) (Hargreaves et al., 

1977). The phosphorylation occurred after acylation of the starting glycerol (1), which yielded racemic mixtures (16) or 

(17) in contrast to the reactions catalyzed by specific enzymes GIPDH and G3PDH in living systems. In living systems, the 

phosphorylation of glycerol by either GIPDH (Jain et al., 2014) or by G3PDH (Voet and Voet, 1995) occurs before its 

acylation to form enantiomeric phosphatidates. 

Orò et al. explored an alternative synthetic pathway (Fig. 16, second row) by acylating a racemic glycerol phosphate, a 

product of the condensation of glycerol with ammonium dihydrogen phosphate, promoted by either cyanamide or urea 

(cf. Fig. 11) (Epps et al., 1979). In their experiments, 14C-sn-glycero-l-(3)-phosphate (22), ammonium palmitate, 

cyanamide, and imidazole were mixed together and heated (37-100°C) for different times (0.5-16 h). The best 

conversion (45%) was obtained at 85°C for 16h and the crude mixtures contained racemic 

monopalmitoylglycerophosphate (23, 60%), dipalmitoylglycerophosphate (24, 27%), and monopalmitoyl cyclic 

glycerophosphate (25, 13%) (Fig. 16, second row) (Epps et al., 1978). 

Very recently, Neal Devaraji et al. have reported on the preparation of six phosphocholines (PC) via enzymefree reaction 

in water from the corresponding lysophosphocholine (Fig. 16, third row). This new synthetic pathway shed lights on the 

origin of membrane forming CLs in the absence of preformed membranes. As expected, all the prepared compounds 

(PCs) form liposomes and multilamellar giant vesicles along their formation in the reaction mixtures. Conversion of the 

lyso compounds into phosphocholines has extremely interesting yields (55-87%) (Liu et al., 2020). This pathway must 



 

 

be considered barely prebiotic because lyso compounds are ‘‘evolved’’ compounds produced in modern cells via 

complex prebiotic pathways. 

The same group later demonstrated that these PAs could be converted into phosphatidylethanolamine (PE, 26, Fig. 17, 

first row) (Rao et al., 1987) and phosphatidylcholine (PC, 27) (Rao et al., 1982) using, respectively, ethanolamine and 

choline chloride in cyanamide-promoted reactions (Fig. 17). For both studies, a model PA (1-palmitoyl, stearoyl)-2-

(oleoyl, linoleoyl)-sn-glycero-3-phosphate, disodium salt) was used as the substrate. Orò et al. used radiolabeled [14C] 

ethanolamine or [14C] choline in combination with [32P] PA (for 26 only) to follow the reaction by enzymatic degradation 

and autoradiography. The yields were very poor for 26 (1.5%) and more acceptable for 27 (15%). 

An excess of cyanamide showed a decrease of conversion, while the optimal molar ratio between PA, ethanolamine, 

and cyanamide was 1:2:10. The optimal molar ratio for the synthesis of PC was PA:choline: cyanamide, 1:20:20. Optimal 

pH and reaction time were 7.3 for 6h at 37C for the synthesis of 26, whereas optimal conditions for the conversion of 

PA into PC (27) were 7h at 80°C and pH 7.4 (Rao et al., 1987). The crude mixtures of PC were able to form liposomes at 

pH 7.4 and 50°C (Rao et al., 1982). 

These reports outlined several synthetic routes in which the prebiotic synthesis of complex lipids can be carried out in 

essentially identical conditions, using some prebiotic condensing agent that was reported to promote many other 

condensations (Steinman et al., 1964) such as peptide bond formation and phosphodiester formation between nucleic 

acids. 

4.3. Alternative prebiotic synthesis of phospholipid esters 

The acylation of glycerol phosphates was explored in conditions only sparingly related to prebiotic chemistry but that 

still provided meaningful insight (Fayolle et al., 2017; Ferna´ndez-Garcı´a and Powner, 2017; Bonfio et al., 2019). Fiore 

et al. phosphorylated dioleoylglycerol (rac-DOG, 28 in Fig. 18) using inorganic ammonium phosphate (NH4H2PO4) or O-

phosphoethanolamine (31) obtaining dioleoyl phosphatidic acid (DOPA, 29) together with its lyso-phosphatidic acid 

form (30) and dioleoyl phosphoethanolamine (DOPE, 32). In addition, the authors considered plausible that 

acylglycerols themselves (11-14 in Fig. 15) were first formed in harsher conditions, and then phosphorylated as 

proposed by many scholars for glycerols or nucleobases (Lohrmann and Orgel, 1968; Eichberg et al., 1977). 

OPE is considered a plausible another prebiotic compound as proven by Pasek et al. (2017) and Gull et al. (2014). The 

phosphorylation of 28 was promoted by cyanamide or urea under dehydrative conditions at 80°C. Optimal conversions 

were observed when heating for 48h by using a molar ratio between reactant of 1:1:1 or 1:1:10 [DOG:Pi (or OPE): 

cyanamide or urea] and an initial concentration of 0.1M in water. Neat conditions were performed as well. No 

differences were noticed, neither when cyanamide replaced urea due to the rapid interconversion of the former to the 

latter (Fiore et al., 2017). 

For the first time, a complete analysis of the nonextracted crude mixtures was carried out using a combination of 

monoand bidimensional nuclear magnetic resonance (NMR) and infrared spectroscopy, in addition to mass 

spectrometry. The crude mixtures containing DOPA (29), starting DOG (28) and several by-products (30-35, Fig. 18), 

formed vesicles upon rehydration without intermediate treatment or adding nonplausible prebiotic cosurfactants 

(Fayolle et al., 2017), while the mixture containing DOPE (Fig. 19) and the other by-products (32-35) did not. 



 

 

Powner and Sutherland (2011) showed that glycerol phosphates such as glycerol-3-phosphocholine (36, Fig. 20) and 

glycerol-2-phosphate (3) can be acylated to form phosphatidate (Pas) in chemical conditions modeling prebiotic ones, 

while not being supported by any geochemical scenario. Ferna´ndez-Garcı´a and Powner (2017) used N-acyl imidazoles 

from hexa-, octa-, and decanoic acids for the acylation of sn-glycerol-3-phosphocholine (36, Fig. 20), obtaining three 

phosphatidylcholines (37-39) in good yields (15 up to 40% depending on pH). 

Solubility issues due to lipophilic chains were overcome by using a mixture of acetonitrile:water (1:1 v/v) that has the 

conflict of not to be a prebiotic molecule. Experiments were followed by 1H NMR and showed up to 95% conversion 

(Fernandez-Garcıà and Powner, 2017). Sutherland et al. used N-acetyl imidazole and N-acyl imidazoles from tetrahexa-

, octa-, and decanoic acids for the acylation of glycerol2-phosphate (3) under the conditions proposed by Powner (acyl 

imidazole, pH 8) (Ferna´ndez-Garcı´a and Powner, 2017). Mono (40-44, 40-45%)- and bis-derivatives (45-49, 16-53%) 

were obtained (Ferna´ndez-Garcı´a and Powner, 2017). 

The authors proposed an intriguing reaction mechanism as well, where acylation was promoted via a phosphate ester 

intermediate (Bonfio et al., 2019). Remarkably, the authors observed membranes made of mixed acylglycerol-2-

phosphates only from the second acylation-hydrolysis step from a monoacylated compound.  

Soon thereafter, the group of Krishnamurty reported the use of DAP for the phosphorylation of glycerol into the 

corresponding racemic 1,2-cyclic phosphates (50, Fig. 21) (Gibard et al., 2018). DAP arises from phosphide minerals 

when enough ammonia is available (Gibard et al., 2019) and phosphorylates alcohols under milder conditions as the 

ureaphosphate or cyanamide-phosphate combinations, but more slowly. This phosphorylation agent, which is also a 

condensing agent, especially under the so-called paste conditions (a semisolid mixture of neat reagents ground together 

with minimal amounts of water) could form monoacyl glycerol cyclic phosphates in a single step when mixing a fatty 

acid, glycerol, DAP, and imidazole (Gibard et al., 2018).  

Such cyclolipids (51-52, Fig. 21), in mixture with fatty acids and alcohols, produce vesicles that display sufficient stability 

to divalent cations and are thus plausible intermediates on the road from rustic to more evolved membranes in the 

presence of prebiotic plausible cosurfactants such as long-chain alcohols, fatty acids, and ILs such as monoacylglycerols.  

4.4. Prebiotic synthesis of phospholipid ethers  

A few examples were reported for the preparation of ethers in abiotic conditions. From the bottom-down approach: 

phospholipid ethers are complex molecules and their synthesis in the laboratory requires several steps, including 

protections and deprotections of the glycerol backbone and the polar head (Sutter et al., 2015). Chemically speaking, 

the synthesis of an ether requires two molecules of alcohols that condense at moderate temperature. Deamer et al. 

have reported that glycerol ethers 53-55 (Fig. 22, first row) could be prepared from fatty alcohols and glycerol under 

conditions identical to those used for glycerol ester synthesis, but they got glycerol ethers in much lower yields (<0.02%) 

(Hargreaves et al., 1977).  

Similarly, Fiore et al. (2017) have found traces of 1-undecoxyundecane (56) when undecan-1-ol was submitted to abiotic 

phosphorylation under mildly acidic conditions (pH 4.5, 80°C, 48h) (Fig. 22, second row). Although the biological role of 

phospholipid ethers was exhaustively discussed, their role in prebiotic chemistry is rarely mentioned (Ourisson and 

Nakatani, 1994; Deamer, 2017).  



 

 

4.5. Comparisons and analogies between prebiotic and biotic syntheses of phospholipids: synthesis of phospholipid 

esters  

The striking difference between the organic synthesis and the biosynthesis of phosphatidates in Archaea is that the first 

acylation is localized in the cytoplasm of the archaea, while the second acylation is catalyzed by an enzyme inside the 

membrane (Table 3).  

For example, the formation of an ether bond between G1P and the 20-carbon geranylgeranyl pyrophosphate (GGPP), 

yielding 3-O-geranylgeranyl-sn-glycerol-1-phosphate (Fig. 23), is catalyzed inside the cytoplasm by a 

geranylgeranylglyceryl diphosphate synthase (GGPP synthase) present in all Archaea except Nanoarchaeota (Jain, 2014). 

This may result in a better biological synthesis yield, compared with that of organic synthesis, since the lipid formed 

after its acylation is directly inserted in the membrane in the archaea. GGPP synthases are regarded as Archaea-specific 

(Kate, 1993; Koga et al., 1993; Wa ̈chtershäuser, 2003; Matsumi et al., 2011), affecting the evolutionnary separation 

between the distinct domains of life (Pereto et al., 2004; Payandeh and Pai, 2007; Koga, 2011; Lombard et al., 2012b). 

The hydrolysis of a pyrophosphate group (Fig. 23) is the source of energy to obtain GGPP, while for abiotic synthesis, 

the energy is provided during a thermal process (Table 3). In an attempt to provide a link between abiotic organic 

synthesis and evolved biochemical pathway, a minimal biochemical route involving a soluble enzyme FadD10 to form 

fatty acyl adenylates that react with amine-functionalized lysolipids to produce phospholipids was reported 

(Bhattacharya et al., 2019). The dodecanoyl-AMP was transfered to an amine-functionalized lysolipid to form a 

phospholipid inserted in a bilayer (Bhattacharya et al., 2019).  

Although the biochemical route is far from abiotic conditions due to the presence of enzyme and lysolipid derivatives, 

this report stimulated further works toward possible evolution paths. This culminated with a model of enzyme-free 

synthesis of phospholipids in water from charged lysophospholipids and acyl donors (Liu et al., 2020). 

In all the three domains of life, serine, ethanolamine, glycerol, and myoinositol as polar group moiety are found in 

phospholipids (Jain, 2014). To facilitate the transfer of the alcohol moiety of the serine to DGGP, activation of the DGGP 

from cytidine triphosphate (CTP) (Fig. 24) is necessary in Archaea. CTP is the energy analogue of ATP and is the source 

of energy to transfer head groups of phospholipids (Table 3).  

This reaction in Archaea is catalyzed by a transmembrane CDP-DGGG synthase (Fig. 24) (Morii et al., 2000; Koga and 

Morii, 2005, 2007; Jain, 2014; Jain et al., 2014; Ren et al., 2017). Hence, the phospholipid is activated, and formation of 

2,3-di-O-geranylgeranyl-sn-glycerol-l-phosphoserine (DGGGPS) from CDP-DGGG and l-serine is catalyzed by a 

geranylgeranyl-sn-glycerol:l-serine O-archaetidyltransferase (archaetidylserine synthase) (Fig. 24). CTP and dCTP can 

both be used as activated substrates by CDP-DGGG synthase (Jain et al., 2014).  

However, CDP-DGGG synthase is specific to unsaturated CD-DGGG, suggesting that saturated phospholipids that are 

found in Archaea are formed by hydrogenolysis of unsaturated chains after the synthesis of the phospholipid (Fig. 24) 

(Jain et al., 2014). Inositol phospholipids are produced via CDP-DGGG and l-myo-inositol-1-phosphate by an 

archaetidylinositol phosphate synthase (Morii et al., 2009, 2014). 2,3-Di-O-geranylgeranyl-sn-glycerol-l-

phosphoethanolamine is obtained via a decarboxylation of DGGPS as evidenced by the presence of archaetidylserine 

decarboxylase, while the glycerol phospholipids result from a reaction catalyzed by an archaetidylglycerol synthase 

(Daiyasu et al., 2005; Caforio et al., 2015).  



 

 

In mammalians, the active sites of enzymes that catalyze the formation of phospholipids from either diacyl glycerol (DG) 

or PA are located at the cytosolic face of the ER (Vance, 2015). PE is synthesized in the ER and in mitochondria. PE in 

mitochondria is made in situ by decarboxylation of phosphatidylserine (PS) (Vance, 2015), probably due to an inefficient 

transport from the ER to mitochondrial membranes.  

The biosynthesis of PS in Archaea, where the base exchange with serine can occur after the activation of phosphatidate 

by CTP, forming PS and CDP (Fig. 24), is not reported in mammalian cells. PS is synthesized in the ER of mammalian cells 

by a different base-exchange reaction in which the alcohol group of PC or of PE is replaced by serine (Vance, 2015). In 

mammalian cells, PS can be transported to mitochondria, where it can be decarboxylated to PE (Vance, 2015). Enzymes 

homologous to PS decarboxylase have been identified in Archaea (Daiyasu et al., 2005), suggesting that the 

decarboxylation of PS occurred in primitive cells. 

Otherwise, there are two distinct pathways to generate phospholipids. Negatively charged phospholipids such as 

phosphatidylinositol (PI) and PG are synthesized from CDP-diacylglycerol at both the ER and mitochondria (Fig. 25) 

(Vance et al., 1977). 

PG is formed from a CDP-diacylglycerol and glycerol via a PG synthase (or transferase), while PI is formed from a CDP-

diacylglycerol and myo-inositol via a PI synthase (or transferase) (Fig. 25). Diphosphatidylglycerol or cardiolipin is 

obtained from PG and a second CDP-diacylglycerol via a cardiolipin synthase. Neutral phospholipids such as 

phosphatidylcholine and PE are synthesized via CDP-choline and CDP-ethanolamine Kennedy-pathways (Kennedy and 

Weiss, 1956). 

This starts from the formation of a phosphorylated choline (Fagone and Jackowski, 2013) or phosphorylated 

ethanolamine (Vance and Tasseva, 2013) via a choline kinase or ethanolamine kinase, respectively, in the cytoplasm. 

Then a phosphocholine- or ethanolamine cytidyl transferase catalyzes the formation of CDP-choline (Fagone and 

Jackowski, 2013) and CDP-ethanolamine, respectively (Vance and Tasseva, 2013). Alternatively, PE N-methyltransferase, 

a transmembrane protein in ER, catalyzes the reaction from PE to PC (Vance and Tasseva, 2013; Vance, 2014). 

The majority of SMs syntheses are catalyzed by an SM synthase-1 in the Golgi apparatus from ceramide and PC, which 

are transported from the ER to the Golgi apparatus (Tafesse et al., 2006). A small part of SMs is obtained via SM 

synthase-2 in the plasma membrane. Archaea phospholipids can be distinguished from Bacteria phospholipids by their 

G1P backbone instead of a G3P backbone, respectively (Koga et al., 1998). CDP-diacylglycerol synthases are integral 

transmembrane proteins in E. coli, Saccharomyces cerevisiae, mice, and humans (Langley and Kennedy, 1978; Icho et 

al., 1985; Sparrow and Raetz, 1985; Kelley and Carman, 1987; Wu et al., 1995; Shen et al., 1996). 

Instead of etherification in Archaea, esterification of acyl chains occurs in bacteria and higher evolved cells. Acylation 

shall start from G3P in Bacteria and Eukarya. However, a quite rare formation of monoacylglycerol from acyl CoA and 

either endogenous or extracellular source glycerol in mammalian was evidenced through glycerol:acyltransferase 

activity leading to monoacyl glycerol, and subsequently, diacylglycerol and triacylglycerol (Fig. 26) (Lee et al., 2001). 

The sn-glycerol-3-phosphate is acylated via an acyl CoA-SH forming a lysophosphatidate (Lyso-PA) and HS-CoA (Wilkison 

and Bell, 1997). Membranes of ER and the outer membrane of mitochondria contain distinct forms of glycerol-3-

phosphate acyltransferase (Pellon-Maison et al., 2007). Inmost phosphatidates, the hydrocarbon chain at sn1 is 

saturated. A second acylation of Lyso-PA at sn2 by acyl-CoA (generally an unsaturated hydrocarbon chain) catalyzed by 



 

 

a lyso-PA-acyltransferase gives rise to CoA-SH and PA(Fig. 27), a precursor for CDP-diacylglycerol-dependent 

phospholipid synthesis. 

This is also catalyzed at the cytosolic side of ER and at the mitochondrial outer membranes (Vance, 2015). PA is further 

dephosphorylated by the lipin family of phosphatases to produce diacylglycerol. Before acylation, the fatty acid is 

activated by CoA-SH and ATP, providing a reactive acyl-CoA. PPi produced from ATP is hydrolyzed, favoring acyl-CoA 

formation, a substrate for the synthesis of triglycerides by DG acyltransferases and a precursor for phospholipid 

synthesis via the CDP-choline and CDP-ethanolamine Kennedy pathways (Fig. 25) (Kennedy, 1956; Lee and Ridgway, 

2020). 

In	analogy	with	what	nature	does,	bottom-up	approaches	for	the	synthesis	of	complete	phospholipids	suggest	that	

the	 phosphorylation	 of	 glycerol	 followed	 by	 acylation	 using	 an	 "activated"	 fatty	 acid	 is	 very	 similar	 with	

biochemical	processes	acted	in	evolved	cells.	The	main	difference	is	that	bottom-up	approaches	do	not	give	any	

symmetry	imbalance	between	R	and	S	CLs,	whereas	evolved	enzymes	give	enantiomeric	pure	glycerophosphates	

before	their	conversion	into	phospholipid	esters	(and	ethers)	(Table	3).	 

The	main	reason	for	the	lack	of	symmetry	imbalance	observed	during	organic	synthesis	is	probably	due	to	the	lack	

of	selective	catalysts	that	may	function	as	enzymes.	This	is	exemplified	in	the	case	of	phosphorylation	of	glycerol,	

which	provides	 solely	either	G1P	or	G3P	during	enzymatic	 reaction.	Of	 importance,	 each	 reaction	 step	during	

phospholipid	 formation	 is	 catalyzed	 by	 a	 specific	 enzyme,	 in	 contrast	 to	 prebiotic	 synthesis	 (Table	 3).	 Again,	

prebiotic	conditions	do	exclude	the	advantage	of	using	plausible	prebiotic	cofactors	where	heat	and	condensing	

agents	(dehydrating	agents)	(Fiore	and	Strazewski,	2016)	promote	the	condensation	between	parts.		

 

5. Phylogeny of Archaea, Bacteria, and Eukarya from LCA and C. commonote 

The phylogeny tree of selected genes coding for the enzymes G1DPH and G3DPH may contribute to determine the 

biosynthesis routes of phospholipids. This strategy is based from an analysis of genes in Archaea (reminiscent of 

primitive cells), Bacteria, and Eukarya (considered more evolved descendants). LCA or C. commonote (Yamagishi, 1998) 

lived around 3.8-3.5 Ga ago.  

There are still controversies about the environment where the LCA lived (Weiss et al., 2016). A sulfur-containing 

atmosphere (Kasting et al., 1989; Glansdorff et al., 2008; Olson, 2019) together with CO2, H2, N2 and CH4 (Catling and 

Zahnle, 2020) is the most probable. Contemporary Archaea, comprising methanogens (which currently generate around 

85% of the methane in Earth’s atmosphere), Halobacteria, and thermoacidophiles live under extreme conditions 

reminiscent of this primitive environment. These descendants are phylogenetically related to each other, while they 

share very little phylogenetic characteristics with Bacteria and Eukarya (Koga et al., 1998; Yokobori et al., 2016). 

C. commonote had archaeal and bacterial characteristics (Guy and Ettema, 2011; Akanuma et al., 2013; Eme and 

Doolittle, 2015; Eme et al., 2017), while Eukarya evolved from Archaea (Guy and Ettema, 2011; Akanuma et al., 2013; 

Eme et al., 2017). There is an open debate between the three domains of life (Archaea, Bacteria, and Eukarya) that 

evolved separately from the LCA versus the Eocyte hypothesis where Eukarya are descendants of Archaea 

Crenarchaeota (Williams et al., 2013) or other evolution models (Akanuma et al., 2013; Weiss et al., 2016; Yokobori et 

al., 2016). 



 

 

A comparative analysis of genes within the different species, as "finger prints", shall indicate their descendant 

characteristics when their genes are homologues, while a separate evolution of species is inferred when genes are 

distinct from each other. The origin of the controversy lies in the inconsistencies of the phylogenetic distributions and 

in the selection of appropriate genes to build up the phylogenetic tree (Akanuma et al., 2013; Lake and Sinsheimer, 

2013; Yokobori et al., 2016). 

Here, we focus on the phylogenetic tree based on the genes that encode sn-glycerol-1-phosphate dehydrogenase 

(G1DPH) or sn-glycerol-3-phosphate dehydrogenase (G3DPH), enzymes that catalyze the formation of, respectively, sn-

G1P and sn-G3P from prochiral DHAP. These genes may not represent the best descendant path. The reason to focus 

on the two genes for encoding G1DPH and G3DPH in this review is that G1P and G3P are key enantiomeric precursors 

of phospholipids. The choice of these two genes is essential to determine the mechanisms of symmetry breaking 

associated with the enantiomeric excess of G1P and G3P. 

Abiotic synthesis from achiral compounds yields racemic mixtures. How chiral molecules such as G1P and G3P emerged 

may reveal the plausible evolution of how racemic phospholipids became enantiomeric phospholipids due to the 

appearance of enzymes G1DPH and G3DPH. 

The lipid composition in Archaea is distinct from those in Bacteria and Eukarya (Akanuma et al., 2013; Yokobori et al., 

2016). Archaea membranes usually contain phospholipids having G1P moiety and isoprenoid hydrocarbon chains ether-

linked to the G1P moiety (Yokobori et al., 2016), whereas membranes in Bacteria and Eukarya are usually composed of 

phospholipids derived from G3P and alkyl chains ester-linked to the G3P moiety (Koga et al., 1998; Yokobori et al., 2016). 

The presence of genes coding for these enzymes in Archaea and Bacteria has contributed to build up a phylogenetic 

tree (Daiyasu et al., 2002; Pereto et al., 2004; Carbone et al., 2015; Yokobori et al., 2016), revealing possible evolutions 

of synthetic pathways from a common ancestor. 

Several models, based on the occurrence of G1P-lipids or G3P-lipids, were inferred from the presence of either G1PDH 

based from EgsA/AraM genes coding for this enzyme, or G3PDH based from GpsA, GlpA/GlpB genes (Kandler, 1995; 

Koga et al., 1998; Wächtershäuser, 2003; Yokobori et al., 2016). It was suggested that C. bacteria and C. archaea could 

have emerged directly from the LCA (Martin and Russell, 2003) instead of cellular and hetero-membranous C. 

commonote (Pereto et al., 2004) giving rise to a distinct evolutionary tree. 

C. bacteria and C. archaea plausibly acquired, respectively, G3PDH and G1PDH from C. commonote (Fig. 28A) or from 

LCA (Fig. 28B, C). Eventually, both G3PDH and G1PDH coexisted (Fig. 28D), which led to either C. bacteria containing 

G3P-lipids or C. archaea containing G1P-lipids that were preserved up to Bacteria and Archaea. The phylogenetic 

analysis of gene product G1PDH inferred that G1PDH was acquired by C. archaea, suggesting that neither the common 

ancestor of Bacteria nor C. commonote had G1PDH (Yokobori et al., 2016). On the contrary, the phylogenetic analysis 

of gene product G3PDH is consistent with the presence of genes GlpA/GlpD coding for G3PDH (in C. commonote and in 

C. archaea) (Fig. 28B), which makes this evolutionary tree the most likely. This suggests that G3PDH occurred before 

G1PDH. 

Of further interest is that another gene GpsA coding for G3PDH (GpsA) was acquired in C. bacteria, which is the major 

G3PDH in Bacteria as well as in Eukarya (Yokobori et al., 2016). GlpA/GlpD and EgsA genes are different, indicating that 

G3PDH and G1PDH evolved apart from each other (Koga et al., 1998). 



 

 

 

6. Conclusions  

Phospholipids are clearly more complex than simpler amphiphiles such as fatty acids, monoalkyl phosphates, 

isoprenoids, and most probably participated in the formation of protocellular membranes together with several other 

components. Phospholipids, in addition to their chemical diversity of headgroups and tails, are chiral molecules. 

Theoretical predictions and experimental evidence confirm that phospholipids form abiotically as racemic mixtures. This 

implies that the occurrence of enantiomeric phospholipids should have been initiated from chiral products or from 

selective catalytic reactions. It is more likely that the reactions catalyzed by the nonenzymatic process appeared before 

than those that were catalyzed by enzymes. 

In this respect, amino acids with L configurations are present in G3PDH and G1PDH enzymes, which points out that the 

controlled production of enantiomeric phospholipids was probably initiated at a later stage of the evolution path than 

those catalyzed by the nonenzymatic process. This is also supported by the fact that the chemical energy for the 

phospholipid biosynthesis originates mostly from ATP, acetyl-S-CoA, and NAD(P)H, which have a ribosyl derivative of 

configuration D in the adenosine moiety. Therefore, not only enantiomeric amino acids but also enantiomeric 

carbohydrates contributed to initiate the efficient formation of enantiomeric phospholipids. 

In analogy with the Fischer/Tropsch processes, the biosynthesis of a fatty acid starts from natural carbon sources such 

as CO2. Recent discoveries also showed that the reduction of glyceraldehyde was possible under enzyme-free conditions 

thanks to cyanide-cyanocuprate photochemistry. This suggests that simple but effective catalytic networks probably 

existed in protocells before the advent of LCA. A wide range of plausibly prebiotic conditions by condensation of acyl 

chains, glycerol backbone, and inorganic phosphates in the presence of condensing agents such as cyanamide, sodium 

dicyanamide, or urea yield phospholipids having phosphoester links. Glycerol phosphate was also used as a phospholipid 

precursor and its acylation occurred under similar conditions upon chemical activation, in analogy with biological 

processes driven by coenzymes and ATP as energy sources. Abiotic condensation conditions require mild temperatures 

and wet/dry cycles in fluctuating hydrothermal pools (Gözen, 2021).  

From a systems chemistry point of view, these few analogies suggest that in abiotic conditions, the properties of 

phospholipids emerged from inanimate mixtures (Dalai and Sahai, 2019; Gözen, 2021). The unique property to form 

boundaries, upon hydration, permits to colocate microenvironments where Darwinian evolution cycles placed, 

protected, and kept other biomolecules (nucleic acids and peptides) at defined concentrations, avoiding chemical 

degradation. This microenvironment enables a multitude of often competing and interfering biochemical reactions to 

occur simultaneously. 
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FIG. 1. A simplified representation of a cell: the systemic memory (genetic code, purple box) 
and the metabolic machinery (proteins, green box) encapsulated together into a lipidic 
membrane (yellow dashed circle). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 

FIG. 2. Plausibly prebiotic lipid derivatives. Red color indicates the polar head group. 
  



 

 

 

FIG. 3. Representative structures of phospholipid ethers and esters. Both complete lipids are naturally 
occurring molecules that form lipid boundaries in Eukarya, Bacteria, and Archaea. 

 
  



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

FIG. 4. Phosphatidate enantiomers and their nomenclatures according to sn-glycerol and Cahn/Ingold/Prelog 
conventions. 1,2- diacyl-sn-glycero-3-phosphate is the enantiomer of 2,3-diacyl-sn-1-glycerophosphate: (i) The stereo 
numbering (sn-glycerol) is based on the position of the second oxygen of the glycerol moiety to the left side in the 
Fischer representation, with the top carbon numbered as one, second as two, and the bottom carbon numbered as 
three. (ii) The enantiomer changes the order of numbers of glycerol-moiety due to the opposite position of the second 
oxygen.  

  



 

 

 
 
 
 
FIG. 5. Simple amphiphiles obtained by Simoneit et al. (2007) in hydrothermal Fischer/Tropsch-like conditions. Formic 
and oxalic acids were used as convenient precursors of simple C0 and C1 gases. Chain lengths going from C6 to C22 (fatty 
acids), C23 (fatty alcohols), and more than C30 (hydrocarbons) were detected by GC analysis of dichloromethane extracts 
of the crude mixtures. 
 
  



 

 

Table 1. Differences or Analogies Between Prebiotic and Biotic Syntheses of Fatty Acids 
 Prebiotic synthesis Biotic synthesis 

Carbon source Formic acid and oxalic acid Acetyl CoA (Bacteria and Eukarya) 
Isopentyl pyrophosphate and dimethylallyl 
pyrophsphate (Archaea) 

Electron donors Triacyanocuprate and tetracyanocuprate NAD(P)H+H+ 
Energy source Thermal process NADPH, acetylCoA, pyrophosphate 

 
  



 

 

 
FIG. 6. Isoprenyl pyrophosphate synthases, which are soluble enzymes, catalyze the chain elongation of allylic 
pyrophosphate substrates (DMAPP, GPP, FPP, GGPP, etc.) via consecutive condensation reactions with isopentyl 
pyrophosphate to yield, respectively, GPP (C10), FPP (C15), GGPP (C20), FGPP (C25), and FFPP (C30). 
DMAPP=dimethylallyl pyrophosphate; GGPP=geranylgeranyl pyrophosphate. 
 
  



 

 

 
 
FIG. 7. Structures of ATP, CoA, NADH, NADPH, and FAD, all containing adenosine diphosphate residues. 



 

 

 
 
FIG. 8. The mechanism of carbon–carbon bond formation in fatty acid biosynthesis. The condensation of an 
acetyl group on the active site Cys of b-ketoacyl-ACP synthase (KS) with a malonyl group on the 
phosphopantetheine arm of ACP forms a b-ketoacyl-ACP. The reaction is driven by the exergonic elimination of 
CO2 from the malonyl group to generate a resonance stabilized acetyl-ACP carbanion intermediate that 
functions as a good nucleophile. ACP=acyl carrier protein. 
 
  



 

 

 
 
FIG. 9. Formation of butyryl-ACP from acetoacetyl-ACP, adapted from Voet and Voet (1995). 
 
  



 

 

 
 
FIG. 10. Interstellar origin of glycerol and glyceraldehyde was independently proven (Kaiser et al., 2015; Garcia et al., 
2019). Formamide (Saladino et al., 2012) or formaldehyde (Patel et al., 2015) is considered plausible prebiotic 
precursors. 



 

 

 
 
FIG. 11. Condensing agents plausibly available on early Earth as reactants for lipid synthesis as well as for other 
condensations. Blue title: cyanamide, urea, and sodium dicyanamide. Cyanamide may arise from HCN and is 
slowly hydrolyzed to urea under acidic conditions such as a phosphate solution at pH 4.5 (Fiore et al., 2017). 
Red text: Polyphosphates and phosphoric anhydrides (as conveniently modeled by (cTMP) and P4O10 may have 
been formed in volcanic environments. Some of these products are prone to evaporation and could have rained 
in ammonia-rich environments to provide amidophosphates such as AmTP and DAP (Gibard et al., 2018). 
AmTP=amidotriphosphate; cTMP=cyclic trimetaphosphate; DAP=diamidophosphate; HCN=hydrogen cyanide; 
P4O10 =phosphorus pentoxide. 
 
  



 

 

 
FIG. 12. (A) Confocal micrographs of the multilamellar GVs obtained from enantiopure (100% R, column a), 
racemic (R/S, 1:1 column b), and scalemic (R/S, 2:1 column c). Calcein (20mM) was included in the inner aqueous 
buffer to mark the vesicle lumen and largely washed out from the outside by replacing with calcein-free outside 
buffer. Calcein fluorescence is evident in the green channel, while the vesicle contours are shown in the 
Brightfield image. The green fluorescence confinement is clearly shown in the merged channels row. Scale bar 
is 30mm for all the micrographs. (B) Quantitative image analysis of GVs made of rac-POPC (black), (R)-POPC 
(red), and scalPOPC (blue). The dot plot shows the values of diameters (mm, on the x axis) and internal 
fluorescence (a.u., on the y axis) for each individual GV (i.e., each point represents one GV). The two histograms 
on the top and on the left of the dot plot show, respectively, the size distribution and the fluorescence 
distribution of the three populations. GVs=giant vesicles. 
  



 

 

 
 
FIG. 13. Glycerol phosphates and other organic phosphates obtained under hydrothermal (Gull et al., 2014) and 
prebiotic conditions (Patel et al., 2015). Cyclic glycerol phosphate was also obtained using DAP (Gibard et al., 
2018); DES (urea: choline chloride 2:1); Pi: phosphate salts. DES=deep eutectic solvent. 
 
  



 

 

 

 
FIG. 14. Biosynthetic pathways leading to G3P (top) and G1P (bottom). G1P=glycerol-1-phosphate; 
G3P=glycerol-3-phosphate. 
  



 

 

 
Table 2. Differences or Analogies Between Prebiotic and Biotic Syntheses of Glycerol Phosphates 
 Prebiotic synthesis Biotic synthesis 

Products Racemic glycerol phosphate Only enantiomeric G1P or G3P 
Carbon source Glyerol Dihydroxyacetophosphate or 

glycerol 
Energy source Thermal process NADH+H+ or ATP 
Catalyst  G1PDH or G3PDH 

G1P=glycerol-1-phosphate; G3P=glycerol-3-phosphate; G1PDH=G1P dehydrogenase; G3PDH=G3P dehydrogenase. 
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 2 
FIG. 15. Incomplete lipid synthesis obtained in independent studies and different abiotic conditions. 3 
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 5 
FIG. 16. The two syntheses of different PAs proposed by Deamer et al., Hargreaves et al. (1977), Orò et al., and 6 
Epps et al. (1978) in the late 70s. This pioneering work opens the doors to 40 years of discovery in prebiotic 7 
chemistry of phospholipids. PA=phosphatidic acid. 8 
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 11 
FIG. 17. The schematic prebiotic conversions of a model PA in PE and PC carried on by Oro´ et al. and Rao et al. 12 
(1982, 1987) in DES conditions. PC=; PE=phosphatidylethanolamine. 13 
 14 
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FIG. 18. Phosphorylation of acyl glycerols through inorganic ammonium phosphate and phosphoethanol amine 18 
(31, OPE) promoted by cyanamide or urea. 19 
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 21 
FIG. 19. (A-a) Multilamellar GVs obtained from the gentle hydration of crude reaction mixture, Mix A (Fig. 18). 22 
(b) Size distribution analysis, as obtained by image analysis, of GVs prepared from the lipid mixture, Mix A. The 23 
population is described by the following mean size–standard deviation: 2.2–0.8mm (n=1826, where n is the 24 
number of vesicles analyzed per microliter). (c) The possible chemical pathway that converts oleic acid to PA 25 
realizes a combinatorial chemical space made of the four indicated amphiphilic compounds. (d) Hydration of 26 
reconstructed lipid mixtures A, namely N1 to N7 give, depending on their composition (increasing in DOPA from 27 
pure oleic acid), GVs (green with or without orange-red membrane) and nonvesicle aggregates, that is, 28 
red/orange (Texas red) filled objects without aqueous (green, calcein) internal volumes (Fayolle et al., 2017). 29 
DOPA=dioleoyl phosphatidic acid. 30 
 31 
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 34 
FIG. 20. N-acyl imidazoles were used as acylating agents for PC and PA synthesis under conditions promoting 35 
long-chain diacylation through reagent colocalization. 36 
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 38 
FIG. 21. DAP and imidazole promote the acylation of glycerol by fatty acids (n=7 or 8) and the 39 
cyclophosphorylation of resulting monoacylglycerols to yield cyclophospholipids in a one-pot process. 40 
Hydration of cyclophospholipids with fatty acids and/or fatty alcohol as cosurfactants gave rise to vesicles that 41 
were able to encapsulate dyes and were stable under a wide range of conditions, including saline environments 42 
(Gibard et al., 2018; Toparlak et al., 2019). 43 
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 58 

FIG. 22. Tentative synthesis of ethers under prebiotic conditions.  59 
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Table 3. Differences or Analogies Between Prebiotic and Biotic Syntheses of Phospholipids 61 
 Prebiotic synthesis Biotic synthesis 

Location Acylation in reactive medium 
First acylation in cytoplasm and second 
acylation in membrane 

Products Racemic mixtures unless to start with chiral 
reactants 

Only enantiomeres 

Catalysts  Enzymes for each reaction 

Energy source for acylation Thermal process or activated fatty acids Hydrolysis of pyrophosphate (Archaea) 
ATP or acylCoA (Bacteria and Eukarya) 

Energy source for synthesis of 
phospholipids 

Thermal process CTP 

 CTP=cytidine triphosphate. 62 
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 64 
FIG. 23. The formation of an ether bond between sn-glycerol-1-phosphate and GGPP in Archaea yields GGGP 65 
catalyzed by a GGGP synthase inside the cytoplasm. The formation of a second ether bond between GGGP and 66 
GGPP forming a DGGGP is catalyzed by a DGGGP synthase inserted in the membrane. DGGGP=2,3-bis-O-67 
geranylgeranyl-sn-glycerol-1phosphate; GGGP=3-O-geranylgeranyl-sn-glycerol-1-phosphate. 68 
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 70 
FIG. 24. Formation of CDP-2,3-di-O-geranylgeranyl-sn-glycerol from DGGGP from CTP catalyzed by a CDP-DGGG 71 
synthase. Formation of DGGGPS from CDP-DGGG and l-serine catalyzed by an archaetidylserine synthase. CDP=; 72 
CTP=cytidine triphosphate; DGGGPS=2,3-di-O-geranylgeranyl-sn-glycerol-l-phosphoserine. 73 
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 76 
FIG. 25. Synthesis of phospholipids via the CDP-diacylglycerol pathway for negatively charged phospholipids or 77 
via the CDP-alcohol pathway for neutral phospholipids. The polar head is the alcohol (inositol, glycerol, 78 
phosphadidylglycerol for the left side of the panel. Choline and ethanolamine for the right side of the panel). 79 
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 81 
FIG. 26. Rare formation of monoacyl glycerol from a direct acylation to glycerol and not from G3P. 82 
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 85 
FIG. 27. Formation of 1,2-diacyl-snglycerol-3-phosphate and 1,2-diacyl-snglycerol. R1 is a saturated chain, 86 
whereas R2 is unsaturated. 87 
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 89 
FIG. 28. Models of early evolution of membranes based on the phylogenetic analysis of G1PDH and G3PDH 90 
genes. Adapted from Yokobori et al. (2016). (A) Commonote commonote did not possess any gene coding for 91 
G1PDH or for G3PDH. Heterochiral membrane lipids may have been formed by a nonenzymatic pathway or by a 92 
distinct enzymatic pathway. C. bacteria and C. archaea acquired their respective genes coding for G3PDH and 93 
G1PDH, respectively, that were kept in Bacteria and Archaea. Later, Bacteria and Archaea contained both genes 94 
that were horizontally exchanged. (B) C. commonote contained only the gene coding for G3PDH. The expression 95 
of this gene was preserved in the next generations in C. bacteria and in C. archaea. This gene coexisted with the 96 
gene coding for G1PDH in C. archaea. In the next generation, Bacteria and Archaea had their respective genes. 97 
Alternatively, Bacteria and Archaea had both genes, which may result from a horizontal gene transfer. This model 98 
was proposed as the most probable (Yokobori et al., 2016). (C) Similar to (B), except that C. commonote contained 99 
only the gene coding for G1PDH. (D) C. commonote contained both genes. Its descendants C. bacteria and in C. 100 
archaea had only their respective genes coding for G3DPH or G1DPH that were kept in Bacteria and Archaea. 101 
Alternatively, the genes were horizontally transferred in Bacteria and Archaea (Thong-ek et al., 2019). 102 
G1PDH=G1P dehydrogenase; G3PDH=G3P dehydrogenase. 103 
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